1
|
Arimura SI, Nakazato I. Genome Editing of Plant Mitochondrial and Chloroplast Genomes. PLANT & CELL PHYSIOLOGY 2024; 65:477-483. [PMID: 38113380 PMCID: PMC11094758 DOI: 10.1093/pcp/pcad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
Plastids (including chloroplasts) and mitochondria are remnants of endosymbiotic bacteria, yet they maintain their own genomes, which encode vital components for photosynthesis and respiration, respectively. Organellar genomes have distinctive features, such as being present as multicopies, being mostly inherited maternally, having characteristic genomic structures and undergoing frequent homologous recombination. To date, it has proven to be challenging to modify these genomes. For example, while CRISPR/Cas9 is a widely used system for editing nuclear genes, it has not yet been successfully applied to organellar genomes. Recently, however, precise gene-editing technologies have been successfully applied to organellar genomes. Protein-based enzymes, especially transcription activator-like effector nucleases (TALENs) and artificial enzymes utilizing DNA-binding domains of TALENs (TALEs), have been successfully used to modify these genomes by harnessing organellar-targeting signals. This short review introduces and discusses the use of targeted nucleases and base editors in organellar genomes, their effects and their potential applications in plant science and breeding.
Collapse
Affiliation(s)
- Shin-ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Issei Nakazato
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
2
|
Wang Y, Huang ZQ, Tian KD, Li H, Xu C, Xia B, Tan BC. Multiple factors interact in editing of PPR-E+-targeted sites in maize mitochondria and plastids. PLANT COMMUNICATIONS 2024; 5:100836. [PMID: 38327059 PMCID: PMC11121751 DOI: 10.1016/j.xplc.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
RNA cytidine-to-uridine editing is essential for plant organellar gene expression. Pentatricopeptide repeat (PPR)-E+ proteins have been proposed to bind to target sites and recruit the cytidine deaminase AtDYW2, facilitated by AtNUWA. Here we analyze the function of ZmNUWA, ZmDYW2A, and ZmDYW2B and their relationships with other editing factors in maize. The zmdyw2a and zmdyw2b single mutants are normal, but the zmdyw2a::zmdyw2b and zmnuwa mutants are severely arrested in seed development. ZmNUWA, ZmDYW2A, and ZmDYW2B are dual localized in mitochondria and plastids. Loss of ZmNUWA decreases the editing at 99 mitochondrial sites and 8 plastid sites. Surprisingly, loss of ZmDYW2A:ZmDYW2B affects almost the same set of sites targeted by PPR-E+ proteins. ZmNUWA interacts with ZmDYW2A and ZmDYW2B, suggesting that ZmNUWA recruits ZmDYW2A/2B in the editing of PPR-E+-targeted sites in maize. Further protein interaction analyses show that ZmNUWA and ZmDYW2A/2B interact with ZmMORF1, ZmMORF8, ZmMORF2, and ZmMORF9 and that ZmOZ1 interacts with ZmORRM1, ZmDYW2A, ZmDYW2B, ZmMORF8, and ZmMORF9. These results suggest that the maize mitochondrial PPR-E+ editosome contains PPR-E+, ZmDYW2A/2B, ZmNUWA, and ZmMORF1/8, whereas the plastid PPR-E+ editosome is composed of PPR-E+, ZmDYW2A/2B, ZmNUWA, ZmMORF2/8/9, ZmORRM1, and ZmOZ1.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zi-Qin Huang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Kai-Di Tian
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Hao Li
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Chunhui Xu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bingyujie Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Liu K, Xie B, Peng L, Wu Q, Hu J. Profiling of RNA editing events in plant organellar transcriptomes with high-throughput sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:345-357. [PMID: 38149801 DOI: 10.1111/tpj.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023]
Abstract
RNA editing is a crucial post-transcriptional modification process in plant organellar RNA metabolism. rRNA removal-based total RNA-seq is one of the most common methods to study this event. However, the lack of commercial kits to remove rRNAs limits the usage of this method, especially for non-model plant species. DSN-seq is a transcriptome sequencing method utilizing duplex-specific nuclease (DSN) to degrade highly abundant cDNA species especially those from rRNAs while keeping the robustness of transcript levels of the majority of other mRNAs, and has not been applied to study RNA editing in plants before. In this study, we evaluated the capability of DSN-seq to reduce rRNA content and profile organellar RNA editing events in plants, as well we used commercial Ribo-off-seq and standard mRNA-seq as comparisons. Our results demonstrated that DSN-seq efficiently reduced rRNA content and enriched organellar transcriptomes in rice. With high sensitivity to RNA editing events, DSN-seq and Ribo-off-seq provided a more complete and accurate RNA editing profile of rice, which was further validated by Sanger sequencing. Furthermore, DSN-seq also demonstrated efficient organellar transcriptome enrichment and high sensitivity for profiling RNA editing events in Arabidopsis thaliana. Our study highlights the capability of rRNA removal-based total RNA-seq for profiling RNA editing events in plant organellar transcriptomes and also suggests DSN-seq as a widely accessible RNA editing profiling method for various plant species.
Collapse
Affiliation(s)
- Kejia Liu
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Bin Xie
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Leilei Peng
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Qijia Wu
- Seqhealth Technology Co., Ltd., Wuhan, Hubei, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| |
Collapse
|
4
|
Yang F, Vincis Pereira Sanglard L, Lee CP, Ströher E, Singh S, Oh GGK, Millar AH, Small I, Colas des Francs-Small C. Mitochondrial atp1 mRNA knockdown by a custom-designed pentatricopeptide repeat protein alters ATP synthase. PLANT PHYSIOLOGY 2024; 194:2631-2647. [PMID: 38206203 PMCID: PMC10980415 DOI: 10.1093/plphys/kiae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Spontaneous mutations are rare in mitochondria and the lack of mitochondrial transformation methods has hindered genetic analyses. We show that a custom-designed RNA-binding pentatricopeptide repeat (PPR) protein binds and specifically induces cleavage of ATP synthase subunit1 (atp1) mRNA in mitochondria, significantly decreasing the abundance of the Atp1 protein and the assembled F1Fo ATP synthase in Arabidopsis (Arabidopsis thaliana). The transformed plants are characterized by delayed vegetative growth and reduced fertility. Five-fold depletion of Atp1 level was accompanied by a decrease in abundance of other ATP synthase subunits and lowered ATP synthesis rate of isolated mitochondria, but no change to mitochondrial electron transport chain complexes, adenylates, or energy charge in planta. Transcripts for amino acid transport and a variety of stress response processes were differentially expressed in lines containing the PPR protein, indicating changes to achieve cellular homeostasis when ATP synthase was highly depleted. Leaves of ATP synthase-depleted lines showed higher respiratory rates and elevated steady-state levels of numerous amino acids, most notably of the serine family. The results show the value of using custom-designed PPR proteins to influence the expression of specific mitochondrial transcripts to carry out reverse genetic studies on mitochondrial gene functions and the consequences of ATP synthase depletion on cellular functions in Arabidopsis.
Collapse
Affiliation(s)
- Fei Yang
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P. R. China
| | - Lilian Vincis Pereira Sanglard
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Chun-Pong Lee
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Elke Ströher
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Swati Singh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Glenda Guec Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
5
|
Lin JY, Liu YC, Tseng YH, Chan MT, Chang CC. TALE-based organellar genome editing and gene expression in plants. PLANT CELL REPORTS 2024; 43:61. [PMID: 38336900 DOI: 10.1007/s00299-024-03150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
KEY MESSAGE TALE-based editors provide an alternative way to engineer the organellar genomes in plants. We update and discuss the most recent developments of TALE-based organellar genome editing in plants. Gene editing tools have been widely used to modify the nuclear genomes of plants for various basic research and biotechnological applications. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 editing platform is the most commonly used technique because of its ease of use, fast speed, and low cost; however, it encounters difficulty when being delivered to plant organelles for gene editing. In contrast, protein-based editing technologies, such as transcription activator-like effector (TALE)-based tools, could be easily delivered, expressed, and targeted to organelles in plants via Agrobacteria-mediated nuclear transformation. Therefore, TALE-based editors provide an alternative way to engineer the organellar genomes in plants since the conventional chloroplast transformation method encounters technical challenges and is limited to certain species, and the direct transformation of mitochondria in higher plants is not yet possible. In this review, we update and discuss the most recent developments of TALE-based organellar genome editing in plants.
Collapse
Affiliation(s)
- Jer-Young Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Tainan, 71150, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Chang Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Tainan, 71150, Taiwan
| | - Yan-Hao Tseng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Tainan, 71150, Taiwan.
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Ching-Chun Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
6
|
Feng LY, Lin PF, Xu RJ, Kang HQ, Gao LZ. Comparative Genomic Analysis of Asian Cultivated Rice and Its Wild Progenitor ( Oryza rufipogon) Has Revealed Evolutionary Innovation of the Pentatricopeptide Repeat Gene Family through Gene Duplication. Int J Mol Sci 2023; 24:16313. [PMID: 38003501 PMCID: PMC10671101 DOI: 10.3390/ijms242216313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
The pentatricopeptide repeat (PPR) gene family is one of the largest gene families in land plants. However, current knowledge about the evolution of the PPR gene family remains largely limited. In this study, we performed a comparative genomic analysis of the PPR gene family in O. sativa and its wild progenitor, O. rufipogon, and outlined a comprehensive landscape of gene duplications. Our findings suggest that the majority of PPR genes originated from dispersed duplications. Although segmental duplications have only expanded approximately 11.30% and 13.57% of the PPR gene families in the O. sativa and O. rufipogon genomes, we interestingly obtained evidence that segmental duplication promotes the structural diversity of PPR genes through incomplete gene duplications. In the O. sativa and O. rufipogon genomes, 10 (~33.33%) and 22 pairs of gene duplications (~45.83%) had non-PPR paralogous genes through incomplete gene duplication. Segmental duplications leading to incomplete gene duplications might result in the acquisition of domains, thus promoting functional innovation and structural diversification of PPR genes. This study offers a unique perspective on the evolution of PPR gene structures and underscores the potential role of segmental duplications in PPR gene structural diversity.
