1
|
Lim J, Hwang YS, Kim JT, Yoon HR, Park HM, Han J, Kwon T, Lee KH, Cho HJ, Lee HG. NEK2 Phosphorylates RhoGDI1 to Promote Cell Proliferation, Migration and Invasion Through the Activation of RhoA and Rac1 in Colon Cancer Cells. Cells 2024; 13:2072. [PMID: 39768163 PMCID: PMC11674122 DOI: 10.3390/cells13242072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays a critical role in regulating the activity of Rho guanosine triphosphatases (GTPases). Phosphorylation of RhoGDI1 dynamically modulates the activation of Rho GTPases, influencing cell proliferation and migration. This study explored the involvement of Never In Mitosis A (NIMA)-related serine/threonine protein kinase 2 (NEK2) in phosphorylating RhoGDI1 and its implications in cancer cell behavior associated with tumor progression. We employed GST pull-down assays and immunoprecipitation to investigate the interaction between NEK2 and RhoGDI1. Truncation fragments identified the region of RhoGDI1 responsible for binding with NEK2. Phosphorylation assays determined the site of NEK2-mediated phosphorylation on RhoGDI1. Functional assays were conducted using overexpression of the RhoGDI1 substitution mutant to assess their impact on cancer cell behavior. NEK2 directly bound to RhoGDI1 and phosphorylated it at Ser174. This phosphorylation event facilitated cancer cell proliferation and motility by activating RhoA and Rac1. The RhoGDI1 aa 112-134 region was critical for the binding to NEK2. Disruption of the NEK2-RhoGDI1 interaction through overexpression of a RhoGDI1 truncated fragment (aa 112-134) led to diminished RhoGDI1 phosphorylation and RhoA/Rac1 activation induced by NEK2, resulting in reduced cancer cell proliferation and migration. Moreover, in vivo studies showed reduced tumor growth and lung metastasis when the NEK2-RhoGDI1 interaction was disrupted. This study indicates that NEK2 promotes the metastatic behaviors of cancer cells by activating RhoA and Rac1 by phosphorylating RhoGDI1.
Collapse
Affiliation(s)
- Jeewon Lim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yo-Sep Hwang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
| | - Jong-Tae Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
| | - Hyang-Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
| | - Hyo-Min Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
| | - Jahyeong Han
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56216, Republic of Korea;
| | - Kyung-Ho Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28644, Republic of Korea;
| | - Hee-Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee-Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Ramanujan A, Li Z, Ma Y, Lin Z, Ibáñez CF. RhoGDI phosphorylation by PKC promotes its interaction with death receptor p75 NTR to gate axon growth and neuron survival. EMBO Rep 2024; 25:1490-1512. [PMID: 38253689 PMCID: PMC10933337 DOI: 10.1038/s44319-024-00064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
How receptors juggle their interactions with multiple downstream effectors remains poorly understood. Here we show that the outcome of death receptor p75NTR signaling is determined through competition of effectors for interaction with its intracellular domain, in turn dictated by the nature of the ligand. While NGF induces release of RhoGDI through recruitment of RIP2, thus decreasing RhoA activity in favor of NFkB signaling, MAG induces PKC-mediated phosphorylation of the RhoGDI N-terminus, promoting its interaction with the juxtamembrane domain of p75NTR, disengaging RIP2, and enhancing RhoA activity in detriment of NF-kB. This results in stunted neurite outgrowth and apoptosis in cerebellar granule neurons. If presented simultaneously, MAG prevails over NGF. The NMR solution structure of the complex between the RhoGDI N-terminus and p75NTR juxtamembrane domain reveals previously unknown structures of these proteins and clarifies the mechanism of p75NTR activation. These results show how ligand-directed competition between RIP2 and RhoGDI for p75NTR engagement determine axon growth and neuron survival. Similar principles are likely at work in other receptors engaging multiple effectors and signaling pathways.
Collapse
Affiliation(s)
- Ajeena Ramanujan
- Department of Physiology and Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
| | - Zhen Li
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Yanchen Ma
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
- Chinese Institute for Brain Research, Life Science Park, 102206, Beijing, China
| | - Zhi Lin
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Carlos F Ibáñez
- Department of Physiology and Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore.
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China.
- Chinese Institute for Brain Research, Life Science Park, 102206, Beijing, China.
- Department of Neuroscience, Karolinska Institute, Stockholm, 17177, Sweden.
- Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
3
|
Lim J, Hwang YS, Yoon HR, Yoo J, Yoon SR, Jung H, Cho HJ, Lee HG. PLK1 phosphorylates RhoGDI1 and promotes cancer cell migration and invasion. Cancer Cell Int 2024; 24:73. [PMID: 38355643 PMCID: PMC10865702 DOI: 10.1186/s12935-024-03254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays an important role in diverse cellular processes by regulating Rho guanosine triphosphate (GTP)ases activity. RhoGDI1 phosphorylation regulates the spatiotemporal activation of Rho GTPases during cell migration. In this study, we identified polo-like kinase 1 (PLK1) as a novel kinase of RhoGDI1 and investigated the molecular mechanism by which the interaction between RhoGDI1 and PLK1 regulates cancer cell migration. METHODS Immunoprecipitation, GST pull-down assay, and proximity ligation assay (PLA) were performed to analyze the interaction between RhoGDI1 and PLK1. In vitro kinase assay and immunoprecipitation were performed with Phospho-(Ser/Thr) antibody. We evaluated RhoA activation using RhoGTPases activity assay. Cell migration and invasion were analyzed by transwell assays. RESULTS GST pull-down assays and PLA showed that PLK1 directly interacted with RhoGDI1 in vitro and in vivo. Truncation mutagenesis revealed that aa 90-111 of RhoGDI1 are critical for interacting with PLK1. We also showed that PLK1 phosphorylated RhoGDI1 at Thr7 and Thr91, which induces cell motility. Overexpression of the GFP-tagged RhoGDI1 truncated mutant (aa 90-111) inhibited the interaction of PLK1 with RhoGDI1 and attenuated RhoA activation by PLK1. Furthermore, the overexpression of the RhoGDI1 truncated mutant reduced cancer cell migration and invasion in vitro and suppressed lung metastasis in vivo. CONCLUSIONS Collectively, we demonstrate that the phosphorylation of RhoGDI1 by PLK1 promotes cancer cell migration and invasion through RhoA activation. This study connects the interaction between PLK1 and RhoGDI1 to the promotion of cancer cell behavior associated with malignant progression, thereby providing opportunities for cancer therapeutic interventions.
Collapse
Affiliation(s)
- Jeewon Lim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Yo Sep Hwang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Hyang Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jiyun Yoo
- Division of Applied Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Sinha K, Kumawat A, Jang H, Nussinov R, Chakrabarty S. Molecular mechanism of regulation of RhoA GTPase by phosphorylation of RhoGDI. Biophys J 2024; 123:57-67. [PMID: 37978802 PMCID: PMC10808049 DOI: 10.1016/j.bpj.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Rho-specific guanine nucleotide dissociation inhibitors (RhoGDIs) play a crucial role in the regulation of Rho family GTPases. They act as negative regulators that prevent the activation of Rho GTPases by forming complexes with the inactive GDP-bound state of GTPase. Release of Rho GTPase from the RhoGDI-bound complex is necessary for Rho GTPase activation. Biochemical studies provide evidence of a "phosphorylation code," where phosphorylation of some specific residues of RhoGDI selectively releases its GTPase partner (RhoA, Rac1, Cdc42, etc.). This work attempts to understand the molecular mechanism behind this specific phosphorylation-induced reduction in binding affinity. Using several microseconds long atomistic molecular dynamics simulations of the wild-type and phosphorylated states of the RhoA-RhoGDI complex, we propose a molecular-interaction-based mechanistic model for the dissociation of the complex. Phosphorylation induces major structural changes, particularly in the positively charged polybasic region (PBR) of RhoA and the negatively charged N-terminal region of RhoGDI that contribute most to the binding affinity. Molecular mechanics Poisson-Boltzmann surface area binding energy calculations show a significant weakening of interaction on phosphorylation at the RhoA-specific site of RhoGDI. In contrast, phosphorylation at a Rac1-specific site does not affect the overall binding affinity significantly, which confirms the presence of a phosphorylation code. RhoA-specific phosphorylation leads to a reduction in the number of contacts between the PBR of RhoA and the N-terminal region of RhoGDI, which manifests a reduction of the binding affinity. Using hydrogen bond occupancy analysis and energetic perturbation network, we propose a mechanistic model for the allosteric response, i.e., long-range signal propagation from the site of phosphorylation to the PBR and buried geranylgeranyl group in the form of rearrangement and rewiring of hydrogen bonds and salt bridges. Our results highlight the crucial role of specific electrostatic interactions in manifestation of the phosphorylation code.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Amit Kumawat
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Suman Chakrabarty
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India.
