1
|
Zhang Y, Feng X, Zheng B, Liu Y. Regulation and mechanistic insights into tensile strain in mesenchymal stem cell osteogenic differentiation. Bone 2024; 187:117197. [PMID: 38986825 DOI: 10.1016/j.bone.2024.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are integral to bone remodeling and homeostasis, as they are capable of differentiating into osteogenic and adipogenic lineages. This differentiation is substantially influenced by mechanosensitivity, particularly to tensile strain, which is a prevalent mechanical stimulus known to enhance osteogenic differentiation. This review specifically examines the effects of various cyclic tensile stress (CTS) conditions on BMSC osteogenesis. It delves into the effects of different loading devices, magnitudes, frequencies, elongation levels, dimensionalities, and coculture conditions, providing a comparative analysis that aids identification of the most conducive parameters for the osteogenic differentiation of BMSCs. Subsequently, this review delineates the signaling pathways activated by CTS, such as Wnt/β-catenin, BMP, Notch, MAPK, PI3K/Akt, and Hedgehog, which are instrumental in mediating the osteogenic differentiation of BMSCs. Through a detailed examination of these pathways, this study elucidates the intricate mechanisms whereby tensile strain promotes osteogenic differentiation, offering valuable guidance for optimizing therapeutic strategies aimed at enhancing bone regeneration.
Collapse
Affiliation(s)
- Yongxin Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China
| | - Xu Feng
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China
| | - Bowen Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China.
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China.
| |
Collapse
|
2
|
Cheng M, Nie Y, Song M, Chen F, Yu Y. Forkhead box O proteins: steering the course of stem cell fate. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:7. [PMID: 38466341 DOI: 10.1186/s13619-024-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Stem cells are pivotal players in the intricate dance of embryonic development, tissue maintenance, and regeneration. Their behavior is delicately balanced between maintaining their pluripotency and differentiating as needed. Disruptions in this balance can lead to a spectrum of diseases, underscoring the importance of unraveling the complex molecular mechanisms that govern stem cell fate. Forkhead box O (FOXO) proteins, a family of transcription factors, are at the heart of this intricate regulation, influencing a myriad of cellular processes such as survival, metabolism, and DNA repair. Their multifaceted role in steering the destiny of stem cells is evident, as they wield influence over self-renewal, quiescence, and lineage-specific differentiation in both embryonic and adult stem cells. This review delves into the structural and regulatory intricacies of FOXO transcription factors, shedding light on their pivotal roles in shaping the fate of stem cells. By providing insights into the specific functions of FOXO in determining stem cell fate, this review aims to pave the way for targeted interventions that could modulate stem cell behavior and potentially revolutionize the treatment and prevention of diseases.
Collapse
Affiliation(s)
- Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yujie Nie
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Song
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
3
|
Ma L, Cheng Y, Feng X, Zhang X, Lei J, Wang H, Xu Y, Tong B, Zhu D, Wu D, Zhou X, Liang H, Zhao K, Wang K, Tan L, Zhao Y, Yang C. A Janus-ROS Healing System Promoting Infectious Bone Regeneration via Sono-Epigenetic Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307846. [PMID: 37855420 DOI: 10.1002/adma.202307846] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Elimination of bacterial infections and simultaneously promoting osteogenic differentiation are highly required for infectious bone diseases. Massive reactive oxygen species (ROS) can damage cells, while low ROS concentrations as a molecular signal can regulate cellular fate. In this study, a Janus-ROS healing system is developed for infectious bone regeneration. An alendronate (ALN)-mediated defective metal-organic framework (MOF) sonosensitizer is prepared, which can effectively clear Methicillin-resistant Staphylococcus aureus (MRSA) infections and promote osteogenic differentiation under differential ultrasonic irradiation. In the presence of zirconium-phosphate coordination, the ALN-mediated porphyrin-based MOF (HN25) with a proper defect has great sonodynamic antibacterial efficiency (98.97%, 15 min) and bone-targeting ability. Notably, under low-power ultrasound irradiation, HN25 can increase the chromatin accessibility of ossification-related genes and FOXO1 to promote bone repair through low ROS concentrations. Animal models of paravertebral infection, fracture with infection, and osteomyelitis demonstrate that HN25 successfully realizes the targeted and potent repair of various infectious bone tissues through rapid MRSA elimination, inhibiting osteoclast activity and promoting bone regeneration. The results show that high catalytic efficiency and bioactive MOF can be constructed using pharmaceutical-mediated defect engineering. The Janus-ROS treatment is also a promising therapeutic mode for infectious tissue regeneration.
Collapse
Affiliation(s)
- Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoguang Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongchuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingchao Zhu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Di Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingyu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
4
|
Gao S, Chen B, Zhu Z, Du C, Zou J, Yang Y, Huang W, Liao J. PI3K-Akt signaling regulates BMP2-induced osteogenic differentiation of mesenchymal stem cells (MSCs): A transcriptomic landscape analysis. Stem Cell Res 2023; 66:103010. [PMID: 36580886 DOI: 10.1016/j.scr.2022.103010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2) effectively induced mesenchymal stem cells (MSCs) osteogenic differentiation hold great potential for bone tissue engineering. However, a global mechanistic view of BMP2-induced osteogenic differentiation of MSCs remains to be fully elucidated. Here, human umbilical cord-derived MSCs (UC-MSCs) were induced with BMP2, three days and five days later, total RNA were extracted and subjected to RNA-sequencing (RNA-Seq) followed with bioinformatic analysis. Osteogenic differentiation abilities were evaluated with Alkaline phosphatase (ALP) staining and osteogenic differentiation marker expression at both mRNA and protein levels. We identified that adenoviral vectors effectively transduced in UC-MSCs and expressed BMP2 in high efficiency. Both on day 3 and day 5, differentially expressed genes (DEGs) were highly enriched in PI3K-Akt signaling pathway. As for the common DEGs among total BMP2 group vs control group, BMP2 (day 3) versus control (day 3) and BMP2 (day 5) versus control (day 5), there were 105 DGEs and highly enriched in PI3K-Akt signaling pathway. Finally, we found that PI3K-Akt signaling inhibitor dramatically inhibited BMP2-iduced osteogenic differentiation of UC-MSCs. We firstly identified that PI3K-Akt signaling pathway plays a pivotal role in BMP2-induced osteogenic differentiation of MSCs, which may apply a new perspective for BMP2 based bone tissue engineering.
Collapse
Affiliation(s)
- Shengqiang Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Research Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - Bowen Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Research Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Research Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Research Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Research Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - Yaji Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Research Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - Wei Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Research Laboratory, Chongqing Medical University, Chongqing 400016, China.
| | - Junyi Liao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Research Laboratory, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
He Q, Gao L, Zhang F, Yao W, Wu J, Song N, Luo J, Zhang Y. The FoxO1-ATGL axis alters milk lipolysis homeostasis through PI3K/AKT signaling pathway in dairy goat mammary epithelial cells. J Anim Sci 2023; 101:skad286. [PMID: 37638641 PMCID: PMC10699848 DOI: 10.1093/jas/skad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023] Open
Abstract
Goat milk is enriched in fatty acids which are beneficial to human health. Previous research has revealed that 98% of milk fat is composed of triglycerides. However, the mechanisms regulating milk fat composition remain unclear. Forkhead box protein O1 (FoxO1) is a crucial regulatory factor involved in lipid metabolism across various cell types. Chromatin immunoprecipitation sequencing (ChIP)-seq data) and RNA sequencing (RNA-seq) data revealed that have indicated a close association between FoxO1 was closely related to lipid metabolism during lactation in dairy goats. The objective of this study was to investigate the mechanisms by which FoxO1 regulates lipid metabolism in goat mammary epithelial cells (GMECs). FoxO1 knockdown significantly downregulated the expression of adipose triglyceride lipase (ATGL) and suppressed the activity of the ATGL promoter. Consistently, the number of lipid droplets decreased significantly in FoxO1-overexpressing cells and increased in ATGL-knockdown cells. To further verify the effect of FoxO1 on ATGL promoter activity, cells were transfected with four promoter fragments of different lengths. We found that the core region of the ATGL promoter was located between -882 bp and -524 bp, encompassing two FoxO1 binding sites (FKH1 and FKH2). Mutations in the FoxO1 binding sites significantly downregulated ATGL promoter activity in GMECs. Luciferase reporter assays demonstrated that FoxO1 overexpression markedly enhanced ATGL promoter activity. Furthermore, site-directed mutation confirmed that FKH1 and FKH2 sites were simultaneously mutated significantly attenuated the stimulatory effect of FoxO1 on ATGL promoter activities simultaneous mutation of FKH1 and FKH2 sites significantly attenuated the stimulatory effect of FoxO1 on ATGL promoter activity. ChIP assays showed that FoxO1 directly binds to the FKH2 element located in the ATGL promoter in vivo. Finally, immunofluorescence staining revealed that insulin promotes the translocation of FoxO1 from the nucleus to the cytoplasm, thereby attenuating the FoxO1-induced activation of the ATGL promoter. Collectively, these findings uncover a novel pathway where by FoxO1 may regulate lipid metabolism in GMECs specifically by modulating the transcriptional activity of ATGL.
Collapse
Affiliation(s)
- Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liangjiahui Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fuhong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ning Song
- College of Animal Science and Technology, Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Stimulation of the Runx2 P1 promoter by collagen-derived dipeptide prolyl-hydroxyproline bound to Foxg1 and Foxo1 in osteoblasts. Biosci Rep 2021; 41:230239. [PMID: 34779485 PMCID: PMC8655505 DOI: 10.1042/bsr20210304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Collagen-derived dipeptide prolyl-hydroxyproline (Pro-Hyp) directly binds to the forkhead box g1 (Foxg1) protein and causes it to undergo structural alteration. Pro-Hyp also promotes the production of a regulator of osteoblast differentiation, Runt-related transcription factor 2 (Runx2), through Foxg1, inducing osteoblast differentiation. In addition, Pro-Hyp disrupts the interaction between Foxg1 and Runx2, and Foxg1 appears to interact with Runx2 in the absence of Pro-Hyp. To elucidate the mechanism of Pro-Hyp that promotes osteoblast differentiation, we investigated whether Pro-Hyp regulates the Runx2 P1 promoter together with Foxg1. The present study revealed that Pro-Hyp is taken up by osteoblastic cells via the solute carrier family 15 member (Slc15a) 4. In the presence of Pro-Hyp, Runx2 is translocated from the nucleus to the cytoplasm and Foxg1 is translocated from the cytoplasm to the nucleus. We also found that Pro-Hyp promoted the interaction between Forkhead box o1 (Foxo1) and Runx2 and the dissociation of Foxg1 from Runx2. Moreover, we identified the Pro-Hyp response element in the Runx2 distal P1 promoter at nt −375 to −316, including the Runx2 binding sites and Fox core sequence. In the presence of Pro-Hyp, Runx2 is dissociated from the Pro-Hyp response element in the Runx2 distal P1 promoter. Subsequently, Foxg1 and Foxo1 activated the Runx2 promoter by binding to the Pro-Hyp response element. In summary, we delineated the mechanism by which Pro-Hyp stimulates the bone-related Runx2 distal P1 promoter activity in osteoblastic cells through Foxg1, Foxo1, and Runx2.
