1
|
Isasi E, Wajner M, Duarte JA, Olivera-Bravo S. Cerebral White Matter Alterations Associated With Oligodendrocyte Vulnerability in Organic Acidurias: Insights in Glutaric Aciduria Type I. Neurotox Res 2024; 42:33. [PMID: 38963434 DOI: 10.1007/s12640-024-00710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/27/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
The white matter is an important constituent of the central nervous system, containing axons, oligodendrocytes, and its progenitor cells, astrocytes, and microglial cells. Oligodendrocytes are central for myelin synthesis, the insulating envelope that protects axons and allows normal neural conduction. Both, oligodendrocytes and myelin, are highly vulnerable to toxic factors in many neurodevelopmental and neurodegenerative disorders associated with disturbances of myelination. Here we review the main alterations in oligodendrocytes and myelin observed in some organic acidurias/acidemias, which correspond to inherited neurometabolic disorders biochemically characterized by accumulation of potentially neurotoxic organic acids and their derivatives. The yet incompletely understood mechanisms underlying the high vulnerability of OLs and/or myelin in glutaric acidemia type I, the most prototypical cerebral organic aciduria, are particularly discussed.
Collapse
Affiliation(s)
- Eugenia Isasi
- Laboratorio de Neurobiología Celular y Molecular, Unidad Académica de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Moacir Wajner
- Department of Biochemistry, Instituto de Ciencias Básicas da Saude, Universidade Federal de Río Grande do Sul, Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Juliana Avila Duarte
- Departamento de Medicina Interna, Serviço de Radiología, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Silvia Olivera-Bravo
- Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.
| |
Collapse
|
2
|
Diniz F, Parmeggiani B, Brandão G, Ferreira BK, Teixeira MF, Streck EL, Olivera-Bravo S, Barbeito LH, Schuck PF, de Melo Reis RA, Ferreira GC. Dual Effect of Carnosine on ROS Formation in Rat Cultured Cortical Astrocytes. Mol Neurobiol 2024; 61:4908-4922. [PMID: 38151612 DOI: 10.1007/s12035-023-03880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023]
Abstract
Carnosine is composed of β-alanine and L-histidine and is considered to be an important neuroprotective agent with antioxidant, metal chelating, and antisenescence properties. However, children with serum carnosinase deficiency present increased circulating carnosine and severe neurological symptoms. We here investigated the in vitro effects of carnosine on redox and mitochondrial parameters in cultured cortical astrocytes from neonatal rats. Carnosine did not alter mitochondrial content or mitochondrial membrane potential. On the other hand, carnosine increased mitochondrial superoxide anion formation, levels of thiobarbituric acid reactive substances and oxidation of 2',7'-dichlorofluorescin diacetate (DCF-DA), indicating that carnosine per se acts as a pro-oxidant agent. Nonetheless, carnosine prevented DCF-DA oxidation induced by H2O2 in cultured cortical astrocytes. Since alterations on mitochondrial membrane potential are not likely to be involved in these effects of carnosine, the involvement of N-Methyl-D-aspartate (NMDA) receptors in the pro-oxidant actions of carnosine was investigated. MK-801, an antagonist of NMDA receptors, prevented DCF-DA oxidation induced by carnosine in cultured cortical astrocytes. Astrocyte reactivity induced by carnosine was also prevented by the coincubation with MK-801. The present study shows for the very first time the pro-oxidant effects of carnosine per se in astrocytes. The data raise awareness on the importance of a better understanding of the biological actions of carnosine, a nutraceutical otherwise widely reported as devoid of side effects.
Collapse
Affiliation(s)
- Fabiola Diniz
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas:Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, United States
| | - Belisa Parmeggiani
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Brandão
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Klippel Ferreira
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Monique Fonseca Teixeira
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio Luiz Streck
- Laboratório de Doenças Neurometabólicas, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | | | - Patricia Fernanda Schuck
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Augusto de Melo Reis
- Programa de Pós-Graduação em Ciências Biológicas:Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas:Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Chang FM. Update current understanding of neurometabolic disorders related to lysine metabolism. Epilepsy Behav 2023; 146:109363. [PMID: 37499576 DOI: 10.1016/j.yebeh.2023.109363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Lysine, as an essential amino acid, predominantly undergoes metabolic processes through the saccharopine pathway, whereas a smaller fraction follows the pipecolic acid pathway. Although the liver is considered the primary organ for lysine metabolism, it is worth noting that lysine catabolism also takes place in other tissues and organs throughout the body, including the brain. Enzyme deficiency caused by pathogenic variants in its metabolic pathway may lead to a series of neurometabolic diseases, among which glutaric aciduria type 1 and pyridoxine-dependent epilepsy have the most significant clinical manifestations. At present, through research, we have a deeper understanding of the multiple pathophysiological mechanisms related to these diseases, including intracerebral accumulation of neurotoxic metabolites, imbalance between GABAergic and glutamatergic neurotransmission, energy deprivation due to metabolites, and the dysfunction of antiquitin. Because of the complexity of these diseases, their clinical manifestations are also diverse. The early implementation of lysine-restricted diets and supplementation with arginine and carnitine has reported positive impacts on the neurodevelopmental outcomes of patients. Presently, there is more robust evidence supporting the effectiveness of these treatments in glutaric aciduria type 1 compared with pyridoxine-dependent epilepsy.
Collapse
Affiliation(s)
- Fu-Man Chang
- Department of Pediatrics, Taitung MacKay Memorial Hospital, Taitung, Taiwan.
| |
Collapse
|
4
|
Tobin JD, Robinson CN, Luttrell-Williams ES, Landry GM, Dwyer D, McMartin KE. Role of plasma membrane dicarboxylate transporters in the uptake and toxicity of diglycolic acid, a metabolite of diethylene glycol, in human proximal tubule cells. Toxicol Sci 2022; 190:1-12. [PMID: 36087010 DOI: 10.1093/toxsci/kfac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diethylene glycol (DEG) mass poisonings have resulted from ingestion of pharmaceuticals mistakenly adulterated with DEG, typically leading to proximal tubular necrosis and acute kidney injury. The metabolite, diglycolic acid (DGA) accumulates greatly in kidney tissue and its direct administration results in toxicity identical to that in DEG-treated rats. DGA is a dicarboxylic acid, similar in structure to metabolites like succinate. These studies have assessed the mechanism for cellular accumulation of DGA, specifically whether DGA is taken into primary cultures of human proximal tubule (HPT) cells via sodium dicarboxylate transporters (NaDC-1 or NaDC-3) like those responsible for succinate uptake. When HPT cells were cultured on membrane inserts, sodium dependent succinate uptake was observed from both apical and basolateral directions. Pretreatment with the NaDC-1 inhibitor N-(p-amylcinnamoyl)anthranilic acid (ACA) markedly reduced apical uptakes of both succinate and DGA. Basolateral uptake of both succinate and DGA were decreased similarly following combined treatment with ACA and the NaDC-3 inhibitor 2,3-dimethylsuccinate. When the cells were pre-treated with siRNA to knockdown NaDC-1 function, apical uptake of succinate and toxicity of apically applied DGA were reduced, while the reduction in basolateral succinate uptake and basolateral DGA toxicity was marginal with NaDC-3 knockdown. DGA reduced apical uptake of succinate, but not basolateral uptake. This study confirmed that primary HPT cells retain sodium dicarboxylate transport functionality and that DGA was taken up by these transporters. This study identified NaDC-1 as a likely and NaDC-3 as a possible molecular target to reduce uptake of this toxic metabolite by the kidney.
Collapse
Affiliation(s)
- Julie D Tobin
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Corie N Robinson
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Elliot S Luttrell-Williams
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Greg M Landry
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Donard Dwyer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130.,Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Kenneth E McMartin
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| |
Collapse
|
5
|
Ganly I, Liu EM, Kuo F, Makarov V, Dong Y, Park J, Gong Y, Gorelick AN, Knauf JA, Benedetti E, Tait-Mulder J, Morris LG, Fagin JA, Intlekofer AM, Krumsiek J, Gammage PA, Ghossein R, Xu B, Chan TA, Reznik E. Mitonuclear genotype remodels the metabolic and microenvironmental landscape of Hürthle cell carcinoma. SCIENCE ADVANCES 2022; 8:eabn9699. [PMID: 35731870 PMCID: PMC9216518 DOI: 10.1126/sciadv.abn9699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Hürthle cell carcinomas (HCCs) display two exceptional genotypes: near-homoplasmic mutation of mitochondrial DNA (mtDNA) and genome-wide loss of heterozygosity (gLOH). To understand the phenotypic consequences of these genetic alterations, we analyzed genomic, metabolomic, and immunophenotypic data of HCC and other thyroid cancers. Both mtDNA mutations and profound depletion of citrate pools are common in HCC and other thyroid malignancies, suggesting that thyroid cancers are broadly equipped to survive tricarboxylic acid cycle impairment, whereas metabolites in the reduced form of NADH-dependent lysine degradation pathway were elevated exclusively in HCC. The presence of gLOH was not associated with metabolic phenotypes but rather with reduced immune infiltration, indicating that gLOH confers a selective advantage partially through immunosuppression. Unsupervised multimodal clustering revealed four clusters of HCC with distinct clinical, metabolomic, and microenvironmental phenotypes but overlapping genotypes. These findings chart the metabolic and microenvironmental landscape of HCC and shed light on the interaction between genotype, metabolism, and the microenvironment in cancer.
Collapse
Affiliation(s)
- Ian Ganly
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Minwei Liu
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fengshen Kuo
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Yiyu Dong
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinsung Park
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yongxing Gong
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander N. Gorelick
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey A Knauf
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Elisa Benedetti
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Luc G.T. Morris
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James A. Fagin
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew M Intlekofer
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Payam A. Gammage
- CRUK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy A. Chan
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
6
|
Khellaf A, Garcia NM, Tajsic T, Alam A, Stovell MG, Killen MJ, Howe DJ, Guilfoyle MR, Jalloh I, Timofeev I, Murphy MP, Carpenter TA, Menon DK, Ercole A, Hutchinson PJ, Carpenter KL, Thelin EP, Helmy A. Focally administered succinate improves cerebral metabolism in traumatic brain injury patients with mitochondrial dysfunction. J Cereb Blood Flow Metab 2022; 42:39-55. [PMID: 34494481 PMCID: PMC8721534 DOI: 10.1177/0271678x211042112] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Following traumatic brain injury (TBI), raised cerebral lactate/pyruvate ratio (LPR) reflects impaired energy metabolism. Raised LPR correlates with poor outcome and mortality following TBI. We prospectively recruited patients with TBI requiring neurocritical care and multimodal monitoring, and utilised a tiered management protocol targeting LPR. We identified patients with persistent raised LPR despite adequate cerebral glucose and oxygen provision, which we clinically classified as cerebral 'mitochondrial dysfunction' (MD). In patients with TBI and MD, we administered disodium 2,3-13C2 succinate (12 mmol/L) by retrodialysis into the monitored region of the brain. We recovered 13C-labelled metabolites by microdialysis and utilised nuclear magnetic resonance spectroscopy (NMR) for identification and quantification.Of 33 patients with complete monitoring, 73% had MD at some point during monitoring. In 5 patients with multimodality-defined MD, succinate administration resulted in reduced LPR(-12%) and raised brain glucose(+17%). NMR of microdialysates demonstrated that the exogenous 13C-labelled succinate was metabolised intracellularly via the tricarboxylic acid cycle. By targeting LPR using a tiered clinical algorithm incorporating intracranial pressure, brain tissue oxygenation and microdialysis parameters, we identified MD in TBI patients requiring neurointensive care. In these, focal succinate administration improved energy metabolism, evidenced by reduction in LPR. Succinate merits further investigation for TBI therapy.
