1
|
Xie R, Luo Y, Bao B, Wu X, Guo J, Wang J, Qu X, Che X, Zheng C. The Role of Fatty Acid Metabolism, the Related Potential Biomarkers, and Targeted Therapeutic Strategies in Gastrointestinal Cancers. Drug Dev Res 2024; 85:e70014. [PMID: 39527665 DOI: 10.1002/ddr.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Gastrointestinal cancer has emerged as a significant global health concern due to its high incidence and mortality, limited effectiveness of early detection, suboptimal treatment outcomes, and poor prognosis. Metabolic reprogramming is a prominent feature of cancer, and fatty acid metabolism assumes a pivotal role in bridging glucose metabolism and lipid metabolism. Fatty acids play important roles in cellular structural composition, energy supply, signal transduction, and other lipid-related processes. Changes in the levels of fatty acid metabolite may indicate the malignant transformation of gastrointestinal cells, which have an impact on the prognosis of patients and can be used as a marker to monitor the efficacy of anticancer therapy. Therefore, targeting key enzymes involved in fatty acid metabolism, either as monotherapy or in combination with other agents, is a promising strategy for anticancer treatment. This article reviews the potential mechanisms of fatty acid metabolism disorders in the occurrence and development of gastrointestinal tumors, and summarizes the related potential biomarkers and anticancer strategies.
Collapse
Affiliation(s)
- Ruixi Xie
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Luo
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bowen Bao
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinshu Wu
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia Guo
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jin Wang
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunlei Zheng
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Oncology, Shanghai Electric Power Hospital, Shanghai, China
| |
Collapse
|
2
|
Liang J, Shao W, Ni P, Liu Q, Kong W, Shen W, Wang Q, Huang A, Zhang G, Yang Y, Xin H, Jiang Z, Gu A. siRNA/CS-PLGA Nanoparticle System Targeting Knockdown Intestinal SOAT2 Reduced Intestinal Lipid Uptake and Alleviated Obesity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403442. [PMID: 39297413 PMCID: PMC11516059 DOI: 10.1002/advs.202403442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Effective inhibition of intestinal lipid uptake is an efficient strategy for the treatment of disorders related to lipid metabolism. Sterol O-acyltransferase 2 (SOAT2) is responsible for the esterification of free cholesterol and fatty acids into cholesteryl esters. We found that intestine-specific SOAT2 knockout (Soat2I-KO) mice was capable to prevent the development of dietary induced obesity due to reduced intestinal lipid absorption. Soat2 siRNA/CS-PLGA nanoparticle system was constructed to enable intestinal delivery and inhibition of Soat2. This nanoparticle system was composed of PLGA-block-PEG and chitosan specifically delivering Soat2 siRNAs into small intestines in mice, effectively inhibit intestinal lipid uptake and resolving obesity. In revealing the underlying mechanism by which intestinal SOAT2 regulating fatty acid uptake, enhanced CD36 ubiquitination degradation was found in enterocytes upon SOAT2 inhibition. Insufficient free cholesterol esterification promoted endoplasmic reticulum stress and recruitment of E3 ligase RNF5 to activate CD36 ubiquitination in SOAT2 knockdown enterocytes. This work demonstrates a potential modulatory function of intestinal SOAT2 on lipid uptake highlighting the therapeutic effect on obesity by targeting intestinal SOAT2, exhibiting promising translational relevance in the siRNA therapeutic-based treatment for obesity.
Collapse
Affiliation(s)
- Jingjia Liang
- State Key Laboratory of Reproductive Medicne and Offspring Health, School of Public HealthNanjing Medical UniversityNanjing211166China
- Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthNanjing Medical UniversityNanjing211166China
- Collaborative Innovation Center for Cardiovascular Disease Translational MedicineCenter for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wentao Shao
- Center of Gallstone DiseaseShanghai East HospitalSchool of MedicineTongji UniversityShanghai201200China
- School of Instrument Science and EngineeringSoutheast UniversityNanjing210096China
| | - Pu Ni
- State Key Laboratory of Reproductive Medicne and Offspring Health, School of Public HealthNanjing Medical UniversityNanjing211166China
- Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthNanjing Medical UniversityNanjing211166China
- Collaborative Innovation Center for Cardiovascular Disease Translational MedicineCenter for Global HealthNanjing Medical UniversityNanjing211166China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicne and Offspring Health, School of Public HealthNanjing Medical UniversityNanjing211166China
- Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthNanjing Medical UniversityNanjing211166China
- Collaborative Innovation Center for Cardiovascular Disease Translational MedicineCenter for Global HealthNanjing Medical UniversityNanjing211166China
| | - Weirui Kong
- State Key Laboratory of Reproductive Medicne and Offspring Health, School of Public HealthNanjing Medical UniversityNanjing211166China
- Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthNanjing Medical UniversityNanjing211166China
- Collaborative Innovation Center for Cardiovascular Disease Translational MedicineCenter for Global HealthNanjing Medical UniversityNanjing211166China
| | - Weiyi Shen
- Center of Gallstone DiseaseShanghai East HospitalSchool of MedicineTongji UniversityShanghai201200China
| | - Qihan Wang
- Center of Gallstone DiseaseShanghai East HospitalSchool of MedicineTongji UniversityShanghai201200China
| | - Anhua Huang
- Center of Gallstone DiseaseShanghai East HospitalSchool of MedicineTongji UniversityShanghai201200China
| | - Guixin Zhang
- General Surgery DepartmentThe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Yulong Yang
- Center of Gallstone DiseaseShanghai East HospitalSchool of MedicineTongji UniversityShanghai201200China
| | - Hongliang Xin
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Zhaoyan Jiang
- Center of Gallstone DiseaseShanghai East HospitalSchool of MedicineTongji UniversityShanghai201200China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicne and Offspring Health, School of Public HealthNanjing Medical UniversityNanjing211166China
- Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthNanjing Medical UniversityNanjing211166China
- Collaborative Innovation Center for Cardiovascular Disease Translational MedicineCenter for Global HealthNanjing Medical UniversityNanjing211166China
| |
Collapse
|
3
|
Zhu H, Zhao T, Zhao S, Yang S, Jiang K, Li S, Kang Y, Yang Z, Shen J, Shen S, Tao H, Xuan J, Yang M, Xu B, Wang F, Jiang M. O-GlcNAcylation promotes the progression of nonalcoholic fatty liver disease by upregulating the expression and function of CD36. Metabolism 2024; 156:155914. [PMID: 38642829 DOI: 10.1016/j.metabol.2024.155914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) and its progressive variant, nonalcoholic steatohepatitis (NASH), constitute a burgeoning worldwide epidemic with no FDA-approved pharmacotherapies. The multifunctional immunometabolic receptor, fatty acid translocase CD36 (CD36), plays an important role in the progression of hepatic steatosis. O-GlcNAcylation is a crucial posttranslational modification that mediates the distribution and function of CD36, but its involvement in NAFLD remains poorly understood. METHODS O-GlcNAcylation and CD36 expression were evaluated in human liver tissues obtained from NASH patients and normal control. Mice with hepatocyte-specific CD36 knockout were administered adeno-associated viral vectors expressing wild-type CD36 (WT-CD36) or CD36 O-GlcNAcylation site mutants (S468A&T470A-CD36) and were provided with a high-fat/high-cholesterol (HFHC) diet for 3 months. RT-qPCR analysis, immunoblotting, dual-luciferase reporter assays, chromatin immunoprecipitation, and coimmunoprecipitation were performed to explore the mechanisms by which O-GlcNAcylation regulates CD36 expression. Membrane protein extraction, immunofluorescence analysis, site-directed mutagenesis, and fatty acid uptake assays were conducted to elucidate the impact of O-GlcNAcylation on CD36 function. RESULTS O-GlcNAcylation and CD36 expression were significantly increased in patients with NASH, mouse models of NASH, and palmitic acid-stimulated hepatocytes. Mechanistically, the increase in O-GlcNAcylation facilitated the transcription of CD36 via the NF-κB signalling pathway and stabilized the CD36 protein by inhibiting its ubiquitination, thereby promoting CD36 expression. On the other hand, O-GlcNAcylation facilitated the membrane localization of CD36, fatty acid uptake, and lipid accumulation. However, site-directed mutagenesis of residues S468 and T470 of CD36 reversed these effects. Furthermore, compared with their WT-CD36 counterparts, HFHC-fed S468A&T470A-CD36 mice exhibited decreases in systemic insulin resistance, steatosis severity, inflammation and fibrosis. Pharmacological inhibition of O-GlcNAcylation and CD36 also mitigated the progression of NASH. CONCLUSIONS O-GlcNAcylation promotes the progression of NAFLD by upregulating CD36 expression and function. Inhibition of CD36 O-GlcNAcylation protects against NASH, highlighting a potentially effective therapeutic approach for individuals with NASH.
Collapse
Affiliation(s)
- Hanlong Zhu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Tianming Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China.
| | - Si Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Suzhen Yang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Kang Jiang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Shupei Li
- Department of Gastroenterology, Nanjing University of Chinese Medicine, Jinling School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Ying Kang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Zhuoxin Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Jiajia Shen
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Si Shen
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Hui Tao
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Ji Xuan
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Miaofang Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Bing Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Fangyu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Mingzuo Jiang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Yang Y, Liu X, Yang D, Li L, Li S, Lu S, Li N. Interplay of CD36, autophagy, and lipid metabolism: insights into cancer progression. Metabolism 2024; 155:155905. [PMID: 38548128 DOI: 10.1016/j.metabol.2024.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
CD36, a scavenger receptor B2 that is dynamically distributed between cell membranes and organelle membranes, plays a crucial role in regulating lipid metabolism. Abnormal CD36 activity has been linked to a range of metabolic disorders, such as obesity, nonalcoholic fatty liver disease, insulin resistance and cardiovascular disease. CD36 undergoes various modifications, including palmitoylation, glycosylation, and ubiquitination, which greatly affect its binding affinity to various ligands, thereby triggering and influencing various biological effects. In the context of tumors, CD36 interacts with autophagy to jointly regulate tumorigenesis, mainly by influencing the tumor microenvironment. The central role of CD36 in cellular lipid homeostasis and recent molecular insights into CD36 in tumor development indicate the applicability of CD36 as a therapeutic target for cancer treatment. Here, we discuss the diverse posttranslational modifications of CD36 and their respective roles in lipid metabolism. Additionally, we delve into recent research findings on CD36 in tumors, outlining ongoing drug development efforts targeting CD36 and potential strategies for future development and highlighting the interplay between CD36 and autophagy in the context of cancer. Our aim is to provide a comprehensive understanding of the function of CD36 in both physiological and pathological processes, facilitating a more in-depth analysis of cancer progression and a better development and application of CD36-targeting drugs for tumor therapy in the near future.