Collapse
|
7
|
Zhou F, Yi Z, Wu Y, Xiong Y. The role of forkhead box class O1 during implant osseointegration. Eur J Oral Sci 2021; 129:e12822. [PMID: 34865256 DOI: 10.1111/eos.12822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
FOXO1, a member of the forkhead family of transcription factors, plays a vital role in the osteogenic lineage commitment of mesenchymal stem cells, and affects multiple cellular functions of osteogenic cells. However, prior studies have focused on mesenchymal stem cells but not on differentiated osteoblasts. In addition, studies about the role of FOXO1 during osseointegration are lacking. In this present study, we constructed osteoblast conditional FOXO1 knock-out mice and lentivirus-mediated FoxO1 overexpression to investigate maxillary titanium implant osseointegration. After 4 wk post implant placement, micro-computed tomography, histomorphometric analyses, and RT-qPCR assays were performed. Results showed that compared with the control group, overexpression of FOXO1 significantly enhanced bone formation around implant and bone-implant contact ratio, while loss of FOXO1 impaired peri-implant osteogenesis and osseointegration. Moreover, overexpression of FoxO1 enhanced expression of osteogenesis-related genes, such as Runx2, Alp1, Col1a1, and Bglap. Whereas, knock-out of Foxo1 reduced the expression of osteogenesis-related genes. Taken together, our results suggested that FOXO1 in osteoblasts could enhance osteogenesis-related gene expression to improve osseointegration.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zumu Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Chen XY, Yang SY, Ruan XJ, Ding HY, Wang NX, Liu F, Li JC, Li Y. MsrB1 Promotes Proliferation and Invasion of Colorectal Cancer Cells via GSK-3β/β-catenin Signaling Axis. Cell Transplant 2021; 30:9636897211053203. [PMID: 34719306 PMCID: PMC8558597 DOI: 10.1177/09636897211053203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Methionine sulfoxide reductase B1 (MsrB1) can catalyze both free and protein-bound R-methionine sulfoxides (R-MetO) to methionine (Met). It has been reported that MsrB1 plays an important role in the development of HCC and human bone osteosarcoma. However, little is known about the functions of MsrB1 in human colorectal cancer (CRC). Herein, we detected MsrB1 expression level in CRC tissue and cell lines, and investigated the effect of MsrB1 knockdown on CRC phenotypes and possible mechanisms involved in. The results showed that MsrB1 was highly expressed in both CRC tissues and cell lines, and that cell proliferation, migration and invasion were significantly inhibited, but apoptosis was increased after MsrB1 knockdown in colorectal cancer HCT116 and RKO cell lines, compared to control siRNA group. In addition, E-cadherin protein level was increased, vimentin and Snail protein were greatly decreased after knockdown of MsrB1 in cells. Furthermore, pGSK-3β (Ser9) and β-catenin protein levels were reduced, the promoter activity of TCF/LEF construction was inhibited after MsrB1 knockdown in cells, suggesting that GSK-3β/β-catenin signaling axis was involved in the tumorigenesis of CRC. In conclusion, the oncogenic role and related mechanisms of MsrB1 in CRC discovered in our work determined the potential role of MsrB1 as a biomarker and may provide a new target for clinical therapy of CRC.
Collapse
Affiliation(s)
- Xiao-Yu Chen
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Xiao-Yu Chen and Sheng-Yong Yang contributed equally to this article
| | - Sheng-Yong Yang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Xiao-Yu Chen and Sheng-Yong Yang contributed equally to this article
| | - Xiao-Jie Ruan
- Division of Life Sciences, Department of Biochemical and Biomedical Science, Science Centre, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hong-Yue Ding
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Ning-Xi Wang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Fang Liu
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Jia-Chu Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Mao H, Li L, Fan Q, Angelini A, Saha PK, Coarfa C, Rajapakshe K, Perera D, Cheng J, Wu H, Ballantyne CM, Sun Z, Xie L, Pi X. Endothelium-specific depletion of LRP1 improves glucose homeostasis through inducing osteocalcin. Nat Commun 2021; 12:5296. [PMID: 34489478 PMCID: PMC8421392 DOI: 10.1038/s41467-021-25673-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/12/2021] [Indexed: 12/16/2022] Open
Abstract
The vascular endothelium is present within metabolic organs and actively regulates energy metabolism. Here we show osteocalcin, recognized as a bone-secreted metabolic hormone, is expressed in mouse primary endothelial cells isolated from heart, lung and liver. In human osteocalcin promoter-driven green fluorescent protein transgenic mice, green fluorescent protein signals are enriched in endothelial cells lining aorta, small vessels and capillaries and abundant in aorta, skeletal muscle and eye of adult mice. The depletion of lipoprotein receptor-related protein 1 induces osteocalcin through a Forkhead box O -dependent pathway in endothelial cells. Whereas depletion of osteocalcin abolishes the glucose-lowering effect of low-density lipoprotein receptor-related protein 1 depletion, osteocalcin treatment normalizes hyperglycemia in multiple mouse models. Mechanistically, osteocalcin receptor-G protein-coupled receptor family C group 6 member A and insulin-like-growth-factor-1 receptor are in the same complex with osteocalcin and required for osteocalcin-promoted insulin signaling pathway. Therefore, our results reveal an endocrine/paracrine role of endothelial cells in regulating insulin sensitivity, which may have therapeutic implications in treating diabetes and insulin resistance through manipulating vascular endothelium.
Collapse
Affiliation(s)
- Hua Mao
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Luge Li
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Qiying Fan
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Aude Angelini
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Pradip K Saha
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kimal Rajapakshe
- Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dimuthu Perera
- Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jizhong Cheng
- Department of Medicine, Section of Nephrology, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX, USA
| | - Huaizhu Wu
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Christie M Ballantyne
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Sun
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX, USA.,Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Liang Xie
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xinchun Pi
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Gao Y, Patil S, Jia J. The Development of Molecular Biology of Osteoporosis. Int J Mol Sci 2021; 22:8182. [PMID: 34360948 PMCID: PMC8347149 DOI: 10.3390/ijms22158182] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is one of the major bone disorders that affects both women and men, and causes bone deterioration and bone strength. Bone remodeling maintains bone mass and mineral homeostasis through the balanced action of osteoblasts and osteoclasts, which are responsible for bone formation and bone resorption, respectively. The imbalance in bone remodeling is known to be the main cause of osteoporosis. The imbalance can be the result of the action of various molecules produced by one bone cell that acts on other bone cells and influence cell activity. The understanding of the effect of these molecules on bone can help identify new targets and therapeutics to prevent and treat bone disorders. In this article, we have focused on molecules that are produced by osteoblasts, osteocytes, and osteoclasts and their mechanism of action on these cells. We have also summarized the different pharmacological osteoporosis treatments that target different molecular aspects of these bone cells to minimize osteoporosis.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| | - Suryaji Patil
- Lab for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Jingxian Jia
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| |
Collapse
|
11
|
Nakagawa T, Tsuka S, Aonuma F, Nodai T, Munemasa T, Tamura A, Mukaibo T, Kondo Y, Masaki C, Hosokawa R. Effects of metformin on the prevention of bisphosphonate-related osteonecrosis of the jaw-like lesions in rats. J Prosthodont Res 2020; 65:219-224. [PMID: 32938854 DOI: 10.2186/jpr.jpor_2019_629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE In this study, we aimed to investigate the effect of glucose metabolism on bone healing after tooth extraction in an osteoporosis rat model administered zoledronic acid (ZA) and dexamethasone (DX). METHODS In total, 24 male Wistar rats (4 weeks old) were randomly assigned to four groups: Control (subcutaneous physiological saline), ZD (subcutaneous ZA and DX twice a week), Ins+ZD (subcutaneous insulin followed by ZD treatment), and Met+ZD (oral metformin followed by ZD treatment). Blood was collected every two weeks . Two weeks after treatment initiation, the first molar tooth on the right maxilla was extracted from all rats. Four weeks later, the rats were sacrificed, and bone healing was assessed. Maxillae samples were fixed and scanned using micro-computed tomography for quantifying areas of bone defects. Hematoxylin-eosin and tartrate-resistant acid phosphatase (TRAP) staining were performed to evaluate bone apoptosis and osteoclast number. RESULTS In all experimental groups, body weight was statistically lower than that in the Control group, with no changes observed in uncarboxylated osteocalcin concentrations. The radiological analysis revealed that insulin or metformin administration improved healing in the tooth extraction socket (p < 0.01). Histological examination revealed that the osteonecrosis area was reduced in the Ins+ZD and Met+ZD groups (p < 0.01). TRAP staining presented increased osteoclast numbers in the ZD group when compared with that observed in the Control. CONCLUSIONS Tooth extraction with long-term ZA and DX administration inhibited bone remodeling and induced bisphosphonate-related osteonecrosis of the jaw-like lesions. Metformin exerted protective effects ag ainst osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Tomohito Nakagawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Shintaro Tsuka
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Fumiko Aonuma
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Tomotaka Nodai
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Takashi Munemasa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Akiko Tamura
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Taro Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| |
Collapse
|
12
|
Zhu K, Lai Y, Cao H, Bai X, Liu C, Yan Q, Ma L, Chen D, Kanaporis G, Wang J, Li L, Cheng T, Wang Y, Wu C, Xiao G. Kindlin-2 modulates MafA and β-catenin expression to regulate β-cell function and mass in mice. Nat Commun 2020; 11:484. [PMID: 31980627 PMCID: PMC6981167 DOI: 10.1038/s41467-019-14186-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
β-Cell dysfunction and reduction in β-cell mass are hallmark events of diabetes mellitus. Here we show that β-cells express abundant Kindlin-2 and deleting its expression causes severe diabetes-like phenotypes without markedly causing peripheral insulin resistance. Kindlin-2, through its C-terminal region, binds to and stabilizes MafA, which activates insulin expression. Kindlin-2 loss impairs insulin secretion in primary human and mouse islets in vitro and in mice by reducing, at least in part, Ca2+ release in β-cells. Kindlin-2 loss activates GSK-3β and downregulates β-catenin, leading to reduced β-cell proliferation and mass. Kindlin-2 loss reduces the percentage of β-cells and concomitantly increases that of α-cells during early pancreatic development. Genetic activation of β-catenin in β-cells restores the diabetes-like phenotypes induced by Kindlin-2 loss. Finally, the inducible deletion of β-cell Kindlin-2 causes diabetic phenotypes in adult mice. Collectively, our results establish an important function of Kindlin-2 and provide a potential therapeutic target for diabetes. Beta cell dysfunction and reduction in beta cell mass are hallmark events in the pathogenesis of diabetes mellitus. We identify focal adhesion protein Kindlin-2 as a key factor that controls insulin synthesis and secretion and beta cell mass by modulating MafA and beta-catenin proteins in pancreatic beta cells.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Huiling Cao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Chuanju Liu
- Department of Orthopedic Surgery, New York University School of Medicine, New York, NY, 10003, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Qinnan Yan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Liting Ma
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Giedrius Kanaporis
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Junqi Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and Nankai University College of Pharmacy, 300071, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
| | - Yong Wang
- UVA Islet Microfluidic Laboratory, Department of Surgery, the University of Virginia, Charlottesville, VA, 22908, USA
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China. .,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
The Roles of FoxO Transcription Factors in Regulation of Bone Cells Function. Int J Mol Sci 2020; 21:ijms21030692. [PMID: 31973091 PMCID: PMC7037875 DOI: 10.3390/ijms21030692] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Forkhead box class O family member proteins (FoxOs) are evolutionarily conserved transcription factors for their highly conserved DNA-binding domain. In mammalian species, all the four FoxO members, FoxO1, FoxO3, FoxO4, and FoxO6, are expressed in different organs. In bone, the first three members are extensively expressed and more studied. Bone development, remodeling, and homeostasis are all regulated by multiple cell lineages, including osteoprogenitor cells, chondrocytes, osteoblasts, osteocytes, osteoclast progenitors, osteoclasts, and the intercellular signaling among these bone cells. The disordered FoxOs function in these bone cells contribute to osteoarthritis, osteoporosis, or other bone diseases. Here, we review the current literature of FoxOs for their roles in bone cells, focusing on helping researchers to develop new therapeutic approaches and prevent or treat the related bone diseases.