Collapse
Affiliation(s)
- Li-Ying Feng
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China; (L.-Y.F.); (P.-F.L.)
| | - Pei-Fan Lin
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China; (L.-Y.F.); (P.-F.L.)
| | - Rong-Jing Xu
- Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China; (R.-J.X.); (H.-Q.K.)
| | - Hai-Qi Kang
- Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China; (R.-J.X.); (H.-Q.K.)
| | - Li-Zhi Gao
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China; (L.-Y.F.); (P.-F.L.)
- Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China; (R.-J.X.); (H.-Q.K.)
| |
Collapse
|
7
|
GRP23 plays a core role in E-type editosomes via interacting with MORFs and atypical PPR-DYWs in Arabidopsis mitochondria. Proc Natl Acad Sci U S A 2022; 119:e2210978119. [PMID: 36122211 PMCID: PMC9522420 DOI: 10.1073/pnas.2210978119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying the PPR-E+-NUWA-DYW2 editosome improves our understanding of the C-to-U RNA editing in plant organelles. However, the mechanism of RNA editing remains to be elucidated. Here, we report that GLUTAMINE-RICH PROTEIN23 (GRP23), a previously identified nuclear transcription regulator, plays an essential role in mitochondrial RNA editing through interacting with MORF (multiple organellar RNA-editing factor) proteins and atypical DYW-type pentatricopeptide repeat (PPR) proteins. GRP23 is targeted to mitochondria, plastids, and nuclei. Analysis of the grp23 mutants rescued by embryo-specific complementation shows decreased editing efficiency at 352 sites in mitochondria and 6 sites in plastids, with a predominant specificity for sites edited by the PPR-E and PPR-DYW proteins. GRP23 interacts with atypical PPR-DYW proteins (MEF8, MEF8S, DYW2, and DYW4) and MORF proteins (MORF1 and MORF8), whereas the four PPR-DYWs interact with the two MORFs. These interactions may increase the stability of the GRP23-MORF-atypical PPR-DYW complex. Furthermore, analysis of mef8N△64aamef8s double mutants shows that MEF8/MEF8S are required for the editing of the PPR-E protein-targeted sites in mitochondria. GRP23 could enhance the interaction between PPR-E and MEF8/MEF8S and form a homodimer or heterodimer with NUWA. Genetic complementation analysis shows that the C-terminal domains of GRP23 and NUWA possess a similar function, probably in the interaction with the MORFs. NUWA also interacts with atypical PPR-DYWs in yeast. Both GRP23 and NUWA interact with the atypical PPR-DYWs, suggesting that the PPR-E proteins recruit MEF8/MEF8S, whereas the PPR-E+ proteins specifically recruit DYW2 as the trans deaminase, and then GRP23, NUWA, and MORFs facilitate and/or stabilize the E or E+-type editosome formation.
Collapse
|
8
|
Yang Y, Zhao Y, Zhang Y, Niu L, Li W, Lu W, Li J, Schäfer P, Meng Y, Shan W. A mitochondrial RNA processing protein mediates plant immunity to a broad spectrum of pathogens by modulating the mitochondrial oxidative burst. THE PLANT CELL 2022; 34:2343-2363. [PMID: 35262740 PMCID: PMC9134091 DOI: 10.1093/plcell/koac082] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 06/01/2023]
Abstract
Mitochondrial function depends on the RNA processing of mitochondrial gene transcripts by nucleus-encoded proteins. This posttranscriptional processing involves the large group of nuclear-encoded pentatricopeptide repeat (PPR) proteins. Mitochondrial processes represent a crucial part in animal immunity, but whether mitochondria play similar roles in plants remains unclear. Here, we report the identification of RESISTANCE TO PHYTOPHTHORA PARASITICA 7 (AtRTP7), a P-type PPR protein, in Arabidopsis thaliana and its conserved function in immunity to diverse pathogens across distantly related plant species. RTP7 affects the levels of mitochondrial reactive oxygen species (mROS) by participating in RNA splicing of nad7, which encodes a critical subunit of the mitochondrial respiratory chain Complex I, the largest of the four major components of the mitochondrial oxidative phosphorylation system. The enhanced resistance of rtp7 plants to Phytophthora parasitica is dependent on an elevated mROS burst, but might be independent from the ROS burst associated with plasma membrane-localized NADPH oxidases. Our study reveals the immune function of RTP7 and the defective processing of Complex I subunits in rtp7 plants resulted in enhanced resistance to both biotrophic and necrotrophic pathogens without affecting overall plant development.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yan Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yingqi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Lihua Niu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wanyue Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wenqin Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jinfang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Patrick Schäfer
- Institute of Molecular Botany, Ulm University, Ulm 89069, Germany
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | | |
Collapse
|
9
|
Targeted base editing in the mitochondrial genome of Arabidopsis thaliana. Proc Natl Acad Sci U S A 2022; 119:e2121177119. [PMID: 35561225 DOI: 10.1073/pnas.2121177119] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe mitochondrial genomes of land plants encode genes for cellular energy production and agriculturally important traits, but modification of the genomes is still difficult. Targeted base editing is one of the best ways to modify genes and intergenic regions and thus understand their functions, without drastically changing genome structure. In this study, we succeeded in creating plantlets of the model plant Arabidopsis thaliana, in which all of the many copies of the mitochondrial genomes in each cell had a targeted C:G base pair converted to a T:A pair. Introduced mutations were stably inherited by the next generation. This method will help to unravel the mysteries of plant mitochondrial genomes and may also serve as a basis for increasing crop yields.
Collapse
|
10
|
Yang D, Cao SK, Yang H, Liu R, Sun F, Wang L, Wang M, Tan BC. DEK48 Is Required for RNA Editing at Multiple Mitochondrial Sites and Seed Development in Maize. Int J Mol Sci 2022; 23:ijms23063064. [PMID: 35328485 PMCID: PMC8952262 DOI: 10.3390/ijms23063064] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022] Open
Abstract
In flowering plants, C-to-U RNA editing can be critical to normal functions of mitochondrion-encoded proteins. Mitochondrial C-to-U RNA editing is facilitated by many factors from diverse protein families, of which the pentatricopeptide repeat (PPR) proteins play an important role. Owing to their large number and frequent embryo lethality in mutants, functions of many PPRs remain unknown. In this study, we characterized a mitochondrion-localized DYW-type PPR protein, DEK48, functioning in the C-to-U RNA editing at multiple mitochondrial transcripts in maize. Null mutation of Dek48 severely arrests embryo and endosperm development, causing a defective kernel (dek) phenotype, named dek48. DEK48 loss of function abolishes the C-to-U editing at nad3-185, -215, and nad4-376, -977 sites and decreases the editing at 11 other sites, resulting in the alteration of the corresponding amino acids. Consequently, the absence of editing caused reduced assembly and activity of complex I in dek48. Interestingly, we identified a point mutation in dek48-3 causing a deletion of the Tryptophan (W) residue in the DYW motif that abolishes the editing function. In sum, this study reveals the function of DEK48 in the C-to-U editing in mitochondrial transcripts and seed development in maize, and it demonstrates a critical role of the W residue in the DYW triplet motif of DEK48 for the C-to-U editing function in vivo.
Collapse
|
11
|
Qian J, Li M, Zheng M, Hsu YF. Arabidopsis SSB1, a Mitochondrial Single-Stranded DNA-Binding Protein, is Involved in ABA Response and Mitochondrial RNA Splicing. PLANT & CELL PHYSIOLOGY 2021; 62:1321-1334. [PMID: 34185867 DOI: 10.1093/pcp/pcab097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
A mitochondrion is a semiautonomous organelle that provides energy for life activities and balances plant growth and stress responses. Abscisic acid (ABA) regulates multiple physiological processes, including seed maturation, seed dormancy, stomatal closure and various abiotic stress responses. However, the relationship between mitochondrial activity and the ABA response is unclear. In this study, an Arabidopsis mutant, ssb1-1, was isolated because of its hypersensitivity toward ABA. Assessment results showed that ABA negatively regulates the expression of Arabidopsis SSB1. Mutations in ABA-insensitive 4 (ABI4) and ABI5, genes of key transcription factors involved in ABA-dependent seed dormancy, attenuated the ABA sensitivity of ssb1-1 during germination, suggesting that Arabidopsis SSB1 may act as a regulator in ABA response. Inhibition of endogenous ABA biosynthesis reversed the NaCl-sensitive phenotype of the ssb1-1 mutant, indicating that enhanced ABA biosynthesis is critical for the salinity stress response of ssb1-1. Moreover, compared to that of the wild type, ssb1-1 accumulated more reactive oxygen species (ROS) and exhibited increased sensitivity to the application of exogenous H2O2 during seed germination. SSB1 is also required for mitochondrial RNA splicing, as indicated by the result showing that SSB1 loss of function led to a decreased splicing efficiency of nad1 intron1 and nad2 intron1. Taken together, our data reported here provide insights into a novel role of Arabidopsis SSB1 in ABA signaling and mitochondrial RNA splicing.