Collapse
Affiliation(s)
- Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaokun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Di Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lianhui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sheng Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sen Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Huang J, Zhu Z, Schlüter D, Lambertsen KL, Song W, Wang X. Ubiquitous regulation of cerebrovascular diseases by ubiquitin-modifying enzymes. Clin Transl Med 2024; 14:e1719. [PMID: 38778460 PMCID: PMC11111633 DOI: 10.1002/ctm2.1719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Cerebrovascular diseases (CVDs) are a major threat to global health. Elucidation of the molecular mechanisms underlying the pathology of CVDs is critical for the development of efficacious preventative and therapeutic approaches. Accumulating studies have highlighted the significance of ubiquitin-modifying enzymes (UMEs) in the regulation of CVDs. UMEs are a group of enzymes that orchestrate ubiquitination, a post-translational modification tightly involved in CVDs. Functionally, UMEs regulate multiple pathological processes in ischemic and hemorrhagic stroke, moyamoya disease, and atherosclerosis. Considering the important roles of UMEs in CVDs, they may become novel druggable targets for these diseases. Besides, techniques applying UMEs, such as proteolysis-targeting chimera and deubiquitinase-targeting chimera, may also revolutionize the therapy of CVDs in the future.
Collapse
Affiliation(s)
- Jingyong Huang
- Department of Vascular SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhenhu Zhu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical SchoolHannoverGermany
| | - Kate Lykke Lambertsen
- Department of Neurobiology ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdense CDenmark
- BRIGDE—Brain Research—Inter‐Disciplinary Guided Excellence, Department of Clinical ResearchUniversity of Southern DenmarkOdense CDenmark
- Department of NeurologyOdense University HospitalOdense CDenmark
| | - Weihong Song
- Oujiang LaboratoryKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceZhejiang Provincial Clinical Research Center for Mental DisordersInstitute of AgingSchool of Mental HealthAffiliated Kangning HospitalThe Second Affiliated HospitalYuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Xu Wang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang LaboratoryKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceZhejiang Provincial Clinical Research Center for Mental DisordersInstitute of AgingSchool of Mental HealthAffiliated Kangning HospitalThe Second Affiliated HospitalYuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
6
|
Engin AB, Engin A. The Checkpoints of Intestinal Fat Absorption in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:73-95. [PMID: 39287849 DOI: 10.1007/978-3-031-63657-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this chapter, intestinal lipid transport, which plays a central role in fat homeostasis and the development of obesity in addition to the mechanisms of fatty acids and monoacylglycerol absorption in the intestinal lumen and reassembly of these within the enterocyte was described. A part of the resynthesized triglycerides (triacylglycerols; TAG) is repackaged in the intestine to form the hydrophobic core of chylomicrons (CMs). These are delivered as metabolic fuels, essential fatty acids, and other lipid-soluble nutrients, from enterocytes to the peripheral tissues following detachment from the endoplasmic reticulum membrane. Moreover, the attitudes of multiple receptor functions in dietary lipid uptake, synthesis, and transport are highlighted. Additionally, intestinal fatty acid binding proteins (FABPs), which increase the cytosolic flux of fatty acids via intermembrane transfer in enterocytes, and the functions of checkpoints for receptor-mediated fatty acid signaling are debated. The importance of the balance between storage and secretion of dietary fat by enterocytes in determining the physiological fate of dietary fat, including regulation of blood lipid concentrations and energy balance, is mentioned. Consequently, promising checkpoints regarding how intestinal fat processing affects lipid homeostatic mechanisms and lipid stores in the body and the prevention of obesity-lipotoxicity due to excessive intestinal lipid absorption are evaluated. In this context, dietary TAG digestion, pharmacological inhibition of TAG hydrolysis, the regulation of long-chain fatty acid uptake traffic into adipocytes, intracellular TAG resynthesis, the enlargement of cytoplasmic lipid droplets in enterocytes and constitutional alteration of their proteome, CD36-mediated conversion of diet-derived fatty acid into cellular lipid messengers and their functions are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
7
|
Liu X, Zhang J, Chen Z, Xiao J, Zhou A, Fu Y, Cao Y. Cluster-determinant 36 (CD36) mediates intestinal absorption of dietary astaxanthin and affects its secretion. Food Res Int 2023; 173:113328. [PMID: 37803639 DOI: 10.1016/j.foodres.2023.113328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 10/08/2023]
Abstract
The functional activity of dietary astaxanthin is closely related to its absorption, and the absorption of dietary carotenoids mainly mediated by transmembrane transport protein (TTP) has become the mainstream research direction in recent years. However, the main TTP mediating astaxanthin absorption and its potential mechanisms are still unclear. Hence, based on the preliminary screening results, this study aims to elucidate the role of cluster-determinant 36 (CD36) mediating astaxanthin absorption from the perspective of expression levels through in vitro cell model, in situ single-pass intestinal perfusion model and in vivo mice model. The results showed that astaxanthin uptake was significantly increased by 45.13% in CD36 overexpressing cells and decreased by 20.92% in the case of sulfo-N-succinimidyl oleate (SSO) inhibition. A similar trend also appeared in the duodenum and jejunum by in situ model. Moreover, astaxanthin uptake in the small intestine of CD36 knockout mice was significantly reduced by 88.22%. Furthermore, the inhibition or knockout of CD36 suppressed the expression of other transporters (SR-BI and NPC1L1). Interestingly, CD36 was also involved in the downstream secretion pathway, which is manifested by interfering with the expression of related proteins (ERK1/2, MTP, ApoB48, and ApoAI). Therefore, these results indicate the important role of CD36 in astaxanthin transmembrane transport for the first time, providing vital exploration way for the absorption of dietary fat-soluble substances.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Junlin Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yongshui Fu
- Institute of Blood Transfusion, Guangzhou Blood Center, Guangzhou 510095, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
8
|
Wei P, Lin D, Luo C, Zhang M, Deng B, Cui K, Chen Z. High glucose promotes benign prostatic hyperplasia by downregulating PDK4 expression. Sci Rep 2023; 13:17910. [PMID: 37863991 PMCID: PMC10589318 DOI: 10.1038/s41598-023-44954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
As men age, a growing number develop benign prostatic hyperplasia (BPH). According to previous research, diabetes may be a risk factor. Pyruvate dehydrogenase kinase 4 (PDK4) is closely related to glucose metabolism and plays a role in the onset and progression of numerous illnesses. This study aimed to determine the direct effects of high glucose environment on prostate epithelial cells, in particular by altering PDK4 expression levels. In this investigation, normal prostatic epithelial cells (RWPE-1) and human benign prostatic hyperplasia epithelial cells (BPH-1) were treated with 50 mM glucose to show the alteration of high glucose in prostate cells. PDK4-target siRNA, PDK4-expression plasmid were used to investigate the effects of PDK4. Rosiglitazone (RG), a PPARγ agonist, with the potential to up-regulate PDK4 expression was also used for treating prostate cells. The expression of PDK4 in human prostate samples was also analyzed. The effects of high glucose therapy on BPH-1 and RWPE-1 cells were demonstrated to enhance proliferation, epithelial-mesenchymal transition (EMT), suppress apoptosis, and down-regulate PDK4 expression. Additionally, diabetes-related BPH patients had reduced PDK4 expression. Following the application of PDK4-target siRNA, a comparable outcome was seen. The PDK4-expression plasmid therapy, however, produced the opposite results. RG with the ability to elevate PDK4 expression might be used to treat BPH. Changes in the metabolism of lipids and glucose may be the cause of these consequences. These findings showed that high glucose treatment might facilitate BPH development, and may be related to the down-regulation of PDK4. PDK4 might be a potential therapeutic target of BPH.
Collapse
Affiliation(s)
- Pengyu Wei
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongxu Lin
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Changcheng Luo
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Mengyang Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bolang Deng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Kai Cui
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhong Chen
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
9
|
Zhang Y, Zhao Z, Huang LA, Liu Y, Yao J, Sun C, Li Y, Zhang Z, Ye Y, Yuan F, Nguyen TK, Garlapati NR, Wu A, Egranov SD, Caudle AS, Sahin AA, Lim B, Beretta L, Calin GA, Yu D, Hung MC, Curran MA, Rezvani K, Gan B, Tan Z, Han L, Lin C, Yang L. Molecular mechanisms of snoRNA-IL-15 crosstalk in adipocyte lipolysis and NK cell rejuvenation. Cell Metab 2023; 35:1457-1473.e13. [PMID: 37329887 PMCID: PMC10712687 DOI: 10.1016/j.cmet.2023.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/03/2023] [Accepted: 05/18/2023] [Indexed: 06/19/2023]
Abstract
Obesity, in which the functional importance of small nucleolar RNAs (snoRNAs) remains elusive, correlates with risk for many cancer types. Here, we identify that the serum copies of adipocyte-expressed SNORD46 correlate with body mass index (BMI), and serum SNORD46 antagonizes interleukin-15 (IL-15) signaling. Mechanically, SNORD46 binds IL-15 via G11, and G11A (a mutation that significantly enhances binding affinity) knockin drives obesity in mice. Functionally, SNORD46 blocks IL-15-induced, FER kinase-dependent phosphorylation of platelet glycoprotein 4 (CD36) and monoglyceride lipase (MGLL) in adipocytes, leading to inhibited lipolysis and browning. In natural killer (NK) cells, SNORD46 suppresses the IL-15-dependent autophagy, leading to reduced viability of obese NK. SNORD46 power inhibitors exhibit anti-obesity effects, concurring with improved viability of obese NK and anti-tumor immunity of CAR-NK cell therapy. Hence, our findings demonstrate the functional importance of snoRNAs in obesity and the utility of snoRNA power inhibitors for antagonizing obesity-associated immune resistance.
Collapse
Affiliation(s)
- Yaohua Zhang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisa A Huang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuan Liu
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chengcao Sun
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yajuan Li
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Fei Yuan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tina K Nguyen
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nikhil Reddy Garlapati
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Wu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sergey D Egranov
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abigail S Caudle
- Department of Breast Surgical Oncology, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A Sahin
- Department of Pathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bora Lim
- Oncology/Medicine, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A Calin
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung 406, Taiwan
| | - Michael A Curran
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katayoun Rezvani
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA; Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Kozan DW, Derrick JT, Ludington WB, Farber SA. From worms to humans: Understanding intestinal lipid metabolism via model organisms. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159290. [PMID: 36738984 PMCID: PMC9974936 DOI: 10.1016/j.bbalip.2023.159290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
The intestine is responsible for efficient absorption and packaging of dietary lipids before they enter the circulatory system. This review provides a comprehensive overview of how intestinal enterocytes from diverse model organisms absorb dietary lipid and subsequently secrete the largest class of lipoproteins (chylomicrons) to meet the unique needs of each animal. We discuss the putative relationship between diet and metabolic disease progression, specifically Type 2 Diabetes Mellitus. Understanding the molecular response of intestinal cells to dietary lipid has the potential to undercover novel therapies to combat metabolic syndrome.