Collapse
|
14
|
Chen D, Xiang M, Gong Y, Xu L, Zhang T, He Y, Zhou M, Xin L, Li J, Song J. LIPUS promotes FOXO1 accumulation by downregulating miR-182 to enhance osteogenic differentiation in hPDLCs. Biochimie 2019; 165:219-228. [DOI: 10.1016/j.biochi.2019.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022]
|
15
|
Ye J, Wei D, Peng L, Chang T. Ginsenoside Rb1 prevents steroid‑induced avascular necrosis of the femoral head through the bone morphogenetic protein‑2 and vascular endothelial growth factor pathway. Mol Med Rep 2019; 20:3175-3181. [PMID: 31432121 PMCID: PMC6755182 DOI: 10.3892/mmr.2019.10553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/30/2019] [Indexed: 12/30/2022] Open
Abstract
At present, the molecular mechanism underlying the protective effect of Ginsenoside Rb1 remains unclear. The present study was designed to investigate whether Ginsenoside Rb1 weakened the steroid-induced avascular necrosis of the femoral head (SANFH) and to explore the possible mechanisms of the above effects. As a result, it was revealed that Ginsenoside Rb1 was protective against steroid-induced avascular necrosis and inhibited serum osteocalcin in a rat model of SANFH. Ginsenoside Rb1 reduced inflammation, oxidative stress and bone cell apoptosis in a rat model of SANFH. Furthermore, Ginsenoside Rb1 attenuated trabecula parameters, total cholesterol and low density lipoprotein/high density lipoprotein in SANFH rat. Additionally, Ginsenoside Rb1 significantly reversed alkaline phosphatase and osteocalcin activities, vascular endothelial growth factor (VEGF) receptor, VEGF, Runt related transcription factor 2 (Runx2) and bone morphogenetic protein (BMP)-2 protein expression in SANFH rat. Collectively, the present study demonstrated that Ginsenoside Rb1 attenuated SANFH through the VEGF/RUNX2/BMP-2 signaling pathway.
Collapse
Affiliation(s)
- Junwu Ye
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Daiqin Wei
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tianmin Chang
- Department of Internal Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
16
|
Nomura K, Kimira Y, Osawa Y, Shimizu J, Kataoka-Matsushita A, Mano H. Collagen-derived dipeptide prolyl hydroxyproline directly binds to Foxg1 to change its conformation and inhibit the interaction with Runx2. Biosci Biotechnol Biochem 2019; 83:2027-2033. [PMID: 31322484 DOI: 10.1080/09168451.2019.1642099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Collagen-derived dipeptide prolyl hydroxyproline (Pro-Hyp) is involved in the proliferation and differentiation of various types of cultured cells. To elucidate the mechanism underlying Pro-Hyp actions during osteoblast differentiation, we hypothesized that proteins binding to Pro-Hyp serve to mediate cellular signaling, affecting Runx2 expression. Recently, we performed the characterization of Foxg1, that it enhances Runx2 expression in the presence of Pro-Hyp. Our findings indicate that Pro-Hyp directly binds to the Foxg1 recombinant protein, which leads to the structural alteration of the Foxg1 protein. In addition, Foxg1 appears to interact with Runx2 in the absence of Pro-Hyp, with Pro-Hyp disrupting the interaction between Foxg1 and Runx2. Collectively, our results indicate that the Pro-Hyp bound Foxg1 alters the structured conformation of Foxg1, resulting in conformational changes that lead to dissociation from Runx2. These novel findings suggest that during osteoblast differentiation, Pro-Hyp mediates Runx2 activity though directly binding to Foxg1 and increases Runx2 expression. Abbreviations: CPT: collagen peptide; GST: Glutathione S-transferase; PAGE: Polyacrylamide gel electrophoresis; PCR: Polymerase chain reaction; prolyl hydroxyproline: Pro-Hyp.
Collapse
Affiliation(s)
- Kaho Nomura
- Faculty of Pharmaceutical Sciences, Josai University , Sakado , Japan
| | - Yoshifumi Kimira
- Faculty of Pharmaceutical Sciences, Josai University , Sakado , Japan
| | - Yoshihiro Osawa
- Faculty of Pharmaceutical Sciences, Josai University , Sakado , Japan
| | - Jun Shimizu
- Faculty of Pharmaceutical Sciences, Josai University , Sakado , Japan
| | | | - Hiroshi Mano
- Faculty of Pharmaceutical Sciences, Josai University , Sakado , Japan
| |
Collapse
|
17
|
Yan Y, Huang H. Interplay Among PI3K/AKT, PTEN/FOXO and AR Signaling in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:319-331. [DOI: 10.1007/978-3-030-32656-2_14] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Chen D, Gong Y, Xu L, Zhou M, Li J, Song J. Bidirectional regulation of osteogenic differentiation by the FOXO subfamily of Forkhead transcription factors in mammalian MSCs. Cell Prolif 2018; 52:e12540. [PMID: 30397974 PMCID: PMC6496202 DOI: 10.1111/cpr.12540] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/09/2018] [Accepted: 09/02/2018] [Indexed: 12/23/2022] Open
Abstract
Through loss‐ and gain‐of‐function experiments in knockout and transgenic mice, Forkhead box O (FOXO) family transcription factors have been demonstrated to play essential roles in many biological processes, including cellular proliferation, apoptosis and differentiation. Osteogenic differentiation from mesenchymal stem cells (MSCs) into osteoblasts is a well‐organized process that is carefully guided and characterized by various factors, such as runt‐related transcription factor 2 (Runx2), β‐catenin, osteocalcin (OCN), alkaline phosphatase (ALP) and activating transcription factor 4 (ATF4). Accumulating evidence suggests multiple interactions among FOXO members and the differentiation regulatory factors listed above, resulting in an enhancement or inhibition of osteogenesis in different stages of osteogenic differentiation. To systematically and integrally understand the role of FOXOs in osteogenic differentiation and explain the contrary phenomena observed in vitro and in vivo, we herein summarized FOXO‐interacting differentiation regulatory genes/factors and following alterations in differentiation. The underlying mechanism was further discussed on the basis of binding types, sites, phases and the consequent downstream transcriptional alterations of interactions among FOXOs and differentiation regulatory factors. Interestingly, a bidirectional effect of FOXOs on balancing osteogenic differentiation was discovered in MSCs. Moreover, FOXO factors are reported to be activated or suppressed by several context‐dependent signalling inputs during differentiation, and the underlying molecular basis may offer new drug development targets for treatments of bone formation defect diseases.
Collapse
Affiliation(s)
- Duanjing Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanyuan Gong
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ling Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mengjiao Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
19
|
MicroRNA-96 is responsible for sevoflurane-induced cognitive dysfunction in neonatal rats via inhibiting IGF1R. Brain Res Bull 2018; 144:140-148. [PMID: 30217735 DOI: 10.1016/j.brainresbull.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/24/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022]
Abstract
Sevoflurane is an experimental potent yet volatile anesthesia agent characterized by a low blood/gas partition coefficient. However, exposure to sevoflurane in neonatal mice has been speculated to result in learning deficits and abnormal social behavior. The aim of the present study was to investigate the relationship between sevoflurane and miR-96, in an attempt to identify the means by which it mediates IGF1R to influence the cognitive dysfunction (CD) in neonatal rats. Relationship between differentially expressed miRNAs and sevoflurane concentration was identified. The potential underlying regulatory mechanisms involved with sevoflurane were investigated through the administration of varying concentrations of the agent (1%, 2% and 4%), combined with miR-96 mimic or an inhibitor. A target prediction program was utilized, while the luciferase activity was determined in order to verify whether miR-96 targets IGF1R. The mRNA and protein levels of IGF1R, Bcl-2, Bax, and caspase-3 were measured followed by the determination of hippocampal neuron apoptosis. Learning and memory performance was assessed using the Morris water maze (MWM) test and step-down test. The obtained results highlighted a positive correlation between miR-96 and the concentration of sevoflurane, while miR-96 was confirmed to negatively target IGF1R. Our analyses indicated that 4% sevoflurane had a significantly stronger effect on reducing the levels of IGF1R and Bcl-2, while elevating the levels of miR-96, Bax and caspase-3 more so than that of 1% or 2% sevoflurane, which resulted in increased hippocampal neuron apoptosis but diminished the learning and memory performance of the rats. The addition of miR-96 mimic was demonstrated to exacerbate the influence of sevoflurane on hippocampal neurons as well as the cognitive function of the rats. The key findings of our study highlighted the role of miR-96 in the potential mechanism of sevoflurane anesthesia-induced CD in neonatal rats through the downregulation of IGF1R.
Collapse
|
20
|
Araya HF, Sepulveda H, Lizama CO, Vega OA, Jerez S, Briceño PF, Thaler R, Riester SM, Antonelli M, Salazar-Onfray F, Rodríguez JP, Moreno RD, Montecino M, Charbonneau M, Dubois CM, Stein GS, van Wijnen AJ, Galindo MA. Expression of the ectodomain-releasing protease ADAM17 is directly regulated by the osteosarcoma and bone-related transcription factor RUNX2. J Cell Biochem 2018; 119:8204-8219. [PMID: 29923217 DOI: 10.1002/jcb.26832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/06/2018] [Indexed: 01/04/2023]
Abstract
Osteoblast differentiation is controlled by transcription factor RUNX2 which temporally activates or represses several bone-related genes, including those encoding extracellular matrix proteins or factors that control cell-cell, and cell-matrix interactions. Cell-cell communication in the many skeletal pericellular micro-niches is critical for bone development and involves paracrine secretion of growth factors and morphogens. This paracrine signaling is in part regulated by "A Disintegrin And Metalloproteinase" (ADAM) proteins. These cell membrane-associated metalloproteinases support proteolytic release ("shedding") of protein ectodomains residing at the cell surface. We analyzed microarray and RNA-sequencing data for Adam genes and show that Adam17, Adam10, and Adam9 are stimulated during BMP2 mediated induction of osteogenic differentiation and are robustly expressed in human osteoblastic cells. ADAM17, which was initially identified as a tumor necrosis factor alpha (TNFα) converting enzyme also called (TACE), regulates TNFα-signaling pathway, which inhibits osteoblast differentiation. We demonstrate that Adam17 expression is suppressed by RUNX2 during osteoblast differentiation through the proximal Adam17 promoter region (-0.4 kb) containing two functional RUNX2 binding motifs. Adam17 downregulation during osteoblast differentiation is paralleled by increased RUNX2 expression, cytoplasmic-nuclear translocation and enhanced binding to the Adam17 proximal promoter. Forced expression of Adam17 reduces Runx2 and Alpl expression, indicating that Adam17 may negatively modulate osteoblast differentiation. These findings suggest a novel regulatory mechanism involving a reciprocal Runx2-Adam17 negative feedback loop to regulate progression through osteoblast differentiation. Our results suggest that RUNX2 may control paracrine signaling through regulation of ectodomain shedding at the cell surface of osteoblasts by directly suppressing Adam17 expression.