Collapse
Affiliation(s)
- Abdelhakim Khellaf
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Nuria Marco Garcia
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tamara Tajsic
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Aftab Alam
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Matthew G Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Department of Neurosurgery, The Walton Centre, Liverpool, UK
| | - Monica J Killen
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Duncan J Howe
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ivan Timofeev
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - T Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K Menon
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri Lh Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eric P Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Gonzalez Melo M, Fontana AO, Viertl D, Allenbach G, Prior JO, Rotman S, Feichtinger RG, Mayr JA, Costanzo M, Caterino M, Ruoppolo M, Braissant O, Barbey F, Ballhausen D. A knock-in rat model unravels acute and chronic renal toxicity in glutaric aciduria type I. Mol Genet Metab 2021; 134:287-300. [PMID: 34799272 DOI: 10.1016/j.ymgme.2021.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/14/2023]
Abstract
Glutaric aciduria type I (GA-I, OMIM # 231670) is an autosomal recessive inborn error of metabolism caused by deficiency of the mitochondrial enzyme glutaryl-CoA dehydrogenase (GCDH). The principal clinical manifestation in GA-I patients is striatal injury most often triggered by catabolic stress. Early diagnosis by newborn screening programs improved survival and reduced striatal damage in GA-I patients. However, the clinical phenotype is still evolving in the aging patient population. Evaluation of long-term outcome in GA-I patients recently identified glomerular filtration rate (GFR) decline with increasing age. We recently created the first knock-in rat model for GA-I harboring the mutation p.R411W (c.1231 C>T), corresponding to the most frequent GCDH human mutation p.R402W. In this study, we evaluated the effect of an acute metabolic stress in form of high lysine diet (HLD) on young Gcdhki/ki rats. We further studied the chronic effect of GCDH deficiency on kidney function in a longitudinal study on a cohort of Gcdhki/ki rats by repetitive 68Ga-EDTA positron emission tomography (PET) renography, biochemical and histological analyses. In young Gcdhki/ki rats exposed to HLD, we observed a GFR decline and biochemical signs of a tubulopathy. Histological analyses revealed lipophilic vacuoles, thinning of apical brush border membranes and increased numbers of mitochondria in proximal tubular (PT) cells. HLD also altered OXPHOS activities and proteome in kidneys of Gcdhki/ki rats. In the longitudinal cohort, we showed a progressive GFR decline in Gcdhki/ki rats starting at young adult age and a decline of renal clearance. Histopathological analyses in aged Gcdhki/ki rats revealed tubular dilatation, protein accumulation in PT cells and mononuclear infiltrations. These observations confirm that GA-I leads to acute and chronic renal damage. This raises questions on indication for follow-up on kidney function in GA-I patients and possible therapeutic interventions to avoid renal damage.
Collapse
Affiliation(s)
- Mary Gonzalez Melo
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Andrea Orlando Fontana
- Department of Nuclear Medicine and Molecular Imaging, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland.
| | - David Viertl
- Department of Nuclear Medicine and Molecular Imaging, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland.
| | - Gilles Allenbach
- Department of Nuclear Medicine and Molecular Imaging, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland.
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland.
| | - Samuel Rotman
- Service of Clinical Pathology, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - René Günther Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Johannes Adalbert Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie, Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie, Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie, Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Frederic Barbey
- Department of Immunology, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Diana Ballhausen
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| |
Collapse
|
8
|
Boy N, Mohr A, Garbade SF, Freisinger P, Heringer-Seifert J, Seitz A, Kölker S, Harting I. Subdural hematoma in glutaric aciduria type 1: High excreters are prone to incidental SDH despite newborn screening. J Inherit Metab Dis 2021; 44:1343-1352. [PMID: 34515344 DOI: 10.1002/jimd.12436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022]
Abstract
Subdural hematoma (SDH) was initially reported in 20% to 30% of patients with glutaric aciduria type 1 (GA1). A recent retrospective study found SDH in 4% of patients, but not in patients identified by newborn screening (NBS). 168 MRIs of 69 patients with GA1 (age at MRI 9 days - 73.8 years, median 3.2 years) were systematically reviewed for presence of SDH, additional MR and clinical findings in order to investigate the frequency of SDH and potential risk factors. SDH was observed in eight high-excreting patients imaged between 5.8 and 24.4 months, namely space-occupying SDH in two patients after minor accidental trauma and SDH as an incidental finding in six patients without trauma. In patients without trauma imaged at 3 to 30 months (n = 36, 25 NBS, 27/9 high/low excreters), incidence of SDH was 16.7% (16% in NBS). SDH was more common after acute (33.3%) than insidious onset of dystonia (14.3%) or in asymptomatic patients (5.9%). It was only seen in patients with wide frontoparietal CSF spaces and frontotemporal hypoplasia. High excreters were over-represented among patients with SDH (6/27 vs 0/9 low excreters), acute onset (10/12), and wide frontoparietal CSF spaces (16/19). Incidental SDH occurs despite NBS and early treatment in approximately one in six patients with GA1 imaged during late infancy and early childhood. Greater risk of high excreters is morphologically associated with more frequent enlargement of external CSF spaces including frontotemporal hypoplasia, and may be furthered aggravated by more pronounced alterations of cerebral blood volume and venous pressure.
Collapse
Affiliation(s)
- Nikolas Boy
- Centre for Child and Adolescent Medicine, Clinic I, Division of Child Neurology and Metabolic Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Mohr
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sven F Garbade
- Centre for Child and Adolescent Medicine, Clinic I, Division of Child Neurology and Metabolic Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Jana Heringer-Seifert
- Centre for Child and Adolescent Medicine, Clinic I, Division of Child Neurology and Metabolic Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Angelika Seitz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kölker
- Centre for Child and Adolescent Medicine, Clinic I, Division of Child Neurology and Metabolic Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Inga Harting
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
9
|
The biochemical subtype is a predictor for cognitive function in glutaric aciduria type 1: a national prospective follow-up study. Sci Rep 2021; 11:19300. [PMID: 34588557 PMCID: PMC8481501 DOI: 10.1038/s41598-021-98809-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
The aim of the study was a systematic evaluation of cognitive development in individuals with glutaric aciduria type 1 (GA1), a rare neurometabolic disorder, identified by newborn screening in Germany. This national, prospective, observational, multi-centre study includes 107 individuals with confirmed GA1 identified by newborn screening between 1999 and 2020 in Germany. Clinical status, development, and IQ were assessed using standardized tests. Impact of interventional and non-interventional parameters on cognitive outcome was evaluated. The majority of tested individuals (n = 72) showed stable IQ values with age (n = 56 with IQ test; median test age 11 years) but a significantly lower performance (median [IQR] IQ 87 [78-98]) than in general population, particularly in individuals with a biochemical high excreter phenotype (84 [75-96]) compared to the low excreter group (98 [92-105]; p = 0.0164). For all patients, IQ results were homogenous on subscale levels. Sex, clinical motor phenotype and quality of metabolic treatment had no impact on cognitive functions. Long-term neurologic outcome in GA1 involves both motor and cognitive functions. The biochemical high excreter phenotype is the major risk factor for cognitive impairment while cognitive functions do not appear to be impacted by current therapy and striatal damage. These findings implicate the necessity of new treatment concepts.
Collapse
|
10
|
Märtner EMC, Maier EM, Mengler K, Thimm E, Schiergens KA, Marquardt T, Santer R, Weinhold N, Marquardt I, Das AM, Freisinger P, Grünert SC, Vossbeck J, Steinfeld R, Baumgartner MR, Beblo S, Dieckmann A, Näke A, Lindner M, Heringer-Seifert J, Lenz D, Hoffmann GF, Mühlhausen C, Ensenauer R, Garbade SF, Kölker S, Boy N. Impact of interventional and non-interventional variables on anthropometric long-term development in glutaric aciduria type 1: A national prospective multi-centre study. J Inherit Metab Dis 2021; 44:629-638. [PMID: 33274439 DOI: 10.1002/jimd.12335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Glutaric aciduria type 1 (GA1) is a rare neurometabolic disorder, caused by inherited deficiency of glutaryl-CoA dehydrogenase, mostly affecting the brain. Early identification by newborn screening (NBS) significantly improves neurologic outcome. It has remained unclear whether recommended therapy, particular low lysine diet, is safe or negatively affects anthropometric long-term outcome. This national prospective, observational, multi-centre study included 79 patients identified by NBS and investigated effects of interventional and non-interventional parameters on body weight, body length, body mass index (BMI) and head circumference as well as neurological parameters. Adherence to recommended maintenance and emergency treatment (ET) had a positive impact on neurologic outcome and allowed normal anthropometric development until adulthood. In contrast, non-adherence to ET, resulting in increased risk of dystonia, had a negative impact on body weight (mean SDS -1.07; P = .023) and body length (mean SDS -1.34; P = -.016). Consistently, longitudinal analysis showed a negative influence of severe dystonia on weight and length development over time (P < .001). Macrocephaly was more often found in female (mean SDS 0.56) than in male patients (mean SDS -0.20; P = .049), and also in individuals with high excreter phenotype (mean SDS 0.44) compared to low excreter patients (mean SDS -0.68; P = .016). In GA1, recommended long-term treatment is effective and allows for normal anthropometric long-term development up to adolescence, with gender- and excreter type-specific variations. Delayed ET and severe movement disorder result in poor anthropometric outcome.
Collapse
Affiliation(s)
- E M Charlotte Märtner
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Germany
| | - Esther M Maier
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Katharina Mengler
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Germany
| | - Eva Thimm
- Division of Experimental Paediatrics and Metabolism, Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Thorsten Marquardt
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Muenster, Germany
| | - René Santer
- University Children's Hospital, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Natalie Weinhold
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Chronically Sick Children, Berlin, Germany
| | - Iris Marquardt
- Department of Child Neurology, Children's Hospital Oldenburg, Oldenburg, Germany
| | - Anibh M Das
- Department of Paediatrics, Paediatric Metabolic Medicine, Hannover Medical School, Hannover, Germany
| | | | - Sarah C Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Judith Vossbeck
- Department of Paediatric and Adolescent Medicine, Ulm University Medical School, Ulm, Germany
| | - Robert Steinfeld
- Division of Paediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents, Centre for Paediatric Research Leipzig (CPL), University Hospitals, University of Leipzig, Leipzig, Germany
| | - Andrea Dieckmann
- Centre for Inborn Metabolic Disorders, Department of Neuropaediatrics, Jena University Hospital, Jena, Germany
| | - Andrea Näke
- Children's Hospital Carl Gustav Carus, Technical University Dresden, Germany
| | - Martin Lindner
- Division of Paediatric Neurology, University Children's Hospital Frankfurt, Frankfurt, Germany
| | - Jana Heringer-Seifert
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Germany
| | - Dominic Lenz
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Germany
| | - Chris Mühlhausen
- Department of Paediatrics and Adolescent Medicine, University Medical Centre, Göttingen, Germany
| | - Regina Ensenauer
- Division of Experimental Paediatrics and Metabolism, Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Germany
| | - Nikolas Boy
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Germany
| |
Collapse
|
11
|
Dimitrov B, Molema F, Williams M, Schmiesing J, Mühlhausen C, Baumgartner MR, Schumann A, Kölker S. Organic acidurias: Major gaps, new challenges, and a yet unfulfilled promise. J Inherit Metab Dis 2021; 44:9-21. [PMID: 32412122 DOI: 10.1002/jimd.12254] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Organic acidurias (OADs) comprise a biochemically defined group of inherited metabolic diseases. Increasing awareness, reliable diagnostic work-up, newborn screening programs for some OADs, optimized neonatal and intensive care, and the development of evidence-based recommendations have improved neonatal survival and short-term outcome of affected individuals. However, chronic progression of organ dysfunction in an aging patient population cannot be reliably prevented with traditional therapeutic measures. Evidence is increasing that disease progression might be best explained by mitochondrial dysfunction. Previous studies have demonstrated that some toxic metabolites target mitochondrial proteins inducing synergistic bioenergetic impairment. Although these potentially reversible mechanisms help to understand the development of acute metabolic decompensations during catabolic state, they currently cannot completely explain disease progression with age. Recent studies identified unbalanced autophagy as a novel mechanism in the renal pathology of methylmalonic aciduria, resulting in impaired quality control of organelles, mitochondrial aging and, subsequently, progressive organ dysfunction. In addition, the discovery of post-translational short-chain lysine acylation of histones and mitochondrial enzymes helps to understand how intracellular key metabolites modulate gene expression and enzyme function. While acylation is considered an important mechanism for metabolic adaptation, the chronic accumulation of potential substrates of short-chain lysine acylation in inherited metabolic diseases might exert the opposite effect, in the long run. Recently, changed glutarylation patterns of mitochondrial proteins have been demonstrated in glutaric aciduria type 1. These new insights might bridge the gap between natural history and pathophysiology in OADs, and their exploitation for the development of targeted therapies seems promising.