Collapse
Affiliation(s)
- Darby W Kozan
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States
| | - Joshua T Derrick
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States
| | - William B Ludington
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States
| | - Steven A Farber
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States.
| |
Collapse
|
11
|
Mika M, Antończyk A, Wikiera A. Influence of Synthetic Antioxidants Used in Food Technology on the Bioavailability and Metabolism of Lipids - <i>In Vitro</i> Studies. POL J FOOD NUTR SCI 2023. [DOI: 10.31883/pjfns/161366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
12
|
Samovski D, Jacome-Sosa M, Abumrad NA. Fatty Acid Transport and Signaling: Mechanisms and Physiological Implications. Annu Rev Physiol 2023; 85:317-337. [PMID: 36347219 DOI: 10.1146/annurev-physiol-032122-030352] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long-chain fatty acids (FAs) are components of plasma membranes and an efficient fuel source and also serve as metabolic regulators through FA signaling mediated by membrane FA receptors. Impaired tissue FA uptake has been linked to major complications of obesity, including insulin resistance, cardiovascular disease, and type 2 diabetes. Fatty acid interactions with a membrane receptor and the initiation of signaling can modify pathways related to nutrient uptake and processing, cell proliferation or differentiation, and secretion of bioactive factors. Here, we review the major membrane receptors involved in FA uptake and FA signaling. We focus on two types of membrane receptors for long-chain FAs: CD36 and the G protein-coupled FA receptors FFAR1 and FFAR4. We describe key signaling pathways and metabolic outcomes for CD36, FFAR1, and FFAR4 and highlight the parallels that provide insight into FA regulation of cell function.
Collapse
Affiliation(s)
- Dmitri Samovski
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Miriam Jacome-Sosa
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Nada A Abumrad
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Zumaraga MP, Borel P, Bott R, Nowicki M, Lairon D, Desmarchelier C. The Interindividual Variability of Phytofluene Bioavailability is Associated with a Combination of Single Nucleotide Polymorphisms. Mol Nutr Food Res 2023; 67:e2200580. [PMID: 36349532 PMCID: PMC10078114 DOI: 10.1002/mnfr.202200580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SCOPE Phytofluene is a colorless carotenoid with potential health benefits that displays a higher bioavailability compared to carotenoids such as lutein, β-carotene or lycopene. Several studies suggest its bioavailability displays an elevated interindividual variability. The aim of this work is to investigate whether a combination of SNPs is associated with this variability. METHODS AND RESULTS Thirty-seven healthy adult males consume a test meal that provides phytofluene from a tomato puree. Phytofluene concentrations are measured at fast and in chylomicrons at regular time intervals after meal intake. Identification of the combination of SNPs that best explained the interindividual variability of the phytofluene response is assessed by partial least squares regression. There is a large interindividual variability in the phytofluene response, with CV = 88%. Phytofluene bioavailability is positively correlated with fasting plasma phytofluene concentration (r = 0.57; p = 2 × 10-4 ). A robust partial least squares regression model comprising 14 SNPs near or within 11 genes (ABCA1-rs2487059, rs2515629, and rs4149316, APOC1-rs445925, CD36-rs3211881, ELOVL5-rs6941533, FABP1-rs10185660, FADS3-rs1000778, ISX-rs130461, and rs17748559, LIPC-rs17240713, LPL-rs7005359, LYPLAL1-rs1351472, SETD7-rs11936429) explains 51% (adjusted R2 ) of the interindividual variability in phytofluene bioavailability. CONCLUSIONS This study reports a combination of SNPs that is associated with a significant part of the interindividual variability of phytofluene bioavailability in a healthy male adult population.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France.,Department of Science and Technology, Food and Nutrition Research Institute, Bicutan, Taguig City, NCR 1631, Philippines
| | - Patrick Borel
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Romain Bott
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Marion Nowicki
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Denis Lairon
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Charles Desmarchelier
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
14
|
Liu J, Yu W, Wang C, Li S, Zhang W. Garlic (Allium sativum) polysaccharides ameliorates hepatic injury and fat accumulation in mice with metabolic associated fatty liver disease (MAFLD). J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Chemosensing of fat digestion by the expression pattern of GPR40, GPR120, CD36 and enteroendocrine profile in sheep. Res Vet Sci 2022; 150:89-97. [DOI: 10.1016/j.rvsc.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/20/2022] [Accepted: 05/28/2022] [Indexed: 11/20/2022]
|
16
|
Huang Y, Zhou J, Zhong H, Xie N, Zhang FR, Zhang Z. Identification of a novel lipid metabolism-related gene signature for predicting colorectal cancer survival. Front Genet 2022; 13:989327. [PMID: 36147494 PMCID: PMC9485806 DOI: 10.3389/fgene.2022.989327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor worldwide. Lipid metabolism is a prerequisite for the growth, proliferation and invasion of cancer cells. However, the lipid metabolism-related gene signature and its underlying molecular mechanisms remain unclear. The aim of this study was to establish a lipid metabolism signature risk model for survival prediction in CRC and to investigate the effect of gene signature on the immune microenvironment. Lipid metabolism-mediated genes (LMGs) were obtained from the Molecular Signatures Database. The consensus molecular subtypes were established using "ConsensusClusterPlus" based on LMGs and the cancer genome atlas (TCGA) data. The risk model was established using univariate and multivariate Cox regression with TCGA database and independently validated in the international cancer genome consortium (ICGC) datasets. Immune infiltration in the risk model was developed using CIBERSORT and xCell analyses. A total of 267 differentially expressed genes (DEGs) were identified between subtype 1 and subtype 2 from consensus molecular subtypes, including 153 upregulated DEGs and 114 downregulated DEGs. 21 DEGs associated with overall survival (OS) were selected using univariate Cox regression analysis. Furthermore, a prognostic risk model was constructed using the risk coefficients and gene expression of eleven-gene signature. Patients with a high-risk score had poorer OS compared with patients in the low-risk score group (p = 3.36e-07) in the TCGA cohort and the validationdatasets (p = 4.03e-05). Analysis of immune infiltration identified multiple T cells were associated with better prognosis in the low-risk group, including Th2 cells (p = 0.0208), regulatory T cells (p = 0.0425), and gammadelta T cells (p = 0.0112). A nomogram integrating the risk model and clinical characteristics was further developed to predict the prognosis of patients with CRC. In conclusion, our study revealed that the expression of lipid-metabolism genes were correlated with the immune microenvironment. The eleven-gene signature might be useful for prediction the prognosis of CRC patients.
Collapse
Affiliation(s)
- Yanpeng Huang
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | | | - Haibin Zhong
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ning Xie
- Department of Cancer Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fei-Ran Zhang
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhanmin Zhang
- Department of Cancer Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
17
|
Lockridge A, Hanover JA. A nexus of lipid and O-Glcnac metabolism in physiology and disease. Front Endocrinol (Lausanne) 2022; 13:943576. [PMID: 36111295 PMCID: PMC9468787 DOI: 10.3389/fendo.2022.943576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although traditionally considered a glucose metabolism-associated modification, the O-linked β-N-Acetylglucosamine (O-GlcNAc) regulatory system interacts extensively with lipids and is required to maintain lipid homeostasis. The enzymes of O-GlcNAc cycling have molecular properties consistent with those expected of broad-spectrum environmental sensors. By direct protein-protein interactions and catalytic modification, O-GlcNAc cycling enzymes may provide both acute and long-term adaptation to stress and other environmental stimuli such as nutrient availability. Depending on the cell type, hyperlipidemia potentiates or depresses O-GlcNAc levels, sometimes biphasically, through a diversity of unique mechanisms that target UDP-GlcNAc synthesis and the availability, activity and substrate selectivity of the glycosylation enzymes, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA). At the same time, OGT activity in multiple tissues has been implicated in the homeostatic regulation of systemic lipid uptake, storage and release. Hyperlipidemic patterns of O-GlcNAcylation in these cells are consistent with both transient physiological adaptation and feedback uninhibited obesogenic and metabolic dysregulation. In this review, we summarize the numerous interconnections between lipid and O-GlcNAc metabolism. These links provide insights into how the O-GlcNAc regulatory system may contribute to lipid-associated diseases including obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Amber Lockridge
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Song J, Hu Y, Wang L, Ao C. Ethanol Extract of Artemisia Annua Prevents LPS-Induced Inflammation and Blood-Milk Barrier Disruption in Bovine Mammary Epithelial Cells. Animals (Basel) 2022; 12:ani12101228. [PMID: 35625074 PMCID: PMC9138109 DOI: 10.3390/ani12101228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
This experiment evaluated the pre-protective effect of AAE on inflammatory injury and tight junction disturbance in bMECs induced by LPS. The bMECs were treated with AAE (3, 6, 12 μg/mL) for 3 h and then incubated with 10 μg/mL lipopolysaccharide (LPS) for 12 h. Our results showed that LPS significantly increased the mRNA and protein expression of CD36, induced the phosphorylation of IκBα and p65 and elevated the levels of TNF-α, IL-1β and IL-6 mRNA, which further resulted in ultrastructural damage, disrupted the expression of tight junction proteins (occludin, zonula occludens (ZO-1) and claudin-1) and decreased the viability of bMECs (p < 0.05). More importantly, AAE pretreatment attenuated the expression of CD36, suppressed the activity of the NF-κB signaling pathway and down-regulated the levels of inflammatory factors in LPS-stimulated bMECs (p < 0.05). Therefore, AAE can effectively protect bMECs against inflammatory injury and tight junction dysfunction, which has important research value for the prevention of bovine mastitis.
Collapse
Affiliation(s)
- Jie Song
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.S.); (Y.H.)
- Laboratory of Quality and Safety Risk Assessment for Agricultural Products (Hohhot), Ministry of Agriculture and Rural Affairs, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Yao Hu
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.S.); (Y.H.)
| | - Lifang Wang
- Laboratory of Quality and Safety Risk Assessment for Agricultural Products (Hohhot), Ministry of Agriculture and Rural Affairs, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
- Correspondence: (L.W.); (C.A.)
| | - Changjin Ao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.S.); (Y.H.)
- Correspondence: (L.W.); (C.A.)
| |
Collapse
|
19
|
Lebrun LJ, Moreira S, Tavernier A, Niot I. Postprandial consequences of lipid absorption in the onset of obesity: Role of intestinal CD36. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159154. [DOI: 10.1016/j.bbalip.2022.159154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
20
|
Enterocyte-specific ATGL overexpression affects intestinal and systemic cholesterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159121. [PMID: 35150895 DOI: 10.1016/j.bbalip.2022.159121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
Abstract
Enterocytes of the small intestine (SI) play an important role in maintaining systemic lipid levels by regulating dietary lipid absorption and postprandial lipoprotein secretion. An excessive amount of dietary-derived triglycerides (TGs) taken up by the apical side of enterocytes or basolaterally internalized lipoprotein remnants can be transiently stored in cytosolic lipid droplets (cLDs). As mice lacking adipose TG lipase (ATGL) in the SI display massive accumulation of cLDs but also delayed cholesterol absorption, we hypothesized that SI-specific overexpression of ATGL (Atgl iTg) might have beneficial effects on lipid homeostasis in the gut and possibly throughout the body. Here, we demonstrate that Atgl iTg mice had only modestly increased enzymatic activity despite drastically elevated Atgl mRNA levels (up to 120-fold) on chow diet, and was highly induced upon high-fat/high-cholesterol diet (HF/HCD) feeding. Atgl iTg mice showed markedly reduced intestinal TG concentrations after acute and chronic lipid challenge without affecting chylomicron TG secretion. Circulating plasma cholesterol levels were significantly lower in Atgl iTg mice under different feeding conditions, contrasting the accelerated uptake of dietary cholesterol into the circulation after HF/HCD feeding. In the fasted state, gene expression analysis revealed modulation of PPARα and liver X receptor (LXR) target genes by an increased fatty acid release, whereas the decreased plasma cholesterol concentrations in refed mice were more likely due to changes in HDL synthesis and secretion. We conclude that ATGL, in addition to its role in TG catabolism, plays a critical role in whole-body cholesterol homeostasis by modulating PPARα and LXR signaling in intestinal enterocytes.