Collapse
Affiliation(s)
- Héctor F Araya
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hugo Sepulveda
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Carlos O Lizama
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oscar A Vega
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sofia Jerez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pedro F Briceño
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Pablo Rodríguez
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), University of Chile, Santiago, Chile
| | - Ricardo D Moreno
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Martine Charbonneau
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Claire M Dubois
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, Vermont
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Mario A Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
21
|
Xu G. HIF-1-mediated expression of Foxo1 serves an important role in the proliferation and apoptosis of osteoblasts derived from children's iliac cancellous bone. Mol Med Rep 2018; 17:6621-6631. [PMID: 29512721 DOI: 10.3892/mmr.2018.8675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 02/08/2018] [Indexed: 11/06/2022] Open
Abstract
Activation of the transcription factor hypoxia inducible factor‑1α (HIF-1α) is considered critical for the stimulation of osteogenic markers including runt‑related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and osteocalcin, which are closely associated with forkhead boxclass O1 (Foxo1) levels in osteoblasts. The present study explored the associations between HIF‑1α and Foxo1 in the regulation of cell viability, proliferation and apoptosis of osteoblasts. Osteoblasts obtained from children's iliac cancellous bone were used in the present study, which were confirmed by immunofluorescence staining for the osteoblast marker osteocalcin. The results revealed that the levels of reactive oxygen species and apoptosis were markedly increased in cells with knockdown of HIF‑1α. By contrast, these were reduced in response to overexpressed HIF‑1α. In addition, HIF‑1α overexpression significantly stimulated cell viability, which was suppressed by silencing HIF‑1α. HIF‑1α overexpression also significantly increased the transcriptional and translational levels of Foxo1. Conversely, silencing HIF‑1α markedly suppressed the expression levels of Foxo1. Furthermore, silencing HIF‑1α reduced the expression of osteogenic markers, including Runx2, ALP and osteocalcin. Runx2 and ALP expression induced by HIF1α were markedly reversed by Foxo1 small interfering (si)RNA, whereas osteocalcin was not significantly affected by Foxo1 siRNA. Therefore, the cooperation of and interactions between HIF‑1α and Foxo1 may be involved in the regulation of osteoblast markers, and serve a pivotal role in the proliferation and apoptosis of osteoblast. The HIF1α‑induced expression of Runx2 and ALP may be completely dependent on the expression levels of Foxo1, and in turn, osteocalcin may be partially dependent on Foxo1 expression.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopedics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
22
|
Yang Y, Bai Y, He Y, Zhao Y, Chen J, Ma L, Pan Y, Hinten M, Zhang J, Karnes RJ, Kohli M, Westendorf JJ, Li B, Zhu R, Huang H, Xu W. PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer. Clin Cancer Res 2018; 24:834-846. [PMID: 29167276 PMCID: PMC5816982 DOI: 10.1158/1078-0432.ccr-17-2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 01/10/2023]
Abstract
Purpose: Intratumoral androgen synthesis (IAS) is a key mechanism promoting androgen receptor (AR) reactivation and antiandrogen resistance in castration-resistant prostate cancer (CRPC). However, signaling pathways driving aberrant IAS remain poorly understood.Experimental Design: The effect of components of the AKT-RUNX2-osteocalcin (OCN)-GPRC6A-CREB signaling axis on expression of steroidogenesis genes CYP11A1 and CYP17A1 and testosterone level were examined in PTEN-null human prostate cancer cell lines. Pten knockout mice were used to examine the effect of Runx2 heterozygous deletion or abiraterone acetate (ABA), a prodrug of the CYP17A1 inhibitor abiraterone on Cyp11a1 and Cyp17a1 expression, testosterone level and tumor microenvironment (TME) remodeling in vivoResults: We uncovered that activation of the AKT-RUNX2-OCN-GPRC6A-CREB signaling axis induced expression of CYP11A1 and CYP17A1 and testosterone production in PTEN-null prostate cancer cell lines in culture. Deletion of Runx2 in Pten homozygous knockout prostate tumors decreased Cyp11a1 and Cyp17a1 expression, testosterone level, and tumor growth in castrated mice. ABA treatment also inhibited testosterone synthesis and alleviated Pten loss-induced tumorigenesis in vivoPten deletion induced TME remodeling, but Runx2 heterozygous deletion or ABA treatment reversed the effect of Pten loss by decreasing expression of the collagenase Mmp9.Conclusions: Abnormal RUNX2 activation plays a pivotal role in PTEN loss-induced IAS and TME remodeling, suggesting that the identified signaling cascade represents a viable target for effective treatment of PTEN-null prostate cancer, including CRPC. Clin Cancer Res; 24(4); 834-46. ©2017 AACR.
Collapse
Affiliation(s)
- Yinhui Yang
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yang Bai
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Jiaxiang Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Linlin Ma
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael Hinten
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - R Jeffrey Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Manish Kohli
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Jennifer J Westendorf
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Benyi Li
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas
| | - Runzhi Zhu
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas.
- Department for Cell Therapy, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota.
- Department of Urology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Wanhai Xu
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
23
|
The transcription factor RUNX2 regulates receptor tyrosine kinase expression in melanoma. Oncotarget 2018; 7:29689-707. [PMID: 27102439 PMCID: PMC5045426 DOI: 10.18632/oncotarget.8822] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
Receptor tyrosine kinases-based autocrine loops largely contribute to activate the MAPK and PI3K/AKT pathways in melanoma. However, the molecular mechanisms involved in generating these autocrine loops are still largely unknown. In the present study, we examine the role of the transcription factor RUNX2 in the regulation of receptor tyrosine kinase (RTK) expression in melanoma. We have demonstrated that RUNX2-deficient melanoma cells display a significant decrease in three receptor tyrosine kinases, EGFR, IGF-1R and PDGFRβ. In addition, we found co-expression of RUNX2 and another RTK, AXL, in both melanoma cells and melanoma patient samples. We observed a decrease in phosphoAKT2 (S474) and phosphoAKT (T308) levels when RUNX2 knock down resulted in significant RTK down regulation. Finally, we showed a dramatic up regulation of RUNX2 expression with concomitant up-regulation of EGFR, IGF-1R and AXL in melanoma cells resistant to the BRAF V600E inhibitor PLX4720. Taken together, our results strongly suggest that RUNX2 might be a key player in RTK-based autocrine loops and a mediator of resistance to BRAF V600E inhibitors involving RTK up regulation in melanoma.
Collapse
|
24
|
Tangseefa P, Martin SK, Fitter S, Baldock PA, Proud CG, Zannettino ACW. Osteocalcin-dependent regulation of glucose metabolism and fertility: Skeletal implications for the development of insulin resistance. J Cell Physiol 2017; 233:3769-3783. [PMID: 28834550 DOI: 10.1002/jcp.26163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/22/2017] [Indexed: 01/22/2023]
Abstract
The skeleton has recently emerged as a critical insulin target tissue that regulates whole body glucose metabolism and male reproductive function. While our understanding of these new regulatory axes remains in its infancy, the bone-specific protein, osteocalcin, has been shown to be centrally involved. Undercarboxylated osteocalcin acts as a secretagogue in a feed-forward loop to stimulate pancreatic β-cell proliferation and insulin secretion, improve insulin sensitivity, and promote testosterone production. Importantly, dysregulation of insulin signaling in bone causes a reduction in serum osteocalcin levels that is associated with elevated blood glucose and reduced serum insulin levels, suggesting that the skeleton may play a significant role in the development of diet-induced insulin resistance. Insulin signaling is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1) which becomes hyper-activated in response to nutrient overload. Loss- and gain-of function models suggest that mTORC1 function in bone is essential for normal skeletal development; however, the role of this complex in the regulation of glucose metabolism remains to be determined. This review highlights our current understanding of the role played by osteocalcin in the skeletal regulation of glucose metabolism and fertility. In particular, it examines data emerging from transgenic mouse models which have revealed a pancreas-bone-testis regulatory axis and discusses recent human studies which seek to corroborate findings from mouse models with clinical observations. Moreover, we review recent studies which suggest dysregulation of insulin signaling in bone leads to the development of insulin resistance and discuss the potential role of mTORC1 signaling in this process.