| |
Collapse
|
5
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
6
|
Kowluru A, Gleason NF. Underappreciated roles for Rho GDP dissociation inhibitors (RhoGDIs) in cell function: Lessons learned from the pancreatic islet β-cell. Biochem Pharmacol 2022; 197:114886. [PMID: 34968495 PMCID: PMC8858860 DOI: 10.1016/j.bcp.2021.114886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
Rho subfamily of G proteins (e.g., Rac1) have been implicated in glucose-stimulated insulin secretion from the pancreatic β-cell. Interestingly, metabolic stress (e.g., chronic exposure to high glucose) results in sustained activation of Rac1 leading to increased oxidative stress, impaired insulin secretion and β-cell dysfunction. Activation-deactivation of Rho G proteins is mediated by three classes of regulatory proteins, namely the guanine nucleotide exchange factors (GEFs), which facilitate the conversion of inactive G proteins to their active conformations; the GTPase-activating proteins (GAPs), which convert the active G proteins to their inactive forms); and the GDP-dissociation inhibitors (GDIs), which prevent the dissociation of GDP from G proteins. Contrary to a large number of GEFs (82 members) and GAPs (69 members), only three members of RhoGDIs (RhoGDIα, RhoGDIβ and RhoGDIγ) are expressed in mammalian cells.Even though relatively smaller in number, the GDIs appear to play essential roles in G protein function (e.g., subcellular targeting) for effector activation and cell regulation. Emerging evidence also suggests that the GDIs are functionally regulated via post-translational modification (e.g., phosphorylation) and by lipid second messengers, lipid kinases and lipid phosphatases. We highlight the underappreciated regulatory roles of RhoGDI-Rho G protein signalome in islet β-cell function in health and metabolic stress. Potential knowledge gaps in the field, and directions for future research for the identification of novel therapeutic targets to loss of functional β-cell mass under the duress of metabolic stress are highlighted.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|
7
|
Duman JG, Blanco FA, Cronkite CA, Ru Q, Erikson KC, Mulherkar S, Saifullah AB, Firozi K, Tolias KF. Rac-maninoff and Rho-vel: The symphony of Rho-GTPase signaling at excitatory synapses. Small GTPases 2022; 13:14-47. [PMID: 33955328 PMCID: PMC9707551 DOI: 10.1080/21541248.2021.1885264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Synaptic connections between neurons are essential for every facet of human cognition and are thus regulated with extreme precision. Rho-family GTPases, molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state, comprise a critical feature of synaptic regulation. Rho-GTPases are exquisitely controlled by an extensive suite of activators (GEFs) and inhibitors (GAPs and GDIs) and interact with many different signalling pathways to fulfill their roles in orchestrating the development, maintenance, and plasticity of excitatory synapses of the central nervous system. Among the mechanisms that control Rho-GTPase activity and signalling are cell surface receptors, GEF/GAP complexes that tightly regulate single Rho-GTPase dynamics, GEF/GAP and GEF/GEF functional complexes that coordinate multiple Rho-family GTPase activities, effector positive feedback loops, and mutual antagonism of opposing Rho-GTPase pathways. These complex regulatory mechanisms are employed by the cells of the nervous system in almost every step of development, and prominently figure into the processes of synaptic plasticity that underlie learning and memory. Finally, misregulation of Rho-GTPases plays critical roles in responses to neuronal injury, such as traumatic brain injury and neuropathic pain, and in neurodevelopmental and neurodegenerative disorders, including intellectual disability, autism spectrum disorder, schizophrenia, and Alzheimer's Disease. Thus, decoding the mechanisms of Rho-GTPase regulation and function at excitatory synapses has great potential for combatting many of the biggest current challenges in mental health.
Collapse
Affiliation(s)
- Joseph G. Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Francisco A. Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Christopher A. Cronkite
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kelly C. Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ali Bin Saifullah
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Binding of the Andes Virus Nucleocapsid Protein to RhoGDI Induces the Release and Activation of the Permeability Factor RhoA. J Virol 2021; 95:e0039621. [PMID: 34133221 DOI: 10.1128/jvi.00396-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Andes virus (ANDV) nonlytically infects pulmonary microvascular endothelial cells (PMECs), causing acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every PMEC is infected; however, the mechanism by which ANDV induces vascular permeability and edema remains to be resolved. The ANDV nucleocapsid (N) protein activates the GTPase RhoA in primary human PMECs, causing VE-cadherin internalization from adherens junctions and PMEC permeability. We found that ANDV N protein failed to bind RhoA but coprecipitates RhoGDI (Rho GDP dissociation inhibitor), the primary RhoA repressor that normally sequesters RhoA in an inactive state. ANDV N protein selectively binds the RhoGDI C terminus (residues 69 to 204) but fails to form ternary complexes with RhoA or inhibit RhoA binding to the RhoGDI N terminus (residues 1 to 69). However, we found that ANDV N protein uniquely inhibits RhoA binding to an S34D phosphomimetic RhoGDI mutant. Hypoxia and vascular endothelial growth factor (VEGF) increase RhoA-induced PMEC permeability by directing protein kinase Cα (PKCα) phosphorylation of S34 on RhoGDI. Collectively, ANDV N protein alone activates RhoA by sequestering and reducing RhoGDI available to suppress RhoA. In response to hypoxia and VEGF-activated PKCα, ANDV N protein additionally directs the release of RhoA from S34-phosphorylated RhoGDI, synergistically activating RhoA and PMEC permeability. These findings reveal a fundamental edemagenic mechanism that permits ANDV to amplify PMEC permeability in hypoxic HPS patients. Our results rationalize therapeutically targeting PKCα and opposing protein kinase A (PKA) pathways that control RhoGDI phosphorylation as a means of resolving ANDV-induced capillary permeability, edema, and HPS. IMPORTANCE HPS-causing hantaviruses infect pulmonary endothelial cells (ECs), causing vascular leakage, pulmonary edema, and a 35% fatal acute respiratory distress syndrome (ARDS). Hantaviruses do not lyse or disrupt the endothelium but dysregulate normal EC barrier functions and increase hypoxia-directed permeability. Our findings reveal a novel underlying mechanism of EC permeability resulting from ANDV N protein binding to RhoGDI, a regulatory protein that normally maintains edemagenic RhoA in an inactive state and inhibits EC permeability. ANDV N sequesters RhoGDI and enhances the release of RhoA from S34-phosphorylated RhoGDI. These findings indicate that ANDV N induces the release of RhoA from PKC-phosphorylated RhoGDI, synergistically enhancing hypoxia-directed RhoA activation and PMEC permeability. Our data suggest inhibiting PKC and activating PKA phosphorylation of RhoGDI as mechanisms of inhibiting ANDV-directed EC permeability and therapeutically restricting edema in HPS patients. These findings may be broadly applicable to other causes of ARDS.
Collapse
|
9
|
Veluthakal R, Thurmond DC. Emerging Roles of Small GTPases in Islet β-Cell Function. Cells 2021; 10:1503. [PMID: 34203728 PMCID: PMC8232272 DOI: 10.3390/cells10061503] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Several small guanosine triphosphatases (GTPases) from the Ras protein superfamily regulate glucose-stimulated insulin secretion in the pancreatic islet β-cell. The Rho family GTPases Cdc42 and Rac1 are primarily involved in relaying key signals in several cellular functions, including vesicle trafficking, plasma membrane homeostasis, and cytoskeletal dynamics. They orchestrate specific changes at each spatiotemporal region within the β-cell by coordinating with signal transducers, guanine nucleotide exchange factors (GEFs), GTPase-activating factors (GAPs), and their effectors. The Arf family of small GTPases is involved in vesicular trafficking (exocytosis and endocytosis) and actin cytoskeletal dynamics. Rab-GTPases regulate pre-exocytotic and late endocytic membrane trafficking events in β-cells. Several additional functions for small GTPases include regulating transcription factor activity and mitochondrial dynamics. Importantly, defects in several of these GTPases have been found associated with type 2 diabetes (T2D) etiology. The purpose of this review is to systematically denote the identities and molecular mechanistic steps in the glucose-stimulated insulin secretion pathway that leads to the normal release of insulin. We will also note newly identified defects in these GTPases and their corresponding regulatory factors (e.g., GDP dissociation inhibitors (GDIs), GEFs, and GAPs) in the pancreatic β-cells, which contribute to the dysregulation of metabolism and the development of T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| |
Collapse
|
10
|
Black AR, Black JD. The complexities of PKCα signaling in cancer. Adv Biol Regul 2021; 80:100769. [PMID: 33307285 PMCID: PMC8141086 DOI: 10.1016/j.jbior.2020.100769] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 01/06/2023]
Abstract
Protein kinase C α (PKCα) is a ubiquitously expressed member of the PKC family of serine/threonine kinases with diverse functions in normal and neoplastic cells. Early studies identified anti-proliferative and differentiation-inducing functions for PKCα in some normal tissues (e.g., regenerating epithelia) and pro-proliferative effects in others (e.g., cells of the hematopoietic system, smooth muscle cells). Additional well documented roles of PKCα signaling in normal cells include regulation of the cytoskeleton, cell adhesion, and cell migration, and PKCα can function as a survival factor in many contexts. While a majority of tumors lose expression of PKCα, others display aberrant overexpression of the enzyme. Cancer-related mutations in PKCα are uncommon, but rare examples of driver mutations have been detected in certain cancer types (e. g., choroid gliomas). Here we review the role of PKCα in various cancers, describe mechanisms by which PKCα affects cancer-related cell functions, and discuss how the diverse functions of PKCα contribute to tumor suppressive and tumor promoting activities of the enzyme. We end the discussion by addressing mutations and expression of PKCα in tumors and the clinical relevance of these findings.
Collapse
Affiliation(s)
- Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
11
|
Erasmus JC, Smolarczyk K, Brezovjakova H, Mohd-Naim NF, Lozano E, Matter K, Braga VMM. Rac1-PAK1 regulation of Rab11 cycling promotes junction destabilization. J Cell Biol 2021; 220:212034. [PMID: 33914026 PMCID: PMC8091128 DOI: 10.1083/jcb.202002114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/21/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Rac1 GTPase is hyperactivated in tumors and contributes to malignancy. Rac1 disruption of junctions requires its effector PAK1, but the precise mechanisms are unknown. Here, we show that E-cadherin is internalized via micropinocytosis in a PAK1–dependent manner without catenin dissociation and degradation. In addition to internalization, PAK1 regulates E-cadherin transport by fine-tuning Rab small GTPase function. PAK1 phosphorylates a core Rab regulator, RabGDIβ, but not RabGDIα. Phosphorylated RabGDIβ preferentially associates with Rab5 and Rab11, which is predicted to promote Rab retrieval from membranes. Consistent with this hypothesis, Rab11 is activated by Rac1, and inhibition of Rab11 function partially rescues E-cadherin destabilization. Thus, Rac1 activation reduces surface cadherin levels as a net result of higher bulk flow of membrane uptake that counteracts Rab11-dependent E-cadherin delivery to junctions (recycling and/or exocytosis). This unique small GTPase crosstalk has an impact on Rac1 and PAK1 regulation of membrane remodeling during epithelial dedifferentiation, adhesion, and motility.