Collapse
Affiliation(s)
- Jie Qian
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Meng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Min Zheng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yi-Feng Hsu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Yang Y, Shan W. Quantitative Analysis of RNA Editing at Specific Sites in Plant Mitochondria or Chloroplasts Using DNA Sequencing. Bio Protoc 2021; 11:e4154. [PMID: 34692904 DOI: 10.21769/bioprotoc.4154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 11/02/2022] Open
Abstract
Cytidine-to-uridine (C-to-U) RNA editing is one of the most important post-transcriptional RNA processing in plant mitochondria and chloroplasts. Several techniques have been developed to detect the RNA editing efficiency in plant mitochondria and chloroplasts, such as poisoned primer extension (PPE) assays, high-resolution melting (HRM) analysis, and DNA sequencing. Here, we describe a method for the quantitative detection of RNA editing at specific sites by sequencing cDNA from plant leaves to further evaluate the effect of different treatments or plant mutants on the C to U RNA editing in mitochondria and chloroplasts.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
13
|
Röhricht H, Schwartzmann J, Meyer EH. Complexome profiling reveals novel insights into the composition and assembly of the mitochondrial ATP synthase of Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148425. [PMID: 33785316 DOI: 10.1016/j.bbabio.2021.148425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
The mitochondrial ATP synthase is producing most of the energy required to support eucaryotic life. It is located in the mitochondrial inner-membrane and couples the dissipation of the proton gradient produced by the electron transfer chain with ATP production. It is composed of two domains, the F1 domain located in the matrix and the FO domain embedded in the inner membrane. The mitochondrial ATP synthase belongs to the F-type ATP synthase family together with bacterial and chloroplastic enzymes. The composition of the mitochondrial ATP synthase is well conserved across species, except in plants where several subunits found in opisthokonts were not identified and additional, plant-specific, subunits were found. The assembly of the F-type ATP synthase has been extensively studied in bacteria, yeast and mammals. The overall assembly pattern is conserved but species-specific steps have been identified. In plant, little is known about the assembly of the mitochondrial ATP synthase. We have mined our previously published complexome profiling dataset in order to identity assembly steps of the ATP synthase in the reference plant Arabidopsis thaliana. Several assembly intermediates were identified and we propose a model for the assembly pathway of the ATP synthase of plant mitochondria. In addition, combining complexome profiling with homology searches, we found that the previously described plant-specific subunits are actually present in other organisms. Overall, our work show that the subunit composition and the assembly pathway of the plant mitochondria ATP synthase are mostly conserved with other mitochondrial enzymes.
Collapse
Affiliation(s)
- Helene Röhricht
- Institute of Plant Physiology, Martin-Luther-University, Halle-Wittenberg, Germany
| | - Joram Schwartzmann
- Institute of Plant Physiology, Martin-Luther-University, Halle-Wittenberg, Germany
| | - Etienne H Meyer
- Institute of Plant Physiology, Martin-Luther-University, Halle-Wittenberg, Germany.
| |
Collapse
|
14
|
Ren RC, Yan XW, Zhao YJ, Wei YM, Lu X, Zang J, Wu JW, Zheng GM, Ding XH, Zhang XS, Zhao XY. The novel E-subgroup pentatricopeptide repeat protein DEK55 is responsible for RNA editing at multiple sites and for the splicing of nad1 and nad4 in maize. BMC PLANT BIOLOGY 2020; 20:553. [PMID: 33297963 PMCID: PMC7727260 DOI: 10.1186/s12870-020-02765-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 12/01/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Pentatricopeptide repeat (PPR) proteins compose a large protein family whose members are involved in both RNA processing in organelles and plant growth. Previous reports have shown that E-subgroup PPR proteins are involved in RNA editing. However, the additional functions and roles of the E-subgroup PPR proteins are unknown. RESULTS In this study, we developed and identified a new maize kernel mutant with arrested embryo and endosperm development, i.e., defective kernel (dek) 55 (dek55). Genetic and molecular evidence suggested that the defective kernels resulted from a mononucleotide alteration (C to T) at + 449 bp within the open reading frame (ORF) of Zm00001d014471 (hereafter referred to as DEK55). DEK55 encodes an E-subgroup PPR protein within the mitochondria. Molecular analyses showed that the editing percentage of 24 RNA editing sites decreased and that of seven RNA editing sites increased in dek55 kernels, the sites of which were distributed across 14 mitochondrial gene transcripts. Moreover, the splicing efficiency of nad1 introns 1 and 4 and nad4 intron 1 significantly decreased in dek55 compared with the wild type (WT). These results indicate that DEK55 plays a crucial role in RNA editing at multiple sites as well as in the splicing of nad1 and nad4 introns. Mutation in the DEK55 gene led to the dysfunction of mitochondrial complex I. Moreover, yeast two-hybrid assays showed that DEK55 interacts with two multiple organellar RNA-editing factors (MORFs), i.e., ZmMORF1 (Zm00001d049043) and ZmMORF8 (Zm00001d048291). CONCLUSIONS Our results demonstrated that a mutation in the DEK55 gene affects the mitochondrial function essential for maize kernel development. Our results also provide novel insight into the molecular functions of E-subgroup PPR proteins involved in plant organellar RNA processing.
Collapse
Affiliation(s)
- Ru Chang Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Xu Wei Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, 250200, PR China
| | - Jie Zang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Guang Ming Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Xin Hua Ding
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, PR China.
| |
Collapse
|
15
|
Méteignier L, Ghandour R, Meierhoff K, Zimmerman A, Chicher J, Baumberger N, Alioua A, Meurer J, Zoschke R, Hammani K. The Arabidopsis mTERF-repeat MDA1 protein plays a dual function in transcription and stabilization of specific chloroplast transcripts within the psbE and ndhH operons. THE NEW PHYTOLOGIST 2020; 227:1376-1391. [PMID: 32343843 PMCID: PMC7496394 DOI: 10.1111/nph.16625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 05/28/2023]
Abstract
The mTERF gene family encodes for nucleic acid binding proteins that are predicted to regulate organellar gene expression in eukaryotes. Despite the implication of this gene family in plant development and response to abiotic stresses, a precise molecular function was assigned to only a handful number of its c. 30 members in plants. Using a reverse genetics approach in Arabidopsis thaliana and combining molecular and biochemical techniques, we revealed new functions for the chloroplast mTERF protein, MDA1. We demonstrated that MDA1 associates in vivo with components of the plastid-encoded RNA polymerase and transcriptional active chromosome complexes. MDA1 protein binds in vivo and in vitro with specificity to 27-bp DNA sequences near the 5'-end of psbE and ndhA chloroplast genes to stimulate their transcription, and additionally promotes the stabilization of the 5'-ends of processed psbE and ndhA messenger (m)RNAs. Finally, we provided evidence that MDA1 function in gene transcription likely coordinates RNA folding and the action of chloroplast RNA-binding proteins on mRNA stabilization. Our results provide examples for the unexpected implication of DNA binding proteins and gene transcription in the regulation of mRNA stability in chloroplasts, blurring the boundaries between DNA and RNA metabolism in this organelle.
Collapse
Affiliation(s)
- Louis‐Valentin Méteignier
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Rabea Ghandour
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Karin Meierhoff
- Institute of Developmental and Molecular Biology of PlantsHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Aude Zimmerman
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRSUniversité de Strasbourg15 rue René Descartes67084StrasbourgFrance
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Abdelmalek Alioua
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Jörg Meurer
- Plant SciencesFaculty of BiologyLudwig‐Maximilians‐University MunichGroßhaderner Street 2‐482152Planegg‐MartinsriedGermany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Kamel Hammani
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| |
Collapse
|
16
|
Xu C, Song S, Yang YZ, Lu F, Zhang MD, Sun F, Jia R, Song R, Tan BC. DEK46 performs C-to-U editing of a specific site in mitochondrial nad7 introns that is critical for intron splicing and seed development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1767-1782. [PMID: 32559332 DOI: 10.1111/tpj.14862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 05/02/2023]
Abstract
The self-splicing of group II introns during RNA processing depends on their catalytic structure and is influenced by numerous factors that promote the formation of that structure through direct binding. Here we report that C-to-U editing at a specific position in two nad7 introns is essential to splicing, which also implies that the catalytic activity of non-functional group II introns could be restored by editing. We characterized a maize (Zea mays) mutant, dek46, with a defective kernel phenotype; Dek46 encodes a pentatricopeptide repeat DYW protein exclusively localized in mitochondria. Analyses of the coding regions of mitochondrial transcripts did not uncover differences in RNA editing between dek46 mutant and wild-type maize, but showed that splicing of nad7 introns 3 and 4 is severely reduced in the mutant. Furthermore, editing at nucleotide 22 of domain 5 (D5-C22) of both introns is abolished in dek46. We constructed chimeric introns by swapping D5 of P.li.LSUI2 with D5 of nad7 intron 3. In vitro splicing assays indicated that the chimeric intron containing D5-U22 can be self-spliced, but the one containing D5-C22 cannot. These results indicate that DEK46 functions in the C-to-U editing of D5-C22 of both introns, and the U base at this position is critical to intron splicing.
Collapse
Affiliation(s)
- Chunhui Xu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shu Song
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yan-Zhuo Yang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Fan Lu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Meng-Di Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ruxue Jia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ruolin Song
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
17
|
Dong S, Zhao C, Zhang S, Wu H, Mu W, Wei T, Li N, Wan T, Liu H, Cui J, Zhu R, Goffinet B, Liu Y. The Amount of RNA Editing Sites in Liverwort Organellar Genes Is Correlated with GC Content and Nuclear PPR Protein Diversity. Genome Biol Evol 2020; 11:3233-3239. [PMID: 31651960 PMCID: PMC6865856 DOI: 10.1093/gbe/evz232] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
RNA editing occurs in the organellar mRNAs of all land plants but the marchantioid liverworts, making liverworts a perfect group for studying the evolution of RNA editing. Here, we profiled the RNA editing of 42 exemplars spanning the ordinal phylogenetic diversity of liverworts, and screened for the nuclear-encoded pentatricopeptide repeat (PPR) proteins in the transcriptome assemblies of these taxa. We identified 7,428 RNA editing sites in 128 organellar genes from 31 non-marchantioid liverwort species, and characterized 25,059 PPR protein sequences. The abundance of organellar RNA editing sites varies greatly among liverwort lineages, genes, and codon positions, and shows strong positive correlations with the GC content of protein-coding genes, and the diversity of the PLS class of nuclear PPR proteins.