Collapse
Affiliation(s)
- Pawanrat Tangseefa
- Faculty of Health and Medical Science, Myeloma Research Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Sally K Martin
- Faculty of Health and Medical Science, Myeloma Research Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Stephen Fitter
- Faculty of Health and Medical Science, Myeloma Research Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Paul A Baldock
- Skeletal Metabolism Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Christopher G Proud
- Nutrition & Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Andrew C W Zannettino
- Faculty of Health and Medical Science, Myeloma Research Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
25
|
Dirkes RK, Ortinau LC, Rector RS, Olver TD, Hinton PS. Insulin-Stimulated Bone Blood Flow and Bone Biomechanical Properties Are Compromised in Obese, Type 2 Diabetic OLETF Rats. JBMR Plus 2017; 1:116-126. [PMID: 30283885 PMCID: PMC6124191 DOI: 10.1002/jbm4.10007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 01/20/2023] Open
Abstract
Type 2 diabetes (T2D) increases skeletal fragility and fracture risk; however, the underlying mechanisms remain to be identified. Impaired bone vascular function, in particular insulin‐stimulated vasodilation and blood flow is a potential, yet unexplored mechanism. The purpose of this study was to determine the effects of T2D on femoral biomechanical properties, trabecular microarchitecture, and insulin‐stimulated bone vasodilation by comparison of hyperphagic Otsuka Long‐Evans Tokushima Fatty (OLETF) rats with normoglycemic control OLETF rats. Four‐week old, male OLETF rats were randomized to two groups: type 2 diabetes (O‐T2D) or normoglycemic control (O‐CON). O‐T2D were allowed ad libitum access to a rodent chow diet and O‐CON underwent moderate caloric restriction (30% restriction relative to intake of O‐T2D) to maintain normal body weight (BW) and glycemia until 40 weeks of age. Hyperphagic O‐T2D rats had significantly greater BW, body fat, and blood glucose than O‐CON. Total cross‐sectional area (Tt.Ar), cortical area (Ct.Ar), Ct.Ar/Tt.Ar, and polar moment of inertia of the mid‐diaphyseal femur adjusted for BW were greater in O‐T2D rats versus O‐CON. Whole‐bone biomechanical properties of the femur assessed by torsional loading to failure did not differ between O‐T2D and O‐CON, but tissue‐level strength and stiffness adjusted for BW were reduced in O‐T2D relative to O‐CON. Micro–computed tomography (μCT) of the distal epiphysis showed that O‐T2D rats had reduced percent bone volume, trabecular number, and connectivity density, and greater trabecular spacing compared with O‐CON. Basal tibial blood flow assessed by microsphere infusion was similar in O‐T2D and O‐CON, but the blood flow response to insulin stimulation in both the proximal epiphysis and diaphyseal marrow was lesser in O‐T2D compared to O‐CON. In summary, impaired insulin‐stimulated bone blood flow is associated with deleterious changes in bone trabecular microarchitecture and cortical biomechanical properties in T2D, suggesting that vascular dysfunction might play a causal role in diabetic bone fragility. © 2017 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Rebecca K Dirkes
- Department of Nutrition and Exercise Physiology University of Missouri-Columbia Columbia MO USA
| | - Laura C Ortinau
- Department of Nutrition and Exercise Physiology University of Missouri-Columbia Columbia MO USA
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology University of Missouri-Columbia Columbia MO USA.,Division of Gastroenterology and Hepatology Department of Medicine University of Missouri-Columbia Columbia MO USA.,Research Service Harry S Truman Memorial VA Hospital Columbia MO USA
| | - T Dylan Olver
- Department of Biomedical Sciences University of Missouri-Columbia Columbia MO USA
| | - Pamela S Hinton
- Department of Nutrition and Exercise Physiology University of Missouri-Columbia Columbia MO USA
| |
Collapse
|
26
|
mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Mol Cell Biol 2017; 37:MCB.00668-16. [PMID: 28069737 DOI: 10.1128/mcb.00668-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 01/15/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is activated by extracellular factors that control bone accrual. However, the direct role of this complex in osteoblast biology remains to be determined. To investigate this question, we disrupted mTORC1 function in preosteoblasts by targeted deletion of Raptor (Rptor) in Osterix-expressing cells. Deletion of Rptor resulted in reduced limb length that was associated with smaller epiphyseal growth plates in the postnatal skeleton. Rptor deletion caused a marked reduction in pre- and postnatal bone accrual, which was evident in skeletal elements derived from both intramembranous and endochondrial ossification. The decrease in bone accrual, as well as the associated increase in skeletal fragility, was due to a reduction in osteoblast function. In vitro, osteoblasts derived from knockout mice display a reduced osteogenic potential, and an assessment of bone-developmental markers in Rptor knockout osteoblasts revealed a transcriptional profile consistent with an immature osteoblast phenotype suggesting that osteoblast differentiation was stalled early in osteogenesis. Metabolic labeling and an assessment of cell size of Rptor knockout osteoblasts revealed a significant decrease in protein synthesis, a major driver of cell growth. These findings demonstrate that mTORC1 plays an important role in skeletal development by regulating mRNA translation during preosteoblast differentiation.
Collapse
|
27
|
Alkharobi H, Alhodhodi A, Hawsawi Y, Alkafaji H, Devine D, El-Gendy R, Beattie J. IGFBP-2 and -3 co-ordinately regulate IGF1 induced matrix mineralisation of differentiating human dental pulp cells. Stem Cell Res 2016; 17:517-522. [PMID: 27776273 PMCID: PMC5153425 DOI: 10.1016/j.scr.2016.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 01/07/2023] Open
Abstract
Human dental pulp cells (DPCs), which are known to contain a subset of stem cells capable of reforming a dentin and pulp-like complex upon in vivo transplantation, were isolated from third molars of three healthy donors and differentiated to a matrix mineralisation phenotype using by culture in dexamethasone and l-ascorbic acid. qRT-PCR analysis of insulin-like growth factor ( IGF) axis gene expression indicated that all genes, except insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein-1 ( IGFBP-1), were expressed in DPCs. During differentiation upregulation of insulin-like growth factor binding protein-2 (IGFBP-2) and downregulation of insulin-like growth factor binding protein-3 (IGFBP-3) expression was observed. Changes in IGFBP-2 and IGFBP-3 mRNA expression were confirmed at the protein level by ELISA of DPC conditioned medium functional analysis indicated that IGF1 stimulated the differentiation of DPCs and that the activity of the growth factor was enhanced by pre-complexation with IGFBP-2 but inhibited by pre-complexation with IGFBP-3. Therefore changes in IGFBP-2 and -3 expression during differentiation form part of a co-ordinated functional response to enhance the pro-differentiative action of IGF1 and represent a novel mechanism for the regulation of DPC differentiation.
Collapse
Affiliation(s)
- Hanaa Alkharobi
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Aishah Alhodhodi
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Yousef Hawsawi
- Dept. of Medical Breast Oncology, MD Anderson Cancer Research Centre, University of Texas, Houston, United States
| | - Hasanain Alkafaji
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Deirdre Devine
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Reem El-Gendy
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom; Dept. of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt.
| | - James Beattie
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom.
| |
Collapse
|
28
|
Gámez B, Rodríguez-Carballo E, Graupera M, Rosa JL, Ventura F. Class I PI-3-Kinase Signaling Is Critical for Bone Formation Through Regulation of SMAD1 Activity in Osteoblasts. J Bone Miner Res 2016; 31:1617-30. [PMID: 26896753 DOI: 10.1002/jbmr.2819] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/21/2022]
Abstract
Bone formation and homeostasis is carried out by osteoblasts, whose differentiation and activity are regulated by osteogenic signaling networks. A central mediator of these inputs is the lipid kinase phosphatidylinositol 3-kinase (PI3K). However, at present, there are no data on the specific role of distinct class IA PI3K isoforms in bone biology. Here, we performed osteoblast-specific deletion in mice to show that both p110α and p110β isoforms are required for survival and differentiation and function of osteoblasts and thereby control bone formation and postnatal homeostasis. Impaired osteogenesis arises from increased GSK3 activity and a depletion of SMAD1 protein levels in PI3K-deficient osteoblasts. Accordingly, pharmacological inhibition of GSK3 activity or ectopic expression of SMAD1 or SMAD5 normalizes bone morphogenetic protein (BMP) transduction and osteoblast differentiation. Together, these results identify the PI3K-GSK3-SMAD1 axis as a central node integrating multiple signaling networks that govern bone formation and homeostasis. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Edgardo Rodríguez-Carballo
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mariona Graupera
- Vascular Signaling Laboratory, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
29
|
Linjing S, Yingying W, Zhen T, Ping G. [Research progress on forkhead box protein O1 and bone metabolism]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2016; 34:429-432. [PMID: 28317366 DOI: 10.7518/hxkq.2016.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent studies found that forkhead box protein O1 (FoxO1) does not only demonstrate important biological functions in cell proliferation, gluconeogenesis, energy metabolism, and oxidative stress, but it also plays a vital role in the remodeling process of bones. FoxO1 can regulate bone mass by affecting osteoblasts, osteoclasts, and precursor cells. In this article, we review the role of FoxO1 in bone metabolism and elucidate its underlying mechanism.
Collapse
Affiliation(s)
- Shu Linjing
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wu Yingying
- State Key Laboratory of Oral Diseases, Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tan Zhen
- State Key Laboratory of Oral Diseases, Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Gong Ping
- State Key Laboratory of Oral Diseases, Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Zoch ML, Clemens TL, Riddle RC. New insights into the biology of osteocalcin. Bone 2016; 82:42-9. [PMID: 26055108 PMCID: PMC4670816 DOI: 10.1016/j.bone.2015.05.046] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/01/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Abstract
Osteocalcin is among the most abundant proteins in bone and is produced exclusively by osteoblasts. Initially believed to be an inhibitor of bone mineralization, recent studies suggest a broader role for osteocalcin that extends to the regulation of whole body metabolism, reproduction, and cognition. Circulating undercarboxylated osteocalcin, which is regulated by insulin, acts in a feed-forward loop to increase β-cell proliferation as well as insulin production and secretion, while skeletal muscle and adipose tissue respond to osteocalcin by increasing their sensitivity to insulin. Osteocalcin also acts in the brain to increase neurotransmitter production and in the testes to stimulate testosterone production. At least one putative receptor for osteocalcin, Gprc6a, is expressed by adipose, skeletal muscle, and the Leydig cells of the testes and appears to mediate osteocalcin's effects in these tissues. In this review, we summarize these new discoveries, which suggest that the ability of osteocalcin to function both locally in bone and as a hormone depends on a novel post-translational mechanism that alters osteocalcin's affinity for the bone matrix and bioavailability. This article is part of a Special Issue entitled Bone and diabetes.
Collapse
Affiliation(s)
- Meredith L Zoch
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Baltimore Veterans Administration Medical Center, Baltimore, MD, USA.
| |
Collapse
|
31
|
Kanazawa I. Osteocalcin as a hormone regulating glucose metabolism. World J Diabetes 2015; 6:1345-1354. [PMID: 26722618 PMCID: PMC4689779 DOI: 10.4239/wjd.v6.i18.1345] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/23/2015] [Accepted: 12/02/2015] [Indexed: 02/05/2023] Open
Abstract
The number of patients with osteoporosis and diabetes is rapidly increasing all over the world. Bone is recently recognized as an endocrine organ. Accumulating evidence has shown that osteocalcin, which is specifically expressed in osteoblasts and secreted into the circulation, regulates glucose homeostasis by stimulating insulin expression in pancreas and adiponectin expression in adipocytes, resulting in improving glucose intolerance. On the other hand, insulin and adiponectin stimulate osteocalcin expression in osteoblasts, suggesting that positive feedforward loops exist among bone, pancreas, and adipose tissue. In addition, recent studies have shown that osteocalcin enhances insulin sensitivity and the differentiation in muscle, while secreted factors from muscle, myokines, regulate bone metabolism. These findings suggest that bone metabolism and glucose metabolism are associated with each other through the action of osteocalcin. In this review, I describe the role of osteocalcin in the interaction among bone, pancreas, brain, adipose tissue, and muscle.
Collapse
|
32
|
Chaplais E, Thivel D, Greene D, Dutheil F, Duche P, Naughton G, Courteix D. Bone-adiposity cross-talk: implications for pediatric obesity. A narrative review of literature. J Bone Miner Metab 2015; 33:592-602. [PMID: 25796628 DOI: 10.1007/s00774-015-0654-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
The rising prevalence of overweight and obesity among pediatric populations has become a major global concern. The objective of this review is to demonstrate potential interactions between the products released by fat tissue and the hormonal production of bone tissue in obese children and adolescents. Advancing the understanding of the complex interactions between adipocyte and osteocyte activities may contribute to the mechanistic understanding of the body's responses to weight loss during adolescence. This knowledge could also reveal any side effects encountered with these interventions. Currently, the concept of bone-adiposity crosstalk has not been fully elucidated, and the mechanisms remain controversial. Understanding the local interactions between the released products by fat tissue and hormones produced in bone tissue requires further investigations.
Collapse
Affiliation(s)
- Elodie Chaplais
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), EA 3533, Clermont University, Blaise Pascal University, Clermont-Ferrand, France.