Collapse
|
21
|
Jacome-Sosa M, Miao ZF, Peche VS, Morris EF, Narendran R, Pietka KM, Samovski D, Lo HYG, Pietka T, Varro A, Love-Gregory L, Goldenring JR, Kuda O, Gamazon ER, Mills JC, Abumrad NA. CD36 maintains the gastric mucosa and associates with gastric disease. Commun Biol 2021; 4:1247. [PMID: 34728772 PMCID: PMC8563937 DOI: 10.1038/s42003-021-02765-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
The gastric epithelium is often exposed to injurious elements and failure of appropriate healing predisposes to ulcers, hemorrhage, and ultimately cancer. We examined the gastric function of CD36, a protein linked to disease and homeostasis. We used the tamoxifen model of gastric injury in mice null for Cd36 (Cd36-/-), with Cd36 deletion in parietal cells (PC-Cd36-/-) or in endothelial cells (EC-Cd36-/-). CD36 expresses on corpus ECs, on PC basolateral membranes, and in gastrin and ghrelin cells. Stomachs of Cd36-/- mice have altered gland organization and secretion, more fibronectin, and inflammation. Tissue respiration and mitochondrial efficiency are reduced. Phospholipids increased and triglycerides decreased. Mucosal repair after injury is impaired in Cd36-/- and EC-Cd36-/-, not in PC-Cd36-/- mice, and is due to defect of progenitor differentiation to PCs, not of progenitor proliferation or mature PC dysfunction. Relevance to humans is explored in the Vanderbilt BioVu using PrediXcan that links genetically-determined gene expression to clinical phenotypes, which associates low CD36 mRNA with gastritis, gastric ulcer, and gastro-intestinal hemorrhage. A CD36 variant predicted to disrupt an enhancer site associates (p < 10-17) to death from gastro-intestinal hemorrhage in the UK Biobank. The findings support role of CD36 in gastric tissue repair, and its deletion associated with chronic diseases that can predispose to malignancy.
Collapse
Affiliation(s)
- Miriam Jacome-Sosa
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Zhi-Feng Miao
- Department of Surgical Oncology, Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Vivek S Peche
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Edward F Morris
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramkumar Narendran
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn M Pietka
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dmitri Samovski
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hei-Yong G Lo
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Terri Pietka
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea Varro
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Latisha Love-Gregory
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - James R Goldenring
- Departments of Surgery and Cell and Developmental Biology, Vanderbilt University Medical Center and VA Medical Center, Nashville, TN, USA
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Eric R Gamazon
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Jason C Mills
- Gastroenterology & Hepatology Section, Departments of Medicine and of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| | - Nada A Abumrad
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
22
|
Burman A, Kaji I. Luminal Chemosensory Cells in the Small Intestine. Nutrients 2021; 13:nu13113712. [PMID: 34835968 PMCID: PMC8620795 DOI: 10.3390/nu13113712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
In addition to the small intestine's well-known function of nutrient absorption, the small intestine also plays a major role in nutrient sensing. Similar to taste sensors seen on the tongue, GPCR-coupled nutrient sensors are expressed throughout the intestinal epithelium and respond to nutrients found in the lumen. These taste receptors respond to specific ligands, such as digested carbohydrates, fats, and proteins. The activation of nutrient sensors in the intestine allows for the induction of signaling pathways needed for the digestive system to process an influx of nutrients. Such processes include those related to glucose homeostasis and satiety. Defects in intestinal nutrient sensing have been linked to a variety of metabolic disorders, such as type 2 diabetes and obesity. Here, we review recent updates in the mechanisms related to intestinal nutrient sensors, particularly in enteroendocrine cells, and their pathological roles in disease. Additionally, we highlight the emerging nutrient sensing role of tuft cells and recent work using enteroids as a sensory organ model.
Collapse
Affiliation(s)
- Andreanna Burman
- Cell and Developmental Biology and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Izumi Kaji
- Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
23
|
Vaswani KM, Peiris H, Qin Koh Y, Hill RJ, Harb T, Arachchige BJ, Logan J, Reed S, Davies PSW, Mitchell MD. A complete proteomic profile of human and bovine milk exosomes by liquid chromatography mass spectrometry. Expert Rev Proteomics 2021; 18:719-735. [PMID: 34551655 DOI: 10.1080/14789450.2021.1980389] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The present study investigates the proteomic content of milk-derived exosomes. A detailed description of the content of milk exosomes is essential to improve our understanding of the various components of milk and their role in nutrition. METHODS The exosomes used in this study were isolated as previously described and characterized by their morphology, particle concentration, and the presence of exosomal markers. Human and bovine milk exosomes were evaluated using Information-Dependent Acquisition (IDA) Mass Spectrometry. A direct comparison is made between their proteomic profiles. RESULTS IDA analyses revealed similarities and differences in protein content. About 229 and 239 proteins were identified in the human and bovine milk exosome proteome, respectively, of which 176 and 186 were unique to each species. Fifty-three proteins were common in both groups. These included proteins associated with specific biological processes and molecular functions. Most notably, the 4 abundant milk proteins lactadherin, butyrophilin, perilipin-2, and xanthine dehydrogenase/oxidase were present in the top 20 list for both human and bovine milk exosomes. CONCLUSION The milk exosome protein profiles we have provided are crucial new information for the field of infant nutrition. They provide new insight into the components of milk from both humans and bovines.
Collapse
Affiliation(s)
- Kanchan Manohar Vaswani
- School of Biomedical Sciences, Faculty of Health, Centre for Children's Health Research, Queensland University of Technology, Brisbane, Australia
| | - Hassendrini Peiris
- School of Biomedical Sciences, Faculty of Health, Centre for Children's Health Research, Queensland University of Technology, Brisbane, Australia
| | - Yong Qin Koh
- School of Biomedical Sciences, Faculty of Health, Centre for Children's Health Research, Queensland University of Technology, Brisbane, Australia.,University of Queensland- Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Rebecca J Hill
- University of Queensland- Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Tracy Harb
- University of Queensland- Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Buddhika J Arachchige
- University of Queensland- Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Jayden Logan
- School of Biomedical Sciences, Faculty of Health, Centre for Children's Health Research, Queensland University of Technology, Brisbane, Australia
| | - Sarah Reed
- University of Queensland- Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Peter S W Davies
- University of Queensland- Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Murray D Mitchell
- School of Biomedical Sciences, Faculty of Health, Centre for Children's Health Research, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
24
|
Zembroski AS, Xiao C, Buhman KK. The Roles of Cytoplasmic Lipid Droplets in Modulating Intestinal Uptake of Dietary Fat. Annu Rev Nutr 2021; 41:79-104. [PMID: 34283920 DOI: 10.1146/annurev-nutr-110320-013657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary fat absorption is required for health but also contributes to hyperlipidemia and metabolic disease when dysregulated. One step in the process of dietary fat absorption is the formation of cytoplasmic lipid droplets (CLDs) in small intestinal enterocytes; these CLDs serve as dynamic triacylglycerol storage organelles that influence the rate at which dietary fat is absorbed. Recent studies have uncovered novel factors regulating enterocyte CLD metabolism that in turn influence the absorption of dietary fat. These include peroxisome proliferator-activated receptor α activation, compartmentalization of different lipid pools, the gut microbiome, liver X receptor and farnesoid X receptor activation, obesity, and physiological factors stimulating CLD mobilization. Understanding how enterocyte CLD metabolism is regulated is key in modulating the absorption of dietary fat in the prevention of hyperlipidemia and its associated metabolic disorders. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alyssa S Zembroski
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
25
|
Zhao L, Li Y, Ding Q, Li Y, Chen Y, Ruan XZ. CD36 Senses Dietary Lipids and Regulates Lipids Homeostasis in the Intestine. Front Physiol 2021; 12:669279. [PMID: 33995128 PMCID: PMC8113691 DOI: 10.3389/fphys.2021.669279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Dietary lipids absorbed in the intestine are closely related to the development of metabolic syndrome. CD36 is a multi-functional scavenger receptor with multiple ligands, which plays important roles in developing hyperlipidemia, insulin resistance, and metabolic syndrome. In the intestine, CD36 is abundant on the brush border membrane of the enterocytes mainly localized in proximal intestine. This review recapitulates the update and current advances on the importance of intestinal CD36 in sensing dietary lipids and regulating intestinal lipids uptake, synthesis and transport, and regulating intestinal hormones secretion. However, further studies are still needed to demonstrate the complex interactions between intestinal CD36 and dietary lipids, as well as its importance in diet associated metabolic syndrome.
Collapse
Affiliation(s)
- Lei Zhao
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuqi Li
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qiuying Ding
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yanping Li
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiong Z Ruan
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, United Kingdom
| |
Collapse
|
26
|
Altered intestinal epithelial nutrient transport: an underappreciated factor in obesity modulated by diet and microbiota. Biochem J 2021; 478:975-995. [PMID: 33661278 DOI: 10.1042/bcj20200902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
Dietary nutrients absorbed in the proximal small intestine and assimilated in different tissues have a profound effect on overall energy homeostasis, determined by a balance between body's energy intake and expenditure. In obesity, altered intestinal absorption and consequently tissue assimilation of nutrients may disturb the energy balance leading to metabolic abnormalities at the cellular level. The absorption of nutrients such as sugars, amino acids and fatty acids released from food digestion require high-capacity transporter proteins expressed in the intestinal epithelial absorptive cells. Furthermore, nutrient sensing by specific transporters/receptors expressed in the epithelial enteroendocrine cells triggers release of gut hormones involved in regulating energy homeostasis via their effects on appetite and food intake. Therefore, the intestinal epithelial cells play a pivotal role in the pathophysiology of obesity and associated complications. Over the past decade, gut microbiota has emerged as a key factor contributing to obesity via its effects on digestion and absorption of nutrients in the small intestine, and energy harvest from dietary fiber, undigested component of food, in the large intestine. Various mechanisms of microbiota effects on obesity have been implicated. However, the impact of obesity-associated microbiota on the intestinal nutrient transporters needs extensive investigation. This review marshals the limited studies addressing the altered structure and function of the gut epithelium in obesity with special emphasis on nutrient transporters and role of diet and microbiota. The review also discusses the thoughts and controversies and research gaps in this field.