Collapse
Affiliation(s)
- Shanshan Dong
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Chaoxian Zhao
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China.,Department of Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Shouzhou Zhang
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | | | | | - Na Li
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Tao Wan
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | | | - Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Ruiliang Zhu
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut
| | - Yang Liu
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
18
|
The Analysis of the Editing Defects in the dyw2 Mutant Provides New Clues for the Prediction of RNA Targets of Arabidopsis E+-Class PPR Proteins. PLANTS 2020; 9:plants9020280. [PMID: 32098170 PMCID: PMC7076377 DOI: 10.3390/plants9020280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/02/2023]
Abstract
C to U editing is one of the post-transcriptional steps which are required for the proper expression of chloroplast and mitochondrial genes in plants. It depends on several proteins acting together which include the PLS-class pentatricopeptide repeat proteins (PPR). DYW2 was recently shown to be required for the editing of many sites in both organelles. In particular almost all the sites associated with the E+ subfamily of PPR proteins are depending on DYW2, suggesting that DYW2 is required for the function of E+-type PPR proteins. Here we strengthened this link by identifying 16 major editing sites controlled by 3 PPR proteins: OTP90, a DYW-type PPR and PGN and MEF37, 2 E+-type PPR proteins. A re-analysis of the DYW2 editotype showed that the 49 sites known to be associated with the 18 characterized E+-type PPR proteins all depend on DYW2. Considering only the 288 DYW2-dependent editing sites as potential E+-type PPR sites, instead of the 795 known editing sites, improves the performances of binding predictions systems based on the PPR code for E+-type PPR proteins. However, it does not compensate for poor binding predictions.
Collapse
|
19
|
Nonogaki H. The Long-Standing Paradox of Seed Dormancy Unfolded? TRENDS IN PLANT SCIENCE 2019; 24:989-998. [PMID: 31327698 DOI: 10.1016/j.tplants.2019.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 05/28/2023]
Abstract
There has been a long-standing question in seed research, why cyanide, a respiration inhibitor, breaks seed dormancy. While the alternative respiratory pathway and reactive oxygen species have been suggested to be part of the mechanism, the cell biological and mechanistic significance of this paradox remains unclear. The outcomes of recent research on mitochondrial RNA processing for the subunits of the electron transport chain complexes seem to offer a logical explanation. This opinion article attempts to integrate the accumulating evidence of mitochondrial involvement in ABA signaling with the frontier of seed research on DELAY OF GERMINATION1, a master regulator of dormancy, to present a coherent model for ABA signaling in seeds, which could also address the old paradox in seed research.
Collapse
Affiliation(s)
- Hiroyuki Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
20
|
Ruwe H, Gutmann B, Schmitz-Linneweber C, Small I, Kindgren P. The E domain of CRR2 participates in sequence-specific recognition of RNA in plastids. THE NEW PHYTOLOGIST 2019; 222:218-229. [PMID: 30393849 DOI: 10.1111/nph.15578] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are modular RNA-binding proteins involved in different aspects of RNA metabolism in organelles. PPR proteins of the PLS subclass often contain C-terminal domains that are important for their function, but the role of one of these domains, the E domain, is far from resolved. Here, we elucidate the role of the E domain in CRR2 in plastids. We identified a surprisingly large number of small RNAs that represent in vivo footprints of the Arabidopsis PLS-class PPR protein CRR2. An unexpectedly strong base conservation was found in the nucleotides aligned to the E domain. We used both in vitro and in vivo experiments to reveal the role of the E domain of CRR2. The E domain of CRR2 can be predictably altered to prefer different nucleotides in its RNA ligand, and position 5 of the E1-motif is biologically important for the PPR-RNA interaction. The 'code' of the E domain PPR motifs is different from that of P- and S-motifs. The findings presented here show that the E domain of CRR2 is involved in sequence-specific interaction with its RNA ligand and have implications for our ability to predict RNA targets for PLS-PPRs and their use as biotechnological tools to manipulate specific RNAs in vivo.
Collapse
Affiliation(s)
- Hannes Ruwe
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Bernard Gutmann
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| | | | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| | - Peter Kindgren
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| |
Collapse
|
21
|
Takenaka M, Jörg A, Burger M, Haag S. RNA editing mutants as surrogates for mitochondrial SNP mutants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:310-321. [PMID: 30599308 DOI: 10.1016/j.plaphy.2018.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
In terrestrial plants, RNA editing converts specific cytidines to uridines in mitochondrial and plastidic transcripts. Most of these events appear to be important for proper function of organellar encoded genes, since translated proteins from edited mRNAs show higher similarity with evolutionary conserved polypeptide sequences. So far about 100 nuclear encoded proteins have been characterized as RNA editing factors in plant organelles. Respective RNA editing mutants reduce or lose editing activity at different sites and display various macroscopic phenotypes from pale or albino in the case of chloroplasts to growth retardation or even embryonic lethality. Therefore, RNA editing mutants can be a useful resource of surrogate mutants for organellar encoded genes, especially for mitochondrially encoded genes that it is so far unfeasible to manipulate. However, connections between RNA editing defects and observed phenotypes in the mutants are often hard to elucidate, since RNA editing factors often target multiple RNA sites in different genes simultaneously. In this review article, we summarize the physiological aspects of respective RNA editing mutants and discuss them as surrogate mutants for functional analysis of mitochondrially encoded genes.
Collapse
Affiliation(s)
- Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Anja Jörg
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Matthias Burger
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Sascha Haag
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| |
Collapse
|
22
|
Li XL, Huang WL, Yang HH, Jiang RC, Sun F, Wang HC, Zhao J, Xu CH, Tan BC. EMP18 functions in mitochondrial atp6 and cox2 transcript editing and is essential to seed development in maize. THE NEW PHYTOLOGIST 2019; 221:896-907. [PMID: 30168136 DOI: 10.1111/nph.15425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/02/2018] [Indexed: 05/02/2023]
Abstract
RNA editing plays an important role in organellar gene expression in plants, and pentatricopeptide repeat (PPR) proteins are involved in this function. Because of its large family size, many PPR proteins are not known for their function and roles in plant growth and development. Through genetic and molecular analyses of the empty pericarp18 (emp18) mutant in maize (Zea mays), we cloned the Emp18 gene, revealed its molecular function, and defined its role in the mitochondrial complex assembly and seed development. Emp18 encodes a mitochondrial-localized DYW-PPR protein. Null mutation of Emp18 arrests embryo and endosperm development at an early stage in maize, resulting in embryo lethality. Mutants are deficient in the cytidine (C)-to-uridine (U) editing at atp6-635 and cox2-449, which converts a Leu to Pro in ATP6 and a Met to Thr in Cox2. The atp6 gene encodes the subunit a of F1 Fo -ATPase. The Leu to Pro alteration disrupts an α-helix of subunit a, resulting in a dramatic reduction in assembly and activity of F1 Fo -ATPase holoenzyme and an accumulation of free F1 -subcomplex. These results demonstrate that EMP18 functions in the C-to-U editing of atp6 and cox2, and is essential to mitochondrial biogenesis and seed development in maize.
Collapse
Affiliation(s)
- Xiu-Lan Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Wen-Long Huang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Huan-Huan Yang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Rui-Cheng Jiang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Feng Sun
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Hong-Chun Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Jiao Zhao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Chun-Hui Xu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| |
Collapse
|
23
|
Hu T, Tian Y, Zhu J, Wang Y, Jing R, Lei J, Sun Y, Yu Y, Li J, Chen X, Zhu X, Hao Y, Liu L, Wang Y, Wan J. OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice. PLANT CELL REPORTS 2018; 37:1667-1679. [PMID: 30151559 DOI: 10.1007/s00299-018-2338-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/22/2018] [Indexed: 05/23/2023]
Abstract
Loss of function of a mitochondrial complex I subunit (OsNDUFA9) causes abnormal embryo development and affects starch synthesis by altering the expression of starch synthesis-related genes and proteins. Proton-pumping NADH: ubiquinone oxidoreductase (also called complex I) is thought to be the largest and most complicated enzyme of the mitochondrial respiratory chain. Mutations of complex I subunits have been revealed to link with a number of growth inhibitions in plants. However, the function of complex I subunits in rice remains unclear. Here, we isolated a rice floury endosperm mutant (named flo13) that was embryonic lethal and failed to germinate. Semi-thin sectioning analysis showed that compound starch grain development in the mutant was greatly impaired, leading to significantly compromised starch biosynthesis and decreased 1000-grain weight relative to the wild type. Map-based cloning revealed that FLO13 encodes an accessory subunit of complex I protein (designated as OsNDUFA9). A single nucleotide substitution (G18A) occurred in the first exon of OsNDUFA9, introducing a premature stop codon in the flo13 mutant gene. OsNDUFA9 was ubiquitously expressed in various tissues and the OsNDUFA9 protein was localized to the mitochondria. Quantitative RT-PCR and protein blotting indicated loss of function of OsNDUFA9 altered gene expression and protein accumulation associated with respiratory electron chain complex in the mitochondria. Moreover, transmission electron microscopic analysis showed that the mutant lacked obvious mitochondrial cristae structure in the mitochondria of endosperm cell. Our results demonstrate that the OsNDUFA9 subunit of complex I is essential for embryo development and starch synthesis in rice endosperm.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, 221131, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianping Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinglun Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfang Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingfang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoli Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linglong Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
24
|
Spåhr H, Chia T, Lingford JP, Siira SJ, Cohen SB, Filipovska A, Rackham O. Modular ssDNA binding and inhibition of telomerase activity by designer PPR proteins. Nat Commun 2018; 9:2212. [PMID: 29880855 PMCID: PMC5992170 DOI: 10.1038/s41467-018-04388-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023] Open
Abstract
DNA is typically found as a double helix, however it must be separated into single strands during all phases of DNA metabolism; including transcription, replication, recombination and repair. Although recent breakthroughs have enabled the design of modular RNA- and double-stranded DNA-binding proteins, there are currently no tools available to manipulate single-stranded DNA (ssDNA). Here we show that artificial pentatricopeptide repeat (PPR) proteins can be programmed for sequence-specific ssDNA binding. Interactions occur using the same code and specificity as for RNA binding. We solve the structures of DNA-bound and apo proteins revealing the basis for ssDNA binding and how hydrogen bond rearrangements enable the PPR structure to envelope its ssDNA target. Finally, we show that engineered PPRs can be designed to bind telomeric ssDNA and can block telomerase activity. The modular mode of ssDNA binding by PPR proteins provides tools to target ssDNA and to understand its importance in cells. Pentatricopeptide repeat proteins bind single-stranded RNA and have been used to study ssRNA biology. Here the authors co-opt these proteins to target ssDNA and demonstrate specific binding of telomere sequences, the structural basis for ssDNA wrapping, and use them as potent telomerase inhibitors.