Collapse
Affiliation(s)
- Jennifer C Erasmus
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Kasia Smolarczyk
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Helena Brezovjakova
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Noor F Mohd-Naim
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Encarnación Lozano
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Karl Matter
- Institute of Ophthalmology, University College London, London, UK
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
12
|
Betriu N, Bertran-Mas J, Andreeva A, Semino CE. Syndecans and Pancreatic Ductal Adenocarcinoma. Biomolecules 2021; 11:biom11030349. [PMID: 33669066 PMCID: PMC7996579 DOI: 10.3390/biom11030349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a fatal disease with poor prognosis because patients rarely express symptoms in initial stages, which prevents early detection and diagnosis. Syndecans, a subfamily of proteoglycans, are involved in many physiological processes including cell proliferation, adhesion, and migration. Syndecans are physiologically found in many cell types and their interactions with other macromolecules enhance many pathways. In particular, extracellular matrix components, growth factors, and integrins collect the majority of syndecans associations acting as biochemical, physical, and mechanical transducers. Syndecans are transmembrane glycoproteins, but occasionally their extracellular domain can be released from the cell surface by the action of matrix metalloproteinases, converting them into soluble molecules that are capable of binding distant molecules such as extracellular matrix (ECM) components, growth factor receptors, and integrins from other cells. In this review, we explore the role of syndecans in tumorigenesis as well as their potential as therapeutic targets. Finally, this work reviews the contribution of syndecan-1 and syndecan-2 in PDAC progression and illustrates its potential to be targeted in future treatments for this devastating disease.
Collapse
|
13
|
Gopal S, Arokiasamy S, Pataki C, Whiteford JR, Couchman JR. Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biol 2021; 11:200377. [PMID: 33561383 PMCID: PMC8061687 DOI: 10.1098/rsob.200377] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
The syndecans are the major family of transmembrane proteoglycans, usually bearing multiple heparan sulfate chains. They are present on virtually all nucleated cells of vertebrates and are also present in invertebrates, indicative of a long evolutionary history. Genetic models in both vertebrates and invertebrates have shown that syndecans link to the actin cytoskeleton and can fine-tune cell adhesion, migration, junction formation, polarity and differentiation. Although often associated as co-receptors with other classes of receptors (e.g. integrins, growth factor and morphogen receptors), syndecans can nonetheless signal to the cytoplasm in discrete ways. Syndecan expression levels are upregulated in development, tissue repair and an array of human diseases, which has led to the increased appreciation that they may be important in pathogenesis not only as diagnostic or prognostic agents, but also as potential targets. Here, their functions in development and inflammatory diseases are summarized, including their potential roles as conduits for viral pathogen entry into cells.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Csilla Pataki
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - James R. Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - John R. Couchman
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
14
|
Ard R, Maillet JC, Daher E, Phan M, Zinoviev R, Parks RJ, Gee SH. PKCα-mediated phosphorylation of the diacylglycerol kinase ζ MARCKS domain switches cell migration modes by regulating interactions with Rac1 and RhoA. J Biol Chem 2021; 296:100516. [PMID: 33676892 PMCID: PMC8042443 DOI: 10.1016/j.jbc.2021.100516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/04/2023] Open
Abstract
Cells can switch between Rac1 (lamellipodia-based) and RhoA (blebbing-based) migration modes, but the molecular mechanisms regulating this shift are not fully understood. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, forms independent complexes with Rac1 and RhoA, selectively dissociating each from their common inhibitor RhoGDI. DGKζ catalytic activity is required for Rac1 dissociation but is dispensable for RhoA dissociation; instead, DGKζ stimulates RhoA release via a kinase-independent scaffolding mechanism. The molecular determinants that mediate the selective targeting of DGKζ to Rac1 or RhoA signaling complexes are unknown. Here, we show that protein kinase Cα (PKCα)-mediated phosphorylation of the DGKζ MARCKS domain increased DGKζ association with RhoA and decreased its interaction with Rac1. The same modification also enhanced DGKζ interaction with the scaffold protein syntrophin. Expression of a phosphomimetic DGKζ mutant stimulated membrane blebbing in mouse embryonic fibroblasts and C2C12 myoblasts, which was augmented by inhibition of endogenous Rac1. DGKζ expression in differentiated C2 myotubes, which have low endogenous Rac1 levels, also induced substantial membrane blebbing via the RhoA-ROCK pathway. These events were independent of DGKζ catalytic activity, but dependent upon a functional C-terminal PDZ-binding motif. Rescue of RhoA activity in DGKζ-null cells also required the PDZ-binding motif, suggesting that syntrophin interaction is necessary for optimal RhoA activation. Collectively, our results define a switch-like mechanism whereby DGKζ phosphorylation by PKCα plays a role in the interconversion between Rac1 and RhoA signaling pathways that underlie different cellular migration modes.
Collapse
Affiliation(s)
- Ryan Ard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Christian Maillet
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Elias Daher
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Phan
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Radoslav Zinoviev
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Robin J Parks
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada; Molecular Medicine Program, Ottawa Health Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen H Gee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
15
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
16
|
Histamine-induced biphasic activation of RhoA allows for persistent RhoA signaling. PLoS Biol 2020; 18:e3000866. [PMID: 32881857 PMCID: PMC7494096 DOI: 10.1371/journal.pbio.3000866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 09/16/2020] [Accepted: 08/12/2020] [Indexed: 12/30/2022] Open
Abstract
The small GTPase RhoA is a central signaling enzyme that is involved in various cellular processes such as cytoskeletal dynamics, transcription, and cell cycle progression. Many signal transduction pathways activate RhoA—for instance, Gαq-coupled Histamine 1 Receptor signaling via Gαq-dependent activation of RhoGEFs such as p63. Although multiple upstream regulators of RhoA have been identified, the temporal regulation of RhoA and the coordination of different upstream components in its regulation have not been well characterized. In this study, live-cell measurement of RhoA activation revealed a biphasic increase of RhoA activity upon histamine stimulation. We showed that the first and second phase of RhoA activity are dependent on p63 and Ca2+/PKC, respectively, and further identified phosphorylation of serine 240 on p115 RhoGEF by PKC to be the mechanistic link between PKC and RhoA. Combined approaches of computational modeling and quantitative measurement revealed that the second phase of RhoA activation is insensitive to rapid turning off of the receptor and is required for maintaining RhoA-mediated transcription after the termination of the receptor signaling. Thus, two divergent pathways enable both rapid activation and persistent signaling in receptor-mediated RhoA signaling via intricate temporal regulation. The small GTPase RhoA is a central signaling enzyme that is involved in various cellular processes such as cytoskeletal dynamics, transcription, and cell cycle progression. This study shows that histamine induces biphasic activation of RhoA via two divergent signaling pathways, allowing for intricate regulation of cellular processes.
Collapse
|
17
|
Cho HJ, Kim JT, Baek KE, Kim BY, Lee HG. Regulation of Rho GTPases by RhoGDIs in Human Cancers. Cells 2019; 8:cells8091037. [PMID: 31492019 PMCID: PMC6769525 DOI: 10.3390/cells8091037] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Rho GDP dissociation inhibitors (RhoGDIs) play important roles in various cellular processes, including cell migration, adhesion, and proliferation, by regulating the functions of the Rho GTPase family. Dissociation of Rho GTPases from RhoGDIs is necessary for their spatiotemporal activation and is dynamically regulated by several mechanisms, such as phosphorylation, sumoylation, and protein interaction. The expression of RhoGDIs has changed in many human cancers and become associated with the malignant phenotype, including migration, invasion, metastasis, and resistance to anticancer agents. Here, we review how RhoGDIs control the function of Rho GTPases by regulating their spatiotemporal activity and describe the regulatory mechanisms of the dissociation of Rho GTPases from RhoGDIs. We also discuss the role of RhoGDIs in cancer progression and their potential uses for therapeutic intervention.
Collapse
Affiliation(s)
- Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Jong-Tae Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Kyoung Eun Baek
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Bo-Yeon Kim
- Anticancer Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34141, Korea.
| |
Collapse
|
18
|
Jeyarajah MJ, Jaju Bhattad G, Kops BF, Renaud SJ. Syndecan-4 regulates extravillous trophoblast migration by coordinating protein kinase C activation. Sci Rep 2019; 9:10175. [PMID: 31308409 PMCID: PMC6629623 DOI: 10.1038/s41598-019-46599-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Extravillous trophoblast (EVT) invasion is an essential component of human placentation. Poor EVT invasion is associated with obstetrical complications including preeclampsia. Integration of cues from the extracellular environment is required for directional EVT invasion, but how EVTs coordinate responses to these cues is not well understood. Syndecan-4 (SDC4) is a transmembrane heparan sulfate proteoglycan that binds to, and modulates the activity of, many extracellular proteins implicated in placental development. Therefore, we determined the functional importance of SDC4 for EVT invasion. We found that SDC4 is expressed by a first trimester EVT line (HTR8), and in EVTs in placenta throughout pregnancy, with higher expression during early pregnancy than at term. Higher expression was also observed in placentas from preeclampsia compared to normotensive pregnancies. SDC4-deficient HTR8 EVTs exhibited reduced migration and Matrigel-based invasion, both under basal conditions and following exposure to basic fibroblast growth factor and heparin-binding epidermal growth factor. SDC4-deficient HTR8 EVTs also showed reduced protein kinase C-alpha (PKCα) and AKT phosphorylation. SDC4 directly bound to activated PKCα in EVTs, and inhibition of PKCα decreased EVT invasion and migration. Our findings reveal an essential role of SDC4 as a regulator of EVT motility, in part through coordination of PKCα activation.