Collapse
|
27
|
Duca FA, Waise TMZ, Peppler WT, Lam TKT. The metabolic impact of small intestinal nutrient sensing. Nat Commun 2021; 12:903. [PMID: 33568676 PMCID: PMC7876101 DOI: 10.1038/s41467-021-21235-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract maintains energy and glucose homeostasis, in part through nutrient-sensing and subsequent signaling to the brain and other tissues. In this review, we highlight the role of small intestinal nutrient-sensing in metabolic homeostasis, and link high-fat feeding, obesity, and diabetes with perturbations in these gut-brain signaling pathways. We identify how lipids, carbohydrates, and proteins, initiate gut peptide release from the enteroendocrine cells through small intestinal sensing pathways, and how these peptides regulate food intake, glucose tolerance, and hepatic glucose production. Lastly, we highlight how the gut microbiota impact small intestinal nutrient-sensing in normal physiology, and in disease, pharmacological and surgical settings. Emerging evidence indicates that the molecular mechanisms of small intestinal nutrient sensing in metabolic homeostasis have physiological and pathological impact as well as therapeutic potential in obesity and diabetes. The gastrointestinal tract participates in maintaining metabolic homeostasis in part through nutrient-sensing and subsequent gut-brain signalling. Here the authors review the role of small intestinal nutrient-sensing in regulation of energy intake and systemic glucose metabolism, and link high-fat diet, obesity and diabetes with perturbations in these pathways.
Collapse
Affiliation(s)
- Frank A Duca
- BIO5 Institute, University of Arizona, Tucson, AZ, USA. .,School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA.
| | - T M Zaved Waise
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Willem T Peppler
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, Canada. .,Department of Physiology, University of Toronto, Toronto, Canada. .,Department of Medicine, University of Toronto, Toronto, Canada. .,Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
28
|
Kim J, Moon J, Park CH, Lee J, Cheng H, Floyd ZE, Chang JS. NT-PGC-1α deficiency attenuates high-fat diet-induced obesity by modulating food intake, fecal fat excretion and intestinal fat absorption. Sci Rep 2021; 11:1323. [PMID: 33446719 PMCID: PMC7809341 DOI: 10.1038/s41598-020-79823-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Transcriptional coactivator PGC-1α and its splice variant NT-PGC-1α regulate metabolic adaptation by modulating many gene programs. Selective ablation of PGC-1α attenuates diet-induced obesity through enhancing fatty acid oxidation and thermogenesis by upregulation of NT-PGC-1α in brown adipose tissue (BAT). Recently, we have shown that selective ablation of NT-PGC-1α reduces fatty acid oxidation in BAT. Thus, the objective of this study was to test our hypothesis that NT-PGC-1α−/− mice would be more prone to diet-induced obesity. Male and female NT-PGC-1α+/+ (WT) and NT-PGC-1α−/− mice were fed a regular chow or 60% high-fat (HF) diet for 16 weeks. Contrary to our expectations, both male and female NT-PGC-1α−/− mice fed HFD were protected from diet-induced obesity, with more pronounced effects in females. This lean phenotype was primarily driven by reduced dietary fat intake. Intriguingly, HFD-fed female, but not male, NT-PGC-1α−/− mice further exhibited decreased feed efficiency, which was closely associated with increased fecal fat excretion and decreased uptake of fatty acids by the intestinal enterocytes and adipocytes with a concomitant decrease in fatty acid transporter gene expression. Collectively, our results highlight the role for NT-PGC-1α in regulating whole body lipid homeostasis under HFD conditions.
Collapse
Affiliation(s)
- Jihyun Kim
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Jiyoung Moon
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Chul-Hong Park
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Jisu Lee
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Helia Cheng
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Z Elizabeth Floyd
- Laboratory of Ubiquitin Biology, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Ji Suk Chang
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
29
|
Shu H, Peng Y, Hang W, Nie J, Zhou N, Wang DW. The role of CD36 in cardiovascular disease. Cardiovasc Res 2020; 118:115-129. [PMID: 33210138 PMCID: PMC8752351 DOI: 10.1093/cvr/cvaa319] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
CD36, also known as the scavenger receptor B2, is a multifunctional receptor widely expressed in various organs. CD36 plays a crucial role in the uptake of long-chain fatty acids, the main metabolic substrate in myocardial tissue. The maturation and transportation of CD36 is regulated by post-translational modifications, including phosphorylation, ubiquitination, glycosylation, and palmitoylation. CD36 is decreased in pathological cardiac hypertrophy caused by ischaemia-reperfusion and pressure overload, and increased in diabetic cardiomyopathy and atherosclerosis. Deficiency of CD36 alleviates diabetic cardiomyopathy and atherosclerosis, while overexpression of CD36 eliminates ischaemia-reperfusion damage, together suggesting that CD36 is closely associated with the progression of cardiovascular diseases and may be a new therapeutic target. This review summarizes the regulation and post-translational modifications of CD36 and evaluates its role in cardiovascular diseases and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
30
|
Angiopoietin-2-integrin α5β1 signaling enhances vascular fatty acid transport and prevents ectopic lipid-induced insulin resistance. Nat Commun 2020; 11:2980. [PMID: 32532986 PMCID: PMC7293240 DOI: 10.1038/s41467-020-16795-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Proper storage of excessive dietary fat into subcutaneous adipose tissue (SAT) prevents ectopic lipid deposition-induced insulin resistance, yet the underlying mechanism remains unclear. Here, we identify angiopoietin-2 (Angpt2)–integrin α5β1 signaling as an inducer of fat uptake specifically in SAT. Adipocyte-specific deletion of Angpt2 markedly reduced fatty acid uptake and storage in SAT, leading to ectopic lipid accumulation in glucose-consuming organs including skeletal muscle and liver and to systemic insulin resistance. Mechanistically, Angpt2 activated integrin α5β1 signaling in the endothelium and triggered fatty acid transport via CD36 and FATP3 into SAT. Genetic or pharmacological inhibition of the endothelial integrin α5β1 recapitulated adipocyte-specific Angpt2 knockout phenotypes. Our findings demonstrate the critical roles of Angpt2–integrin α5β1 signaling in SAT endothelium in regulating whole-body fat distribution for metabolic health and highlight adipocyte–endothelial crosstalk as a potential target for prevention of ectopic lipid deposition-induced lipotoxicity and insulin resistance. Fat uptake and storage in subcutaneous adipose tissue (SAT) prevents ectopic fat accumulation and associated metabolic complications, however, the underlying mechanisms are incompletely understood. Here, the authors show that adipose angiopoietin-2 (Angpt2) enhances SAT size via increased endothelial fatty acid transport.
Collapse
|
31
|
Markovic MA, Srikrishnaraj A, Tsang D, Brubaker PL. Requirement for the intestinal epithelial insulin-like growth factor-1 receptor in the intestinal responses to glucagon-like peptide-2 and dietary fat. FASEB J 2020; 34:6628-6640. [PMID: 32212202 DOI: 10.1096/fj.202000169r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
The intestinal hormone, glucagon-like peptide-2 (GLP-2), enhances the enterocyte chylomicron production. However, GLP-2 is known to require the intestinal-epithelial insulin-like growth factor-1 receptor (IE-IGF-1R) for its other actions to increase intestinal growth and barrier function. The role of the IE-IGF-1R in enterocyte lipid handling was thus tested in the GLP-2 signaling pathway, as well as in response to a Western diet (WD). IE-IGF-1R knockout (KO) and control mice were treated for 11 days with h(GLY2 )GLP-2 or fed a WD for 18 weeks followed by a duodenal fat tolerance test with C14 -labeled triolein. Human Caco-2BBE cells were treated with an IGF-1R antagonist or signaling inhibitors to determine triglyceride-associated protein expression. The IE-IGF-1R was required for GLP-2-induced increases in CD36 and FATP-4 in chow-fed mice, and for expression in vitro; FATP-4 also required PI3K/Akt. Although WD-fed IE-IGF-1R KO mice demonstrated normal CD36 expression, the protein was incorrectly localized 2h post-duodenal fat administration. IE-IGF-1R KO also prevented the WD-induced increase in MTP and decrease in APOC3, increased jejunal mucosal C14 -fat accumulation, and elevated plasma triglyceride and C14 -fat levels. Collectively, these studies elucidate new roles for the IE-IGF-1R in enterocyte lipid handling, under basal conditions and in response to GLP-2 and WD-feeding.
Collapse
Affiliation(s)
| | | | - Derek Tsang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Berger E, Géloën A. Adipocytes as lipid sensors of oleic acid transport through a functional Caco-2/HT29-MTX intestinal barrier. Adipocyte 2019; 8:83-97. [PMID: 30905315 PMCID: PMC6768252 DOI: 10.1080/21623945.2019.1580842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adipose tissue function in the regulation of lipemia is highly dependent on intestinal absorption of nutrients. Therefore the aim of the present study was the development and validation of an in vitro multiculture model allowing to measure intestinal absorption using adipocytes as lipid sensors. We previously described (1) novel methods to study oleic acid induction of adipogenesis and lipogenesis and (2) a functional reconstituted intestinal barrier using human cell lines Caco-2/HT29-MTX (9:1). In the present study we develop a co-culture model with either adipocytes or hepatocytes as sensors for intestinal lipid absorption. This model was validated using oleic acid (OA) pre-absorbed onto the intestinal barrier. Optimized experimental conditions were obtained with partially differentiated 3T3L1-MBX adipocytes sensing up to 5 μM OA in solution or 40 μM OA pre-absorbed by Caco2/HT29-MTX intestinal barriers. Metabolism including glycemia and insulinemia greatly influenced the ability to TG accumulation in adipocytes. By comparison AML12 hepatocytes found less sensitive to OA (up to 1 μM). The present study demonstrates a much better functionality for fatty acid uptake and release in Caco2/HT29-MTX versus Caco-2 intestinal barriers. Taken together these results open new opportunities to study in vitro lipid transfer between intestinal barriers and either adipocytes or hepatocytes. Abbreviations: BSA: Bovine serum albumin; CIDEs: Cell Death Inducing DFFA Like Effectors; DMEM, Dulbecco’s Modified Eagle’s Medium; FABPs: Fatty Acid Binding Proteins; FAT/CD36: Fatty acid translocase; FCS: Fetal calf serum; GLP2: Glucagon-like peptide-2; NAFLD: Nonalcoholic fatty liver disease; OA: oleic acid; PBS: Phosphate buffer saline; PPARs: Peroxisome-Proliferator Activated Receptors; RTCA: realtime cell analysis; TG: triglyceride
Collapse
Affiliation(s)
- Emmanuelle Berger
- CarMeN Laboratory, INRA UMR1397, INSERM U1060, INSA-Lyon, IMBL, Université Lyon 1, Lyon, France
| | - Alain Géloën
- CarMeN Laboratory, INRA UMR1397, INSERM U1060, INSA-Lyon, IMBL, Université Lyon 1, Lyon, France
| |
Collapse
|
33
|
Raka F, Farr S, Kelly J, Stoianov A, Adeli K. Metabolic control via nutrient-sensing mechanisms: role of taste receptors and the gut-brain neuroendocrine axis. Am J Physiol Endocrinol Metab 2019; 317:E559-E572. [PMID: 31310579 DOI: 10.1152/ajpendo.00036.2019] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nutrient sensing plays an important role in ensuring that appropriate digestive or hormonal responses are elicited following the ingestion of fuel substrates. Mechanisms of nutrient sensing in the oral cavity have been fairly well characterized and involve lingual taste receptors. These include heterodimers of G protein-coupled receptors (GPCRs) of the taste receptor type 1 (T1R) family for sensing sweet (T1R2-T1R3) and umami (T1R1-T1R3) stimuli, the T2R family for sensing bitter stimuli, and ion channels for conferring sour and salty tastes. In recent years, several studies have revealed the existence of additional nutrient-sensing mechanisms along the gastrointestinal tract. Glucose sensing is achieved by the T1R2-T1R3 heterodimer on enteroendocrine cells, which plays a role in triggering the secretion of incretin hormones for improved glycemic and lipemic control. Protein hydrolysates are detected by Ca2+-sensing receptor, the T1R1-T1R3 heterodimer, and G protein-coupled receptor 92/93 (GPR92/93), which leads to the release of the gut-derived satiety factor cholecystokinin. Furthermore, several GPCRs have been implicated in fatty acid sensing: GPR40 and GPR120 respond to medium- and long-chain fatty acids, GPR41 and GPR43 to short-chain fatty acids, and GPR119 to endogenous lipid derivatives. Aside from the recognition of fuel substrates, both the oral cavity and the gastrointestinal tract also possess T2R-mediated mechanisms of recognizing nonnutrients such as environmental contaminants, bacterial toxins, and secondary plant metabolites that evoke a bitter taste. These gastrointestinal sensing mechanisms result in the transmission of neuronal signals to the brain through the release of gastrointestinal hormones that act on vagal and enteric afferents to modulate the physiological response to nutrients, particularly satiety and energy homeostasis. Modulating these orally accessible nutrient-sensing pathways using particular foods, dietary supplements, or pharmaceutical compounds may have therapeutic potential for treating obesity and metabolic diseases.