- School of Exercise Science, Australian Catholic University, Strathfield campus, Locked Bag 2002, Strathfield, NSW, 2135, Australia.
| | - David Thivel
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), EA 3533, Clermont University, Blaise Pascal University, Clermont-Ferrand, France
- CRNH-Auvergne, Clermont-Ferrand, France
| | - David Greene
- School of Exercise Science, Australian Catholic University, Strathfield campus, Locked Bag 2002, Strathfield, NSW, 2135, Australia
| | - Frederic Dutheil
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), EA 3533, Clermont University, Blaise Pascal University, Clermont-Ferrand, France
- School of Exercise Science, Australian Catholic University, Strathfield campus, Locked Bag 2002, Strathfield, NSW, 2135, Australia
- Occupational Medicine, University Hospital CHU G. Montpied, 63000, Clermont-Ferrand, France
| | - Pascale Duche
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), EA 3533, Clermont University, Blaise Pascal University, Clermont-Ferrand, France
- CRNH-Auvergne, Clermont-Ferrand, France
| | - Geraldine Naughton
- School of Exercise Science, Australian Catholic University, Strathfield campus, Locked Bag 2002, Strathfield, NSW, 2135, Australia
- School of Exercise Science, Australian Catholic University, Melbourne campus, Fitzroy MDC, Locked Bag 4115, Fitzroy, VIC, 3065, Australia
| | - Daniel Courteix
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), EA 3533, Clermont University, Blaise Pascal University, Clermont-Ferrand, France
- School of Exercise Science, Australian Catholic University, Strathfield campus, Locked Bag 2002, Strathfield, NSW, 2135, Australia
- CRNH-Auvergne, Clermont-Ferrand, France
| |
Collapse
|
33
|
Cohen-Solal KA, Boregowda RK, Lasfar A. RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression. Mol Cancer 2015. [PMID: 26204939 PMCID: PMC4513933 DOI: 10.1186/s12943-015-0404-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
From the first reported role of the transcription factor RUNX2 in osteoblast and chondrocyte differentiation and migration to its involvement in promigratory/proinvasive behavior of breast, prostate, and thyroid cancer cells, osteosarcoma, or melanoma cells, RUNX2 currently emerges as a key player in metastasis. In this review, we address the interaction of RUNX2 with the PI3K/AKT signaling pathway, one of the critical axes controlling cancer growth and metastasis. AKT, either by directly phosphorylating/activating RUNX2 or phosphorylating/inactivating regulators of RUNX2 stability or activity, contributes to RUNX2 transcriptional activity. Reciprocally, the activation of the PI3K/AKT pathway by RUNX2 regulation of its different components has been described in non-transformed and transformed cells. This mutual activation in the context of cancer cells exhibiting constitutive AKT activation and high levels of RUNX2 might constitute a major driving force in tumor progression and aggressiveness.
Collapse
Affiliation(s)
- Karine A Cohen-Solal
- Rutgers Cancer Institute of New Jersey, Department of Medicine, Division of Medical Oncology - Rutgers, the State University of New Jersey, Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, New Jersey, 08903, USA.
| | - Rajeev K Boregowda
- Rutgers Cancer Institute of New Jersey, Department of Medicine, Division of Medical Oncology - Rutgers, the State University of New Jersey, Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, New Jersey, 08903, USA
| | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
| |
Collapse
|
34
|
Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat Commun 2015; 6:7531. [PMID: 26151572 PMCID: PMC4498276 DOI: 10.1038/ncomms8531] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/14/2015] [Indexed: 02/08/2023] Open
Abstract
The signals that control skeletogenesis are incompletely understood. Here we show that deleting Kindlin-2 in Prx1-expressing mesenchymal progenitors in mice causes neonatal lethality, chondrodysplasia and loss of the skull vault. Kindlin-2 ablation reduces chondrocyte density by decreasing cell proliferation and increasing apoptosis, and disrupts column formation, thus impairing the formation of the primary ossification center and causing severe limb shortening. Remarkably, Kindlin-2 localizes to not only focal adhesions, but also to the nuclei of chondrocytes. Loss of Kindlin-2 reduces, while the overexpression of Kindlin-2 increases, Sox9 expression. Furthermore, the overexpression of Sox9 restores the defects in chondrogenic differentiation induced by Kindlin-2 deletion in vitro. In addition, Kindlin-2 ablation inhibits TGF-β1-induced Smad2 phosphorylation and chondrocyte differentiation. Finally, deleting Kindlin-2 in chondrocytes directly impairs chondrocyte functions, resulting in progressive dwarfism and kyphosis in mice. These studies uncover a previously unrecognized function for Kindlin-2 and a mechanism for regulation of the chondrocyte differentiation programme and chondrogenesis. The Kidlins are proteins found in cell focal adhesion sites where they regulate integrins, and in the nucleus where their role is unknown. Here the authors show that Kindlin-2 controls chondrogenesis by regulating integrin b1 activation and Sox9 and TGF-β nuclear signalling.
Collapse
|
35
|
Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proc Natl Acad Sci U S A 2015; 112:4678-83. [PMID: 25825734 DOI: 10.1073/pnas.1502301112] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hedgehog (Hh) signaling is essential for osteoblast differentiation in the endochondral skeleton during embryogenesis. However, the molecular mechanism underlying the osteoblastogenic role of Hh is not completely understood. Here, we report that Hh markedly induces the expression of insulin-like growth factor 2 (Igf2) that activates the mTORC2-Akt signaling cascade during osteoblast differentiation. Igf2-Akt signaling, in turn, stabilizes full-length Gli2 through Serine 230, thus enhancing the output of transcriptional activation by Hh. Importantly, genetic deletion of the Igf signaling receptor Igf1r specifically in Hh-responding cells diminishes bone formation in the mouse embryo. Thus, Hh engages Igf signaling in a positive feedback mechanism to activate the osteogenic program.
Collapse
|
36
|
Khong DM, Dudakov JA, Hammett MV, Jurblum MI, Khong SML, Goldberg GL, Ueno T, Spyroglou L, Young LF, van den Brink MRM, Boyd RL, Chidgey AP. Enhanced hematopoietic stem cell function mediates immune regeneration following sex steroid blockade. Stem Cell Reports 2015; 4:445-58. [PMID: 25733018 PMCID: PMC4375937 DOI: 10.1016/j.stemcr.2015.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 01/24/2015] [Accepted: 01/26/2015] [Indexed: 12/12/2022] Open
Abstract
Mechanisms underlying age-related defects within lymphoid-lineages remain poorly understood. We previously reported that sex steroid ablation (SSA) induced lymphoid rejuvenation and enhanced recovery from hematopoietic stem cell (HSC) transplantation (HSCT). We herein show that, mechanistically, SSA induces hematopoietic and lymphoid recovery by functionally enhancing both HSC self-renewal and propensity for lymphoid differentiation through intrinsic molecular changes. Our transcriptome analysis revealed further hematopoietic support through rejuvenation of the bone marrow (BM) microenvironment, with upregulation of key hematopoietic factors and master regulatory factors associated with aging such as Foxo1. These studies provide important cellular and molecular insights into understanding how SSA-induced regeneration of the hematopoietic compartment can underpin recovery of the immune system following damaging cytoablative treatments. These findings support a short-term strategy for clinical use of SSA to enhance the production of lymphoid cells and HSC engraftment, leading to improved outcomes in adult patients undergoing HSCT and immune depletion in general. Sex steroid ablation (SSA) increases number of hematopoietic stem cells (HSCs) SSA enhances reconstitution potential and self-renewal of HSCs SSA reverses the age-associated decline in Foxo1 expression by hematopoietic niche There is an increase in niche expression of hematopoiesis-associated factors after SSA
Collapse
Affiliation(s)
- Danika M Khong
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Jarrod A Dudakov
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | - Maree V Hammett
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Marc I Jurblum
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sacha M L Khong
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Gabrielle L Goldberg
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Tomoo Ueno
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Lisa Spyroglou
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Lauren F Young
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | | | - Richard L Boyd
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ann P Chidgey
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
37
|
Zhu K, Yi J, Xiao Y, Lai Y, Song P, Zheng W, Jiao H, Fan J, Wu C, Chen D, Zhou J, Xiao G. Impaired bone homeostasis in amyotrophic lateral sclerosis mice with muscle atrophy. J Biol Chem 2015; 290:8081-94. [PMID: 25648889 DOI: 10.1074/jbc.m114.603985] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is an intimate relationship between muscle and bone throughout life. However, how alterations in muscle functions in disease impact bone homeostasis is poorly understood. Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by progressive muscle atrophy. In this study we analyzed the effects of ALS on bone using the well established G93A transgenic mouse model, which harbors an ALS-causing mutation in the gene encoding superoxide dismutase 1. We found that 4-month-old G93A mice with severe muscle atrophy had dramatically reduced trabecular and cortical bone mass compared with their sex-matched wild type (WT) control littermates. Mechanically, we found that multiple osteoblast properties, such as the formation of osteoprogenitors, activation of Akt and Erk1/2 pathways, and osteoblast differentiation capacity, were severely impaired in primary cultures and bones from G93A relative to WT mice; this could contribute to reduced bone formation in the mutant mice. Conversely, osteoclast formation and bone resorption were strikingly enhanced in primary bone marrow cultures and bones of G93A mice compared with WT mice. Furthermore, sclerostin and RANKL expression in osteocytes embedded in the bone matrix were greatly up-regulated, and β-catenin was down-regulated in osteoblasts from G93A mice when compared with those of WT mice. Interestingly, calvarial bone that does not load and long bones from 2-month-old G93A mice without muscle atrophy displayed no detectable changes in parameters for osteoblast and osteoclast functions. Thus, for the first time to our knowledge, we have demonstrated that ALS causes abnormal bone remodeling and defined the underlying molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Ke Zhu
- From the Department of Biochemistry and
| | - Jianxun Yi
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois 60612
| | - Yajuan Xiao
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois 60612
| | - Yumei Lai
- From the Department of Biochemistry and
| | | | - Wei Zheng
- From the Department of Biochemistry and
| | | | | | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and
| | - Di Chen
- From the Department of Biochemistry and
| | - Jingsong Zhou
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois 60612
| | - Guozhi Xiao
- From the Department of Biochemistry and Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen 518055, China
| |
Collapse
|
38
|
Li S, Lei X, Zhang J, Yang H, Liu J, Xu C. Insulin-like growth factor 1 promotes growth of gastric cancer by inhibiting foxo1 nuclear retention. Tumour Biol 2015; 36:4519-23. [PMID: 25596089 DOI: 10.1007/s13277-015-3096-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/08/2015] [Indexed: 01/27/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common malignant human cancer. So far, the molecular mechanisms underlying the tumorigenesis of GC are not completely understood. Here, we reported significantly higher levels of serum insulin-like growth factor (IGF)-1 in GC patients and significantly higher levels of phosphorylated IGF-1 receptor (IGF-1R) in the GC specimen. Moreover, IGF-1 induced phosphorylation of IGF-1R and then phosphorylation of its downstream factor Akt in the GC cells. Further, IGF-1/Akt-induced forkhead box protein O1 (FoxO1) nuclear exclusion, but not IGF-1/Akt-induced mTOR phosphorylation, was essential for the augment in GC cell growth. Together, IGF-1/Akt/FoxO1 regulatory machinery appears to be a previously unappreciated signaling axis involved in the carcinogenesis of GC.