Collapse
Affiliation(s)
- Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Gargi Jaju Bhattad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brianna F Kops
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
- Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
19
|
Liu W, Wang X, Wang S, Ba X, Xu T, Wang X, Zeng X. RhoGDI2 positively regulates the Rho GTPases activation in response to the β2 outside-in signaling in T cells adhesion and migration on ICAM-1. J Leukoc Biol 2019; 106:431-446. [PMID: 31075185 DOI: 10.1002/jlb.2a0718-272rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023] Open
Abstract
Cytoskeletal reorganization driven by Rho GTPases plays a crucial role in the migration of T cells, which are key regulators of immunity. The molecular mechanisms that control actin cytoskeleton remodeling during T cell movement have only partially been clarified as the function of many modulators has not been evaluated in these cells. Here, we report a new function of RhoGDI2 by showing that this protein positively regulates Rho GTPase activation during T cell adhesion and migration. RhoGDI2 knockdown significantly reduced T cell adhesion and migration. Furthermore, RhoGDI2 knockdown decreased the activation of Rac1 and Cdc42, 2 members of Rho GTPases, and the remodeling of the actin cytoskeleton. Upon P-selectin glycoprotein ligand-1 engagement, RhoGDI2 was phosphorylated at Y24 and Y153 by kinases related to β2 integrin outside-in signaling, Src, c-Abl, and Syk, resulting in the accumulation of RhoGDI2 at the cell membrane. Subsequent phosphorylation of S31 induced the opening of RhoGDI2 and the release of Rho GTPases, whereas phosphorylation of Y153 might promote the activation of Rho GTPases by recruiting Vav1. Moreover, the disruption of lipid rafts with methyl-β-cyclodextrin blocked the interaction between integrins and RhoGDI2, reducing the level of phosphorylated RhoGDI2 and the activation of downstream Rho GTPases. Based on these observations, RhoGDI2 is a target of intergrin outside-in signaling that activates Rho GTPases during T cell adhesion and migration, and RhoGDI2-mediated signal transduction is based on the lipid rafts integrity.
Collapse
Affiliation(s)
- Wenai Liu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Xuehao Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Shan Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Tingshuang Xu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoguang Wang
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
20
|
Ueyama T. Rho-Family Small GTPases: From Highly Polarized Sensory Neurons to Cancer Cells. Cells 2019; 8:cells8020092. [PMID: 30696065 PMCID: PMC6406560 DOI: 10.3390/cells8020092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases of the Rho-family (Rho-family GTPases) have various physiological functions, including cytoskeletal regulation, cell polarity establishment, cell proliferation and motility, transcription, reactive oxygen species (ROS) production, and tumorigenesis. A relatively large number of downstream targets of Rho-family GTPases have been reported for in vitro studies. However, only a small number of signal pathways have been established at the in vivo level. Cumulative evidence for the functions of Rho-family GTPases has been reported for in vivo studies using genetically engineered mouse models. It was based on different cell- and tissue-specific conditional genes targeting mice. In this review, we introduce recent advances in in vivo studies, including human patient trials on Rho-family GTPases, focusing on highly polarized sensory organs, such as the cochlea, which is the primary hearing organ, host defenses involving reactive oxygen species (ROS) production, and tumorigenesis (especially associated with RAC, novel RAC1-GSPT1 signaling, RHOA, and RHOBTB2).
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
21
|
Fröhling M, Tepasse P, Intemann J, Sambale M, Sherwood J, Paruzel P, Tiemeyer NM, Nowacki TM, Brückner M, Mennigen R, Lügering A, Echtermeyer F, Pap T, Stratis A, Bettenworth D. Syndecan-4 Modulates Epithelial Gut Barrier Function and Epithelial Regeneration in Experimental Colitis. Inflamm Bowel Dis 2018; 24:2579-2589. [PMID: 30053064 DOI: 10.1093/ibd/izy248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND The transmembrane heparan sulfate proteoglycan Syndecan-4 (Sdc4) plays an important role in the regulation of various inflammatory disorders. However, the involvement of Sdc4 in intestinal inflammation remains unknown. Therefore, we assessed the impact of Sdc4 deficiency on experimental colitis and epithelial wound healing in vitro and in vivo. METHODS Dextran sulfate sodium (DSS)-induced colitis was monitored in wild type and Sdc4-deficient (Sdc4-/-) mice by assessment of body weight, histology, inflammatory cellular infiltration, and colon length. Syndecan-4 expression was measured by immunohistochemistry, Western blot, and quantitative real-time PCR. Epithelial permeability was evaluated by Evans blue measurements, Western blot, and immunohistological analysis of tight junction protein expression. Impact of Sdc4 on epithelial wound healing was determined by scratch assay in vitro and by colonoscopy following mechanical wounding in vivo. RESULTS In Sdc4-/- mice, colitis-like symptoms including severe weight loss, shortened colon length, histological damage, and invasion of macrophages and granulocytes were markedly aggravated compared with wild type (WT) animals. Moreover, colonic epithelial permeability in Sdc4-/- mice was enhanced, while tight junction protein expression decreased. Furthermore, Sdc4-/- colonic epithelial cells had lower cell proliferation and migration rates which presented in vivo as a prolonged intestinal wound healing phenotype. Strikingly, in WT animals, Sdc4 expression was reduced during colitis and was elevated during recovery. CONCLUSIONS The loss of Sdc4 aggravates the course of experimental colitis, potentially through impaired epithelial cell integrity and regeneration. In view of the development of current treatment approaches involving Sdc4 inhibition for inflammatory disorders like arthritis, particular caution should be taken in case of adverse gastrointestinal side-effects.
Collapse
Affiliation(s)
- Mareike Fröhling
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Phil Tepasse
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Johanna Intemann
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Meike Sambale
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Joanna Sherwood
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Peter Paruzel
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Nina-Marie Tiemeyer
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Tobias M Nowacki
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Markus Brückner
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Rudolf Mennigen
- Department of General Surgery, University Hospital Münster, Münster, Germany
| | | | - Frank Echtermeyer
- Department of Anesthesiology and Intensive Care Medicine, Medical University Hannover, Hannover, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Athanasios Stratis
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| |
Collapse
|
22
|
Ishii T, Warabi E, Mann GE. Circadian control of p75 neurotrophin receptor leads to alternate activation of Nrf2 and c-Rel to reset energy metabolism in astrocytes via brain-derived neurotrophic factor. Free Radic Biol Med 2018; 119:34-44. [PMID: 29374533 DOI: 10.1016/j.freeradbiomed.2018.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
Circadian clock genes regulate energy metabolism partly through neurotrophins in the body. The low affinity neurotrophin receptor p75NTR is a clock component directly regulated by the transcriptional factor Clock:Bmal1 complex. Brain-derived neurotrophic factor (BDNF) is expressed in the brain and plays a key role in coordinating metabolic interactions between neurons and astrocytes. BDNF transduces signals through TrkB and p75NTR receptors. This review highlights a novel molecular mechanism by which BDNF via circadian control of p75NTR leads to daily resetting of glucose and glycogen metabolism in brain astrocytes to accommodate their functional interaction with neurons. Astrocytes store glycogen as an energy reservoir to provide active neurons with the glycolytic metabolite lactate. Astrocytes predominantly express the truncated receptor TrkB.T1 which lacks an intracellular receptor tyrosine kinase domain. TrkB.T1 retains the capacity to regulate cell morphology through regulation of Rho GTPases. In contrast, p75NTR mediates generation of the bioactive lipid ceramide upon stimulation with BDNF and inhibits PKA activation. As ceramide directly activates PKCζ, we discuss the importance of the TrkB.T1-p75NTR-ceramide-PKCζ signaling axis in the stimulation of glycogen and lipid synthesis and activation of RhoA. Ceramide-PKCζ-casein kinase 2 signaling activates Nrf2 to support oxidative phosphorylation via upregulation of antioxidant enzymes. In the absence of p75NTR, TrkB.T1 functionally interacts with adenosine A2AR and dopamine D1R receptors to enhance cAMP-PKA signaling and activate Rac1 and NF-κB c-Rel, favoring glycogen hydrolysis, gluconeogenesis and aerobic glycolysis. Thus, diurnal changes in p75NTR levels in astrocytes resets energy metabolism via BDNF to accommodate their metabolic interaction with neurons.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba Ibaraki 305-0863, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba Ibaraki 305-0863, Japan
| | - Giovanni E Mann
- School of Cardiovascular Medicine and Sciences, King's British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
23
|
Kim JG, Choi KC, Hong CW, Park HS, Choi EK, Kim YS, Park JB. Tyr42 phosphorylation of RhoA GTPase promotes tumorigenesis through nuclear factor (NF)-κB. Free Radic Biol Med 2017; 112:69-83. [PMID: 28712859 DOI: 10.1016/j.freeradbiomed.2017.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/19/2017] [Accepted: 07/11/2017] [Indexed: 01/01/2023]
Abstract
Dysregulation of reactive oxygen species (ROS) levels is implicated in the pathogenesis of several diseases, including cancer. However, the molecular mechanisms for ROS in tumorigenesis have not been well established. In this study, hydrogen peroxide activated nuclear factor-κB (NF-κB) and RhoA GTPase. In particular, we found that hydrogen peroxide lead to phosphorylation of RhoA at Tyr42 via tyrosine kinase Src. Phospho-Tyr42 (p-Tyr42) residue of RhoA is a binding site for Vav2, a guanine nucleotide exchange factor (GEF), which then activates p-Tyr42 form of RhoA. P-Tyr42 RhoA then binds to IκB kinase γ (IKKγ), leading to IKKβ activation. Furthermore, RhoA WT and phospho-mimic RhoA, RhoA Y42E, both promoted tumorigenesis, whereas the dephospho-mimic RhoA, RhoA Y42F suppressed it. In addition, hydrogen peroxide induced NF-κB activation and cell proliferation, along with expression of c-Myc and cyclin D1 in the presence of RhoA WT and RhoA Y42E, but not RhoA Y42F. Indeed, levels of p-Tyr42 Rho, p-Src, and p-65 are significantly increased in human breast cancer tissues and show correlations between each of the two components. Conclusively, the posttranslational modification of as RhoA p-Tyr42 may be essential for promoting tumorigenesis in response to generation of ROS.