Collapse
Affiliation(s)
- Bianca Dimitrov
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jessica Schmiesing
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chris Mühlhausen
- Department of Pediatrics and Adolescent Medicine, University Medical Centre Göttingen, Göttingen, Germany
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Anke Schumann
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital of Freiburg, Freiburg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Strauss KA, Williams KB, Carson VJ, Poskitt L, Bowser LE, Young M, Robinson DL, Hendrickson C, Beiler K, Taylor CM, Haas-Givler B, Hailey J, Chopko S, Puffenberger EG, Brigatti KW, Miller F, Morton DH. Glutaric acidemia type 1: Treatment and outcome of 168 patients over three decades. Mol Genet Metab 2020; 131:325-340. [PMID: 33069577 DOI: 10.1016/j.ymgme.2020.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 01/19/2023]
Abstract
Glutaric acidemia type 1 (GA1) is a disorder of cerebral organic acid metabolism resulting from biallelic mutations of GCDH. Without treatment, GA1 causes striatal degeneration in >80% of affected children before two years of age. We analyzed clinical, biochemical, and developmental outcomes for 168 genotypically diverse GA1 patients managed at a single center over 31 years, here separated into three treatment cohorts: children in Cohort I (n = 60; DOB 2006-2019) were identified by newborn screening (NBS) and treated prospectively using a standardized protocol that included a lysine-free, arginine-enriched metabolic formula, enteral l-carnitine (100 mg/kg•day), and emergency intravenous (IV) infusions of dextrose, saline, and l-carnitine during illnesses; children in Cohort II (n = 57; DOB 1989-2018) were identified by NBS and treated with natural protein restriction (1.0-1.3 g/kg•day) and emergency IV infusions; children in Cohort III (n = 51; DOB 1973-2016) did not receive NBS or special diet. The incidence of striatal degeneration in Cohorts I, II, and III was 7%, 47%, and 90%, respectively (p < .0001). No neurologic injuries occurred after 19 months of age. Among uninjured children followed prospectively from birth (Cohort I), measures of growth, nutritional sufficiency, motor development, and cognitive function were normal. Adherence to metabolic formula and l-carnitine supplementation in Cohort I declined to 12% and 32%, respectively, by age 7 years. Cessation of strict dietary therapy altered plasma amino acid and carnitine concentrations but resulted in no serious adverse outcomes. In conclusion, neonatal diagnosis of GA1 coupled to management with lysine-free, arginine-enriched metabolic formula and emergency IV infusions during the first two years of life is safe and effective, preventing more than 90% of striatal injuries while supporting normal growth and psychomotor development. The need for dietary interventions and emergency IV therapies beyond early childhood is uncertain.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/diet therapy
- Amino Acid Metabolism, Inborn Errors/epidemiology
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/metabolism
- Brain/metabolism
- Brain/pathology
- Brain Diseases, Metabolic/diet therapy
- Brain Diseases, Metabolic/epidemiology
- Brain Diseases, Metabolic/genetics
- Brain Diseases, Metabolic/metabolism
- Carnitine/metabolism
- Child
- Child, Preschool
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Diet
- Female
- Glutaryl-CoA Dehydrogenase/deficiency
- Glutaryl-CoA Dehydrogenase/genetics
- Glutaryl-CoA Dehydrogenase/metabolism
- Humans
- Infant
- Infant, Newborn
- Lysine/metabolism
- Male
Collapse
Affiliation(s)
- Kevin A Strauss
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA; Departments of Pediatrics and Molecular, Cell & Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA.
| | | | - Vincent J Carson
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA
| | - Laura Poskitt
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA
| | | | | | | | | | | | - Cora M Taylor
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | | | | | - Stephanie Chopko
- Department of Pediatrics, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | | | | | - Freeman Miller
- Department of Orthopedic Surgery, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - D Holmes Morton
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA; Central Pennsylvania Clinic, Belleville, PA, USA
| |
Collapse
|
13
|
Leandro J, Houten SM. The lysine degradation pathway: Subcellular compartmentalization and enzyme deficiencies. Mol Genet Metab 2020; 131:14-22. [PMID: 32768327 DOI: 10.1016/j.ymgme.2020.07.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
Lysine degradation via formation of saccharopine is a pathway confined to the mitochondria. The second pathway for lysine degradation, the pipecolic acid pathway, is not yet fully elucidated and known enzymes are localized in the mitochondria, cytosol and peroxisome. The tissue-specific roles of these two pathways are still under investigation. The lysine degradation pathway is clinically relevant due to the occurrence of two severe neurometabolic disorders, pyridoxine-dependent epilepsy (PDE) and glutaric aciduria type 1 (GA1). The existence of three other disorders affecting lysine degradation without apparent clinical consequences opens up the possibility to find alternative therapeutic strategies for PDE and GA1 through pathway modulation. A better understanding of the mechanisms, compartmentalization and interplay between the different enzymes and metabolites involved in lysine degradation is of utmost importance.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
14
|
Henke C, Töllner K, van Dijk RM, Miljanovic N, Cordes T, Twele F, Bröer S, Ziesak V, Rohde M, Hauck SM, Vogel C, Welzel L, Schumann T, Willmes DM, Kurzbach A, El-Agroudy NN, Bornstein SR, Schneider SA, Jordan J, Potschka H, Metallo CM, Köhling R, Birkenfeld AL, Löscher W. Disruption of the sodium-dependent citrate transporter SLC13A5 in mice causes alterations in brain citrate levels and neuronal network excitability in the hippocampus. Neurobiol Dis 2020; 143:105018. [PMID: 32682952 DOI: 10.1016/j.nbd.2020.105018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 12/28/2022] Open
Abstract
In addition to tissues such as liver, the plasma membrane sodium-dependent citrate transporter, NaCT (SLC13A5), is highly expressed in brain neurons, but its function is not understood. Loss-of-function mutations in the human SLC13A5 gene have been associated with severe neonatal encephalopathy and pharmacoresistant seizures. The molecular mechanisms of these neurological alterations are not clear. We performed a detailed examination of a Slc13a5 deletion mouse model including video-EEG monitoring, behavioral tests, and electrophysiologic, proteomic, and metabolomic analyses of brain and cerebrospinal fluid. The experiments revealed an increased propensity for epileptic seizures, proepileptogenic neuronal excitability changes in the hippocampus, and significant citrate alterations in the CSF and brain tissue of Slc13a5 deficient mice, which may underlie the neurological abnormalities. These data demonstrate that SLC13A5 is involved in brain citrate regulation and suggest that abnormalities in this regulation can induce seizures. The present study is the first to (i) establish the Slc13a5-knockout mouse model as a helpful tool to study the neuronal functions of NaCT and characterize the molecular mechanisms by which functional deficiency of this citrate transporter causes epilepsy and impairs neuronal function; (ii) evaluate all hypotheses that have previously been suggested on theoretical grounds to explain the neurological phenotype of SLC13A5 mutations; and (iii) indicate that alterations in brain citrate levels result in neuronal network excitability and increased seizure propensity.
Collapse
Affiliation(s)
- Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - R Maarten van Dijk
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Thekla Cordes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Friederike Twele
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Vanessa Ziesak
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Marco Rohde
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Charlotte Vogel
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Germany
| | - Lisa Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Anica Kurzbach
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nermeen N El-Agroudy
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Germany
| | | | - Jens Jordan
- Institute for Aerospace Medicine, German Aerospace Center (DLR) and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
15
|
Schmiesing J, Storch S, Dörfler AC, Schweizer M, Makrypidi-Fraune G, Thelen M, Sylvester M, Gieselmann V, Meyer-Schwesinger C, Koch-Nolte F, Tidow H, Mühlhausen C, Waheed A, Sly WS, Braulke T. Disease-Linked Glutarylation Impairs Function and Interactions of Mitochondrial Proteins and Contributes to Mitochondrial Heterogeneity. Cell Rep 2019; 24:2946-2956. [PMID: 30208319 DOI: 10.1016/j.celrep.2018.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/20/2018] [Accepted: 08/06/2018] [Indexed: 01/13/2023] Open
Abstract
Lysine glutarylation (Kglu) of mitochondrial proteins is associated with glutaryl-CoA dehydrogenase (GCDH) deficiency, which impairs lysine/tryptophan degradation and causes destruction of striatal neurons during catabolic crisis with subsequent movement disability. By investigating the role of Kglu modifications in this disease, we compared the brain and liver glutarylomes of Gcdh-deficient mice. In the brain, we identified 73 Kglu sites on 37 mitochondrial proteins involved in various metabolic degradation pathways. Ultrastructural immunogold studies indicated that glutarylated proteins are heterogeneously distributed in mitochondria, which are exclusively localized in glial cells. In liver cells, all mitochondria contain Kglu-modified proteins. Glutarylation reduces the catalytic activities of the most abundant glutamate dehydrogenase (GDH) and the brain-specific carbonic anhydrase 5b and interferes with GDH-protein interactions. We propose that Kglu contributes to the functional heterogeneity of mitochondria and may metabolically adapt glial cells to the activity and metabolic demands of neighboring GCDH-deficient neurons.
Collapse
Affiliation(s)
- Jessica Schmiesing
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephan Storch
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ann-Cathrin Dörfler
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michaela Schweizer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Georgia Makrypidi-Fraune
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Melanie Thelen
- Institute of Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | - Catherine Meyer-Schwesinger
- Department of Internal Medicine III, Nephrology and Rheumatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Henning Tidow
- The Hamburg Center for Ultrafast Imaging & Department Chemistry, University Hamburg, 20146 Hamburg, Germany
| | - Chris Mühlhausen
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
16
|
Campos-Garcia FJ, Chacon-Camacho OF, Contreras-Capetillo S, Cruz-Aguilar M, Medina-Escobedo CE, Moreno-Graciano CM, Rodas A, Herrera-Perez LDA, Zenteno JC. Characterization of novel GCDH pathogenic variants causing glutaric aciduria type 1 in the southeast of Mexico. Mol Genet Metab Rep 2019; 21:100533. [PMID: 31788423 PMCID: PMC6879986 DOI: 10.1016/j.ymgmr.2019.100533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022] Open
Abstract
Biallelic mutations of the GCDH gene result in Glutaric Aciduria type 1 (GA1; OMIM #231670), an uncommon autosomal recessive inborn error caused by the deficiency of glutaryl-CoA dehydrogenase (CCDH), a mitochondrial matrix protein involved in the degradation of l-lysine, L-hydroxylysine, and L-tryptophan. The enzymatic deficiency leads to the accumulation of neurotoxins causing macrocephaly at birth, hypotonia and dystonia due to bilateral striatal injury, that evolves with aging, if untreated, to fixed dystonia and akinetic-rigid parkinsonism. In this article, we describe the results of molecular studies of 5 unrelated patients with GA1 in Southern Mexico. Mutational analysis identified 2 novel likely pathogenic GCDH variants (p.Leu130Pro and p.Gly391Val), 1 pathogenic variant that is predicted to cause a premature stop codon (p.Leu370*), and 2 previously reported pathogenic variants (p.Arg294Trp and p.Arg294Gln). The recurrence of the p.Leu130Pro variant (60% of mutant alleles) suggested a possible founder mutation effect. Our results expand the mutational spectrum in GA1 patients and support the importance of early diagnosis through newborn screening that promotes early nutritional treatment and prevents metabolic crisis. TAKE HOME MESSAGE Glutaric Aciduria type 1 has a wide mutational spectrum; the p.Leu130Pro variant may be a founder mutation in Southeast Mexico.
Collapse
Affiliation(s)
- Felix-Julian Campos-Garcia
- Research Department, Instituto Mexicano del Seguro Social “Ignacio García Tellez”, Mérida, Yucatán, Mexico
| | - Oscar F. Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | | | - Marisa Cruz-Aguilar
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
| | | | | | - Agustín Rodas
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
| | | | - Juan C. Zenteno
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
- Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico
| |
Collapse
|
17
|
Pathogenesis of brain damage in glutaric acidemia type I: Lessons from the genetic mice model. Int J Dev Neurosci 2019; 78:215-221. [DOI: 10.1016/j.ijdevneu.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/18/2019] [Accepted: 05/18/2019] [Indexed: 11/22/2022] Open
|
18
|
|
19
|
Tuncel AT, Boy N, Morath MA, Hörster F, Mütze U, Kölker S. Organic acidurias in adults: late complications and management. J Inherit Metab Dis 2018; 41:765-776. [PMID: 29335813 DOI: 10.1007/s10545-017-0135-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/05/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022]
Abstract
Organic acidurias (synonym, organic acid disorders, OADs) are a heterogenous group of inherited metabolic diseases delineated with the implementation of gas chromatography/mass spectrometry in metabolic laboratories starting in the 1960s and 1970s. Biochemically, OADs are characterized by accumulation of mono-, di- and/or tricarboxylic acids ("organic acids") and corresponding coenzyme A, carnitine and/or glycine esters, some of which are considered toxic at high concentrations. Clinically, disease onset is variable, however, affected individuals may already present during the newborn period with life-threatening acute metabolic crises and acute multi-organ failure. Tandem mass spectrometry-based newborn screening programmes, in particular for isovaleric aciduria and glutaric aciduria type 1, have significantly reduced diagnostic delay. Dietary treatment with low protein intake or reduced intake of the precursor amino acid(s), carnitine supplementation, cofactor treatment (in responsive patients) and nonadsorbable antibiotics is commonly used for maintenance treatment. Emergency treatment options with high carbohydrate/glucose intake, pharmacological and extracorporeal detoxification of accumulating toxic metabolites for intensified therapy during threatening episodes exist. Diagnostic and therapeutic measures have improved survival and overall outcome in individuals with OADs. However, it has become increasingly evident that the manifestation of late disease complications cannot be reliably predicted and prevented. Conventional metabolic treatment often fails to prevent irreversible organ dysfunction with increasing age, even if patients are considered to be "metabolically stable". This has challenged our understanding of OADs and has elicited the discussion on optimized therapy, including (early) organ transplantation, and long-term care.