Collapse
Affiliation(s)
- Shuangling Li
- Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, 250014, China
| | | | | | | | | | | |
Collapse
|
39
|
Aguilar R, Grandy R, Meza D, Sepulveda H, Pihan P, van Wijnen AJ, Lian JB, Stein GS, Stein JL, Montecino M. A functional N-terminal domain in C/EBPβ-LAP* is required for interacting with SWI/SNF and to repress Ric-8B gene transcription in osteoblasts. J Cell Physiol 2014; 229:1521-8. [PMID: 24585571 DOI: 10.1002/jcp.24595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 01/06/2023]
Abstract
The chromatin remodeling complex SWI/SNF and the transcription factor C/EBPβ play critical roles in osteoblastic cells as they jointly control transcription of a number of bone-related target genes. The largest C/EBPβ isoform, LAP*, possesses a short additional N-terminal domain that has been proposed to mediate the interaction of this factor with SWI/SNF in myeloid cells. Here we examine the requirement of a functional N-terminus in C/EBPβ-LAP* for binding SWI/SNF and for recruiting this complex to the Ric-8B gene to mediate transcriptional repression. We find that both C/EBPβ-LAP* and SWI/SNF simultaneously bind to the Ric-8B promoter in differentiating osteoblasts that repress Ric-8B expression. This decreased expression of Ric-8B is not accompanied by significant changes in histone acetylation at the Ric-8B gene promoter sequence. A single aminoacid change at the C/EBPβ-LAP* N-terminus (R3L) that inhibits C/EBPβ-LAP*-SWI/SNF interaction, also prevents SWI/SNF recruitment to the Ric-8B promoter as well as C/EBPβ-LAP*-dependent repression of the Ric-8B gene. Inducible expression of the C/EBPβ-LAP*R3L protein in stably transfected osteoblastic cells demonstrates that this mutant protein binds to C/EBPβ-LAP*-target promoters and competes with the endogenous C/EBPβ factor. Together our results indicate that a functional N-terminus in C/EBPβ-LAP* is required for interacting with SWI/SNF and for Ric-8B gene repression in osteoblasts.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yang X, Li CJ, Wan Y, Smith P, Shang G, Cui Q. Antioxidative fullerol promotes osteogenesis of human adipose-derived stem cells. Int J Nanomedicine 2014; 9:4023-31. [PMID: 25187705 PMCID: PMC4149442 DOI: 10.2147/ijn.s66785] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antioxidants were implicated as potential reagents to enhance osteogenesis, and nano-fullerenes have been demonstrated to have a great antioxidative capacity by both in vitro and in vivo experiments. In this study, we assessed the impact of a polyhydroxylated fullerene, fullerol, on the osteogenic differentiation of human adipose-derived stem cells (ADSCs). Fullerol was not toxic against human ADSCs at concentrations up to 10 μM. At a concentration of 1 μM, fullerol reduced cellular reactive oxygen species after a 5-day incubation either in the presence or in the absence of osteogenic media. Pretreatment of fullerol for 7 days increased the osteogenic potential of human ADSCs. Furthermore, when incubated together with osteogenic medium, fullerol promoted osteogenic differentiation in a dose-dependent manner. Finally, fullerol proved to promote expression of FoxO1, a major functional isoform of forkhead box O transcription factors that defend against reactive oxygen species in bone. Although further clarification of related mechanisms is required, the findings may help further development of a novel approach for bone repair, using combined treatment of nano-fullerol with ADSCs.
Collapse
Affiliation(s)
- Xinlin Yang
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ching-Ju Li
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yueping Wan
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Pinar Smith
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Guowei Shang
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Quanjun Cui
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
41
|
Vimalraj S, Partridge NC, Selvamurugan N. A positive role of microRNA-15b on regulation of osteoblast differentiation. J Cell Physiol 2014; 229:1236-44. [PMID: 24435757 DOI: 10.1002/jcp.24557] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 01/10/2014] [Indexed: 12/17/2022]
Abstract
Osteoblast differentiation is tightly regulated by several factors including microRNAs (miRNAs). In this paper, we report that pre-mir-15b is highly expressed in differentiated osteoblasts. The functional role of miR-15b in osteoblast differentiation was determined using miR-15b mimic/inhibitor and the expression of osteoblast differentiation marker genes such as alkaline phosphatase (ALP), type I collagen genes was decreased by miR-15b inhibitor. Runx2, a bone specific transcription factor is generally required for expression of osteoblast differentiation marker genes and in response to miR-15b inhibitor treatment, Runx2 mRNA expression was not changed; whereas its protein expression was decreased. Even though Smurf1 (SMAD specific E3 ubiquitin protein ligase 1), HDAC4 (histone deacetylase 4), Smad7, and Crim1 were found to be few of miR-15b's putative target genes, there was increased expression of only Smurf1 gene at mRNA and protein levels by miR-15b inhibitor. miR-15b mimic treatment significantly increased and decreased expressions of Runx2 and Smurf1 proteins, respectively. We further identified that the Smurf1 3'UTR is directly targeted by miR-15b using the luciferase reporter gene system. This is well documented that Smurf1 interacts with Runx2 and degrades it by proteasomal pathway. Hence, based on our results we suggest that miR-15b promotes osteoblast differentiation by indirectly protecting Runx2 protein from Smurf1 mediated degradation. Thus, this study identified that miR-15b can act as a positive regulator for osteoblast differentiation.
Collapse
Affiliation(s)
- S Vimalraj
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
| | | | | |
Collapse
|
42
|
Al-Kharobi H, El-Gendy R, Devine DA, Beattie J. The role of the insulin‑like growth factor (IGF) axis in osteogenic and odontogenic differentiation. Cell Mol Life Sci 2014; 71:1469-76. [PMID: 24232361 PMCID: PMC11113200 DOI: 10.1007/s00018-013-1508-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
Abstract
The insulin-like growth factor (IGF) axis is a multicomponent molecular network which has important biological functions in the development and maintenance of differentiated tissue function(s). One of the most important functions of the IGF axis is the control of skeletal tissue metabolism by the finely tuned regulation of the process of osteogenesis. To achieve this, the IGF axis controls the activity of several cell types—osteoprogenitor cells, osteoblasts, osteocytes and osteoclasts to achieve the co-ordinated development of appropriate hard tissue structure and associated matrix deposition. In addition, there is an increasing awareness that the IGF axis also plays a role in the process of odontogenesis (tooth formation). In this review, we highlight some of the key findings in both of these areas. A further understanding of the role of the IGF axis in hard tissue biology may contribute to tissue regeneration strategies in cases of skeletal tissue trauma.
Collapse
Affiliation(s)
- H. Al-Kharobi
- Leeds University School of Dentistry, University of Leeds, Clarendon Way, Leeds, LS2 9LU UK
| | - R. El-Gendy
- Leeds University School of Dentistry, University of Leeds, Clarendon Way, Leeds, LS2 9LU UK
| | - D. A. Devine
- Leeds University School of Dentistry, University of Leeds, Clarendon Way, Leeds, LS2 9LU UK
| | - J. Beattie
- Leeds University School of Dentistry, University of Leeds, Clarendon Way, Leeds, LS2 9LU UK
| |
Collapse
|
43
|
Zhang M, Manchanda PK, Wu D, Wang Q, Kirschner LS. Knockdown of PRKAR1A, the gene responsible for Carney complex, interferes with differentiation in osteoblastic cells. Mol Endocrinol 2014; 28:295-307. [PMID: 24506536 DOI: 10.1210/me.2013-1152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PRKAR1A is the gene encoding the type 1A regulatory subunit of protein kinase A, and it is the cause of the inherited human tumor syndrome Carney complex. Data from our laboratory has demonstrated that Prkar1a loss causes tumors in multiple cell lineages, including neural crest cells and osteoblasts. We have proposed that one mechanism by which tumorigenesis occurs is through the failure of terminal differentiation. In the present study, we directly test the effects of Prkar1a reduction on osteogenic differentiation in mouse and human cells in vitro. We found that Prkar1a levels noticeably increased during osteoblastic differentiation, indicating a positive correlation between the expression of Prkar1a and osteogenic potential. To validate this hypothesis, we generated stable Prkar1a knockdown in both mouse and human cells. These cells displayed significantly suppressed bone nodule formation and decreased expression of osteoblast markers such as osteocalcin and osteopontin. These observations imply that the antiosteogenic effect of Prkar1a ablation is not species or cell line specific. Furthermore, because Runt-related transcription factor-2 (Runx2) is a key mediator of osteoblast differentiation, we reasoned that the function of this transcription factor may be inhibited by Prkar1a knockdown. Chromatin immunoprecipitation and luciferase assays demonstrated that Prkar1a ablation repressed DNA binding and function of Runx2 at its target genes. Additionally, we determined that this effect is likely due to reductions in the Runx2-cooperating transcription factors forkhead box O1 and activating transcription factor 4. Taken together, this study provides direct evidence that ablation of Prkar1a interferes with signaling pathways necessary for osteoblast differentiation.
Collapse
Affiliation(s)
- Mei Zhang
- Departments of Molecular, Virology, Immunology, and Medical Genetics (M.Z., P.K.M., L.S.K.) and Molecular and Cellular Biochemistry (D.W., Q.W.) and Division of Endocrinology, Diabetes, and Metabolism (L.S.K.), The Ohio State University, Columbus, Ohio 43210
| | | | | | | | | |
Collapse
|
44
|
Tandon M, Chen Z, Pratap J. Runx2 activates PI3K/Akt signaling via mTORC2 regulation in invasive breast cancer cells. Breast Cancer Res 2014; 16:R16. [PMID: 24479521 PMCID: PMC3979058 DOI: 10.1186/bcr3611] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 01/22/2014] [Indexed: 02/07/2023] Open
Abstract
Introduction The Runt-related transcription factor Runx2 is critical for skeletal development but is also aberrantly expressed in breast cancers, and promotes cell growth and invasion. A de-regulated serine/threonine kinase Akt signaling pathway is implicated in mammary carcinogenesis and cell survival; however, the mechanisms underlying Runx2 role in survival of invasive breast cancer cells are still unclear. Methods The phenotypic analysis of Runx2 function in cell survival was performed by gene silencing and flow cytometric analysis in highly invasive MDA-MB-231 and SUM-159-PT mammary epithelial cell lines. The expression analysis of Runx2 and pAkt (serine 473) proteins in metastatic breast cancer specimens was performed by immunohistochemistry. The mRNA and protein levels of kinases and phosphatases functional in Akt signaling were determined by real-time PCR and Western blotting, while DNA-protein interaction was studied by chromatin immunoprecipitation assays. Results The high Runx2 levels in invasive mammary epithelial cell lines promoted cell survival in Akt phosphorylation (pAkt-serine 473) dependent manner. The analysis of kinases and phosphatases associated with pAkt regulation revealed that Runx2 promotes pAkt levels via mammalian target of rapamycin complex-2 (mTORC2). The recruitment of Runx2 on mTOR promoter coupled with Runx2-dependent expression of mTORC2 component Rictor defined Runx2 function in pAkt-mediated survival of invasive breast cancer cells. Conclusions Our results identified a novel mechanism of Runx2 regulatory crosstalk in Akt signaling that could have important consequences in targeting invasive breast cancer-associated cell survival.