Collapse
Affiliation(s)
- Jae-Gyu Kim
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea
| | - Kyoung-Chan Choi
- Department of Pathology, Chuncheon Sacred Hospital Hallym University, Chuncheon 24252, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, Kyungpook National University School of Medicine, Daegu, Gyeongsangbuk-do 41944, Republic of Korea
| | - Hwee-Seon Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea; Department of Microbiology, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea; Institute of Cell Differentiation and Ageing, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea.
| |
Collapse
|
24
|
Cho HJ, Hwang YS, Yoon J, Lee M, Lee HG, Daar IO. EphrinB1 promotes cancer cell migration and invasion through the interaction with RhoGDI1. Oncogene 2017; 37:861-872. [PMID: 29059157 PMCID: PMC5814325 DOI: 10.1038/onc.2017.386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Eph receptors and their corresponding ephrin ligands have been associated with regulating cell–cell adhesion and motility, and thus have a critical role in various biological processes including tissue morphogenesis and homeostasis, as well as pathogenesis of several diseases. Aberrant regulation of Eph/ephrin signaling pathways is implicated in tumor progression of various human cancers. Here, we show that a Rho family GTPase regulator, Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1), can interact with ephrinB1, and this interaction is enhanced upon binding the extracellular domain of the cognate EphB2 receptor. Deletion mutagenesis revealed that amino acids 327–334 of the ephrinB1 intracellular domain are critical for the interaction with RhoGDI1. Stimulation with an EphB2 extracellular domain-Fc fusion protein (EphB2-Fc) induces RhoA activation and enhances the motility as well as invasiveness of wild-type ephrinB1-expressing cells. These Eph-Fc-induced effects were markedly diminished in cells expressing the mutant ephrinB1 construct (Δ327–334) that is ineffective at interacting with RhoGDI1. Furthermore, ephrinB1 depletion by siRNA suppresses EphB2-Fc-induced RhoA activation, and reduces motility and invasiveness of the SW480 and Hs578T human cancer cell lines. Our study connects the interaction between RhoGDI1 and ephrinB1 to the promotion of cancer cell behavior associated with tumor progression. This interaction may represent a therapeutic target in cancers that express ephrinB1.
Collapse
Affiliation(s)
- H J Cho
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea.,Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Y-S Hwang
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - J Yoon
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - M Lee
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - H G Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - I O Daar
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
25
|
Xu Q, Huff LP, Fujii M, Griendling KK. Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic Biol Med 2017; 109:84-107. [PMID: 28285002 PMCID: PMC5497502 DOI: 10.1016/j.freeradbiomed.2017.03.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/17/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
The actin cytoskeleton is critical for form and function of vascular cells, serving mechanical, organizational and signaling roles. Because many cytoskeletal proteins are sensitive to reactive oxygen species, redox regulation has emerged as a pivotal modulator of the actin cytoskeleton and its associated proteins. Here, we summarize work implicating oxidants in altering actin cytoskeletal proteins and focus on how these alterations affect cell migration, proliferation and contraction of vascular cells. Finally, we discuss the role of oxidative modification of the actin cytoskeleton in vivo and highlight its importance for vascular diseases.
Collapse
Affiliation(s)
- Qian Xu
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lauren P Huff
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States
| | - Masakazu Fujii
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States.
| |
Collapse
|
26
|
Proteoglycans, ion channels and cell-matrix adhesion. Biochem J 2017; 474:1965-1979. [PMID: 28546458 DOI: 10.1042/bcj20160747] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023]
Abstract
Cell surface proteoglycans comprise a transmembrane or membrane-associated core protein to which one or more glycosaminoglycan chains are covalently attached. They are ubiquitous receptors on nearly all animal cell surfaces. In mammals, the cell surface proteoglycans include the six glypicans, CD44, NG2 (CSPG4), neuropilin-1 and four syndecans. A single syndecan is present in invertebrates such as nematodes and insects. Uniquely, syndecans are receptors for many classes of proteins that can bind to the heparan sulphate chains present on syndecan core proteins. These range from cytokines, chemokines, growth factors and morphogens to enzymes and extracellular matrix (ECM) glycoproteins and collagens. Extracellular interactions with other receptors, such as some integrins, are mediated by the core protein. This places syndecans at the nexus of many cellular responses to extracellular cues in development, maintenance, repair and disease. The cytoplasmic domains of syndecans, while having no intrinsic kinase activity, can nevertheless signal through binding proteins. All syndecans appear to be connected to the actin cytoskeleton and can therefore contribute to cell adhesion, notably to the ECM and migration. Recent data now suggest that syndecans can regulate stretch-activated ion channels. The structure and function of the syndecans and the ion channels are reviewed here, along with an analysis of ion channel functions in cell-matrix adhesion. This area sheds new light on the syndecans, not least since evidence suggests that this is an evolutionarily conserved relationship that is also potentially important in the progression of some common diseases where syndecans are implicated.
Collapse
|
27
|
Afratis NA, Nikitovic D, Multhaupt HAB, Theocharis AD, Couchman JR, Karamanos NK. Syndecans – key regulators of cell signaling and biological functions. FEBS J 2016; 284:27-41. [DOI: 10.1111/febs.13940] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Nikolaos A. Afratis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
- Biotech Research & Innovation Center University of Copenhagen Denmark
| | - Dragana Nikitovic
- Laboratory of Anatomy‐Histology‐Embryology School of Medicine University of Crete Heraklion Greece
| | | | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
| | - John R. Couchman
- Biotech Research & Innovation Center University of Copenhagen Denmark
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
| |
Collapse
|
28
|
Holmes WR, Golding AE, Bement WM, Edelstein-Keshet L. A mathematical model of GTPase pattern formation during single-cell wound repair. Interface Focus 2016; 6:20160032. [PMID: 27708759 PMCID: PMC4992738 DOI: 10.1098/rsfs.2016.0032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rho GTPases are regulatory proteins whose patterns on the surface of a cell affect cell polarization, cell motility and repair of single-cell wounds. The stereotypical patterns formed by two such proteins, Rho and Cdc42, around laser-injured frog oocytes permit experimental analysis of GTPase activation, inactivation, segregation and crosstalk. Here, we review the development and analysis of a spatial model of GTPase dynamics that describe the formation of concentric zones of Rho and Cdc42 activity around wounds, and describe how this model has provided insights into the roles of the GTPase effector molecules protein kinase C (PKCβ and PKCη) and guanosine nucleotide dissociation inhibitor (GDI) in the wound response. We further demonstrate how the use of a 'sharp switch' model approximation in combination with bifurcation analysis can aid mapping the model behaviour in parameter space (approximate results confirmed with numerical simulation methods). Using these methods in combination with experimental manipulation of PKC activity (PKC overexpression (OE) and dominant negative conditions), we have shown that: (i) PKCβ most probably acts by enhancing existing positive feedbacks (from Rho to itself via the guanosine nucleotide exchange factor domain of Abr, and from Cdc42 to itself), (ii) PKCη most probably increases basal rates of inactivation (or possibly decreases basal rates of activation) of Rho and Cdc42, and (iii) the graded distribution of PKCη and its effect on initial Rho activity accounts for inversion of zones in a fraction (20%) of PKCη OE cells. Finally, we speculate that GDIs (which sequester GTPases) may have a critical role in defining the spatial domain, where the wound response may occur. This paper provides a more thorough exposition of the methods of analysis used in the investigation, whereas previous work on this topic was addressed to biologists and abbreviated such discussion.
Collapse
Affiliation(s)
- William R. Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
| | - Adriana E. Golding
- Cellular and Molecular Biology Program, Laboratory of Cell and Molecular Biology, Department of Zoology, University of Wisconsin, Madison, WI, USA
| | - William M. Bement
- Cellular and Molecular Biology Program, Laboratory of Cell and Molecular Biology, Department of Zoology, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
29
|
García-Álvarez I, Fernández-Mayoralas A, Moreno-Lillo S, Sánchez-Sierra M, Nieto-Sampedro M, Doncel-Pérez E. Inhibition of glial proliferation, promotion of axonal growth and myelin production by synthetic glycolipid: A new approach for spinal cord injury treatment. Restor Neurol Neurosci 2016; 33:895-910. [PMID: 26484699 DOI: 10.3233/rnn-150572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE After spinal cord injury (SCI) a glial scar is generated in the area affected that forms a barrier for axon growth and myelination, preventing functional recovery. Recently, we have described a synthetic glycolipid (IG20) that inhibited proliferation of human glioma cells. We show now that IG20 inhibited the proliferation of astrocytes and microglial cells, the principal cellular components of the glial scar, and promoting axonal outgrowth and myelin production in vitro. METHODS Glial cells were inhibited with IG20 (IC50≈10 μM) and studied by RT-PCR, Western Blotting, immunoprecipitation and fluorescence microscopy. Axonal outgrowth in dorsal root ganglia (DRG) and myelin production by oligodendrocytes were analyzed by immunocytochemistry. Adult rats were assayed in spinal cord contusion model and the recovery of treated animals (n = 6) and controls (n = 6) was followed. RESULTS The IG20 was localized in the cytosol of glial cells, forming a complex with RhoGDIα, a regulator of RhoGTPases. Treatment of astroglial cultures with IG20 increase the expression of BDNF receptor genes (TrkBT1, TrkB Full). IG20 reduced the astroglial marker GFAP, while increasing production of myelin basic protein in oligodendrocytes and promoted axonal outgrowth from DRG neurons. Local injection of IG20, near a spinal cord contusion, promoted the recovery of lesioned animals analyzed by BBB test (P < 0.05). CONCLUSIONS We propose that inhibition of astrocytes and microglia by IG20 could be diminished the glial scar formation, inducing the re-growth and myelination of axons, these elements constitute a new approach for SCI therapy.
Collapse
Affiliation(s)
- Isabel García-Álvarez
- Grupo de Química Neuro-regenerativa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, Toledo, Spain
| | | | - Sandra Moreno-Lillo
- Grupo de Química Neuro-regenerativa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, Toledo, Spain
| | - María Sánchez-Sierra
- Grupo de Química Neuro-regenerativa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, Toledo, Spain
| | | | - Ernesto Doncel-Pérez
- Grupo de Química Neuro-regenerativa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, Toledo, Spain
| |
Collapse
|
30
|
Hodgson L, Spiering D, Sabouri-Ghomi M, Dagliyan O, DerMardirossian C, Danuser G, Hahn KM. FRET binding antenna reports spatiotemporal dynamics of GDI-Cdc42 GTPase interactions. Nat Chem Biol 2016; 12:802-809. [PMID: 27501396 PMCID: PMC5030135 DOI: 10.1038/nchembio.2145] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/16/2016] [Indexed: 12/29/2022]
Abstract
Guanine-nucleotide dissociation inhibitors (GDIs) are negative regulators of Rho family GTPases that sequester the GTPases away from the membrane. Here we ask how GDI-Cdc42 interaction regulates localized Cdc42 activation for cell motility. The sensitivity of cells to overexpression of Rho family pathway components led us to a new biosensor, GDI.Cdc42 FLARE, in which Cdc42 is modified with a fluorescence resonance energy transfer (FRET) 'binding antenna' that selectively reports Cdc42 binding to endogenous GDIs. Similar antennae could also report GDI-Rac1 and GDI-RhoA interaction. Through computational multiplexing and simultaneous imaging, we determined the spatiotemporal dynamics of GDI-Cdc42 interaction and Cdc42 activation during cell protrusion and retraction. This revealed remarkably tight coordination of GTPase release and activation on a time scale of 10 s, suggesting that GDI-Cdc42 interactions are a critical component of the spatiotemporal regulation of Cdc42 activity, and not merely a mechanism for global sequestration of an inactivated pool of signaling molecules.