Collapse
Affiliation(s)
- Henrik Spåhr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931, Cologne, Germany
| | - Tiongsun Chia
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - James P Lingford
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Scott B Cohen
- Children's Medical Research Institute, University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia. .,School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
25
|
He P, Xiao G, Liu H, Zhang L, Zhao L, Tang M, Huang S, An Y, Yu J. Two pivotal RNA editing sites in the mitochondrial atp1mRNA are required for ATP synthase to produce sufficient ATP for cotton fiber cell elongation. THE NEW PHYTOLOGIST 2018; 218:167-182. [PMID: 29417579 DOI: 10.1111/nph.14999] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/14/2017] [Indexed: 06/08/2023]
Abstract
RNA editing is a post-transcriptional maturation process affecting organelle transcripts in land plants. However, the molecular functions and physiological roles of RNA editing are still poorly understood. Using high-throughput sequencing, we identified 692 RNA editing sites in the Gossypium hirsutum mitochondrial genome. A total of 422 editing sites were found in the coding regions and all the edits are cytidine (C) to uridine (U) conversions. Comparative analysis showed that two editing sites in Ghatp1, C1292 and C1415, had a prominent difference in editing efficiency between fiber and ovule. Biochemical and genetic analyses revealed that the two vital editing sites were important for the interaction between the α and β subunits of ATP synthase, which resulted in ATP accumulation and promoted cell growth in yeast. Ectopic expression of C1292, C1415, or doubly edited Ghatp1 in Arabidopsis caused a significant increase in the number of trichomes in leaves and root length. Our results indicate that editing at C1292 and C1415 sites in Ghatp1 is crucial for ATP synthase to produce sufficient ATP for cotton fiber cell elongation. This work extends our understanding of RNA editing in atp1 and ATP synthesis, and provides insights into the function of mitochondrial edited Atp1 protein in higher plants.
Collapse
Affiliation(s)
- Peng He
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lihua Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Li Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Meiju Tang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Sheng Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yingjie An
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
26
|
Arenas-M A, González-Durán E, Gómez I, Burger M, Brennicke A, Takenaka M, Jordana X. The Pentatricopeptide Repeat Protein MEF31 is Required for Editing at Site 581 of the Mitochondrial tatC Transcript and Indirectly Influences Editing at Site 586 of the Same Transcript. PLANT & CELL PHYSIOLOGY 2018; 59:355-365. [PMID: 29216369 DOI: 10.1093/pcp/pcx190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins constitute the largest family of proteins in angiosperms, and most members are predicted to play roles in the maturation of organellar RNAs. Here we describe the novel mitochondrial editing factor 31 (MEF31), an E-PPR protein involved in editing at two close sites in the same transcript encoding subunit C of the twin-arginine translocation (tat) pathway. MEF31 is essential for editing at site tatC-581 and application of the recently proposed amino acid code for RNA recognition by PPR proteins supports the view that MEF31 directly targets this site by recognizing its cis sequence. In contrast, editing at site tatC-586 five nucleotides downstream is only partially affected in plants lacking MEF31, being restored to wild-type levels in complemented plants. Application of the amino acid code and analysis of individual RNA molecules for editing at sites 581 and 586 suggest that MEF31 does not directly target site tatC-586, and only indirectly influences editing at this site. It is likely that editing at site tatC-581 improves recognition of the site tatC-586 cis sequence by a second unknown PPR protein.
Collapse
Affiliation(s)
- Anita Arenas-M
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Enrique González-Durán
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Isabel Gómez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | | | - Axel Brennicke
- Molekulare Botanik, Universität Ulm, D-89069 Ulm, Germany
| | | | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| |
Collapse
|
27
|
Li X, Gu W, Sun S, Chen Z, Chen J, Song W, Zhao H, Lai J. Defective Kernel 39 encodes a PPR protein required for seed development in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:45-64. [PMID: 28981206 DOI: 10.1111/jipb.12602] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/30/2017] [Indexed: 05/10/2023]
Abstract
RNA editing is a posttranscriptional process that is important in mitochondria and plastids of higher plants. All RNA editing-specific trans-factors reported so far belong to PLS-class of pentatricopeptide repeat (PPR) proteins. Here, we report the map-based cloning and molecular characterization of a defective kernel mutant dek39 in maize. Loss of Dek39 function leads to delayed embryogenesis and endosperm development, reduced kernel size, and seedling lethality. Dek39 encodes an E sub-class PPR protein that targets to both mitochondria and chloroplasts, and is involved in RNA editing in mitochondrial NADH dehydrogenase3 (nad3) at nad3-247 and nad3-275. C-to-U editing of nad3-275 is not conserved and even lost in Arabidopsis, consistent with the idea that no close DEK39 homologs are present in Arabidopsis. However, the amino acids generated by editing nad3-247 and nad3-275 are highly conserved in many other plant species, and the reductions of editing at these two sites decrease the activity of mitochondria NADH dehydrogenase complex I, indicating that the alteration of amino acid sequence is necessary for Nad3 function. Our results indicate that Dek39 encodes an E sub-class PPR protein that is involved in RNA editing of multiple sites and is necessary for seed development of maize.
Collapse
Affiliation(s)
- Xiaojie Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Wei Gu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Silong Sun
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Zongliang Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jing Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
28
|
RNA editing machinery in plant organelles. SCIENCE CHINA-LIFE SCIENCES 2017; 61:162-169. [DOI: 10.1007/s11427-017-9170-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/27/2017] [Indexed: 12/18/2022]
|
29
|
Hassani D, Khalid M, Bilal M, Zhang YD, Huang D. Pentatricopeptide Repeat-directed RNA Editing and Their Biomedical Applications. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.762.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Lee K, Han JH, Park YI, Colas des Francs-Small C, Small I, Kang H. The mitochondrial pentatricopeptide repeat protein PPR19 is involved in the stabilization of NADH dehydrogenase 1 transcripts and is crucial for mitochondrial function and Arabidopsis thaliana development. THE NEW PHYTOLOGIST 2017; 215:202-216. [PMID: 28332713 DOI: 10.1111/nph.14528] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/19/2017] [Indexed: 05/06/2023]
Abstract
Despite the importance of pentatricopeptide repeat (PPR) proteins in organellar RNA metabolism and plant development, the functions of many PPR proteins remain unknown. Here, we determined the role of a mitochondrial PPR protein (At1g52620) comprising 19 PPR motifs, thus named PPR19, in Arabidopsis thaliana. The ppr19 mutant displayed abnormal seed development, reduced seed yield, delayed seed germination, and retarded growth, indicating that PPR19 is indispensable for normal growth and development of Arabidopsis thaliana. Splicing pattern analysis of mitochondrial genes revealed that PPR19 specifically binds to the specific sequence in the 3'-terminus of the NADH dehydrogenase 1 (nad1) transcript and stabilizes transcripts containing the second and third exons of nad1. Loss of these transcripts in ppr19 leads to multiple secondary effects on accumulation and splicing of other nad1 transcripts, from which we can infer the order in which cis- and trans-spliced nad1 transcripts are normally processed. Improper splicing of nad1 transcripts leads to the absence of mitochondrial complex I and alteration of the nuclear transcriptome, notably influencing the alternative splicing of a variety of nuclear genes. Our results indicate that the mitochondrial PPR19 is an essential component in the splicing of nad1 transcripts, which is crucial for mitochondrial function and plant development.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Ji Hoon Han
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 306-764, Korea
| | - Catherine Colas des Francs-Small
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
31
|
Hajrah NH, Obaid AY, Atef A, Ramadan AM, Arasappan D, Nelson CA, Edris S, Mutwakil MZ, Alhebshi A, Gadalla NO, Makki RM, Al-Kordy MA, El-Domyati FM, Sabir JSM, Khiyami MA, Hall N, Bahieldin A, Jansen RK. Transcriptomic analysis of salt stress responsive genes in Rhazya stricta. PLoS One 2017; 12:e0177589. [PMID: 28520766 PMCID: PMC5433744 DOI: 10.1371/journal.pone.0177589] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/29/2017] [Indexed: 11/24/2022] Open
Abstract
Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl) across four time intervals (0, 2, 12 and 24 h) to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR) proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS) production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged.
Collapse
Affiliation(s)
- Nahid H. Hajrah
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Abdullah Y. Obaid
- Department of Chemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Ahmed Atef
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Ahmed M. Ramadan
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Dhivya Arasappan
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Charllotte A. Nelson
- Centre of Genomic Research, Institute for Integrative Biology, Crown Street, Liverpool, United Kingdom
| | - Sherif Edris
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Mohammed Z. Mutwakil
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Alawia Alhebshi
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Nour O. Gadalla
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Rania M. Makki
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Madgy A. Al-Kordy
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Fotouh M. El-Domyati
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Jamal S. M. Sabir
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Mohammad A. Khiyami
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Neil Hall
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- The Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Ahmed Bahieldin
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Robert K. Jansen
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
32
|
Sun Y, Law YS, Cheng S, Lim BL. RNA editing of cytochrome c maturation transcripts is responsive to the energy status of leaf cells in Arabidopsis thaliana. Mitochondrion 2017; 35:23-34. [PMID: 28478183 DOI: 10.1016/j.mito.2017.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
Overexpression of AtPAP2, a phosphatase located on the outer membranes of chloroplasts and mitochondria, leads to higher energy outputs from these organelles. AtPAP2 interacts with seven MORF proteins of the editosome complex. RNA-sequencing analysis showed that the editing degrees of most sites did not differ significantly between OE and WT, except some sites on the transcripts of several cytochrome c maturation (Ccm) genes. Western blotting of 2D BN-PAGE showed that the patterns of CcmFN1 polypeptides were different between the lines. We proposed that AtPAP2 may influence cytochrome c biogenesis by modulating RNA editing through its interaction with MORF proteins.