Collapse
|
45
|
IGF-1 regulation of key signaling pathways in bone. BONEKEY REPORTS 2013; 2:437. [PMID: 24422135 DOI: 10.1038/bonekey.2013.171] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) is an unique peptide that functions in an endocrine/paracrine and autocrine manner in most tissues. Although it was postulated initially that liver-derived IGF-1 was the major source of IGF-1 (that is, the somatomedin hypothesis), it is also produced in a wide variety of tissues and can function in numerous ways as both a proliferative and differentiative factor. One such tissue is bone and all cell lineages in the skeleton have been shown to not only require IGF-1 for normal development and function but also to respond to IGF-1 via the IGF-1 receptor. Ligand-receptor activation leads to several distinct downstream signaling cascades, which have significant implications for cell survival, protein synthesis and energy utilization. The novel role of IGF-1 in regulating metabolic demands of the bone remodeling unit is currently under investigation. More studies are likely to shed new light on various aspects of skeletal physiology and potentially may lead to new therapeutics.
Collapse
|
46
|
Cao H, Zhu K, Qiu L, Li S, Niu H, Hao M, Yang S, Zhao Z, Lai Y, Anderson JL, Fan J, Im HJ, Chen D, Roodman GD, Xiao G. Critical role of AKT protein in myeloma-induced osteoclast formation and osteolysis. J Biol Chem 2013; 288:30399-30410. [PMID: 24005670 DOI: 10.1074/jbc.m113.469973] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abnormal osteoclast formation and osteolysis are the hallmarks of multiple myeloma (MM) bone disease, yet the underlying molecular mechanisms are incompletely understood. Here, we show that the AKT pathway was up-regulated in primary bone marrow monocytes (BMM) from patients with MM, which resulted in sustained high expression of the receptor activator of NF-κB (RANK) in osteoclast precursors. The up-regulation of RANK expression and osteoclast formation in the MM BMM cultures was blocked by AKT inhibition. Conditioned media from MM cell cultures activated AKT and increased RANK expression and osteoclast formation in BMM cultures. Inhibiting AKT in cultured MM cells decreased their growth and ability to promote osteoclast formation. Of clinical significance, systemic administration of the AKT inhibitor LY294002 blocked the formation of tumor tissues in the bone marrow cavity and essentially abolished the MM-induced osteoclast formation and osteolysis in SCID mice. The level of activating transcription factor 4 (ATF4) protein was up-regulated in the BMM cultures from multiple myeloma patients. Adenoviral overexpression of ATF4 activated RANK expression in osteoclast precursors. These results demonstrate a new role of AKT in the MM promotion of osteoclast formation and bone osteolysis through, at least in part, the ATF4-dependent up-regulation of RANK expression in osteoclast precursors.
Collapse
Affiliation(s)
- Huiling Cao
- From the College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ke Zhu
- From the College of Life Sciences, Nankai University, Tianjin 300071, China,; the Department of Biochemistry, Rush University, Chicago, Illinois 60612
| | - Lugui Qiu
- the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - Shuai Li
- From the College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hanjie Niu
- From the College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mu Hao
- the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - Shengyong Yang
- the Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15240, and
| | - Zhongfang Zhao
- From the College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yumei Lai
- the Department of Biochemistry, Rush University, Chicago, Illinois 60612
| | - Judith L Anderson
- Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jie Fan
- the Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15240, and
| | - Hee-Jeong Im
- the Department of Biochemistry, Rush University, Chicago, Illinois 60612
| | - Di Chen
- the Department of Biochemistry, Rush University, Chicago, Illinois 60612
| | - G David Roodman
- Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Guozhi Xiao
- From the College of Life Sciences, Nankai University, Tianjin 300071, China,; the Department of Biochemistry, Rush University, Chicago, Illinois 60612,.
| |
Collapse
|
47
|
Zhu K, Jiao H, Li S, Cao H, Galson DL, Zhao Z, Zhao X, Lai Y, Fan J, Im HJ, Chen D, Xiao G. ATF4 promotes bone angiogenesis by increasing VEGF expression and release in the bone environment. J Bone Miner Res 2013; 28:1870-1884. [PMID: 23649506 PMCID: PMC4394202 DOI: 10.1002/jbmr.1958] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/18/2013] [Accepted: 04/02/2013] [Indexed: 11/11/2022]
Abstract
Activating transcription factor 4 (ATF4) is a critical transcription factor for bone remodeling; however, its role in bone angiogenesis has not been established. Here we show that ablation of the Atf4 gene expression in mice severely impaired skeletal vasculature and reduced microvascular density of the bone associated with dramatically decreased expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) in osteoblasts located on bone surfaces. Results from in vivo studies revealed that hypoxia/reoxygenation induction of HIF-1α and VEGF expression leading to bone angiogenesis, a key adaptive response to hypoxic conditions, was severely compromised in mice lacking the Atf4 gene. Loss of ATF4 completely prevented endothelial sprouting from embryonic metatarsals, which was restored by addition of recombinant human VEGF protein. In vitro studies revealed that ATF4 promotion of HIF-1α and VEGF expression in osteoblasts was highly dependent upon the presence of hypoxia. ATF4 interacted with HIF-1α in hypoxic osteoblasts, and loss of ATF4 increased HIF-1α ubiquitination and reduced its protein stability without affecting HIF-1α mRNA stability and protein translation. Loss of ATF4 increased the binding of HIF-1α to prolyl hydroxylases, the enzymes that hydroxylate HIF-1a protein and promote its proteasomal degradation via the pVHL pathway. Furthermore, parathyroid hormone-related protein (PTHrP) and receptor activator of NF-κB ligand (RANKL), both well-known activators of osteoclasts, increased release of VEGF from the bone matrix and promoted angiogenesis through the protein kinase C- and ATF4-dependent activation of osteoclast differentiation and bone resorption. Thus, ATF4 is a new key regulator of the HIF/VEGF axis in osteoblasts in response to hypoxia and of VEGF release from bone matrix, two critical steps for bone angiogenesis.
Collapse
Affiliation(s)
- Ke Zhu
- College of Life Sciences, Nankai University, Tianjin 300071, China
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Hongli Jiao
- College of Life Sciences, Nankai University, Tianjin 300071, China
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Shuai Li
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Huiling Cao
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15240
| | - Deborah L. Galson
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15240
| | - Zhongfang Zhao
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xi Zhao
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yumei Lai
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Jie Fan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15240
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Guozhi Xiao
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
48
|
Zheng L, Zhu K, Jiao H, Zhao Z, Zhang L, Liu M, Deng W, Chen D, Yao Z, Xiao G. PTHrP expression in human MDA-MB-231 breast cancer cells is critical for tumor growth and survival and osteoblast inhibition. Int J Biol Sci 2013; 9:830-41. [PMID: 23983616 PMCID: PMC3753447 DOI: 10.7150/ijbs.7039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/06/2013] [Indexed: 12/29/2022] Open
Abstract
This study examined the effects of parathyroid hormone-related protein (PTHrP) derived from human MDA-MB-231 breast cancer cells on the tumor growth and osteoblast inhibition. Results revealed that knocking down PTHrP expression in the breast cancer cells strikingly inhibited the formation of subcutaneous tumors in nude mice. PTHrP knockdown dramatically decreased the levels of cyclins D1 and A1 proteins and arrested the cell cycle progression at the G1 stage. PTHrP knockdown led to the cleavage of Caspase 8 and induced apoptosis of the tumor cells. Interestingly, knocking down PTHrP increased the levels of Beclin1 and LC3-II and promoted the formation of autophagosomes. Knocking down PTHrP expression significantly reduced the abilities of the breast cancer cells to inhibit osteoblast differentiation and bone formation in vitro and in vivo. Finally, we found that PTHrP activated its own expression through an autocrine mechanism in MDA-MB-231 cells. Collectively, these studies suggest that targeting PTHrP expression in the tumor cells could be a potential therapeutic strategy for breast cancers, especially those with skeletal metastases.
Collapse
Affiliation(s)
- Lu Zheng
- Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vijayan V, Khandelwal M, Manglani K, Singh RR, Gupta S, Surolia A. Homocysteine alters the osteoprotegerin/RANKL system in the osteoblast to promote bone loss: pivotal role of the redox regulator forkhead O1. Free Radic Biol Med 2013; 61:72-84. [PMID: 23500899 DOI: 10.1016/j.freeradbiomed.2013.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 02/04/2013] [Accepted: 03/04/2013] [Indexed: 01/25/2023]
Abstract
In this study we determined the molecular mechanisms of how homocysteine differentially affects receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) synthesis in the bone. The results showed that oxidative stress induced by homocysteine deranges insulin-sensitive FOXO1 and MAP kinase signaling cascades to decrease OPG and increase RANKL synthesis in osteoblast cultures. We observed that downregulation of insulin/FOXO1 and p38 MAP kinase signaling mechanisms due to phosphorylation of protein phosphatase 2A (PP2A) was the key event that inhibited OPG synthesis in homocysteine-treated osteoblast cultures. siRNA knockdown experiments confirmed that FOXO1 is integral to OPG and p38 synthesis. Conversely homocysteine increased RANKL synthesis in osteoblasts through c-Jun/JNK MAP kinase signaling mechanisms independent of FOXO1. In the rat bone milieu, high-methionine diet-induced hyperhomocysteinemia lowered FOXO1 and OPG expression and increased synthesis of proresorptive and inflammatory cytokines such as RANKL, M-CSF, IL-1α, IL-1β, G-CSF, GM-CSF, MIP-1α, IFN-γ, IL-17, and TNF-α. Such pathophysiological conditions were exacerbated by ovariectomy. Lowering the serum homocysteine level by a simultaneous supplementation with N-acetylcysteine improved OPG and FOXO1 expression and partially antagonized RANKL and proresorptive cytokine synthesis in the bone milieu. These results emphasize that hyperhomocysteinemia alters the redox regulatory mechanism in the osteoblast by activating PP2A and deranging FOXO1 and MAPK signaling cascades, eventually shifting the OPG:RANKL ratio toward increased osteoclast activity and decreased bone quality.
Collapse
Affiliation(s)
- Viji Vijayan
- Molecular Sciences Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mayuri Khandelwal
- Molecular Sciences Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kapil Manglani
- Molecular Sciences Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rajiv Ranjan Singh
- Molecular Sciences Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sarika Gupta
- Molecular Sciences Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Avadhesha Surolia
- Molecular Sciences Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560 012, India.
| |
Collapse
|
50
|
Musso G, Paschetta E, Gambino R, Cassader M, Molinaro F. Interactions among bone, liver, and adipose tissue predisposing to diabesity and fatty liver. Trends Mol Med 2013; 19:522-35. [PMID: 23816817 DOI: 10.1016/j.molmed.2013.05.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 02/06/2023]
Abstract
Growing epidemiological evidence connects obesity and its complications, including metabolic syndrome, diabetes, and nonalcoholic fatty liver disease (NAFLD) to reduced bone health and osteoporosis. Parallel to human studies, experimental data disclosed a complex network of interaction among adipose tissue, the liver, and the bone, which reciprocally modulate the function of each other. The main mediators of such crosstalk include hormonal/cytokine signals from the bone (osteopontin, osteocalcin, and osteoprotegerin), the liver (fetuin-A), and adipose tissue [leptin, tumor necrosis factor-α (TNF-α), and adiponectin]. Dysregulation of this network promotes the development of diabesity, NAFLD, and osteoporosis. We will review recent advances in understanding the mechanisms of bone-liver-adipose tissue interaction predisposing to obesity, diabetes, NAFLD, and osteoporosis and their potential clinical implications.
Collapse
|