Collapse
Affiliation(s)
- Louis Hodgson
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine.,Department of Pharmacology and Lineberger Cancer Center, University of North Carolina at Chapel Hill
| | - Désirée Spiering
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine
| | | | - Onur Dagliyan
- Department of Pharmacology and Lineberger Cancer Center, University of North Carolina at Chapel Hill
| | | | - Gaudenz Danuser
- Department of Cell Biology, The Scripps Research Institute.,Department of Cell Biology, Harvard Medical School
| | - Klaus M Hahn
- Department of Pharmacology and Lineberger Cancer Center, University of North Carolina at Chapel Hill
| |
Collapse
|
31
|
Abstract
Rho GTPases regulate cytoskeletal and cell adhesion dynamics and thereby coordinate a wide range of cellular processes, including cell migration, cell polarity and cell cycle progression. Most Rho GTPases cycle between a GTP-bound active conformation and a GDP-bound inactive conformation to regulate their ability to activate effector proteins and to elicit cellular responses. However, it has become apparent that Rho GTPases are regulated by post-translational modifications and the formation of specific protein complexes, in addition to GTP-GDP cycling. The canonical regulators of Rho GTPases - guanine nucleotide exchange factors, GTPase-activating proteins and guanine nucleotide dissociation inhibitors - are regulated similarly, creating a complex network of interactions to determine the precise spatiotemporal activation of Rho GTPases.
Collapse
Affiliation(s)
- Richard G Hodge
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
32
|
Extracellular matrix component signaling in cancer. Adv Drug Deliv Rev 2016; 97:28-40. [PMID: 26519775 DOI: 10.1016/j.addr.2015.10.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromolecules are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin, or basement membrane glycoproteins, but also in terms of matrix rigidity. This can regulate the release and subsequent biological activity of matrix-bound growth factors, for example, transforming growth factor-β. In the environment of tumors, there may be changes in cell populations and their receptor profiles as well as matrix constitution and protein cross-linking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression.
Collapse
|
33
|
Holmes WR, Liao L, Bement W, Edelstein-Keshet L. Modeling the roles of protein kinase Cβ and η in single-cell wound repair. Mol Biol Cell 2015; 26:4100-8. [PMID: 26310444 PMCID: PMC4710240 DOI: 10.1091/mbc.e15-06-0383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/11/2015] [Indexed: 01/30/2023] Open
Abstract
Wounded cells such as Xenopus oocytes respond to damage by assembly and closure of an array of actin filaments and myosin-2 controlled by Rho GTPases, including Rho and Cdc42. Rho and Cdc42 are patterned around wounds in a characteristic manner, with active Rho concentrating in a ring-like zone inside a larger, ring-like zone of active Cdc42. How this patterning is achieved is unknown, but Rho and Cdc42 at wounds are subject to regulation by other proteins, including the protein kinases C. Specifically, Cdc42 and Rho activity are enhanced by PKCβ and inhibited by PKCη. We adapt a mathematical model of Simon and coworkers to probe the possible roles of these kinases. We show that PKCβ likely affects the magnitude of positive Rho-Abr feedback, whereas PKCη acts on Cdc42 inactivation. The model explains both qualitative and some overall quantitative features of PKC-Rho GTPase regulation. It also accounts for the previous, peculiar observation that ∼ 20% of cells overexpressing PKCη display zone inversions--that is, displacement of active Rho to the outside of the active Cdc42.
Collapse
Affiliation(s)
- William R Holmes
- Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Laura Liao
- Department of Biomedical Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - William Bement
- Department of Zoology, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, WI 53706
| | - Leah Edelstein-Keshet
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| |
Collapse
|
34
|
The Rho-mDia1 signaling pathway is required for cyclic strain-induced cytoskeletal rearrangement of human periodontal ligament cells. Exp Cell Res 2015. [PMID: 26201082 DOI: 10.1016/j.yexcr.2015.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tooth movement is the result of periodontal tissue reconstruction. The biomechanical effects produced by orthopedic forces can affect the cytoskeletal rearrangement of human periodontal ligament cells (hPDLCs). However, the mechanisms responsible for the cytoskeletal rearrangement are not completely understood. To analyze the effect, we investigated the role of the Rho-mDia1 signaling pathway in cyclic strain-induced cytoskeletal rearrangement of hPDLCs in detail. We cultured hPDLCs on collagen I-coated six-well Bioflex plates and then exposed them to cyclic strain with physiological loading (10%) at a frequency of 0.1Hz for 6 or 24h using a Flexercell Tension Plus system. Notably, the cells cultured on the Bioflex plates showed increased expression levels of RhoA-GTP, profilin-1 protein, and the combination of RhoA and mDia1, whereas the expression levels of Rho-GDIa were reduced compared with a static control group. Furthermore, the cytoskeletal rearrangement of cells was enhanced. However, profilin-1 protein expression and cytoskeletal reorganization under cyclic strain can decrease due to the overexpression of Rho-GDIa or mDia1-siRNA transfection, whereas Rho-GDIa siRNA transfection has the opposite effect on hPDLCs. Together, our results demonstrate that the Rho-mDia1 signaling pathway is involved in the cytoskeletal rearrangement of hPDLCs induced by cyclic strain. These observations may enable a more in-depth understanding of orthodontic tooth movement and the reconstruction of PDL and alveolar bone.
Collapse
|
35
|
Choi Y, Kwon MJ, Lim Y, Yun JH, Lee W, Oh ES. Trans-regulation of Syndecan Functions by Hetero-oligomerization. J Biol Chem 2015; 290:16943-53. [PMID: 25979339 DOI: 10.1074/jbc.m114.611798] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Indexed: 11/06/2022] Open
Abstract
Syndecans, a family of transmembrane heparansulfate proteoglycans, are known to interact through their transmembrane domains to form non-covalently linked homodimers, a process essential for their individual functions. Because all syndecan transmembrane domains are highly conserved and thus might mediate interactions between different members of the syndecan family, we investigated syndecan interactions in detail. All recombinant syndecan-2 and -4 protein variants containing the transmembrane domain formed not only sodium dodecyl sulfate (SDS)-resistant homodimers but also SDS-resistant heterodimers. Biochemical and structural data revealed that recombinant syndecan-2 and -4 formed intermolecular interactions in vitro, and the GXXXG motif in transmembrane domain mediated this interaction. When exogenously expressed in rat embryonic fibroblasts, syndecan-2 interacted with syndecan-4 and vice versa. Furthermore, bimolecular fluorescence complementation-based assay demonstrated specific hetero-molecular interactions between syndecan-2 and -4, supporting hetero-oligomer formation of syndecans in vivo. Interestingly, hetero-oligomerization significantly reduced syndecan-4-mediated cellular processes such as protein kinase Cα activation and protein kinase Cα-mediated cell adhesion as well as syndecan-2-mediated tumorigenic activities in colon cancer cells such as migration and anchorage-independent growth. Taken together, these data provide evidence that hetero-oligomerization produces distinct syndecan functions and offer insights into the underlying signaling mechanisms of syndecans.
Collapse
Affiliation(s)
- Youngsil Choi
- From the Department of Life Sciences, the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea and
| | - Mi-Jung Kwon
- From the Department of Life Sciences, the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea and
| | - Yangmi Lim
- From the Department of Life Sciences, the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea and
| | - Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Eok-Soo Oh
- From the Department of Life Sciences, the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea and
| |
Collapse
|
36
|
Vaškovičová K, Szabadosová E, Čermák V, Gandalovičová A, Kasalová L, Rösel D, Brábek J. PKCα promotes the mesenchymal to amoeboid transition and increases cancer cell invasiveness. BMC Cancer 2015; 15:326. [PMID: 25924946 PMCID: PMC4423130 DOI: 10.1186/s12885-015-1347-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/22/2015] [Indexed: 12/13/2022] Open
Abstract
Background The local invasion of tumor cells into the surrounding tissue is the first and most critical step of the metastatic cascade. Cells can invade either collectively, or individually. Individual cancer cell invasion can occur in the mesenchymal or amoeboid mode, which are mutually interchangeable. This plasticity of individual cancer cell invasiveness may represent an escape mechanism for invading cancer cells from anti-metastatic treatment. Methods To identify new signaling proteins involved in the plasticity of cancer cell invasiveness, we performed proteomic analysis of the amoeboid to mesenchymal transition with A375m2 melanoma cells in a 3D Matrigel matrix. Results In this screen we identified PKCα as an important protein for the maintenance of amoeboid morphology. We found that the activation of PKCα resulted in the mesenchymal-amoeboid transition of mesenchymal K2 and MDA-MB-231 cell lines. Consistently, PKCα inhibition led to the amoeboid-mesenchymal transition of amoeboid A375m2 cells. Next, we showed that PKCα inhibition resulted in a considerable decrease in the invading abilities of all analyzed cancer cell lines. Conclusions Our results suggest that PKCα is an important protein for maintenance of the amoeboid morphology of cancer cells, and that downregulation of PKCα results in the amoeboid to mesenchymal transition. Our data also suggest that PKCα is important for both mesenchymal and amoeboid invasiveness, making it an attractive target for anti-metastatic therapies. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1347-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarína Vaškovičová
- Department of Cell Biology, Laboratory of Cancer Cell Invasion, Charles University in Prague, Prague, Czech Republic. .,Current affiliation: Microscopy Unit, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic.