Collapse
Affiliation(s)
- Ali Tunç Tuncel
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Nikolas Boy
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Marina A Morath
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Friederike Hörster
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Ulrike Mütze
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| |
Collapse
|
20
|
Stovell MG, Mada MO, Helmy A, Carpenter TA, Thelin EP, Yan JL, Guilfoyle MR, Jalloh I, Howe DJ, Grice P, Mason A, Giorgi-Coll S, Gallagher CN, Murphy MP, Menon DK, Hutchinson PJ, Carpenter KLH. The effect of succinate on brain NADH/NAD + redox state and high energy phosphate metabolism in acute traumatic brain injury. Sci Rep 2018; 8:11140. [PMID: 30042490 PMCID: PMC6057963 DOI: 10.1038/s41598-018-29255-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/04/2018] [Indexed: 12/11/2022] Open
Abstract
A key pathophysiological process and therapeutic target in the critical early post-injury period of traumatic brain injury (TBI) is cell mitochondrial dysfunction; characterised by elevation of brain lactate/pyruvate (L/P) ratio in the absence of hypoxia. We previously showed that succinate can improve brain extracellular chemistry in acute TBI, but it was not clear if this translates to a change in downstream energy metabolism. We studied the effect of microdialysis-delivered succinate on brain energy state (phosphocreatine/ATP ratio (PCr/ATP)) with 31P MRS at 3T, and tissue NADH/NAD+ redox state using microdialysis (L/P ratio) in eight patients with acute major TBI (mean 7 days). Succinate perfusion was associated with increased extracellular pyruvate (+26%, p < 0.0001) and decreased L/P ratio (-13%, p < 0.0001) in patients overall (baseline-vs-supplementation over time), but no clear-cut change in 31P MRS PCr/ATP existed in our cohort (p > 0.4, supplemented-voxel-vs-contralateral voxel). However, the percentage decrease in L/P ratio for each patient following succinate perfusion correlated significantly with their percentage increase in PCr/ATP ratio (Spearman's rank correlation, r = -0.86, p = 0.024). Our findings support the interpretation that L/P ratio is linked to brain energy state, and that succinate may support brain energy metabolism in select TBI patients suffering from mitochondrial dysfunction.
Collapse
Affiliation(s)
- Matthew G Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Marius O Mada
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - T Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eric P Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jiun-Lin Yan
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Duncan J Howe
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Peter Grice
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andrew Mason
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Susan Giorgi-Coll
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Clare N Gallagher
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - David K Menon
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Olivera-Bravo S, Seminotti B, Isasi E, Ribeiro CA, Leipnitz G, Woontner M, Goodman SI, Souza D, Barbeito L, Wajner M. Long Lasting High Lysine Diet Aggravates White Matter Injury in Glutaryl-CoA Dehydrogenase Deficient (Gcdh−/−) Mice. Mol Neurobiol 2018; 56:648-657. [DOI: 10.1007/s12035-018-1077-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023]
|
22
|
Komatsuzaki S, Ediga RD, Okun JG, Kölker S, Sauer SW. Impairment of astrocytic glutaminolysis in glutaric aciduria type I. J Inherit Metab Dis 2018; 41:91-99. [PMID: 29098534 DOI: 10.1007/s10545-017-0096-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 11/29/2022]
Abstract
Glutaric aciduria type I is a rare, autosomal recessive, inherited defect of glutaryl-CoA dehydrogenase. Deficiency of this protein in L-lysine degradation leads to the characteristic accumulation of nontoxic glutarylcarnitine and neurotoxic glutaric acid (GA), glutaryl-CoA, and 3-hydroxyglutaric acid. Untreated patients develop bilateral lesions of basal ganglia resulting in a complex movement disorder with predominant dystonia in infancy and early childhood. The current pathomechanistic concept strongly focuses on imbalanced neuronal energy metabolism due to accumulating metabolites, whereas little is known about the pathomechanistic role of astrocytes, which are thought to be in constant metabolic crosstalk with neurons. We found that glutaric acid (GA) causes astrocytic cell death under starvation cell culture conditions, i.e. low glucose, without glutamine and fetal calf serum. Glutamine completely abolished GA-induced toxicity, suggesting involvement of glutaminolysis. Increasing dependence on glutaminolysis by chemical induction of hypoxia signaling-potentiated GA-induced toxicity. We further show that GA disturbs glutamine degradation by specifically inhibiting glutamate dehydrogenase. Summarizing our study shows that pathologically relevant concentrations of GA block an important step in the metabolic crosstalk between neurons and astrocytes, ultimately leading to astrocytic cell death.
Collapse
Affiliation(s)
- Shoko Komatsuzaki
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Child and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, D-69120, Heidelberg, Germany
| | - Raga Deepthi Ediga
- Center for Child and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, D-69120, Heidelberg, Germany
| | - Jürgen G Okun
- Center for Child and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, D-69120, Heidelberg, Germany
| | - Stefan Kölker
- Center for Child and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, D-69120, Heidelberg, Germany
| | - Sven W Sauer
- Center for Child and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, D-69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Schmiesing J, Lohmöller B, Schweizer M, Tidow H, Gersting SW, Muntau AC, Braulke T, Mühlhausen C. Disease-causing mutations affecting surface residues of mitochondrial glutaryl-CoA dehydrogenase impair stability, heteromeric complex formation and mitochondria architecture. Hum Mol Genet 2017; 26:538-551. [PMID: 28062662 DOI: 10.1093/hmg/ddw411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/28/2016] [Indexed: 01/22/2023] Open
Abstract
The neurometabolic disorder glutaric aciduria type 1 (GA1) is caused by mutations in the GCDH gene encoding the mitochondrial matrix protein glutaryl-CoA dehydrogenase (GCDH), which forms homo- and heteromeric complexes. Twenty percent of all pathogenic mutations affect single amino acid residues on the surface of GCDH resulting in a severe clinical phenotype. We report here on heterologous expression studies of 18 missense mutations identified in GA1 patients affecting surface amino acids. Western blot and pulse chase experiments revealed that the stability of half of the GCDH mutants was significantly reduced. In silico analyses showed that none of the mutations impaired the 3D structure of GCDH. Immunofluorescence co-localisation studies in HeLa cells demonstrated that all GCDH mutants were correctly translocated into mitochondria. Surprisingly, the expression of p.Arg88Cys GCDH as well as further substitutions by alanine, lysine, or methionine but not histidine or leucine resulted in the disruption of mitochondrial architecture forming longitudinal structures composed of stacks of cristae and partial loss of the outer mitochondrial membrane. The expression of mitochondrial fusion or fission proteins was not affected in these cells. Bioluminescence resonance energy transfer analyses revealed that all GCDH mutants exhibit an increased binding affinity to electron transfer flavoprotein beta, whereas only p.Tyr155His GCDH showed a reduced interaction with dihydrolipoamide succinyl transferase. Our data underscore the impact of GCDH protein interactions mediated by amino acid residues on the surface of GCDH required for proper enzymatic activity.
Collapse
Affiliation(s)
- Jessica Schmiesing
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Lohmöller
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Tidow
- The Hamburg Centre for Ultrafast Imaging & Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Søren W Gersting
- Department of Molecular Pediatrics, Dr. von Hauner Childrens Hospital, Ludwig-Maximilians-University, Munich, Germany and
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chris Mühlhausen
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
du Moulin M, Thies B, Blohm M, Oh J, Kemper MJ, Santer R, Mühlhausen C. Glutaric Aciduria Type 1 and Acute Renal Failure: Case Report and Suggested Pathomechanisms. JIMD Rep 2017; 39:25-30. [PMID: 28699143 DOI: 10.1007/8904_2017_44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022] Open
Abstract
Glutaric aciduria type 1 (GA1) is caused by deficiency of the mitochondrial matrix enzyme glutaryl-CoA dehydrogenase (GCDH), leading to accumulation of glutaric acid (GA) and 3-hydroxyglutaric acid (3OHGA) in tissues and body fluids. During catabolic crises, GA1 patients are prone to the development of striatal necrosis and a subsequent irreversible movement disorder during a time window of vulnerability in early infancy. Thus, GA1 had been considered a pure "cerebral organic aciduria" in the past. Single case reports have indicated the occurrence of acute renal dysfunction in children affected by GA1. In addition, growing evidence arises that GA1 patients may develop chronic renal failure during adulthood independent of the previous occurrence of encephalopathic crises. The underlying mechanisms are yet unknown. Here we report on a 3-year-old GA1 patient who died following the development of acute renal failure most likely due to haemolytic uraemic syndrome associated with a pneumococcal infection. We hypothesise that known GA1 pathomechanisms, namely the endothelial dysfunction mediated by 3OHGA, as well as the transporter mechanisms for the urinary excretion of GA and 3OHGA, are involved in the development of glomerular and tubular dysfunction, respectively, and may contribute to a pre-disposition of GA1 patients to renal disease. We recommend careful differential monitoring of glomerular and tubular renal function in GA1 patients.
Collapse
Affiliation(s)
- Marcel du Moulin
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Building O45, 20246, Hamburg, Germany
| | - Bastian Thies
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Building O45, 20246, Hamburg, Germany
| | - Martin Blohm
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Building O45, 20246, Hamburg, Germany
| | - Jun Oh
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Building O45, 20246, Hamburg, Germany
| | - Markus J Kemper
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Building O45, 20246, Hamburg, Germany
| | - René Santer
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Building O45, 20246, Hamburg, Germany
| | - Chris Mühlhausen
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Building O45, 20246, Hamburg, Germany.
| |
Collapse
|
25
|
Jalloh I, Helmy A, Howe DJ, Shannon RJ, Grice P, Mason A, Gallagher CN, Stovell MG, van der Heide S, Murphy MP, Pickard JD, Menon DK, Carpenter TA, Hutchinson PJ, Carpenter KLH. Focally perfused succinate potentiates brain metabolism in head injury patients. J Cereb Blood Flow Metab 2017; 37:2626-2638. [PMID: 27798266 PMCID: PMC5482384 DOI: 10.1177/0271678x16672665] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/26/2016] [Accepted: 08/31/2016] [Indexed: 12/31/2022]
Abstract
Following traumatic brain injury, complex cerebral energy perturbations occur. Correlating with unfavourable outcome, high brain extracellular lactate/pyruvate ratio suggests hypoxic metabolism and/or mitochondrial dysfunction. We investigated whether focal administration of succinate, a tricarboxylic acid cycle intermediate interacting directly with the mitochondrial electron transport chain, could improve cerebral metabolism. Microdialysis perfused disodium 2,3-13C2 succinate (12 mmol/L) for 24 h into nine sedated traumatic brain injury patients' brains, with simultaneous microdialysate collection for ISCUS analysis of energy metabolism biomarkers (nine patients) and nuclear magnetic resonance of 13C-labelled metabolites (six patients). Metabolites 2,3-13C2 malate and 2,3-13C2 glutamine indicated tricarboxylic acid cycle metabolism, and 2,3-13C2 lactate suggested tricarboxylic acid cycle spinout of pyruvate (by malic enzyme or phosphoenolpyruvate carboxykinase and pyruvate kinase), then lactate dehydrogenase-mediated conversion to lactate. Versus baseline, succinate perfusion significantly decreased lactate/pyruvate ratio (p = 0.015), mean difference -12%, due to increased pyruvate concentration (+17%); lactate changed little (-3%); concentrations decreased for glutamate (-43%) (p = 0.018) and glucose (-15%) (p = 0.038). Lower lactate/pyruvate ratio suggests better redox status: cytosolic NADH recycled to NAD+ by mitochondrial shuttles (malate-aspartate and/or glycerol 3-phosphate), diminishing lactate dehydrogenase-mediated pyruvate-to-lactate conversion, and lowering glutamate. Glucose decrease suggests improved utilisation. Direct tricarboxylic acid cycle supplementation with 2,3-13C2 succinate improved human traumatic brain injury brain chemistry, indicated by biomarkers and 13C-labelling patterns in metabolites.
Collapse
Affiliation(s)
- Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Duncan J Howe
- Department of Chemistry, University of Cambridge, UK
| | - Richard J Shannon
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Peter Grice
- Department of Chemistry, University of Cambridge, UK
| | - Andrew Mason
- Department of Chemistry, University of Cambridge, UK
| | - Clare N Gallagher
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Canada
| | - Matthew G Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Susan van der Heide
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | | | - John D Pickard
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - David K Menon
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
- Division of Anaesthesia, Department of Medicine, University of Cambridge, UK
| | - T Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Keri LH Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| |
Collapse
|
26
|
Biagosch C, Ediga RD, Hensler SV, Faerberboeck M, Kuehn R, Wurst W, Meitinger T, Kölker S, Sauer S, Prokisch H. Elevated glutaric acid levels in Dhtkd1-/Gcdh- double knockout mice challenge our current understanding of lysine metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2220-2228. [PMID: 28545977 DOI: 10.1016/j.bbadis.2017.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/28/2017] [Accepted: 05/17/2017] [Indexed: 11/17/2022]
Abstract
Glutaric aciduria type I (GA-I) is a rare organic aciduria caused by the autosomal recessive inherited deficiency of glutaryl-CoA dehydrogenase (GCDH). GCDH deficiency leads to disruption of l-lysine degradation with characteristic accumulation of glutarylcarnitine and neurotoxic glutaric acid (GA), glutaryl-CoA, 3-hydroxyglutaric acid (3-OHGA). DHTKD1 acts upstream of GCDH, and its deficiency leads to none or often mild clinical phenotype in humans, 2-aminoadipic 2-oxoadipic aciduria. We hypothesized that inhibition of DHTKD1 may prevent the accumulation of neurotoxic dicarboxylic metabolites suggesting DHTKD1 inhibition as a possible treatment strategy for GA-I. In order to validate this hypothesis we took advantage of an existing GA-I (Gcdh-/-) mouse model and established a Dhtkd1 deficient mouse model. Both models reproduced the biochemical and clinical phenotype observed in patients. Under challenging conditions of a high lysine diet, only Gcdh-/- mice but not Dhtkd1-/- mice developed clinical symptoms such as lethargic behaviour and weight loss. However, the genetic Dhtkd1 inhibition in Dhtkd1-/-/Gcdh-/- mice could not rescue the GA-I phenotype. Biochemical results confirm this finding with double knockout mice showing similar metabolite accumulations as Gcdh-/- mice with high GA in brain and liver. This suggests that DHTKD1 inhibition alone is not sufficient to treat GA-I, but instead a more complex strategy is needed. Our data highlights the many unresolved questions within the l-lysine degradation pathway and provides evidence for a so far unknown mechanism leading to glutaryl-CoA.