Collapse
Affiliation(s)
- Yuzhe Sun
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yee-Song Law
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shifeng Cheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Boon Leong Lim
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
33
|
Schallenberg-Rüdinger M, Oldenkott B, Hiss M, Trinh PL, Knoop V, Rensing SA. A Single-Target Mitochondrial RNA Editing Factor of Funaria hygrometrica Can Fully Reconstitute RNA Editing at Two Sites in Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2017; 58:496-507. [PMID: 28394399 DOI: 10.1093/pcp/pcw229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/21/2016] [Indexed: 05/26/2023]
Abstract
Nuclear-encoded pentatricopeptide repeat (PPR) proteins are key factors for site-specific RNA editing, converting cytidines into uridines in plant mitochondria and chloroplasts. All editing factors in the model moss Physcomitrella patens have a C-terminal DYW domain with similarity to cytidine deaminase. However, numerous editing factors in flowering plants lack such a terminal DYW domain, questioning its immediate role in the pyrimidine base conversion process. Here we further investigate the Physcomitrella DYW-type PPR protein PPR_78, responsible for mitochondrial editing sites cox1eU755SL and rps14eU137SL. Complementation assays with truncated proteins demonstrate that the DYW domain is essential for full PPR_78 editing functionality. The DYW domain can be replaced, however, with its counterpart from another editing factor, PPR_79. The PPR_78 ortholog of the related moss Funaria hygrometrica fully complements the Physcomitrella mutant for editing at both sites, although the editing site in rps14 is lacking in Funaria. Editing factor orthologs in different taxa may thus retain editing capacity for multiple sites despite the absence of editing requirement.
Collapse
Affiliation(s)
- Mareike Schallenberg-Rüdinger
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
| | - Bastian Oldenkott
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
| | - Manuel Hiss
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
| | - Phuong Le Trinh
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
- Key Laboratory of Enzyme and Protein Technology (KLEPT), VNU University of Science, Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Volker Knoop
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Editing of Mitochondrial Transcripts nad3 and cox2 by Dek10 Is Essential for Mitochondrial Function and Maize Plant Development. Genetics 2017; 205:1489-1501. [PMID: 28213476 DOI: 10.1534/genetics.116.199331] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/02/2017] [Indexed: 11/18/2022] Open
Abstract
Respiration, the core of mitochondrial metabolism, depends on the function of five respiratory complexes. Many respiratory chain-related proteins are encoded by the mitochondrial genome and their RNAs undergo post-transcriptional modifications by nuclear genome-expressed factors, including pentatricopeptide repeat (PPR) proteins. Maize defective kernel 10 (dek10) is a classic mutant with small kernels and delayed development. Through positional cloning, we found that Dek10 encodes an E-subgroup PPR protein localized in mitochondria. Sequencing analysis indicated that Dek10 is responsible for the C-to-U editing at nad3-61, nad3-62, and cox2-550 sites, which are specific editing sites in monocots. The defects of these editing sites result in significant reduction of Nad3 and the loss of Cox2. Interestingly, the assembly of complex I was not reduced, but its NADH dehydrogenase activity was greatly decreased. The assembly of complex IV was significantly reduced. Transcriptome and transmission electron microscopy (TEM) analysis revealed that proper editing of nad3 and cox2 is critical for mitochondrial functions, biogenesis, and morphology. These results indicate that the E-subgroup PPR protein Dek10 is responsible for multiple editing sites in nad3 and cox2, which are essential for mitochondrial functions and plant development in maize.
Collapse
|
35
|
He P, Huang S, Xiao G, Zhang Y, Yu J. Abundant RNA editing sites of chloroplast protein-coding genes in Ginkgo biloba and an evolutionary pattern analysis. BMC PLANT BIOLOGY 2016; 16:257. [PMID: 27903241 PMCID: PMC5131507 DOI: 10.1186/s12870-016-0944-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/22/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND RNA editing is a posttranscriptional modification process that alters the RNA sequence so that it deviates from the genomic DNA sequence. RNA editing mainly occurs in chloroplasts and mitochondrial genomes, and the number of editing sites varies in terrestrial plants. Why and how RNA editing systems evolved remains a mystery. Ginkgo biloba is one of the oldest seed plants and has an important evolutionary position. Determining the patterns and distribution of RNA editing in the ancient plant provides insights into the evolutionary trend of RNA editing, and helping us to further understand their biological significance. RESULTS In this paper, we investigated 82 protein-coding genes in the chloroplast genome of G. biloba and identified 255 editing sites, which is the highest number of RNA editing events reported in a gymnosperm. All of the editing sites were C-to-U conversions, which mainly occurred in the second codon position, biased towards to the U_A context, and caused an increase in hydrophobic amino acids. RNA editing could change the secondary structures of 82 proteins, and create or eliminate a transmembrane region in five proteins as determined in silico. Finally, the evolutionary tendencies of RNA editing in different gene groups were estimated using the nonsynonymous-synonymous substitution rate selection mode. CONCLUSIONS The G. biloba chloroplast genome possesses the highest number of RNA editing events reported so far in a seed plant. Most of the RNA editing sites can restore amino acid conservation, increase hydrophobicity, and even influence protein structures. Similar purifying selections constitute the dominant evolutionary force at the editing sites of essential genes, such as the psa, some psb and pet groups, and a positive selection occurred in the editing sites of nonessential genes, such as most ndh and a few psb genes.
Collapse
Affiliation(s)
- Peng He
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Sheng Huang
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Guanghui Xiao
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Yuzhou Zhang
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Jianing Yu
- College of life sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
36
|
Shi X, Bentolila S, Hanson MR. Organelle RNA recognition motif-containing (ORRM) proteins are plastid and mitochondrial editing factors in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2016; 11:e1167299. [PMID: 27082488 PMCID: PMC4977459 DOI: 10.1080/15592324.2016.1167299] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Post-transcriptional C-to-U RNA editing occurs at specific sites in plastid and plant mitochondrial transcripts. Members of the Arabidopsis pentatricopeptide repeat (PPR) motif-containing protein family and RNA-editing factor Interacting Protein (RIP, also known as MORF) family have been characterized as essential components of the RNA editing apparatus. Recent studies reveal that several organelle-targeted RNA recognition motif (RRM)-containing proteins are involved in either plastid or mitochondrial RNA editing. ORRM1 (Organelle RRM protein 1) is essential for plastid editing, whereas ORRM2, ORRM3 and ORRM4 are involved in mitochondrial RNA editing. The RRM domain of ORRM1, ORRM3 and ORRM4 is required for editing activity, whereas the auxiliary RIP and Glycine-Rich (GR) domains mediate the ORRM proteins' interactions with other editing factors. The identification of the ORRM proteins as RNA editing factors further expands our knowledge of the composition of the editosome.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY, USA
| | - Stephane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY, USA
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY, USA
- Maureen R Hanson
| |
Collapse
|
37
|
Haïli N, Planchard N, Arnal N, Quadrado M, Vrielynck N, Dahan J, des Francs-Small CC, Mireau H. The MTL1 Pentatricopeptide Repeat Protein Is Required for Both Translation and Splicing of the Mitochondrial NADH DEHYDROGENASE SUBUNIT7 mRNA in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:354-66. [PMID: 26537562 PMCID: PMC4704600 DOI: 10.1104/pp.15.01591] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/03/2015] [Indexed: 05/18/2023]
Abstract
Mitochondrial translation involves a complex interplay of ancient bacteria-like features and host-derived functionalities. Although the basic components of the mitochondrial translation apparatus have been recognized, very few protein factors aiding in recruiting ribosomes on mitochondria-encoded messenger RNA (mRNAs) have been identified in higher plants. In this study, we describe the identification of the Arabidopsis (Arabidopsis thaliana) MITOCHONDRIAL TRANSLATION FACTOR1 (MTL1) protein, a new member of the Pentatricopeptide Repeat family, and show that it is essential for the translation of the mitochondrial NADH dehydrogenase subunit7 (nad7) mRNA. We demonstrate that mtl1 mutant plants fail to accumulate the Nad7 protein, even though the nad7 mature mRNA is produced and bears the same 5' and 3' extremities as in wild-type plants. We next observed that polysome association of nad7 mature mRNA is specifically disrupted in mtl1 mutants, indicating that the absence of Nad7 results from a lack of translation of nad7 mRNA. These findings illustrate that mitochondrial translation requires the intervention of gene-specific nucleus-encoded PPR trans-factors and that their action does not necessarily involve the 5' processing of their target mRNA, as observed previously. Interestingly, a partial decrease in nad7 intron 2 splicing was also detected in mtl1 mutants, suggesting that MTL1 is also involved in group II intron splicing. However, this second function appears to be less essential for nad7 expression than its role in translation. MTL1 will be instrumental to understand the multifunctionality of PPR proteins and the mechanisms governing mRNA translation and intron splicing in plant mitochondria.