| | - Emilia Szabadosová
- Department of Cell Biology, Laboratory of Cancer Cell Invasion, Charles University in Prague, Prague, Czech Republic.
| | - Vladimír Čermák
- Department of Cell Biology, Laboratory of Cancer Cell Invasion, Charles University in Prague, Prague, Czech Republic.
| | - Aneta Gandalovičová
- Department of Cell Biology, Laboratory of Cancer Cell Invasion, Charles University in Prague, Prague, Czech Republic.
| | - Lenka Kasalová
- Department of Cell Biology, Laboratory of Cancer Cell Invasion, Charles University in Prague, Prague, Czech Republic.
| | - Daniel Rösel
- Department of Cell Biology, Laboratory of Cancer Cell Invasion, Charles University in Prague, Prague, Czech Republic.
| | - Jan Brábek
- Department of Cell Biology, Laboratory of Cancer Cell Invasion, Charles University in Prague, Prague, Czech Republic.
| |
Collapse
|
37
|
Pataki CA, Couchman JR, Brábek J. Wnt Signaling Cascades and the Roles of Syndecan Proteoglycans. J Histochem Cytochem 2015; 63:465-80. [PMID: 25910817 DOI: 10.1369/0022155415586961] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling comprises a group of pathways emanating from the extracellular environment through cell-surface receptors into the intracellular milieu. Wnt signaling cascades can be divided into two main branches, the canonical/β-catenin pathway and the non-canonical pathways containing the Wnt/planar cell polarity and Wnt/calcium signaling. Syndecans are type I transmembrane proteoglycans with a long evolutionary history, being expressed in all Bilateria and in almost all cell types. Both Wnt pathways have been extensively studied over the past 30 years and shown to have roles during development and in a multitude of diseases. Although the first evidence for interactions between syndecans and Wnts dates back to 1997, the number of studies connecting these pathways is low, and many open questions remained unanswered. In this review, syndecan's involvement in Wnt signaling pathways as well as some of the pathologies resulting from dysregulation of the components of these pathways are summarized.
Collapse
Affiliation(s)
- Csilla A Pataki
- Department of Cell Biology, Charles University in Prague, Czech Republic, University of Copenhagen, Denmark (CAP,JB)
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research and Innovation Center, University of Copenhagen, Denmark (JRC)
| | - Jan Brábek
- Department of Cell Biology, Charles University in Prague, Czech Republic, University of Copenhagen, Denmark (CAP,JB)
| |
Collapse
|
38
|
Ota T, Maeda M, Okamoto M, Tatsuka M. Positive regulation of Rho GTPase activity by RhoGDIs as a result of their direct interaction with GAPs. BMC SYSTEMS BIOLOGY 2015; 9:3. [PMID: 25628036 PMCID: PMC4312443 DOI: 10.1186/s12918-015-0143-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/13/2015] [Indexed: 11/25/2022]
Abstract
Background Rho GTPases function as molecular switches in many different signaling pathways and control a wide range of cellular processes. Rho GDP-dissociation inhibitors (RhoGDIs) regulate Rho GTPase signaling and can function as both negative and positive regulators. The role of RhoGDIs as negative regulators of Rho GTPase signaling has been extensively investigated; however, little is known about how RhoGDIs act as positive regulators. Furthermore, it is unclear how this opposing role of GDIs influences the Rho GTPase cycle. We constructed ordinary differential equation models of the Rho GTPase cycle in which RhoGDIs inhibit the regulatory activities of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) by interacting with them directly as well as by sequestering the Rho GTPases. Using this model, we analyzed the role of RhoGDIs in Rho GTPase signaling. Results The model constructed in this study showed that the functions of GEFs and GAPs are integrated into Rho GTPase signaling through the interactions of these regulators with GDIs, and that the negative role of GDIs is to suppress the overall Rho activity by inhibiting GEFs. Furthermore, the positive role of GDIs is to sustain Rho activation by inhibiting GAPs under certain conditions. The interconversion between transient and sustained Rho activation occurs mainly through changes in the affinities of GDIs to GAPs and the concentrations of GAPs. Conclusions RhoGDIs positively regulate Rho GTPase signaling primarily by interacting with GAPs and may participate in the switching between transient and sustained signals of the Rho GTPases. These findings enhance our understanding of the physiological roles of RhoGDIs and Rho GTPase signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0143-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takahide Ota
- Division of Tumor Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan.
| | | | | | | |
Collapse
|
39
|
Couchman JR, Gopal S, Lim HC, Nørgaard S, Multhaupt HAB. Fell-Muir Lecture: Syndecans: from peripheral coreceptors to mainstream regulators of cell behaviour. Int J Exp Pathol 2014; 96:1-10. [PMID: 25546317 DOI: 10.1111/iep.12112] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022] Open
Abstract
In the 25 years, as the first of the syndecan family was cloned, interest in these transmembrane proteoglycans has steadily increased. While four distinct members are present in mammals, one is present in invertebrates, including C. elegans that is such a powerful genetic model. The syndecans, therefore, have a long evolutionary history, indicative of important roles. However, these roles have been elusive. The knockout in the worm has a developmental neuronal phenotype, while knockouts of the syndecans in the mouse are mild and mostly limited to post-natal rather than developmental effects. Moreover, their association with high-affinity receptors, such as integrins, growth factor receptors, frizzled and slit/robo, have led to the notion that syndecans are coreceptors, with minor roles. Given that their heparan sulphate chains can gather many different protein ligands, this gave credence to views that the importance of syndecans lay with their ability to concentrate ligands and that only the extracellular polysaccharide was of significance. Syndecans are increasingly identified with roles in the pathogenesis of many diseases, including tumour progression, vascular disease, arthritis and inflammation. This has provided impetus to understanding syndecan roles in more detail. It emerges that while the cytoplasmic domains of syndecans are small, they have clear interactive capabilities, most notably with the actin cytoskeleton. Moreover, through the binding and activation of signalling molecules, it is likely that syndecans are important receptors in their own right. Here, an overview of syndecan structure and function is provided, with some prospects for the future.
Collapse
Affiliation(s)
- John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
40
|
Boulter E, Garcia-Mata R. RhoGDI: A rheostat for the Rho switch. Small GTPases 2014; 1:65-68. [PMID: 21686121 DOI: 10.4161/sgtp.1.1.12990] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 07/02/2010] [Accepted: 07/12/2010] [Indexed: 11/19/2022] Open
Abstract
Regulation of the Rho switch has been typically centered on their main regulators, RhoGEFs and RhoGAPs. On the side, RhoGDI proteins have been considered mostly as passive regulators devoid of catalytic activity simply holding Rho proteins in the cytosol. In the May issue of Nature Cell Biology,1 we describe a novel evolutionary conserved function for RhoGDI1 as a chaperoning protein which prevents degradation of prenylated Rho GTPases. The limited amount of RhoGDI1 in cells generates a competitive balance between GTPases in order to prevent their degradation. Therefore, this creates a crosstalk regulatory mechanism of Rho proteins, whereby the level of one Rho protein can affect both the level and activity of the others. For example, overexpression of a single GTPase will promote the degradation and inactivation of all endogenous Rho proteins bound to GDI. These results suggest that some of the conclusions drawn from studies that manipulate Rho protein levels may need to be reevaluated. Here, we discuss some of the consequences of this mechanism on the regulation of Rho proteins, the dissociation of Rho-RhoGDI complexes by GDF and whether this regulation might be extended to other GTPases of the Ras superfamily.
Collapse
Affiliation(s)
- Etienne Boulter
- Institut National de la Santé et de la Recherche Médicale Avenir Team; U634; Nice Sophia Antipolis University; Nice, Cedex 2 France
| | | |
Collapse
|
41
|
Human cytomegalovirus pUL37x1-induced calcium flux activates PKCα, inducing altered cell shape and accumulation of cytoplasmic vesicles. Proc Natl Acad Sci U S A 2014; 111:E1140-8. [PMID: 24616524 DOI: 10.1073/pnas.1402515111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human cytomegalovirus immediate-early protein pUL37x1 induces the release of Ca(2+) stores from the endoplasmic reticulum into the cytosol. This release causes reorganization of the cellular actin cytoskeleton with concomitant cell rounding. Here we demonstrate that pUL37x1 activates Ca(2+)-dependent protein kinase Cα (PKCα). Both PKCα and Rho-associated protein kinases are required for actin reorganization and cell rounding; however, only PKCα is required for the efficient production of virus progeny, arguing that HCMV depends on the kinase for a second function. PKCα activation is also needed for the production of large (1-5 μm) cytoplasmic vesicles late after infection. The production of these vesicles is blocked by inhibition of fatty acid or phosphatidylinositol-3-phosphate biosynthesis, and the failure to produce vesicles is correlated with substantially reduced production of enveloped virus capsids. These results connect earlier work identifying a requirement for lipid synthesis with specific morphological changes, and support the argument that the PKCα-induced large vesicles are either required for the efficient production of mature virus particles or serve as a marker for the process.
Collapse
|
42
|
Fogh BS, Multhaupt HAB, Couchman JR. Protein kinase C, focal adhesions and the regulation of cell migration. J Histochem Cytochem 2014; 62:172-84. [PMID: 24309511 PMCID: PMC3935447 DOI: 10.1369/0022155413517701] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/21/2013] [Indexed: 12/18/2022] Open
Abstract
Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles and potential substrates.