Collapse
Affiliation(s)
- Caroline Biagosch
- Institute of Human Genetics, Technical University Munich, Trogerstr. 32, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Raga Deepthi Ediga
- Institute of Human Genetics, Technical University Munich, Trogerstr. 32, 81675 Munich, Germany
| | - Svenja-Viola Hensler
- Institute of Human Genetics, Technical University Munich, Trogerstr. 32, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Michael Faerberboeck
- Institute of Human Genetics, Helmholtz Zentrum Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Ralf Kuehn
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technical University Munich, Trogerstr. 32, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Stefan Kölker
- University Hospital Heidelberg, Centre for Child and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany
| | - Sven Sauer
- University Hospital Heidelberg, Centre for Child and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany.
| | - Holger Prokisch
- Institute of Human Genetics, Technical University Munich, Trogerstr. 32, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
27
|
Braissant O, Jafari P, Remacle N, Cudré-Cung HP, Do Vale Pereira S, Ballhausen D. Immunolocalization of glutaryl-CoA dehydrogenase (GCDH) in adult and embryonic rat brain and peripheral tissues. Neuroscience 2017; 343:355-363. [DOI: 10.1016/j.neuroscience.2016.10.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 01/23/2023]
|
28
|
Rodrigues MDN, Seminotti B, Zanatta Â, de Mello Gonçalves A, Bellaver B, Amaral AU, Quincozes-Santos A, Goodman SI, Woontner M, Souza DO, Wajner M. Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I. Mol Neurobiol 2016; 54:4795-4805. [PMID: 27510504 DOI: 10.1007/s12035-016-0023-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/01/2016] [Indexed: 11/27/2022]
Abstract
Patients affected by glutaric aciduria type I (GA-I) show progressive cortical leukoencephalopathy whose pathogenesis is poorly known. In the present work, we exposed cortical astrocytes of wild-type (Gcdh +/+ ) and glutaryl-CoA dehydrogenase knockout (Gcdh -/- ) mice to the oxidative stress inducer menadione and measured mitochondrial bioenergetics, redox homeostasis, and cell viability. Mitochondrial function (MTT and JC1-mitochondrial membrane potential assays), redox homeostasis (DCFH oxidation, nitrate and nitrite production, GSH concentrations and activities of the antioxidant enzymes SOD and GPx), and cell death (propidium iodide incorporation) were evaluated in primary cortical astrocyte cultures of Gcdh +/+ and Gcdh -/- mice unstimulated and stimulated by menadione. We also measured the pro-inflammatory response (TNFα levels, IL1-β and NF-ƙB) in unstimulated astrocytes obtained from these mice. Gcdh -/- mice astrocytes were more vulnerable to menadione-induced oxidative stress (decreased GSH concentrations and altered activities of the antioxidant enzymes), mitochondrial dysfunction (decrease of MTT reduction and JC1 values), and cell death as compared with Gcdh +/+ astrocytes. A higher inflammatory response (TNFα, IL1-β and NF-ƙB) was also observed in Gcdh -/- mice astrocytes. These data indicate a higher susceptibility of Gcdh -/- cortical astrocytes to oxidative stress and mitochondrial dysfunction, probably leading to cell death. It is presumed that these pathomechanisms may contribute to the cortical leukodystrophy observed in GA-I patients.
Collapse
Affiliation(s)
- Marília Danyelle Nunes Rodrigues
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | - Bianca Seminotti
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | - Ângela Zanatta
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | - Aline de Mello Gonçalves
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | - Bruna Bellaver
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | - Alexandre Umpierrez Amaral
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | - André Quincozes-Santos
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | | | - Michael Woontner
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Diogo Onofre Souza
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | - Moacir Wajner
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
29
|
Klotz J, Porter BE, Colas C, Schlessinger A, Pajor AM. Mutations in the Na(+)/citrate cotransporter NaCT (SLC13A5) in pediatric patients with epilepsy and developmental delay. Mol Med 2016; 22:molmed.2016.00077. [PMID: 27261973 DOI: 10.2119/molmed.2016.00077] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/23/2016] [Indexed: 01/13/2023] Open
Abstract
Mutations in the SLC13A5 gene that codes for the Na(+)/citrate cotransporter, NaCT, are associated with early onset epilepsy, developmental delay and tooth dysplasia in children. In the present study we identify additional SLC13A5 mutations in nine epilepsy patients from six families. To better characterize the syndrome, families with affected children answered questions about the scope of illness and treatment strategies. There are currently no effective treatments, but some anti-epileptic drugs targeting the GABA system reduce seizure frequency. Acetazolamide, a carbonic anhydrase inhibitor and atypical anti-seizure medication decreases seizures in 4 patients. In contrast to previous reports, the ketogenic diet and fasting produce worsening of symptoms. The effects of the mutations on NaCT transport function and protein expression were examined by transient transfections of COS-7 cells. There was no transport activity from any of the mutant transporters, although some of the mutant transporter proteins were present on the plasma membrane. The structural model of NaCT suggests that these mutations can affect helix packing or substrate binding. We tested various treatments, including chemical chaperones and low temperatures, but none improve transport function in the NaCT mutants. Interestingly, coexpression of NaCT and the mutants results in decreased protein expression and activity of the wild-type transporter, indicating functional interaction. In conclusion, our study has identified additional SLC13A5 mutations in patients with chronic epilepsy starting in the neonatal period, with the mutations producing inactive Na(+)/citrate transporters.
Collapse
Affiliation(s)
- Jenna Klotz
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA 94305
| | - Brenda E Porter
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA 94305
| | - Claire Colas
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avner Schlessinger
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ana M Pajor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA 92130-0718
| |
Collapse
|
30
|
Astrocyte Dysfunction in Developmental Neurometabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:227-243. [PMID: 27714692 DOI: 10.1007/978-3-319-40764-7_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Astrocytes play crucial roles in maintaining brain homeostasis and in orchestrating neural development, all through tightly coordinated steps that cooperate to maintain the balance needed for normal development. Here, we review the alterations in astrocyte functions that contribute to a variety of developmental neurometabolic disorders and provide additional data on the predominant role of astrocyte dysfunction in the neurometabolic neurodegenerative disease glutaric acidemia type I. Finally, we describe some of the therapeutical approaches directed to neurometabolic diseases and discuss if astrocytes can be possible therapeutic targets for treating these disorders.
Collapse
|
31
|
Boy N, Heringer J, Haege G, Glahn EM, Hoffmann GF, Garbade SF, Kölker S, Burgard P. A cross-sectional controlled developmental study of neuropsychological functions in patients with glutaric aciduria type I. Orphanet J Rare Dis 2015; 10:163. [PMID: 26693825 PMCID: PMC4689061 DOI: 10.1186/s13023-015-0379-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/14/2015] [Indexed: 01/26/2023] Open
Abstract
Background Glutaric aciduria type I (GA-I) is an inherited metabolic disease due to deficiency of glutaryl-CoA dehydrogenase (GCDH). Cognitive functions are generally thought to be spared, but have not yet been studied in detail. Methods Thirty patients detected by newborn screening (n = 13), high-risk screening (n = 3) or targeted metabolic testing (n = 14) were studied for simple reaction time (SRT), continuous performance (CP), visual working memory (VWM), visual-motor coordination (Tracking) and visual search (VS). Dystonia (n = 13 patients) was categorized using the Barry-Albright-Dystonia Scale (BADS). Patients were compared with 196 healthy controls. Developmental functions of cognitive performances were analysed using a negative exponential function model. Results BADS scores correlated with speed tests but not with tests measuring stability or higher cognitive functions without time constraints. Developmental functions of GA-I patients significantly differed from controls for SRT and VS but not for VWM and showed obvious trends for CP and Tracking. Dystonic patients were slower in SRT and CP but reached their asymptote of performance similar to asymptomatic patients and controls in all tests. Asymptomatic patients did not differ from controls, except showing significantly better results in Tracking and a trend for slower reactions in visual search. Data across all age groups of patients and controls fitted well to a model of negative exponential development. Conclusions Dystonic patients predominantly showed motor speed impairment, whereas performance improved with higher cognitive load. Patients without motor symptoms did not differ from controls. Developmental functions of cognitive performances were similar in patients and controls. Performance in tests with higher cognitive demand might be preserved in GA-I, even in patients with striatal degeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0379-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikolas Boy
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Jana Heringer
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Gisela Haege
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Esther M Glahn
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Georg F Hoffmann
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Sven F Garbade
- Faculty of Applied Psychology, SRH University of Applied Sciences, D-69123, Heidelberg, Germany.
| | - Stefan Kölker
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Peter Burgard
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| |
Collapse
|
32
|
In Vivo NMR Studies of the Brain with Hereditary or Acquired Metabolic Disorders. Neurochem Res 2015; 40:2647-85. [PMID: 26610379 DOI: 10.1007/s11064-015-1772-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 01/09/2023]
Abstract
Metabolic disorders, whether hereditary or acquired, affect the brain, and abnormalities of the brain are related to cellular integrity; particularly in regard to neurons and astrocytes as well as interactions between them. Metabolic disturbances lead to alterations in cellular function as well as microscopic and macroscopic structural changes in the brain with diabetes, the most typical example of metabolic disorders, and a number of hereditary metabolic disorders. Alternatively, cellular dysfunction and degeneration of the brain lead to metabolic disturbances in hereditary neurological disorders with neurodegeneration. Nuclear magnetic resonance (NMR) techniques allow us to assess a range of pathophysiological changes of the brain in vivo. For example, magnetic resonance spectroscopy detects alterations in brain metabolism and energetics. Physiological magnetic resonance imaging (MRI) detects accompanying changes in cerebral blood flow related to neurovascular coupling. Diffusion and T1/T2-weighted MRI detect microscopic and macroscopic changes of the brain structure. This review summarizes current NMR findings of functional, physiological and biochemical alterations within a number of hereditary and acquired metabolic disorders in both animal models and humans. The global view of the impact of these metabolic disorders on the brain may be useful in identifying the unique and/or general patterns of abnormalities in the living brain related to the pathophysiology of the diseases, and identifying future fields of inquiry.
Collapse
|
33
|
Kölker S, Valayannopoulos V, Burlina AB, Sykut-Cegielska J, Wijburg FA, Teles EL, Zeman J, Dionisi-Vici C, Barić I, Karall D, Arnoux JB, Avram P, Baumgartner MR, Blasco-Alonso J, Boy SPN, Rasmussen MB, Burgard P, Chabrol B, Chakrapani A, Chapman K, Cortès I Saladelafont E, Couce ML, de Meirleir L, Dobbelaere D, Furlan F, Gleich F, González MJ, Gradowska W, Grünewald S, Honzik T, Hörster F, Ioannou H, Jalan A, Häberle J, Haege G, Langereis E, de Lonlay P, Martinelli D, Matsumoto S, Mühlhausen C, Murphy E, de Baulny HO, Ortez C, Pedrón CC, Pintos-Morell G, Pena-Quintana L, Ramadža DP, Rodrigues E, Scholl-Bürgi S, Sokal E, Summar ML, Thompson N, Vara R, Pinera IV, Walter JH, Williams M, Lund AM, Garcia-Cazorla A. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype. J Inherit Metab Dis 2015; 38:1059-74. [PMID: 25875216 DOI: 10.1007/s10545-015-9840-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND The disease course and long-term outcome of patients with organic acidurias (OAD) and urea cycle disorders (UCD) are incompletely understood. AIMS To evaluate the complex clinical phenotype of OAD and UCD patients at different ages. RESULTS Acquired microcephaly and movement disorders were common in OAD and UCD highlighting that the brain is the major organ involved in these diseases. Cardiomyopathy [methylmalonic (MMA) and propionic aciduria (PA)], prolonged QTc interval (PA), optic nerve atrophy [MMA, isovaleric aciduria (IVA)], pancytopenia (PA), and macrocephaly [glutaric aciduria type 1 (GA1)] were exclusively found in OAD patients, whereas hepatic involvement was more frequent in UCD patients, in particular in argininosuccinate lyase (ASL) deficiency. Chronic renal failure was often found in MMA, with highest frequency in mut(0) patients. Unexpectedly, chronic renal failure was also observed in adolescent and adult patients with GA1 and ASL deficiency. It had a similar frequency in patients with or without a movement disorder suggesting different pathophysiology. Thirteen patients (classic OAD: 3, UCD: 10) died during the study interval, ten of them during the initial metabolic crisis in the newborn period. Male patients with late-onset ornithine transcarbamylase deficiency were presumably overrepresented in the study population. CONCLUSIONS Neurologic impairment is common in OAD and UCD, whereas the involvement of other organs (heart, liver, kidneys, eyes) follows a disease-specific pattern. The identification of unexpected chronic renal failure in GA1 and ASL deficiency emphasizes the importance of a systematic follow-up in patients with rare diseases.