Collapse
Affiliation(s)
- Fitore Raka
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sarah Farr
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jacalyn Kelly
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexandra Stoianov
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Jin S, Xu Y, Zang H, Yang L, Lin Z, Li Y, Geng Z. Expression of genes related to lipid transport in meat-type ducks divergent for low or high residual feed intake. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:416-423. [PMID: 31480135 PMCID: PMC7054623 DOI: 10.5713/ajas.19.0284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022]
Abstract
Objective This study examined the effects of divergence in residual feed intake (RFI) on expression profiles of key genes related to lipid transport in the liver and duodenal epithelium and their associations with feed efficiency traits in meat-type ducks. Methods A total of 1,000 male ducks with similar body weight (1,042.1±87.2 g) were used in this study, and their individual RFI was calculated from 21 to 42 d of age. Finally, the 10 highest RFI (HRFI) and 10 lowest RFI (LRFI) ducks were chosen for examining the expression of key genes related to lipid transport in the liver and duodenal epithelium using quantitative polymerase chain reaction. Results In the liver, expression levels of albumin (ALB), CD36 molecule (CD36), fatty acid hydroxylase domain containing 2 (FAXDC2), and choline kinase alpha (CHKA) were significantly higher in LRFI ducks than in HRFI ducks (p<0.01); negative correlations (p<0.05) between expression levels of ALB, CD36, FAXDC2, and CHKA and RFI were detected in the liver. Additionally, ALB expression was strongly positively correlated (p<0.05) with CD36, FAXDC2, CHKA, and apolipoprotein H (APOH) expression in the liver. In duodenal epithelium, we found that mRNA levels of ALB, CD36, FAXDC2, and APOH were significantly higher in LRFI ducks than in HRFI ducks (p<0.01); RFI was strongly negatively correlated (p<0.05) with ALB, FAXDC2, and APOH expression, while ALB expression was strongly positively correlated with APOH expression (p<0.01) in duodenal epithelium. Furthermore, expression levels of both ALB and FAXDC2 genes were significantly associated with feed conversion ratio and RFI in both liver and duodenal epithelium (p<0.05). Conclusion Our findings therefore suggest that ALB and FAXDC2 genes might be used as potential gene markers designed to improve feed efficiency in future meat-type duck breeding programs.
Collapse
Affiliation(s)
- Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding, Hefei 230036, China
| | - Yuan Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding, Hefei 230036, China
| | - He Zang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding, Hefei 230036, China
| | - Lei Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding, Hefei 230036, China
| | - Zhiqiang Lin
- Huangshan Qiangying Duck Breeding Co. Ltd., Huangshan 245461, China
| | - Yongsheng Li
- Huangshan Qiangying Duck Breeding Co. Ltd., Huangshan 245461, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding, Hefei 230036, China
| |
Collapse
|
35
|
Niculite CM, Enciu AM, Hinescu ME. CD 36: Focus on Epigenetic and Post-Transcriptional Regulation. Front Genet 2019; 10:680. [PMID: 31379931 PMCID: PMC6659770 DOI: 10.3389/fgene.2019.00680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
CD36 is a transmembrane protein involved in fatty acid translocation, scavenging for oxidized fatty acids acting as a receptor for adhesion molecules. It is expressed on macrophages, as well as other types of cells, such as endothelial and adipose cells. CD36 participates in muscle lipid uptake, adipose energy storage, and gut fat absorption. Recently, several preclinical and clinical studies demonstrated that upregulation of CD36 is a prerequisite for tumor metastasis. Cancer metastasis-related research emerged much later and has been less investigated, though it is equally or even more important. CD36 protein expression can be modified by epigenetic changes and post-transcriptional interference from non-coding RNAs. Some data indicate modulation of CD36 expression in specific cell types by epigenetic changes via DNA methylation patterns or histone tails, or through miRNA interference, but this is largely unexplored. The few papers addressing this topic refer mostly to lipid metabolism-related pathologies, whereas in cancer research, data are even more scarce. The aim of this review was to summarize major epigenetic and post-transcriptional mechanisms that impact CD36 expression in relation to various pathologies while highlighting the areas in need of further exploration.
Collapse
Affiliation(s)
- Cristina-Mariana Niculite
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail Eugen Hinescu
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
36
|
Jiang M, Wu N, Xu B, Chu Y, Li X, Su S, Chen D, Li W, Shi Y, Gao X, Zhang H, Zhang Z, Du W, Nie Y, Liang J, Fan D. Fatty acid-induced CD36 expression via O-GlcNAcylation drives gastric cancer metastasis. Am J Cancer Res 2019; 9:5359-5373. [PMID: 31410220 PMCID: PMC6691574 DOI: 10.7150/thno.34024] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/09/2019] [Indexed: 12/28/2022] Open
Abstract
Metastasis is the primary cause of death in patients with advanced cancer. Recently, a high-fat diet was shown to specifically promote the metastatic potential of specific cancer cells in a CD36-dependent manner. However, the molecular basis of the fatty acid (FA)-induced upregulation of CD36 has remained unclear. Methods: RT-qPCR, FACS analysis, immunoblotting and immunohistochemistry, as well as retrieving TCGA database, were carried out to quantitate CD36 expression in gastric cancer (GC) tissues and cell lines. Transwell assay and xenografts were used to assess cell metastasis abilities in vitro and in vivo after indicated treatment. Luciferase reporter assay was carried out to evaluate the changes in signaling pathways when O-GlcNAcylation level was increased in GC cells and in vitro O-GlcNAcylation assay was utilized for wild and mutant types of CD36 protein to explore the potential O-GlcNAcylation sites. Results: High CD36 expression is a predictor of poor survival and promotes metastasis of GC cells and the use of neutralizing antibodies to block CD36 inhibits GC metastasis in mice. FA or a HFD promotes the metastatic potential of GC cells by upregulating CD36 via increasing the O-GlcNAcylation level. Increased O-GlcNAcylation levels promote the transcription of CD36 by activating the NF-κB pathway and also increase its FA uptake activity by directly modifying CD36 at S468 and T470. Conclusion: FA-induced hyper-O-GlcNAcylation promotes the transcription and function of CD36 by activating the NF-κB pathway and directly modifying CD36 at S468 and T470, which drives GC metastasis.
Collapse
|
37
|
Leal-Gutiérrez JD, Elzo MA, Johnson DD, Hamblen H, Mateescu RG. Genome wide association and gene enrichment analysis reveal membrane anchoring and structural proteins associated with meat quality in beef. BMC Genomics 2019; 20:151. [PMID: 30791866 PMCID: PMC6385435 DOI: 10.1186/s12864-019-5518-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Meat quality related phenotypes are difficult and expensive to measure and predict but are ideal candidates for genomic selection if genetic markers that account for a worthwhile proportion of the phenotypic variation can be identified. The objectives of this study were: 1) to perform genome wide association analyses for Warner-Bratzler Shear Force (WBSF), marbling, cooking loss, tenderness, juiciness, connective tissue and flavor; 2) to determine enriched pathways present in each genome wide association analysis; and 3) to identify potential candidate genes with multiple quantitative trait loci (QTL) associated with meat quality. RESULTS The WBSF, marbling and cooking loss traits were measured in longissimus dorsi muscle from 672 steers. Out of these, 495 animals were used to measure tenderness, juiciness, connective tissue and flavor by a sensory panel. All animals were genotyped for 221,077 markers and included in a genome wide association analysis. A total number of 68 genomic regions covering 52 genes were identified using the whole genome association approach; 48% of these genes encode transmembrane proteins or membrane associated molecules. Two enrichment analysis were performed: a tissue restricted gene enrichment applying a correlation analysis between raw associated single nucleotide polymorphisms (SNPs) by trait, and a functional classification analysis performed using the DAVID Bioinformatic Resources 6.8 server. The tissue restricted gene enrichment approach identified eleven pathways including "Endoplasmic reticulum membrane" that influenced multiple traits simultaneously. The DAVID functional classification analysis uncovered eleven clusters related to transmembrane or structural proteins. A gene network was constructed where the number of raw associated uncorrelated SNPs for each gene across all traits was used as a weight. A multiple SNP association analysis was performed for the top five most connected genes in the gene-trait network. The gene network identified the EVC2, ANXA10 and PKHD1 genes as potentially harboring multiple QTLs. Polymorphisms identified in structural proteins can modulate two different processes with direct effect on meat quality: in vivo myocyte cytoskeletal organization and postmortem proteolysis. CONCLUSION The main result from the present analysis is the uncovering of several candidate genes associated with meat quality that have structural function in the skeletal muscle.