Collapse
Affiliation(s)
- Nawel Haïli
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78026 Versailles cedex, France (N.H., N.P., N.A., M.Q., N.V., J.D., H.M.);Université Paris-Sud, Université Paris-Saclay, 91405 Orsay cedex, France (N.H., N.P.); andAustralian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S.)
| | - Noelya Planchard
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78026 Versailles cedex, France (N.H., N.P., N.A., M.Q., N.V., J.D., H.M.);Université Paris-Sud, Université Paris-Saclay, 91405 Orsay cedex, France (N.H., N.P.); andAustralian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S.)
| | - Nadège Arnal
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78026 Versailles cedex, France (N.H., N.P., N.A., M.Q., N.V., J.D., H.M.);Université Paris-Sud, Université Paris-Saclay, 91405 Orsay cedex, France (N.H., N.P.); andAustralian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S.)
| | - Martine Quadrado
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78026 Versailles cedex, France (N.H., N.P., N.A., M.Q., N.V., J.D., H.M.);Université Paris-Sud, Université Paris-Saclay, 91405 Orsay cedex, France (N.H., N.P.); andAustralian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S.)
| | - Nathalie Vrielynck
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78026 Versailles cedex, France (N.H., N.P., N.A., M.Q., N.V., J.D., H.M.);Université Paris-Sud, Université Paris-Saclay, 91405 Orsay cedex, France (N.H., N.P.); andAustralian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S.)
| | - Jennifer Dahan
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78026 Versailles cedex, France (N.H., N.P., N.A., M.Q., N.V., J.D., H.M.);Université Paris-Sud, Université Paris-Saclay, 91405 Orsay cedex, France (N.H., N.P.); andAustralian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S.)
| | - Catherine Colas des Francs-Small
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78026 Versailles cedex, France (N.H., N.P., N.A., M.Q., N.V., J.D., H.M.);Université Paris-Sud, Université Paris-Saclay, 91405 Orsay cedex, France (N.H., N.P.); andAustralian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S.)
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78026 Versailles cedex, France (N.H., N.P., N.A., M.Q., N.V., J.D., H.M.);Université Paris-Sud, Université Paris-Saclay, 91405 Orsay cedex, France (N.H., N.P.); andAustralian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (C.C.d.F.-S.)
| |
Collapse
|
38
|
Sun F, Wang X, Bonnard G, Shen Y, Xiu Z, Li X, Gao D, Zhang Z, Tan BC. Empty pericarp7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:283-95. [PMID: 26303363 DOI: 10.1111/tpj.12993] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 05/02/2023]
Abstract
RNA editing, converting cytidines (C) to uridines (U) at specific sites in the transcripts of mitochondria and plastids, plays a critical role in organelle gene expression in land plants. Recently pentatricopeptide repeat (PPR) proteins were identified as site-specific recognition factors for RNA editing. In this study, we characterized an empty pericarp7 mutant (emp7) in Zea mays (maize), which confers an embryo-lethal phenotype. In emp7 mutants, mitochondrial functions are seriously perturbed, resulting in a strikingly reduced respiration rate. Emp7 encodes an E-subgroup PPR protein that is localized exclusively in the mitochondrion. Null mutation of Emp7 abolishes the C → U editing of ccmF(N) transcript solely at position 1553. CcmF(N) is coding for a subunit of heme lyase complex in the cytochrome c maturation pathway. The resulting Phe → Ser substitution in CcmF(N) leads to the loss of CcmF(N) protein and a strikingly reduced c-type cytochrome. Consequently, the mitochondrial cytochrome-linked respiratory chain is impaired as a result of the disassembly of complex III in the emp7 mutant. These results indicate that the PPR-E subgroup protein EMP7 is required for C → U editing of ccmF(N) -1553 at a position essential for cytochrome c maturation and mitochondrial oxidative phosphorylation, and hence is essential to embryo and endosperm development in maize.
Collapse
Affiliation(s)
- Feng Sun
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Géraldine Bonnard
- Institut de biologie moléculaire des plantes CNRS, Associé à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Yun Shen
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Zhihui Xiu
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Xiaojie Li
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Dahai Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhonghang Zhang
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Bao-Cai Tan
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| |
Collapse
|
39
|
Dahan J, Tcherkez G, Macherel D, Benamar A, Belcram K, Quadrado M, Arnal N, Mireau H. Disruption of the CYTOCHROME C OXIDASE DEFICIENT1 gene leads to cytochrome c oxidase depletion and reorchestrated respiratory metabolism in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1788-802. [PMID: 25301889 PMCID: PMC4256860 DOI: 10.1104/pp.114.248526] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/09/2014] [Indexed: 05/20/2023]
Abstract
Cytochrome c oxidase is the last respiratory complex of the electron transfer chain in mitochondria and is responsible for transferring electrons to oxygen, the final acceptor, in the classical respiratory pathway. The essentiality of this step makes it that depletion in complex IV leads to lethality, thereby impeding studies on complex IV assembly and respiration plasticity in plants. Here, we characterized Arabidopsis (Arabidopsis thaliana) embryo-lethal mutant lines impaired in the expression of the CYTOCHROME C OXIDASE DEFICIENT1 (COD1) gene, which encodes a mitochondria-localized PentatricoPeptide Repeat protein. Although unable to germinate under usual conditions, cod1 homozygous embryos could be rescued from immature seeds and developed in vitro into slow-growing bush-like plantlets devoid of a root system. cod1 mutants were defective in C-to-U editing events in cytochrome oxidase subunit2 and NADH dehydrogenase subunit4 transcripts, encoding subunits of respiratory complex IV and I, respectively, and consequently lacked cytochrome c oxidase activity. We further show that respiratory oxygen consumption by cod1 plantlets is exclusively associated with alternative oxidase activity and that alternative NADH dehydrogenases are also up-regulated in these plants. The metabolomics pattern of cod1 mutants was also deeply altered, suggesting that alternative metabolic pathways compensated for the probable resulting restriction in NADH oxidation. Being the first complex IV-deficient mutants described in higher plants, cod1 lines should be instrumental to future studies on respiration homeostasis.
Collapse
Affiliation(s)
- Jennifer Dahan
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Guillaume Tcherkez
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - David Macherel
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Abdelilah Benamar
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Katia Belcram
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Martine Quadrado
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Nadège Arnal
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Hakim Mireau
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| |
Collapse
|
40
|
Okuda K, Shoki H, Arai M, Shikanai T, Small I, Nakamura T. Quantitative analysis of motifs contributing to the interaction between PLS-subfamily members and their target RNA sequences in plastid RNA editing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:870-82. [PMID: 25279799 DOI: 10.1111/tpj.12687] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 05/08/2023]
Abstract
In plant organelles, RNA editing alters specific cytidine residues to uridine in transcripts. Target cytidines are specifically recognized by pentatricopeptide repeat (PPR) proteins of the PLS subfamily, which have additional C-terminal E or E-DYW motifs. Recent in silico analysis proposed a model for site recognition by PLS-subfamily PPR proteins, with a correspondence of one PPR motif to one nucleotide, and with the C-terminal last S motif aligning with the nucleotide at position -4 with respect to the editing site. Here, we present quantitative biochemical data on site recognition by four PLS-subfamily proteins: CRR28 and OTP85 are DYW-class members, whereas CRR21 and OTP80 are E-class members. The minimal RNA segments required for high-affinity binding by these PPR proteins were experimentally determined. The results were generally consistent with the in silico-based model; however, we clarified that several PPR motifs, including the C-terminal L2 and S motifs of CRR21 and OTP80, are dispensable for the RNA binding, suggesting distinct contributions of each PPR motif to site recognition. We also demonstrate that the DYW motif interacts with the target C and its 5' proximal region (from -3 to 0), whereas the E motif is not involved in binding.
Collapse
Affiliation(s)
- Kenji Okuda
- Department of Life Science, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, 112-8551, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Li XJ, Zhang YF, Hou M, Sun F, Shen Y, Xiu ZH, Wang X, Chen ZL, Sun SSM, Small I, Tan BC. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:797-809. [PMID: 24923534 DOI: 10.1111/tpj.12584] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 05/02/2023]
Abstract
RNA editing modifies cytidines (C) to uridines (U) at specific sites in the transcripts of mitochondria and plastids, altering the amino acid specified by the DNA sequence. Here we report the identification of a critical editing factor of mitochondrial nad7 transcript via molecular characterization of a small kernel 1 (smk1) mutant in Zea mays (maize). Mutations in Smk1 arrest both the embryo and endosperm development. Cloning of Smk1 indicates that it encodes an E-subclass pentatricopeptide repeat (PPR) protein that is targeted to mitochondria. Loss of SMK1 function abolishes the C → U editing at the nad7-836 site, leading to the retention of a proline codon that is edited to encode leucine in the wild type. The smk1 mutant showed dramatically reduced complex-I assembly and NADH dehydrogenase activity, and abnormal biogenesis of the mitochondria. Analysis of the ortholog in Oryza sativa (rice) reveals that rice SMK1 has a conserved function in C → U editing of the mitochondrial nad7-836 site. T-DNA knock-out mutants showed abnormal embryo and endosperm development, resulting in embryo or seedling lethality. The leucine at NAD7-279 is highly conserved from bacteria to flowering plants, and analysis of genome sequences from many plants revealed a molecular coevolution between the requirement for C → U editing at this site and the existence of an SMK1 homolog. These results demonstrate that Smk1 encodes a PPR-E protein that is required for nad7-836 editing, and this editing is critical to NAD7 function in complex-I assembly in mitochondria, and hence to embryo and endosperm development in maize and rice.
Collapse
Affiliation(s)
- Xiao-Jie Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Shenzhen Key Laboratory of Super Hybrid Rice Research, Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China; State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Arenas-M A, Zehrmann A, Moreno S, Takenaka M, Jordana X. The pentatricopeptide repeat protein MEF26 participates in RNA editing in mitochondrial cox3 and nad4 transcripts. Mitochondrion 2014; 19 Pt B:126-34. [PMID: 25173472 DOI: 10.1016/j.mito.2014.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 11/15/2022]
Abstract
In angiosperms most members of the large nuclear-encoded family of pentatricopeptide repeat (PPR) proteins are predicted to play relevant roles in the maturation of organellar RNAs. Here we report the novel Mitochondrial Editing Factor 26, a DYW-PPR protein involved in RNA editing at two sites. While at one site, cox3-311, editing is abolished in the absence of MEF26, the other site, nad4-166, is still partially edited. These sites share similar cis-elements and application of the recently proposed amino acid code for RNA recognition by PPR proteins ranks them at first and second positions of the most probable targets.