Collapse
Affiliation(s)
- Stefan Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| | - Vassili Valayannopoulos
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Alberto B Burlina
- Azienda Ospedaliera di Padova, U.O.C. Malattie Metaboliche Ereditarie, Padova, Italy
| | | | - Frits A Wijburg
- Department of Pediatrics, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Elisa Leão Teles
- Unidade de Doenças Metabólicas, Serviço de Pediatria, Hospital de S. João, EPE, Porto, Portugal
| | - Jiri Zeman
- First Faculty of Medicine Charles University and General University of Prague, Prague, Czech Republic
| | - Carlo Dionisi-Vici
- Ospedale Pediatrico Bambino Gésu, U.O.C. Patologia Metabolica, Rome, Italy
| | - Ivo Barić
- School of Medicine University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Daniela Karall
- Medical University of Innsbruck, Clinic for Pediatrics I, Inherited Metabolic Disorders, Innsbruck, Austria
| | - Jean-Baptiste Arnoux
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Paula Avram
- Institute of Mother and Child Care "Alfred Rusescu", Bucharest, Romania
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, 8032, Zurich, Switzerland
| | | | - S P Nikolas Boy
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Marlene Bøgehus Rasmussen
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Peter Burgard
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Brigitte Chabrol
- Centre de Référence des Maladies Héréditaires du Métabolisme, Service de Neurologie, Hôpital d'Enfants, CHU Timone, Marseilles, France
| | - Anupam Chakrapani
- Birmingham Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Kimberly Chapman
- Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | | | - Maria L Couce
- Metabolic Unit, Department of Pediatrics, Hospital Clinico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Dries Dobbelaere
- Centre de Référence des Maladies Héréditaires du Métabolisme de l'Enfant et de l'Adulte, Hôpital Jeanne de Flandre, Lille, France
| | - Francesca Furlan
- Azienda Ospedaliera di Padova, U.O.C. Malattie Metaboliche Ereditarie, Padova, Italy
| | - Florian Gleich
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | | | - Wanda Gradowska
- Department of Laboratory Diagnostics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Stephanie Grünewald
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Tomas Honzik
- First Faculty of Medicine Charles University and General University of Prague, Prague, Czech Republic
| | - Friederike Hörster
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Hariklea Ioannou
- 1st Pediatric Department, Metabolic Laboratory, General Hospital of Thessaloniki 'Hippocration', Thessaloniki, Greece
| | - Anil Jalan
- N.I.R.M.A.N., Om Rachna Society, Vashi, Navi Mumbai, Mumbai, India
| | - Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, 8032, Zurich, Switzerland
| | - Gisela Haege
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Eveline Langereis
- Department of Pediatrics, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Pascale de Lonlay
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Diego Martinelli
- Ospedale Pediatrico Bambino Gésu, U.O.C. Patologia Metabolica, Rome, Italy
| | - Shirou Matsumoto
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto City, Japan
| | - Chris Mühlhausen
- Universitätsklinikum Hamburg-Eppendorf, Klinik für Kinder- und Jugendmedizin, Hamburg, Germany
| | - Elaine Murphy
- National Hospital for Neurology and Neurosurgery, Charles Dent Metabolic Unit, London, UK
| | | | - Carlos Ortez
- Hospital San Joan de Deu, Servicio de Neurologia and CIBERER, ISCIII, Barcelona, Spain
| | - Consuelo C Pedrón
- Department of Pediatrics, Metabolic Diseases Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Guillem Pintos-Morell
- Department of Pediatrics, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
| | | | | | - Esmeralda Rodrigues
- Unidade de Doenças Metabólicas, Serviço de Pediatria, Hospital de S. João, EPE, Porto, Portugal
| | - Sabine Scholl-Bürgi
- Medical University of Innsbruck, Clinic for Pediatrics I, Inherited Metabolic Disorders, Innsbruck, Austria
| | - Etienne Sokal
- Cliniques Universitaires St Luc, Université Catholique de Louvain, Service Gastroentérologie and Hépatologie Pédiatrique, Bruxelles, Belgium
| | - Marshall L Summar
- Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Nicholas Thompson
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Roshni Vara
- Evelina Children's Hospital, St Thomas' Hospital, London, United Kingdom
| | | | - John H Walter
- Manchester Academic Health Science Centre, University of Manchester, Willink Biochemical Genetics Unit, Genetic Medicine, Manchester, UK
| | - Monique Williams
- Erasmus MC-Sophia Kinderziekenhuis, Erasmus Universiteit Rotterdam, Rotterdam, Netherlands
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
34
|
Kölker S, Garcia-Cazorla A, Valayannopoulos V, Lund AM, Burlina AB, Sykut-Cegielska J, Wijburg FA, Teles EL, Zeman J, Dionisi-Vici C, Barić I, Karall D, Augoustides-Savvopoulou P, Aksglaede L, Arnoux JB, Avram P, Baumgartner MR, Blasco-Alonso J, Chabrol B, Chakrapani A, Chapman K, I Saladelafont EC, Couce ML, de Meirleir L, Dobbelaere D, Dvorakova V, Furlan F, Gleich F, Gradowska W, Grünewald S, Jalan A, Häberle J, Haege G, Lachmann R, Laemmle A, Langereis E, de Lonlay P, Martinelli D, Matsumoto S, Mühlhausen C, de Baulny HO, Ortez C, Peña-Quintana L, Ramadža DP, Rodrigues E, Scholl-Bürgi S, Sokal E, Staufner C, Summar ML, Thompson N, Vara R, Pinera IV, Walter JH, Williams M, Burgard P. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 1: the initial presentation. J Inherit Metab Dis 2015; 38:1041-57. [PMID: 25875215 DOI: 10.1007/s10545-015-9839-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND The clinical presentation of patients with organic acidurias (OAD) and urea cycle disorders (UCD) is variable; symptoms are often non-specific. AIMS/METHODS To improve the knowledge about OAD and UCD the E-IMD consortium established a web-based patient registry. RESULTS We registered 795 patients with OAD (n = 452) and UCD (n = 343), with ornithine transcarbamylase (OTC) deficiency (n = 196), glutaric aciduria type 1 (GA1; n = 150) and methylmalonic aciduria (MMA; n = 149) being the most frequent diseases. Overall, 548 patients (69 %) were symptomatic. The majority of them (n = 463) presented with acute metabolic crisis during (n = 220) or after the newborn period (n = 243) frequently demonstrating impaired consciousness, vomiting and/or muscular hypotonia. Neonatal onset of symptoms was most frequent in argininosuccinic synthetase and lyase deficiency and carbamylphosphate 1 synthetase deficiency, unexpectedly low in male OTC deficiency, and least frequently in GA1 and female OTC deficiency. For patients with MMA, propionic aciduria (PA) and OTC deficiency (male and female), hyperammonemia was more severe in metabolic crises during than after the newborn period, whereas metabolic acidosis tended to be more severe in MMA and PA patients with late onset of symptoms. Symptomatic patients without metabolic crises (n = 94) often presented with a movement disorder, mental retardation, epilepsy and psychiatric disorders (the latter in UCD only). CONCLUSIONS The initial presentation varies widely in OAD and UCD patients. This is a challenge for rapid diagnosis and early start of treatment. Patients with a sepsis-like neonatal crisis and those with late-onset of symptoms are both at risk of delayed or missed diagnosis.
Collapse
Affiliation(s)
- Stefan Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | | | - Vassili Valayannopoulos
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alberto B Burlina
- U.O.C. Malattie Metaboliche Ereditarie, Azienda Ospedaliera di Padova, Padova, Italy
| | | | - Frits A Wijburg
- Department of Pediatrics, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Elisa Leão Teles
- Unidade de Doenças Metabólicas, Serviço de Pediatria, Hospital de S. João, EPE, Porto, Portugal
| | - Jiri Zeman
- First Faculty of Medicine, Charles University and General University of Prague, Prague, Czech Republic
| | - Carlo Dionisi-Vici
- U.O.C. Patologia Metabolica, Ospedale Pediatrico Bambino Gésu, Rome, Italy
| | - Ivo Barić
- School of Medicine, University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Daniela Karall
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Lise Aksglaede
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jean-Baptiste Arnoux
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Paula Avram
- Institute of Mother and Child Care "Alfred Rusescu", Bucharest, Romania
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | | | - Brigitte Chabrol
- Centre de Référence des Maladies Héréditaires du Métabolisme, Service de Neurologie, Hôpital d'Enfants, CHU Timone, Marseilles, France
| | - Anupam Chakrapani
- Birmingham Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Kimberly Chapman
- Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | | | - Maria L Couce
- Metabolic Unit, Department of Pediatrics, Hospital Clinico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Dries Dobbelaere
- Centre de Référence des Maladies Héréditaires du Métabolisme de l'Enfant et de l'Adulte, Hôpital Jeanne de Flandre, Lille, France
| | - Veronika Dvorakova
- First Faculty of Medicine, Charles University and General University of Prague, Prague, Czech Republic
| | - Francesca Furlan
- U.O.C. Malattie Metaboliche Ereditarie, Azienda Ospedaliera di Padova, Padova, Italy
| | - Florian Gleich
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Wanda Gradowska
- Department of Laboratory Diagnostics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Stephanie Grünewald
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Anil Jalan
- N.I.R.M.A.N., Om Rachna Society, Vashi, Navi Mumbai, Mumbai, India
| | - Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | - Gisela Haege
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Robin Lachmann
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Alexander Laemmle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | - Eveline Langereis
- Department of Pediatrics, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Pascale de Lonlay
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Diego Martinelli
- U.O.C. Patologia Metabolica, Ospedale Pediatrico Bambino Gésu, Rome, Italy
| | - Shirou Matsumoto
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto City, Japan
| | - Chris Mühlhausen
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Carlos Ortez
- Servicio de Neurologia and CIBERER, ISCIII, Hospital San Joan de Deu, Barcelona, Spain
| | - Luis Peña-Quintana
- Hospital Universitario Materno-Infantil de Canarias, Unit of Pediatric Gastroenterology, Hepatology and Nutrition, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Esmeralda Rodrigues
- Unidade de Doenças Metabólicas, Serviço de Pediatria, Hospital de S. João, EPE, Porto, Portugal
| | - Sabine Scholl-Bürgi
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Etienne Sokal
- Service Gastroentérologie and Hépatologie Pédiatrique, Cliniques Universitaires St Luc, Université Catholique de Louvain, Bruxelles, Belgium
| | - Christian Staufner
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Marshall L Summar
- Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Nicholas Thompson
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Roshni Vara
- Evelina Children's Hospital, St Thomas' Hospital, London, UK
| | | | - John H Walter
- Manchester Academic Health Science Centre, Willink Biochemical Genetics Unit, Genetic Medicine, University of Manchester, Manchester, UK
| | - Monique Williams
- Erasmus MC-Sophia Kinderziekenhuis, Erasmus Universiteit Rotterdam, Rotterdam, Netherlands
| | - Peter Burgard
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| |
Collapse
|
35
|
Olivera-Bravo S, Barbeito L. A role of astrocytes in mediating postnatal neurodegeneration in Glutaric acidemia-type 1. FEBS Lett 2015; 589:3492-7. [DOI: 10.1016/j.febslet.2015.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 01/12/2023]
|
36
|
Hardies K, de Kovel CGF, Weckhuysen S, Asselbergh B, Geuens T, Deconinck T, Azmi A, May P, Brilstra E, Becker F, Barisic N, Craiu D, Braun KP, Lal D, Thiele H, Schubert J, Weber Y, van ‘t Slot R, Nürnberg P, Balling R, Timmerman V, Lerche H, Maudsley S, Helbig I, Suls A, Koeleman BP. Recessive mutations inSLC13A5result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia. Brain 2015; 138:3238-50. [DOI: 10.1093/brain/awv263] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022] Open
|
37
|
Harting I, Boy N, Heringer J, Seitz A, Bendszus M, Pouwels PJW, Kölker S. (1)H-MRS in glutaric aciduria type 1: impact of biochemical phenotype and age on the cerebral accumulation of neurotoxic metabolites. J Inherit Metab Dis 2015; 38:829-38. [PMID: 25860816 DOI: 10.1007/s10545-015-9826-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/01/2015] [Accepted: 02/10/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND In glutaric aciduria type 1 (GA1) the neurotoxic metabolites glutaric acid (GA) and 3-hydroxyglutaric acid (3-OH-GA) accumulate within the brain. Due to limited efflux across the blood-brain-barrier biochemical monitoring of intracerebrally accumulating toxic metabolites is as yet not possible. AIMS To investigate brain metabolic patterns in glutaric aciduria type 1 using (1)H magnetic resonance spectroscopy ((1)H-MRS) with focus on detecting the disease-related neurotoxic metabolites GA and 3-OH-GA. PATIENTS AND METHODS Short echo time (1)H-MRS was performed in 13 treated metabolically stable patients. Twenty-one white matter and 16 basal ganglia spectra from 12 patients (age range 7 months - 22 years) were included. Subgroups based on age, biochemical phenotype and/or associated MRI changes were compared with control spectra. RESULTS GA was elevated in white matter of patients. 3-OH-GA was elevated in white matter of older patients with associated signal changes on MRI, which was structurally characterized by decreased creatine and phosphocreatine (tCr) and elevated choline (Cho). Metabolite changes differed with biochemical phenotype and disease duration: Low excretors with up to 30% residual enzyme activity had only mildly, non-significantly elevated GA and mildly subnormal N-acetylaspartate (tNAA). High excretors with complete lack of enzyme activity had significantly increased GA, tNAA was mildly subnormal in younger and decreased in older high excretors. CONCLUSIONS GA and 3-OH-GA are detectable by in vivo (1)H-MRS, which might finally allow biochemical follow-up monitoring of intracerebrally accumulating neurotoxic metabolites in GA1. A high excreting phenotype appears to be a risk factor for cerebral GA accumulation and progressive neuroaxonal compromise despite a similar clinical course in younger high and low excreting patients. This might have consequences for long-term outcome.