Collapse
Affiliation(s)
| | - Mauricio A. Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| | - D. Dwain Johnson
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| | - Heather Hamblen
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| | - Raluca G. Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| |
Collapse
|
38
|
Xiao C, Stahel P, Lewis GF. Regulation of Chylomicron Secretion: Focus on Post-Assembly Mechanisms. Cell Mol Gastroenterol Hepatol 2018; 7:487-501. [PMID: 30819663 PMCID: PMC6396431 DOI: 10.1016/j.jcmgh.2018.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
Rapid and efficient digestion and absorption of dietary triglycerides and other lipids by the intestine, the packaging of those lipids into lipoprotein chylomicron (CM) particles, and their secretion via the lymphatic duct into the blood circulation are essential in maintaining whole-body lipid and energy homeostasis. Biosynthesis and assembly of CMs in enterocytes is a complex multistep process that is subject to regulation by intracellular signaling pathways as well as by hormones, nutrients, and neural factors extrinsic to the enterocyte. Dysregulation of this process has implications for health and disease, contributing to dyslipidemia and a potentially increased risk of atherosclerotic cardiovascular disease. There is increasing recognition that, besides intracellular regulation of CM assembly and secretion, regulation of postassembly pathways also plays important roles in CM secretion. This review examines recent advances in our understanding of the regulation of CM secretion in relation to mobilization of intestinal lipid stores, drawing particular attention to post-assembly regulatory mechanisms, including intracellular trafficking of triglycerides in enterocytes, CM mobilization from the lamina propria, and regulated transport of CM by intestinal lymphatics.
Collapse
Affiliation(s)
- Changting Xiao
- Changting Xiao, PhD, Princess Margaret Cancer Research Tower 10-203, Medical and Related Science Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada. fax: (416) 581-7487.
| | | | - Gary F. Lewis
- Correspondence Address correspondence to: Gary F. Lewis, MD, FRCPC, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada. fax: (416) 340-3314.
| |
Collapse
|
39
|
Desmarchelier C, Landrier JF, Borel P. Genetic factors involved in the bioavailability of tomato carotenoids. Curr Opin Clin Nutr Metab Care 2018; 21:489-497. [PMID: 30277929 DOI: 10.1097/mco.0000000000000515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW To provide an update on the genetic factors recently associated with the interindividual variability of tomato carotenoid bioavailability. RECENT FINDINGS Several clinical studies have demonstrated that the main carotenoids found in tomatoes (lycopene, phytoene, phytofluene, β-carotene, lutein) all display relatively large interindividual variabilities of their bioavailability, with coefficients of variations more than 70%. The bioavailability of the parent molecules, and the blood/tissue appearance of their metabolites, is modulated by numerous proteins, involved in intestinal absorption and metabolism, blood lipoprotein transport or tissue uptake. Several single nucleotide polymorphisms (SNPs) have been associated with the interindividual variability of lycopene, lutein and β-carotene bioavailability, with six genes consistently shared between the three carotenoids, and in particular one SNP in ELOVL fatty acid elongase 2. The effects of the genetic variants taken separately are relatively low, that is each variant is usually associated with only a few percentage of the variability but multivariate analyses suggest that the additive effect of several genetic variants can explain a significant fraction of tomato carotenoid bioavailability. SUMMARY Additional studies are needed to improve our knowledge of the genetic determinants of tomato carotenoid bioavailability but progress in this field could one day allow nutritionists to provide more personalized dietary recommendations.
Collapse
|
40
|
Targeting CD36 as Biomarker for Metastasis Prognostic: How Far from Translation into Clinical Practice? BIOMED RESEARCH INTERNATIONAL 2018; 2018:7801202. [PMID: 30069479 PMCID: PMC6057354 DOI: 10.1155/2018/7801202] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
Abstract
Metastasis requires cellular changes related to cell-to-cell and cell-to-matrix adhesion, immune surveillance, activation of growth and survival signalling pathways, and epigenetic modifications. In addition to tumour cells, tumour stroma is also modified in relationship to the primary tumour as well as to distant metastatic sites (forming a metastatic niche). A common denominator of most stromal partners in tumour progression is CD36, a scavenger receptor for fatty acid uptake that modulates cell-to-extracellular matrix attachment, stromal cell fate (for adipocytes, endothelial cells), TGFβ activation, and immune signalling. CD36 has been repeatedly proposed as a prognostic marker in various cancers, mostly of epithelial origin (breast, prostate, ovary, and colon) and also for hepatic carcinoma and gliomas. Data gathered in preclinical models of various cancers have shown that blocking CD36 might prove beneficial in stopping metastasis spread. However, targeting the receptor in clinical trials with thrombospondin mimetic peptides has proven ineffective, and monoclonal antibodies are not yet available for patient use. This review presents data to support CD36 as a potential prognostic biomarker in cancer, its current stage towards achieving bona fide biomarker status, and knowledge gaps that must be filled before further advancement towards clinical practice.
Collapse
|
41
|
Castro RQ, Soto Rodriguez I, Deschamps Lago RA, Pagola PG, Rodriguez Antolin J, Peres Quintal A, Rivera JR, Aguilera AA. Dietary sucrose regulates the expression of the Cd36 gene in hepatic tissue of rats with obesity and Non Alcoholic Fatty Liver Disease (NAFLD). Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 162:99-106. [DOI: 10.5507/bp.2018.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/04/2018] [Indexed: 01/07/2023] Open
|
42
|
Hiel S, Neyrinck AM, Rodriguez J, Pachikian BD, Bouzin C, Thissen JP, Cani PD, Bindels LB, Delzenne NM. Inulin Improves Postprandial Hypertriglyceridemia by Modulating Gene Expression in the Small Intestine. Nutrients 2018; 10:E532. [PMID: 29693598 PMCID: PMC5986412 DOI: 10.3390/nu10050532] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Postprandial hyperlipidemia is an important risk factor for cardiovascular diseases in the context of obesity. Inulin is a non-digestible carbohydrate, known for its beneficial properties in metabolic disorders. We investigated the impact of inulin on postprandial hypertriglyceridemia and on lipid metabolism in a mouse model of diet-induced obesity. Mice received a control or a western diet for 4 weeks and were further supplemented or not with inulin for 2 weeks (0.2 g/day per mouse). We performed a lipid tolerance test, measured mRNA expression of genes involved in postprandial lipid metabolism, assessed post-heparin plasma and muscle lipoprotein lipase activity and measured lipid accumulation in the enterocytes and fecal lipid excretion. Inulin supplementation in western diet-fed mice decreases postprandial serum triglycerides concentration, decreases the mRNA expression levels of Cd36 (fatty acid receptor involved in lipid uptake and sensing) and apolipoprotein C3 (Apoc3, inhibitor of lipoprotein lipase) in the jejunum and increases fecal lipid excretion. In conclusion, inulin improves postprandial hypertriglyceridemia by targeting intestinal lipid metabolism. This work confirms the interest of using inulin supplementation in the management of dyslipidemia linked to obesity and cardiometabolic risk.
Collapse
Affiliation(s)
- Sophie Hiel
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, B-1200 Brussels, Belgium; (S.H.); (A.M.N.); (J.R.); (B.D.P.); (P.D.C.); (L.B.B.)
| | - Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, B-1200 Brussels, Belgium; (S.H.); (A.M.N.); (J.R.); (B.D.P.); (P.D.C.); (L.B.B.)
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, B-1200 Brussels, Belgium; (S.H.); (A.M.N.); (J.R.); (B.D.P.); (P.D.C.); (L.B.B.)
| | - Barbara D. Pachikian
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, B-1200 Brussels, Belgium; (S.H.); (A.M.N.); (J.R.); (B.D.P.); (P.D.C.); (L.B.B.)
| | - Caroline Bouzin
- IREC Imaging Platform, Université catholique de Louvain, B-1200 Brussels, Belgium;
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition; Institut de Recherche Expérimentale et Clinique IREC, Université Catholique de Louvain, B-1200 Brussels, Belgium;
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, B-1200 Brussels, Belgium; (S.H.); (A.M.N.); (J.R.); (B.D.P.); (P.D.C.); (L.B.B.)
- WELBIO—Walloon Excellence in Life Sciences and BIOtechnology, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, B-1200 Brussels, Belgium; (S.H.); (A.M.N.); (J.R.); (B.D.P.); (P.D.C.); (L.B.B.)
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, B-1200 Brussels, Belgium; (S.H.); (A.M.N.); (J.R.); (B.D.P.); (P.D.C.); (L.B.B.)
| |
Collapse
|
43
|
Cifarelli V, Abumrad NA. Intestinal CD36 and Other Key Proteins of Lipid Utilization: Role in Absorption and Gut Homeostasis. Compr Physiol 2018; 8:493-507. [PMID: 29687890 PMCID: PMC6247794 DOI: 10.1002/cphy.c170026] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several proteins have been implicated in fatty acid (FA) transport by enterocytes including the scavenger receptor CD36 (SR-B2), the scavenger receptor B1 (SR-B1) a member of the CD36 family and the FA transport protein 4 (FATP4). Here, we review the regulation of enterocyte FA uptake and its function in lipid absorption including prechylomicron formation, assembly and transport. Emphasis is given to CD36, which is abundantly expressed along the digestive tract of rodents and humans and has been the most studied. We also address the pleiotropic functions of CD36 that go beyond lipid absorption and metabolism to include recent evidence of its impact on intestinal homeostasis and barrier maintenance. Areas of progress involving contribution of membrane phospholipid remodeling and of cytosolic FA-binding proteins, FABP1 and FABP2 to fat absorption will be covered. © 2018 American Physiological Society. Compr Physiol 8:493-507, 2018.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Nada A. Abumrad
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
44
|
Wu Z, Gao T, Zhong R, Lin Z, Jiang C, Ouyang S, Zhao M, Che C, Zhang J, Yin Z. Antihyperlipidaemic effect of triterpenic acid-enriched fraction from Cyclocarya paliurus leaves in hyperlipidaemic rats. PHARMACEUTICAL BIOLOGY 2017; 55:712-721. [PMID: 28140736 PMCID: PMC6130609 DOI: 10.1080/13880209.2016.1267231] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/28/2016] [Accepted: 11/28/2016] [Indexed: 05/25/2023]
Abstract
CONTEXT Cyclocarya paliurus (Batal) Iljinskaja (Juglandaceae) is an edible and medicinal plant; the leaves are used in Chinese folkloric medicine to treat dyslipidaemia and diabetes. OBJECTIVE This study evaluates the antihyperlipidaemic potential of the triterpenic acid-enriched fraction (TAE) from C. paliurus and the underlying mechanism. MATERIALS AND METHODS The hyperlipidaemic rats were induced by high fat diet for 6 weeks. After oral administration of TAE (200 and 400 mg/kg), the neutral fraction (150 and 300 mg/kg) and statin (4 mg/kg) to the hyperlipidaemic rats for 4 weeks, lipid profile and apolipoprotein (apoB48) level in plasma, and the expression levels of apoB48, microsomal triglyceride transfer protein (MTP), phosphorylation of mitogen-activated protein kinase (MAPK) and tumour necrosis factor α (TNF-α) in intestine were examined. The main constituents in the TAE were identified by HPLC-MS. RESULTS TAE administration (400 mg/kg) decreased the levels of atherogenic lipids in serum and liver (p < 0.05) and increased serum high-density lipoprotein cholesterol by 19.7%. Furthermore, TAE treatment (200 and 400 mg/kg) decreased plasma apoB48 level by 15.3 and 19.5%, downregulated intestinal apoB48 and MTP expression levels (p < 0.05), and inhibited TNF-α expression by 36.2 and 56.2% and the phosphorylation level of MAPK by 8.8 and 13.2%, respectively. HPLC analysis revealed the presence of pentacyclic- and tetracyclic-triterpene acids in TAE. CONCLUSION AND DISCUSSION These findings suggested that TAE possessed antihyperlipidaemic activity partially involved in the inhibitory effect on apoB48 overproduction, which may provide evidence about its potential role in ameliorating dyslipidaemia.