Collapse
Affiliation(s)
- Betina S Fogh
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
43
|
Kim HJ, Kim JG, Moon MY, Park SH, Park JB. IκB kinase γ/nuclear factor-κB-essential modulator (IKKγ/NEMO) facilitates RhoA GTPase activation, which, in turn, activates Rho-associated KINASE (ROCK) to phosphorylate IKKβ in response to transforming growth factor (TGF)-β1. J Biol Chem 2013; 289:1429-40. [PMID: 24240172 DOI: 10.1074/jbc.m113.520130] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor (TGF)-β1 plays several roles in a variety of cellular functions. TGF-β1 transmits its signal through Smad transcription factor-dependent and -independent pathways. It was reported that TGF-β1 activates NF-κB and RhoA, and RhoA activates NF-κB in several kinds of cells in a Smad-independent pathway. However, the activation molecular mechanism of NF-κB by RhoA upon TGF-β1 has not been clearly elucidated. We observed that RhoA-GTP level was increased by TGF-β1 in RAW264.7 cells. RhoA-GDP and RhoGDI were bound to N- and C-terminal domains of IKKγ, respectively. Purified IKKγ facilitated GTP binding to RhoA complexed with RhoGDI. Furthermore, Dbs, a guanine nucletotide exchange factor of RhoA much more enhanced GTP binding to RhoA complexed with RhoGDI in the presence of IKKγ. Indeed, si-IKKγ abolished RhoA activation in response to TGF-β1 in cells. However, TGF-β1 stimulated the release of RhoA-GTP from IKKγ and Rho-associated kinase (ROCK), an active RhoA effector protein, directly phosphorylated IKKβ in vitro, whereas TGF-β1-activated kinase 1 activated RhoA upon TGF-β1 stimulation. Taken together, our data indicate that IKKγ facilitates RhoA activation via a guanine nucletotide exchange factor, which in turn activates ROCK to phosphorylate IKKβ, leading to NF-κB activation that induced the chemokine expression and cell migration upon TGF-β1.
Collapse
Affiliation(s)
- Hee-Jun Kim
- From the Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-Do 200-702, Korea
| | | | | | | | | |
Collapse
|
44
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
45
|
Abstract
Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1-FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster.
Collapse
Affiliation(s)
- Arye Elfenbein
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
46
|
Ueyama T, Son J, Kobayashi T, Hamada T, Nakamura T, Sakaguchi H, Shirafuji T, Saito N. Negative charges in the flexible N-terminal domain of Rho GDP-dissociation inhibitors (RhoGDIs) regulate the targeting of the RhoGDI-Rac1 complex to membranes. THE JOURNAL OF IMMUNOLOGY 2013; 191:2560-9. [PMID: 23918979 DOI: 10.4049/jimmunol.1300209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In its resting state, Rho GDP-dissociation inhibitor (RhoGDI) α forms a soluble cytoplasmic heterodimer with the GDP-bound form of Rac. Upon stimulation, the dissociation of RhoGDIα from the RhoGDIα-Rac complex is a mandatory step for Rac activation; however, this mechanism is poorly understood. In this study, we examined how the cytoplasm/membrane cycles of the RhoGDI-Rac complex are regulated, as well as where RhoGDI dissociates from the RhoGDI-Rac complex, during FcγR-mediated phagocytosis. The negatively charged and flexible N terminus (25 residues) of RhoGDIα, particularly its second negative amino acid cluster possessing five negatively charged amino acids, was a pivotal regulator in the cytoplasm/membrane cycles of the RhoGDI-Rac complex. We also found that RhoGDIα translocated to the phagosomes as a RhoGDIα-Rac1 complex, and this translocation was mediated by an interaction between the polybasic motif in the C terminus of Rac1 and anionic phospholipids produced on phagosomes, such as phosphatidic acid, that is, by a phagosome-targeting mechanism of Rac1. Thus, we demonstrated that the targeting/accumulation of the RhoGDIα-Rac1 complex to phagosomes is regulated by a balance between three factors: 1) the negatively charged and flexible N-terminal of RhoGDIα, 2) the binding affinity of RhoGDIα for Rac1, and 3) anionic phospholipids produced on phagosomes. Moreover, we demonstrated that the mechanism of targeting/accumulation of the RhoGDIα-Rac1 complex is also applicable for the RhoGDIβ-Rac1 complex.
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sabbatini ME, Williams JA. Cholecystokinin-mediated RhoGDI phosphorylation via PKCα promotes both RhoA and Rac1 signaling. PLoS One 2013; 8:e66029. [PMID: 23776598 PMCID: PMC3679036 DOI: 10.1371/journal.pone.0066029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 05/07/2013] [Indexed: 01/18/2023] Open
Abstract
RhoA and Rac1 have been implicated in the mechanism of CCK-induced amylase secretion from pancreatic acini. In all cell types studied to date, inactive Rho GTPases are present in the cytosol bound to the guanine nucleotide dissociation inhibitor RhoGDI. Here, we identified the switch mechanism regulating RhoGDI1-Rho GTPase dissociation and RhoA translocation upon CCK stimulation in pancreatic acini. We found that both Gα13 and PKC, independently, regulate CCK-induced RhoA translocation and that the PKC isoform involved is PKCα. Both RhoGDI1 and RhoGDI3, but not RhoGDI2, are expressed in pancreatic acini. Cytosolic RhoA and Rac1 are associated with RhoGDI1, and CCK-stimulated PKCα activation releases the complex. Overexpression of RhoGDI1, by binding RhoA, inhibits its activation, and thereby, CCK-induced apical amylase secretion. RhoA translocation is also inhibited by RhoGDI1. Inactive Rac1 influences CCK-induced RhoA activation by preventing RhoGDI1 from binding RhoA. By mutational analysis we found that CCK-induced PKCα phosphorylation on RhoGDI1 at Ser96 releases RhoA and Rac1 from RhoGDI1 to facilitate Rho GTPases signaling.
Collapse
Affiliation(s)
- Maria Eugenia Sabbatini
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America.
| | | |
Collapse
|
48
|
Zhang K, Zhang H, Xiang H, Liu J, Liu Y, Zhang X, Wang J, Tang Y. TGF-β1 induces the dissolution of tight junctions in human renal proximal tubular cells: role of the RhoA/ROCK signaling pathway. Int J Mol Med 2013; 32:464-8. [PMID: 23722562 DOI: 10.3892/ijmm.2013.1396] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/20/2013] [Indexed: 11/05/2022] Open
Abstract
The RhoA/ROCK signaling pathway plays a significant role in transforming growth factor (TGF)-β1-mediated epithelial-mesenchymal transition (EMT). It remains unclear, however, whether the RhoA/ROCK signaling pathway mediates TGF-β1-induced EMT by promoting the dissolution of tight junctions (TJs) in renal proximal tubular epithelial cells. In this study, we aimed to investigate the association between TGF-β1-mediated Rho/ROCK signaling and TJs in a cell line derived from human renal proximal tubular cells (HK-2 cells). HK-2 cells were treated with 5 ng/ml TGF-β1 for 0, 12, 24 and 48 h. Zona occludens protein 1 (also known as tight junction protein 1; ZO-1) and occludin mRNA and protein levels were determined by real-time PCR and western blot analysis, respectively. The HK-2 cells were then divided into three groups: a control group (serum-free culture medium for 24 h); a TGF-β1 group (treated with 5 ng/ml TGF-β1 for 24 h); and a TGF-β1 + Y-27632 (a specific ROCK inhibitor) group (pre-treated with 10 µM Y-27632 for 2 h and subsequently treated with 5 ng/ml TGF-β1 for 24 h). The levels of ZO-1 and occludin were detected by real-time PCR, western blot analysis and immunofluorescence. As shown by our results, the mRNA and protein levels of ZO-1 and occludin were decreased in the HK-2 cells following treatment with TGF-β1 in a time-dependent manner; in addition, ZO-1 and occludin levels in the TGF-β1 + Y-27632 group were significantly increased compared with those of the TGF-β1 group (P<0.05), with no significant changes compared with the control group. Our results indicate that the Rho/ROCK signaling pathway mediated by TGF-β1 plays a role in the dissolution of TJs during EMT.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Garcia-Cattaneo A, Braga VM. Hold on tightly: how to keep the local activation of small GTPases. Cell Adh Migr 2013; 7:283-7. [PMID: 23590879 PMCID: PMC3711994 DOI: 10.4161/cam.24646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
Signaling regulated by Rho small GTPases plays a pivotal role in cell migration, cell attachment to substratum or to their neighbors among other functions. Concerted efforts have focused on understanding how different GTPases are activated by specific stimuli and which regulator is responsible for the spatio-temporal control of their activity at particular intracellular sites. We have recently described the role of a scaffold protein, Ajuba, in adherens junction maintenance via direct stabilization of activated small GTPase Rac1 at cell-cell contacts. Ajuba binds to both active and inactive forms of Rac1. Upon junction formation, Rac1 activation initiates a positive feedback loop leading to Ajuba phosphorylation and Ajuba-mediated retention of activated Rac1 at junctions. Thus, cytoskeletal proteins may have a dual role to provide a scaffolding platform and dynamically modulate small GTPases function at a specific place, irrespective of their ability to interact with active and inactive forms. Here we discuss similar mechanisms via which cytoskeletal proteins can facilitate cellular processes downstream of Rho proteins by increasing their affinity to activated GTPases.
Collapse
Affiliation(s)
- Alejandra Garcia-Cattaneo
- Molecular Medicine; National Heart and Lung Institute; Faculty of Medicine; Imperial College London; London, UK
| | - Vania M.M. Braga
- Molecular Medicine; National Heart and Lung Institute; Faculty of Medicine; Imperial College London; London, UK
| |
Collapse
|
50
|
Brooks R, Williamson R, Bass M. Syndecan-4 independently regulates multiple small GTPases to promote fibroblast migration during wound healing. Small GTPases 2013; 3:73-9. [PMID: 22790193 PMCID: PMC3408980 DOI: 10.4161/sgtp.19301] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Upon wounding, syndecan-4 detects the appearance of fibronectin in the wound bed and mediates regulation of the small GTPases, Rac1, RhoA and RhoG. Cohesive regulation of these molecules results in cycles of membrane protrusion and cytoskeletal contraction, and triggers the endocytosis of α5β1-integrin, which collectively lead to immigration of fibroblasts into the wound bed. In this manuscript we identify the regulation of a fourth GTPase, Arf6 that is responsible for α5β1-integrin recycling and thereby completes the cycle of syndecan-4-regulated integrin trafficking. We demonstrate that each of the GTPase signals can be regulated by syndecan-4, but that they are independent of one another. By doing so we identify syndecan-4 as the coordinating center of pro-migratory signals.
Collapse
|