Collapse
Affiliation(s)
- Inga Harting
- Department of Neuroradiology, University of Heidelberg Medical Center, Im Neuenheimer Feld 400, D-69120, Heidelberg, Germany,
| | | | | | | | | | | | | |
Collapse
|
38
|
Amaral AU, Cecatto C, Seminotti B, Ribeiro CA, Lagranha VL, Pereira CC, de Oliveira FH, de Souza DG, Goodman S, Woontner M, Wajner M. Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload. Brain Res 2015; 1620:116-29. [DOI: 10.1016/j.brainres.2015.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 11/29/2022]
|
39
|
Novoselov A, Becker T, Pauls G, von Reuß SH, Boland W. Spodoptera littoralis detoxifies neurotoxic 3-nitropropanoic acid by conjugation with amino acids. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:97-103. [PMID: 26092560 DOI: 10.1016/j.ibmb.2015.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
Spodoptera littoralis is a phytophagous generalist. Its host range includes more than 40 plant species, some of which produce 3-nitropropanoic acid (3-NPA), an irreversible inhibitor of mitochondrial succinate dehydrogenase. Growth in larvae fed an artificial diet with a sublethal admixture of 3-NPA (4.2 μmol per g) was slowed significantly, but larvae experienced no increase in mortality. In contrast, larvae injected with 25.2 μmol/g (bodyweight) 3-NPA experienced acute toxicity and death. To study the detoxification mechanism of 3-NPA in S. littoralis, the insect frass was analyzed by HPLC-MS. Comparative analysis of 3-NPA-treated and -untreated control samples using HR-MS(2) revealed a group of differential signals that were identified as amino acid amides of 3-NPA with glycine, alanine, serine, and threonine. When sublethal amounts of stable isotope-labeled 3-NPA were injected into a larva's hemolymph, 3-NPA amino acid conjugates were identified as putative detoxification products. Bioassays with synthetic standards confirmed that the toxicity of the amides was negligible in comparison to the toxicity of free 3-NPA, demonstrating that amino acid conjugation in S. littoralis represents an efficient way to detoxify 3-NPA. Furthermore, biosynthetic studies using crude fractions of the gut tissue indicated that conjugation of 3-NPA with amino acids occurs in epithelial cells of the insect's gut. Taken together, these results suggest that the detoxification of 3-NPA in S. littoralis proceeds via conjugation to specific amino acids within the epithelial cells followed by export of the nontoxic amino acid conjugates to the hemolymph via as yet uncharacterized mechanisms, most likely involving the Malpighian tubules.
Collapse
Affiliation(s)
- Alexey Novoselov
- Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knoell-Straße 8, D-07745, Jena, Germany
| | - Tobias Becker
- Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knoell-Straße 8, D-07745, Jena, Germany
| | - Gerhard Pauls
- Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knoell-Straße 8, D-07745, Jena, Germany
| | - Stephan H von Reuß
- Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knoell-Straße 8, D-07745, Jena, Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knoell-Straße 8, D-07745, Jena, Germany.
| |
Collapse
|
40
|
Hamel Y, Mamoune A, Mauvais FX, Habarou F, Lallement L, Romero NB, Ottolenghi C, de Lonlay P. Acute rhabdomyolysis and inflammation. J Inherit Metab Dis 2015; 38:621-8. [PMID: 25778939 DOI: 10.1007/s10545-015-9827-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 02/07/2023]
Abstract
Rhabdomyolysis results from the rapid breakdown of skeletal muscle fibers, which leads to leakage of potentially toxic cellular content into the systemic circulation. Acquired causes by direct injury to the sarcolemma are most frequent. The inherited causes are: i) metabolic with failure of energy production, including mitochondrial fatty acid ß-oxidation defects, LPIN1 mutations, inborn errors of glycogenolysis and glycolysis, more rarely mitochondrial respiratory chain deficiency, purine defects and peroxysomal α-methyl-acyl-CoA-racemase defect (AMACR), ii) structural causes with muscle dystrophies and myopathies, iii) calcium pump disorder with RYR1 gene mutations, iv) inflammatory causes with myositis. Irrespective of the cause of rhabdomyolysis, the pathology follows a common pathway, either by the direct injury to sarcolemma by increased intracellular calcium concentration (acquired causes) or by the failure of energy production (inherited causes), which leads to fiber necrosis. Rhabdomyolysis are frequently precipitated by febrile illness or exercise. These conditions are associated with two events, elevated temperature and high circulating levels of pro-inflammatory mediators such as cytokines and chemokines. To illustrate these points in the context of energy metabolism, protein thermolability and the potential benefits of arginine therapy, we focus on a rare cause of rhabdomyolysis, aldolase A deficiency. In addition, our studies on lipin-1 (LPIN1) deficiency raise the possibility that several diseases involved in rhabdomyolysis implicate pro-inflammatory cytokines and may even represent primarily pro-inflammatory diseases. Thus, not only thermolability of mutant proteins critical for muscle function, but also pro-inflammatory cytokines per se, may lead to metabolic decompensation and rhabdomyolysis.
Collapse
Affiliation(s)
- Yamina Hamel
- Institut Imagine, Institut National de la Santé et de la Recherche Médicale, Unité 1163, 75015, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Olivera-Bravo S, Ribeiro CAJ, Isasi E, Trías E, Leipnitz G, Díaz-Amarilla P, Woontner M, Beck C, Goodman SI, Souza D, Wajner M, Barbeito L. Striatal neuronal death mediated by astrocytes from the Gcdh−/− mouse model of glutaric acidemia type I. Hum Mol Genet 2015; 24:4504-15. [DOI: 10.1093/hmg/ddv175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/05/2015] [Indexed: 11/12/2022] Open
|
42
|
Sauer SW, Opp S, Komatsuzaki S, Blank AE, Mittelbronn M, Burgard P, Koeller DM, Okun JG, Kölker S. Multifactorial modulation of susceptibility to l-lysine in an animal model of glutaric aciduria type I. Biochim Biophys Acta Mol Basis Dis 2015; 1852:768-77. [PMID: 25558815 DOI: 10.1016/j.bbadis.2014.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/16/2014] [Accepted: 12/27/2014] [Indexed: 01/05/2023]
Abstract
Glutaric aciduria type I is an inherited defect in L-lysine, L-hydroxylysine and L-tryptophan degradation caused by deficiency of glutaryl-CoA dehydrogenase (GCDH). The majority of untreated patients presents with accumulation of neurotoxic metabolites - glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) - and striatal injury. Gcdh(-/-) mice display elevated levels of GA and 3-OH-GA but do not spontaneously develop striatal lesions. L-lysine-enriched diets (appr. 235 mg/d) were suggested to induce a neurological phenotype similar to affected patients. In our hands 93% of mice stressed according to the published protocol remained asymptomatic. To understand the underlying mechanism, we modified their genetic background (F1 C57BL6/Jx129/SvCrl) and increased the daily oral L-lysine supply (235-433 mg). We identified three modulating factors, (1) gender, (2) genetic background, and (3) amount of L-lysine. Male mice displayed higher vulnerability and inbreeding for more than two generations as well as elevating L-lysine supply increased the diet-induced mortality rate (up to 89%). Onset of first symptoms leads to strongly reduced intake of food and, thus, L-lysine suggesting a threshold for toxic metabolite production to induce neurological disease. GA and 3-OH-GA tissue concentrations did not correlate with dietary L-lysine supply but differed between symptomatic and asymptomatic mice. Cerebral activities of glyceraldehyde 3-phosphate dehydrogenase, 2-oxoglutarate dehydrogenase complex, and aconitase were decreased. Symptomatic mice did not develop striatal lesions or intracerebral hemorrhages. We found severe spongiosis in the hippocampus of Gcdh(-/-) mice which was independent of dietary L-lysine supply. In conclusion, the L-lysine-induced pathology in Gcdh(-/-) mice depends on genetic and dietary parameters.
Collapse
Affiliation(s)
- Sven W Sauer
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Silvana Opp
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Shoko Komatsuzaki
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Anna-Eva Blank
- Institute of Neurology (Edinger Institute), Goethe-University Frankfurt, D-60528 Frankfurt/Main, Germany
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), Goethe-University Frankfurt, D-60528 Frankfurt/Main, Germany
| | - Peter Burgard
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - D M Koeller
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Jürgen G Okun
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Stefan Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
43
|
DeSalvo MK, Hindle SJ, Rusan ZM, Orng S, Eddison M, Halliwill K, Bainton RJ. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes. Front Neurosci 2014; 8:346. [PMID: 25426014 PMCID: PMC4224204 DOI: 10.3389/fnins.2014.00346] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/10/2014] [Indexed: 12/29/2022] Open
Abstract
Central nervous system (CNS) function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB) structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In addition, the BBB has long been a challenging obstacle to the pharmacologic treatment of CNS diseases; thus model systems that can parse the functions of the BBB are highly desirable. In this study, we sought to define the transcriptome of the adult Drosophila melanogaster BBB by isolating the BBB surface glia with fluorescence activated cell sorting (FACS) and profiling their gene expression with microarrays. By comparing the transcriptome of these surface glia to that of all brain glia, brain neurons, and whole brains, we present a catalog of transcripts that are selectively enriched at the Drosophila BBB. We found that the fly surface glia show high expression of many ATP-binding cassette (ABC) and solute carrier (SLC) transporters, cell adhesion molecules, metabolic enzymes, signaling molecules, and components of xenobiotic metabolism pathways. Using gene sequence-based alignments, we compare the Drosophila and Murine BBB transcriptomes and discover many shared chemoprotective and small molecule control pathways, thus affirming the relevance of invertebrate models for studying evolutionary conserved BBB properties. The Drosophila BBB transcriptome is valuable to vertebrate and insect biologists alike as a resource for studying proteins underlying diffusion barrier development and maintenance, glial biology, and regulation of drug transport at tissue barriers.