Collapse
Affiliation(s)
- Anita Arenas-M
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| | - Anja Zehrmann
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany.
| | - Sebastian Moreno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| | | | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| |
Collapse
|
43
|
Zamudio-Ochoa A, Camacho-Villasana Y, García-Guerrero AE, Pérez-Martínez X. The Pet309 pentatricopeptide repeat motifs mediate efficient binding to the mitochondrial COX1 transcript in yeast. RNA Biol 2014; 11:953-67. [PMID: 25181249 PMCID: PMC4179968 DOI: 10.4161/rna.29780] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial synthesis of Cox1, the largest subunit of the cytochrome c oxidase complex, is controlled by Mss51 and Pet309, two mRNA-specific translational activators that act via the COX1 mRNA 5′-UTR through an unknown mechanism. Pet309 belongs to the pentatricopeptide repeat (PPR) protein family, which is involved in RNA metabolism in mitochondria and chloroplasts, and its sequence predicts at least 12 PPR motifs in the central portion of the protein. Deletion of these motifs selectively disrupted translation but not accumulation of the COX1 mRNA. We used RNA coimmunoprecipitation assays to show that Pet309 interacts with the COX1 mRNA in vivo and that this association is present before processing of the COX1 mRNA from the ATP8/6 polycistronic mRNA. This association was not affected by deletion of 8 of the PPR motifs but was undetectable after deletion of the entire 12-PPR region. However, interaction of the Pet309 protein lacking 12 PPR motifs with the COX1 mRNA was detected after overexpression of the mutated form of the protein, suggesting that deletion of this region decreased the binding affinity for the COX1 mRNA without abolishing it entirely. Moreover, binding of Pet309 to the COX1 mRNA was affected by deletion of Mss51. This work demonstrates an in vivo physical interaction between a yeast mitochondrial translational activator and its target mRNA and shows the cooperativity of the PPR domains of Pet309 in interaction with the COX1 mRNA.
Collapse
Affiliation(s)
- Angélica Zamudio-Ochoa
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| | - Yolanda Camacho-Villasana
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| | - Aldo E García-Guerrero
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| | - Xochitl Pérez-Martínez
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| |
Collapse
|
44
|
Hammani K, Giegé P. RNA metabolism in plant mitochondria. TRENDS IN PLANT SCIENCE 2014; 19:380-9. [PMID: 24462302 DOI: 10.1016/j.tplants.2013.12.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/11/2013] [Accepted: 12/19/2013] [Indexed: 05/02/2023]
Abstract
Mitochondria are essential for the eukaryotic cell and are derived from the endosymbiosis of an α-proteobacterial ancestor. Compared to other eukaryotes, RNA metabolism in plant mitochondria is complex and combines bacterial-like traits with novel features that evolved in the host cell. These complex RNA processes are regulated by families of nucleus-encoded RNA-binding proteins. Transcription is particularly relaxed and is initiated from multiple promoters covering the entire genome. The variety of RNA precursors accumulating in mitochondria highlights the importance of post-transcriptional processes to determine the size and abundance of transcripts. Here we review RNA metabolism in plant mitochondria, from RNA transcription to translation, with a special focus on their unique features that are controlled by trans-factors.
Collapse
Affiliation(s)
- Kamel Hammani
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Philippe Giegé
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
45
|
Gabotti D, Caporali E, Manzotti P, Persico M, Vigani G, Consonni G. The maize pentatricopeptide repeat gene empty pericarp4 (emp4) is required for proper cellular development in vegetative tissues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:25-35. [PMID: 24767112 DOI: 10.1016/j.plantsci.2014.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
The empty pericarp4 (emp4) gene encodes a mitochondrion-targeted pentatricopeptide repeat (ppr) protein that is involved in the regulation of mitochondrial gene expression and is required for seed development. In homozygous mutant emp4-1 kernels the endosperm is drastically reduced and the embryo is retarded in its development and unable to germinate. With the aim of investigating the role of emp4 during post-germinative development, homozygous mutant seedlings were obtained by cultivation of excised immature embryos on a synthetic medium. In the mutants both germination frequency as well as the proportion of seedlings reaching the first and second leaf stages were reduced. The anatomy of the leaf blades and the root cortex was not affected by the mutation, however severe alterations such as the presence of empty cells or cells containing poorly organized organelles, were observed. Moreover both mitochondria and chloroplast functionality was impaired in the mutants. Our hypothesis is that mitochondrial impairment, the primary effect of the mutation, causes secondary effects on the development of other cellular organelles. Ultra-structural features of mutant leaf blade mesophyll cells are reminiscent of cells undergoing senescence. Interestingly, both structural and functional damage was less severe in seedlings grown in total darkness compared with those exposed to light, thus suggesting that the effects of the mutation are enhanced by the presence of light.
Collapse
Affiliation(s)
- Damiano Gabotti
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Elisabetta Caporali
- Dipartimento di Bioscienze, Università degli Studi di Milano - Via Celoria 26, 20133 Milano, Italy
| | - Priscilla Manzotti
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Martina Persico
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Gianpiero Vigani
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Gabriella Consonni
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
46
|
Abstract
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR protein is targeted to mitochondria or chloroplasts, binds one or several organellar transcripts, and influences their expression by altering RNA sequence, turnover, processing, or translation. Their combined action has profound effects on organelle biogenesis and function and, consequently, on photosynthesis, respiration, plant development, and environmental responses. Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.
Collapse
Affiliation(s)
- Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97405;
| | | |
Collapse
|
47
|
Hayes ML, Giang K, Berhane B, Mulligan RM. Identification of two pentatricopeptide repeat genes required for RNA editing and zinc binding by C-terminal cytidine deaminase-like domains. J Biol Chem 2013; 288:36519-29. [PMID: 24194514 DOI: 10.1074/jbc.m113.485755] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins are required as RNA binding specificity determinants in the RNA editing mechanism. Bioinformatic analysis has shown that most of the Arabidopsis PPR proteins necessary for RNA editing events include a C-terminal portion that shares structural characteristics with a superfamily of deaminases. The DYW deaminase domain includes a highly conserved zinc binding motif that shares characteristics with cytidine deaminases. The Arabidopsis PPR genes, ELI1 and DOT4, both have DYW deaminase domains and are required for single RNA editing events in chloroplasts. The ELI1 DYW deaminase domain was expressed as a recombinant protein in Escherichia coli and was shown to bind two zinc atoms per polypeptide. Thus, the DYW deaminase domain binds a zinc metal ion, as expected for a cytidine deaminase, and is potentially the catalytic component of an editing complex. Genetic complementation experiments demonstrate that large portions of the DYW deaminase domain of ELI1 may be eliminated, but the truncated genes retain the ability to restore editing site conversion in a mutant plant. These results suggest that the catalytic activity can be supplied in trans by uncharacterized protein(s) of the editosome.
Collapse
|
48
|
Ichinose M, Sugita C, Yagi Y, Nakamura T, Sugita M. Two DYW Subclass PPR Proteins are Involved in RNA Editing of ccmFc and atp9 Transcripts in the Moss Physcomitrella patens: First Complete Set of PPR Editing Factors in Plant Mitochondria. ACTA ACUST UNITED AC 2013; 54:1907-16. [DOI: 10.1093/pcp/pct132] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
49
|
Hammani K, Bonnard G, Bouchoucha A, Gobert A, Pinker F, Salinas T, Giegé P. Helical repeats modular proteins are major players for organelle gene expression. Biochimie 2013; 100:141-50. [PMID: 24021622 DOI: 10.1016/j.biochi.2013.08.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/30/2013] [Indexed: 11/18/2022]
Abstract
Mitochondria and chloroplasts are often described as semi-autonomous organelles because they have retained a genome. They thus require fully functional gene expression machineries. Many of the required processes going all the way from transcription to translation have specificities in organelles and arose during eukaryote history. Most factors involved in these RNA maturation steps have remained elusive for a long time. The recent identification of a number of novel protein families including pentatricopeptide repeat proteins, half-a-tetratricopeptide proteins, octotricopeptide repeat proteins and mitochondrial transcription termination factors has helped to settle long-standing questions regarding organelle gene expression. In particular, their functions have been related to replication, transcription, RNA processing, RNA editing, splicing, the control of RNA turnover and translation throughout eukaryotes. These families of proteins, although evolutionary independent, seem to share a common overall architecture. For all of them, proteins contain tandem arrays of repeated motifs. Each module is composed of two to three α-helices and their succession forms a super-helix. Here, we review the features characterising these protein families, in particular, their distribution, the identified functions and mode of action and propose that they might share similar substrate recognition mechanisms.
Collapse
|
50
|
Surrogate mutants for studying mitochondrially encoded functions. Biochimie 2013; 100:234-42. [PMID: 23994752 DOI: 10.1016/j.biochi.2013.08.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/18/2013] [Indexed: 11/24/2022]
Abstract
Although chloroplast transformation is possible in some plant species, it is extremely difficult to create or select mutations in plant mitochondrial genomes, explaining why few genetic studies of mitochondrially encoded functions exist. In recent years it has become clear that many nuclear genes encode factors with key functions in organelle gene expression, and that often their action is restricted to a single organelle gene or transcript. Mutations in one of these nuclear genes thus leads to a specific primary defect in expression of a single organelle gene, and the nuclear mutation can be used as a surrogate for a phenotypically equivalent mutation in the organelle genome. These surrogate mutations often result in defective assembly of respiratory complexes, and lead to severe phenotypes including reduced growth and fertility, or even embryo-lethality. A wide collection of such mutants is now available, and this review summarises the progress in basic knowledge of mitochondrial biogenesis they have contributed to and points out areas where this resource has not been exploited yet.
Collapse
|