Collapse
Affiliation(s)
- Michael K DeSalvo
- Department of Anesthesia and Perioperative Care, University of California San Francisco San Francisco, CA, USA
| | - Samantha J Hindle
- Department of Anesthesia and Perioperative Care, University of California San Francisco San Francisco, CA, USA
| | - Zeid M Rusan
- Department of Anesthesia and Perioperative Care, University of California San Francisco San Francisco, CA, USA
| | - Souvinh Orng
- Department of Anesthesia and Perioperative Care, University of California San Francisco San Francisco, CA, USA
| | - Mark Eddison
- Janelia Farm Research Campus, The Howard Hughes Medical Institute Ashburn, VA, USA
| | - Kyle Halliwill
- Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco San Francisco, CA, USA
| | - Roland J Bainton
- Department of Anesthesia and Perioperative Care, University of California San Francisco San Francisco, CA, USA
| |
Collapse
|
44
|
Fu X, Gao H, Tian F, Gao J, Lou L, Liang Y, Ning Q, Luo X. Mechanistic effects of amino acids and glucose in a novel glutaric aciduria type 1 cell model. PLoS One 2014; 9:e110181. [PMID: 25333616 PMCID: PMC4198201 DOI: 10.1371/journal.pone.0110181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/05/2014] [Indexed: 11/19/2022] Open
Abstract
Acute neurological crises involving striatal degeneration induced by a deficiency of glutaryl-CoA dehydrogenase (GCDH) and the accumulation of glutaric (GA) and 3-hydroxyglutaric acid (3-OHGA) are considered to be the most striking features of glutaric aciduria type I (GA1). In the present study, we investigated the mechanisms of apoptosis and energy metabolism impairment in our novel GA1 neuronal model. We also explored the effects of appropriate amounts of amino acids (2 mM arginine, 2 mM homoarginine, 0.45 g/L tyrosine and 10 mM leucine) and 2 g/L glucose on these cells. Our results revealed that the novel GA1 neuronal model effectively simulates the hypermetabolic state of GA1. We found that leucine, tyrosine, arginine, homoarginine or glucose treatment of the GA1 model cells reduced the gene expression of caspase-3, caspase-8, caspase-9, bax, fos, and jun and restored the intracellular NADH and ATP levels. Tyrosine, arginine or homoarginine treatment in particular showed anti-apoptotic effects; increased α-ketoglutarate dehydrogenase complex (OGDC), fumarase (FH), and citrate synthase (CS) expression; and relieved the observed impairment in energy metabolism. To the best of our knowledge, this study is the first to investigate the protective mechanisms of amino acids and glucose in GA1 at the cellular level from the point of view of apoptosis and energy metabolism. Our data support the results of previous studies, indicating that supplementation of arginine and homoarginine as a dietary control strategy can have a therapeutic effect on GA1. All of these findings facilitate the understanding of cell apoptosis and energy metabolism impairment in GA1 and reveal new therapeutic perspectives for this disease.
Collapse
Affiliation(s)
- Xi Fu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjie Gao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengyan Tian
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinzhi Gao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Lou
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
45
|
Mühlhausen C, Salomons GS, Lukacs Z, Struys EA, van der Knaap MS, Ullrich K, Santer R. Combined D2-/L2-hydroxyglutaric aciduria (SLC25A1 deficiency): clinical course and effects of citrate treatment. J Inherit Metab Dis 2014; 37:775-81. [PMID: 24687295 DOI: 10.1007/s10545-014-9702-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/24/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Combined D,L-2-hydroxyglutaric aciduria (DL-2HGA; OMIM #615182) is a rare neurometabolic disorder clinically characterized by muscular hypotonia, severe neurodevelopmental dysfunction, and intractable seizures associated with respiratory distress. Biochemically, DL-2HGA patients excrete increased amounts of D- and L-2-hydroxyglutarate (D2HG and L2HG, respectively), with predominance of D2HG, and α-ketoglutarate, and show a decrease in urinary citrate. Impaired function of the mitochondrial citrate carrier (CIC) due to pathogenic mutations within the SLC25A1 gene has been identified as the underlying molecular cause of the disease. CIC mediates efflux of the mitochondrial tricarboxylic acid (TCA) cycle intermediates citrate and isocitrate in exchange for cytosolic malate. Thus, depletion of cytosolic citrate as well as accumulation of citrate inside mitochondria have been considered to play a role in the pathophysiology of DL-2HGA. Here, we report for the first time on a patient with a genetically confirmed diagnosis of DL-2HGA and treatment with either malate or citrate. During malate treatment, urinary malate concentration increased, but beyond that, neither biochemical nor clinical alterations were observed. In contrast, treatment with citrate led to an increased urinary excretion of TCA cycle intermediates malate and succinate, and by trend to an increased concentration of urinary citrate. Furthermore, excretion of D2HG and L2HG was reduced during citrate treatment. Clinically, the patient showed stabilization with regard to frequency and severity of seizures. Treating DL-2HGA with citrate should be considered in other DL-2HGA patients, and its effects should be studied systematically.
Collapse
Affiliation(s)
- Chris Mühlhausen
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany,
| | | | | | | | | | | | | |
Collapse
|
46
|
Garbade SF, Greenberg CR, Demirkol M, Gökçay G, Ribes A, Campistol J, Burlina AB, Burgard P, Kölker S. Unravelling the complex MRI pattern in glutaric aciduria type I using statistical models-a cohort study in 180 patients. J Inherit Metab Dis 2014; 37:763-73. [PMID: 24810368 DOI: 10.1007/s10545-014-9676-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Glutaric aciduria type I (GA-I) is a cerebral organic aciduria caused by inherited deficiency of glutaryl-CoA dehydrogenase and is characterized biochemically by an accumulation of putatively neurotoxic dicarboxylic metabolites. The majority of untreated patients develops a complex movement disorder with predominant dystonia during age 3-36 months. Magnetic resonance imaging (MRI) studies have demonstrated striatal and extrastriatal abnormalities. AIMS/METHODS The major aim of this study was to elucidate the complex neuroradiological pattern of patients with GA-I and to associate the MRI findings with the severity of predominant neurological symptoms. In 180 patients, detailed information about the neurological presentation and brain region-specific MRI abnormalities were obtained via a standardized questionnaire. RESULTS Patients with a movement disorder had more often MRI abnormalities in putamen, caudate, cortex, ventricles and external CSF spaces than patients without or with minor neurological symptoms. Putaminal MRI changes and strongly dilated ventricles were identified as the most reliable predictors of a movement disorder. In contrast, abnormalities in globus pallidus were not clearly associated with a movement disorder. Caudate and putamen as well as cortex, ventricles and external CSF spaces clearly collocalized on a two-dimensional map demonstrating statistical similarity and suggesting the same underlying pathomechanism. CONCLUSIONS This study demonstrates that complex statistical methods are useful to decipher the age-dependent and region-specific MRI patterns of rare neurometabolic diseases and that these methods are helpful to elucidate the clinical relevance of specific MRI findings.
Collapse
Affiliation(s)
- Sven F Garbade
- SFG: Faculty of Applied Psychology, SRH University of Applied Sciences, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Isasi E, Barbeito L, Olivera-Bravo S. Increased blood-brain barrier permeability and alterations in perivascular astrocytes and pericytes induced by intracisternal glutaric acid. Fluids Barriers CNS 2014; 11:15. [PMID: 25077029 PMCID: PMC4115159 DOI: 10.1186/2045-8118-11-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 07/12/2014] [Indexed: 11/23/2022] Open
Abstract
Background Glutaric acid (GA) is a dicarboxylic acid that accumulates in millimolar concentrations in glutaric acidemia I (GA-I), an inherited neurometabolic childhood disease characterized by extensive neurodegeneration. Vascular dysfunction is a common and early pathological feature in GA-I, although the underlying mechanisms remain unknown. In the present study, we have used a previously-validated rat model of GA-I to determine the effect of GA on the blood- brain barrier (BBB) and the neurovascular unit. Methods Newborn rat pups received a single injection of GA (1 μmol/g) or vehicle into the cisterna magna. BBB permeability was analyzed at 14 and 30 days post injection (DPI) by assessing Evans blue (EB) and immunoglobulin G (IgG) extravasation. Blood vessels and microglia were labeled with tomato lectin. Characterization of EB positive cells was made by double labeling with antibodies to astrocyte and neuronal markers. Immunohistochemistry against aquaporin 4 (AQP4), β receptor of the platelet derived growth factor (PDGFRβ) and laminin was used to recognize astrocyte endfeet, pericytes and basal lamina. Zonula occludens 1 (ZO-1) and occludin striatal expression was assessed by Western blotting. Results Perinatal intracisternal GA administration caused an increased extravasation of free EB, but not of IgG, into the striatal parenchyma at 14 and 30 DPI. EB extravasated through the BBB was internalized exclusively into neurons. GA-injected animals did not show significant changes in the area of small blood vessels in the striatum, but at 30 DPI there was a significant decrease in AQP4, PDGFRβ and laminin positive areas associated with small blood vessels. Occludin and ZO-1 expression in the striatal tissue was unchanged in all conditions analyzed. Conclusions The present study shows a previously-unknown effect of a perinatal administration of a single intracisternal GA injection on BBB permeability and on key components of the neurovascular unit. The results suggest BBB leakage is a pathogenic mechanism and a potential therapeutic target for patients with GA-I.
Collapse
Affiliation(s)
- Eugenia Isasi
- Neurobiología Celular y Molecular, IIBCE, 3318 Italia Av., Montevideo, 11600, Uruguay
| | - Luis Barbeito
- Institut Pasteur de Montevideo, Iguá s/n CP, Montevideo, 11400, Uruguay
| | - Silvia Olivera-Bravo
- Neurobiología Celular y Molecular, IIBCE, 3318 Italia Av., Montevideo, 11600, Uruguay
| |
Collapse
|
48
|
Tian F, Fu X, Gao J, Ying Y, Hou L, Liang Y, Ning Q, Luo X. Glutaric acid-mediated apoptosis in primary striatal neurons. BIOMED RESEARCH INTERNATIONAL 2014; 2014:484731. [PMID: 24900967 PMCID: PMC4036723 DOI: 10.1155/2014/484731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/20/2014] [Accepted: 04/21/2014] [Indexed: 11/28/2022]
Abstract
Glutaric acid (GA) has been implicated in the mechanism of neurodegeneration in glutaric aciduria type I. In the present study, the potential cytotoxic effects of GA (0.1~50 mM for 24~96 h) were examined in cultured primary rat striatal neurons. Results showed increase in the number of cells labeled by annexin-V or with apoptotic features shown by Hoechst/PI staining and transmission electron microscopy (TEM) and upregulation of the expression of mRNA as well as the active protein fragments caspase 3, suggesting involvement of the caspase 3-dependent apoptotic pathway in GA-induced striatal neuronal death. This effect was in part suppressed by the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 but not the α -amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) antagonist 6-cyano-7-nitroquinoxalone-2,3-dione (CNQX). Thus, GA may trigger neuronal damage partially through apoptotic pathway and via activation of NMDA receptors in cultured primary striatal neurons.
Collapse
Affiliation(s)
- Fengyan Tian
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xi Fu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinzhi Gao
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yanqin Ying
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Hou
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qin Ning
- Laboratory of Infectious Immunology, Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
49
|
Schmiesing J, Schlüter H, Ullrich K, Braulke T, Mühlhausen C. Interaction of glutaric aciduria type 1-related glutaryl-CoA dehydrogenase with mitochondrial matrix proteins. PLoS One 2014; 9:e87715. [PMID: 24498361 PMCID: PMC3912011 DOI: 10.1371/journal.pone.0087715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/02/2014] [Indexed: 01/15/2023] Open
Abstract
Glutaric aciduria type 1 (GA1) is an inherited neurometabolic disorder caused by mutations in the GCDH gene encoding glutaryl-CoA dehydrogenase (GCDH), which forms homo- and heteromeric complexes in the mitochondrial matrix. GA1 patients are prone to the development of encephalopathic crises which lead to an irreversible disabling dystonic movement disorder. The clinical and biochemical manifestations of GA1 vary considerably and lack correlations to the genotype. Using an affinity chromatography approach we report here for the first time on the identification of mitochondrial proteins interacting directly with GCDH. Among others, dihydrolipoamide S-succinyltransferase (DLST) involved in the formation of glutaryl-CoA, and the β-subunit of the electron transfer flavoprotein (ETFB) serving as electron acceptor, were identified as GCDH binding partners. We have adapted the yellow fluorescent protein-based fragment complementation assay and visualized the oligomerization of GCDH as well as its direct interaction with DLST and ETFB in mitochondria of living cells. These data suggest that GCDH is a constituent of multimeric mitochondrial dehydrogenase complexes, and the characterization of their interrelated functions may provide new insights into the regulation of lysine oxidation and the pathophysiology of GA1.
Collapse
Affiliation(s)
- Jessica Schmiesing
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Department of Clinical Chemistry, Laboratory for Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kurt Ullrich
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (TB); (CM)
| | - Chris Mühlhausen
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (TB); (CM)
| |
Collapse
|
50
|
Willmes DM, Birkenfeld AL. The Role of INDY in Metabolic Regulation. Comput Struct Biotechnol J 2013; 6:e201303020. [PMID: 24688728 PMCID: PMC3962103 DOI: 10.5936/csbj.201303020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 01/20/2023] Open
Abstract
Reduced expression of the Indy (I'm Not Dead Yet) gene in D. melanogaster and C. elegans extends longevity. Indy and its mammalian homolog mINDY (Slc13a5, NaCT) are transporters of TCA cycle intermediates, mainly handling the uptake of citrate via the plasma membrane into the cytosol. Deletion of mINDY in mice leads to significant metabolic changes akin to caloric restriction, likely caused by reducing the effects of mINDY-imported citrate on fatty acid and cholesterol synthesis, glucose metabolism and ß-oxidation. This review will provide an overview on different mammalian SLC1 3 family members with a focus on mINDY (SLCl3A5) in glucose and energy metabolism and will highlight the role of mINDY as a putative therapeutic target for the treatment of obesity, non-alcoholic fatty liver disease and type 2 diabetes.
Collapse
Affiliation(s)
- Diana M Willmes
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité - University School of Medicine, Berlin, Germany
| | - Andreas L Birkenfeld
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité - University School of Medicine, Berlin, Germany
| |
Collapse
|