Collapse
Affiliation(s)
- Zhengfeng Wu
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| | - Tianhong Gao
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Rongling Zhong
- Laboratory Animal Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Zi Lin
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| | - Cuihua Jiang
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| | - Sheng Ouyang
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, P.R. China
- Department of Medicinal Chemistry and Pharmacognosy, and WHO Collaborating Center for Tradition Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ming Zhao
- Department of Medicinal Chemistry and Pharmacognosy, and WHO Collaborating Center for Tradition Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chuntao Che
- Department of Medicinal Chemistry and Pharmacognosy, and WHO Collaborating Center for Tradition Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Department of Medicinal Chemistry and Pharmacognosy, and WHO Collaborating Center for Tradition Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
Vitamin E Bioavailability: Mechanisms of Intestinal Absorption in the Spotlight. Antioxidants (Basel) 2017; 6:antiox6040095. [PMID: 29165370 PMCID: PMC5745505 DOI: 10.3390/antiox6040095] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/06/2023] Open
Abstract
Vitamin E is an essential fat-soluble micronutrient whose effects on human health can be attributed to both antioxidant and non-antioxidant properties. A growing number of studies aim to promote vitamin E bioavailability in foods. It is thus of major interest to gain deeper insight into the mechanisms of vitamin E absorption, which remain only partly understood. It was long assumed that vitamin E was absorbed by passive diffusion, but recent data has shown that this process is actually far more complex than previously thought. This review describes the fate of vitamin E in the human gastrointestinal lumen during digestion and focuses on the proteins involved in the intestinal membrane and cellular transport of vitamin E across the enterocyte. Special attention is also given to the factors modulating both vitamin E micellarization and absorption. Although these latest results significantly improve our understanding of vitamin E intestinal absorption, further studies are still needed to decipher the molecular mechanisms driving this multifaceted process.
Collapse
|
46
|
Oleic Acid Uptake Reveals the Rescued Enterocyte Phenotype of Colon Cancer Caco-2 by HT29-MTX Cells in Co-Culture Mode. Int J Mol Sci 2017; 18:ijms18071573. [PMID: 28726765 PMCID: PMC5536061 DOI: 10.3390/ijms18071573] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/07/2017] [Accepted: 07/16/2017] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal epithelium is the unique route for nutrients and for many pharmaceuticals to enter the body. The present study aimed to analyze precisely whether co-culture of two colon cancer cell lines, mucus-producing cells HT29-MTX and enterocyte-like Caco-2 cells, ameliorate differentiation into an in vitro intestinal barrier model and the signaling pathways involved. Differentiated Caco-2 cells gene datasets were compared first to intestinal or cancer phenotypes and second to signaling pathway gene datasets. Experimental validations were performed in real-time experiments, immunochemistry, and gene expression analyses on Caco-2 versus co-cultures of Caco-2 and HT29-MTX (10%) cells. Partial maintenance of cancer-cell phenotype in differentiated Caco-2 cells was confirmed and fatty acids merged as potential regulators of cancer signaling pathways. HT29-MTX cells induced morphological changes in Caco-2 cells, slightly increased their proliferation rate and profoundly modified gene transcription of phenotype markers, fatty acid receptors, intracellular transporters, and lipid droplet components as well as functional responses to oleic acid. In vitro, enterocyte phenotype was rescued partially by co-culture of cancer cells with goblet cells and completed through oleic acid interaction with signaling pathways dysregulated in cancer cells.
Collapse
|
47
|
Raza GS, Putaala H, Hibberd AA, Alhoniemi E, Tiihonen K, Mäkelä KA, Herzig KH. Polydextrose changes the gut microbiome and attenuates fasting triglyceride and cholesterol levels in Western diet fed mice. Sci Rep 2017; 7:5294. [PMID: 28706193 PMCID: PMC5509720 DOI: 10.1038/s41598-017-05259-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity and dyslipidemia are hallmarks of metabolic and cardiovascular diseases. Polydextrose (PDX), a soluble fiber has lipid lowering effects. We hypothesize that PDX reduces triglycerides and cholesterol by influencing gut microbiota, which in turn modulate intestinal gene expression. C57BL/6 male mice were fed a Western diet (WD) ±75 mg PDX twice daily by oral gavage for 14 days. Body weight and food intake were monitored daily. Fasting plasma lipids, caecal microbiota and gene expression in intestine and liver were measured after 14 days of feeding. PDX supplementation to WD significantly reduced food intake (p < 0.001), fasting plasma triglyceride (p < 0.001) and total cholesterol (p < 0.05). Microbiome analysis revealed that the relative abundance of Allobaculum, Bifidobacterium and Coriobacteriaceae taxa associated with lean phenotype, increased in WD + PDX mice. Gene expression analysis with linear mixed-effects model showed consistent downregulation of Dgat1, Cd36, Fiaf and upregulation of Fxr in duodenum, jejunum, ileum and colon in WD + PDX mice. Spearman correlations indicated that genera enriched in WD + PDX mice inversely correlated with fasting lipids and downregulated genes Dgat1, Cd36 and Fiaf while positively with upregulated gene Fxr. These results suggest that PDX in mice fed WD promoted systemic changes via regulation of the gut microbiota and gene expression in intestinal tract.
Collapse
Affiliation(s)
- Ghulam Shere Raza
- Research unit of Biomedicine and Biocenter of Oulu, Department of Physiology, University of Oulu, Oulu, Finland
| | - Heli Putaala
- DuPont Nutrition and Health, Global Health and Nutrition Science, Kantvik, Finland
| | - Ashley A Hibberd
- DuPont Nutrition and Health, Genomics & Microbiome Science, St. Louis, MO, USA
| | | | - Kirsti Tiihonen
- DuPont Nutrition and Health, Global Health and Nutrition Science, Kantvik, Finland
| | - Kari Antero Mäkelä
- Research unit of Biomedicine and Biocenter of Oulu, Department of Physiology, University of Oulu, Oulu, Finland
| | - Karl-Heinz Herzig
- Research unit of Biomedicine and Biocenter of Oulu, Department of Physiology, University of Oulu, Oulu, Finland. .,Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland. .,Medical Research Center (MRC), University of Oulu, and University Hospital, Oulu, Finland.
| |
Collapse
|
48
|
Niot I, Besnard P. Appetite control by the tongue-gut axis and evaluation of the role of CD36/SR-B2. Biochimie 2017; 136:27-32. [PMID: 28238842 DOI: 10.1016/j.biochi.2017.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/22/2017] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms governing food intake is a public health issue given the dramatic rise of obesity over the world. The overconsumption of tasty energy-dense foods rich in lipids is considered to be one of the nutritional causes of this epidemic. Over the last decade, the identification of fatty acid receptors in strategic places in the body (i.e. oro-intestinal tract and brain) has provided a major progress in the deciphering of regulatory networks involved in the control of dietary intake. Among these lipid sensors, CD36/SR-B2 appears to play a significant role since this membrane protein, known to bind long-chain fatty acid with a high affinity, was specifically found both in enterocytes and in a subset of taste bud cells and entero-endocrine cells. After a short overview on CD36/SR-B2 structure, function and regulation, this mini-review proposes to analyze the key findings about the role of CD36/SR-B2 along of the tongue-gut axis in relation to appetite control. In addition, we discuss whether obesogenic diets might impair lipid sensing mediated by CD36/SR-B2 along this axis.
Collapse
Affiliation(s)
- Isabelle Niot
- Physiologie de la Nutrition et Toxicologie (NUTox), LCN UMR 1231, INSERM/AgroSupDijon/Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Philippe Besnard
- Physiologie de la Nutrition et Toxicologie (NUTox), LCN UMR 1231, INSERM/AgroSupDijon/Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
49
|
Lipid stimulation of fatty acid sensors in the human duodenum: relationship with gastrointestinal hormones, BMI and diet. Int J Obes (Lond) 2016; 41:233-239. [PMID: 27811952 DOI: 10.1038/ijo.2016.199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/28/2016] [Accepted: 10/16/2016] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS The small intestinal free fatty acid (FFA) sensors, FFA receptor 1 (FFAR1), FFAR4, G-protein receptor 119 (GPR119) and cluster of differentiation-36 (CD36), mediate the fat-induced release of gastrointestinal (GI) hormones. We investigated whether expression of duodenal FFA sensors in humans was (i) altered by intraduodenal (ID) lipid infusion, (ii) disordered in overweight or obese individuals, (iii) related to lipid-induced GI hormone secretion or (iv) affected by habitual dietary patterns. METHODS Endoscopic duodenal biopsies were collected from 20 lean (body mass index (BMI): 22±1 kg m-2), 18 overweight (BMI: 27±1 kg m-2) and 19 obese (BMI: 35±1 kg m-2) participants at baseline, and following a 30 min ID Intralipid infusion (2 kcal min-1); FFA sensor expression was quantified by reverse transcription-PCR. On a separate day, participants underwent ID Intralipid infusion (2 kcal min-1) for 120 min, to assess GI hormone responses. Habitual diet was evaluated using food frequency questionnaires. RESULTS Baseline FFAR1 and FFAR4 expression were lower, and CD36 was higher, in obese participants compared with lean participants. ID lipid increased GPR119 and FFAR1 expression equally across study groups, but did not alter FFAR4 or CD36 expression. Increased FFAR1 expression correlated positively with glucose-dependent insulinotropic polypeptide (GIP) secretion (r=0.3, P<0.05), whereas there was no relationship between habitual diet with the expression of FFA sensors. CONCLUSIONS Obesity is associated with altered duodenal expression of FFAR1, FFAR4 and CD36, suggesting altered capacity for the sensing, absorption and metabolism, of dietary lipids. GPR119 and FFAR1 are early transcriptional responders to the presence of ID lipid, whereas FFAR1 may be an important trigger for lipid-induced GIP release in humans.
Collapse
|
50
|
Love-Gregory L, Kraja AT, Allum F, Aslibekyan S, Hedman ÅK, Duan Y, Borecki IB, Arnett DK, McCarthy MI, Deloukas P, Ordovas JM, Hopkins PN, Grundberg E, Abumrad NA. Higher chylomicron remnants and LDL particle numbers associate with CD36 SNPs and DNA methylation sites that reduce CD36. J Lipid Res 2016; 57:2176-2184. [PMID: 27729386 DOI: 10.1194/jlr.p065250] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 09/28/2016] [Indexed: 12/18/2022] Open
Abstract
Cluster of differentiation 36 (CD36) variants influence fasting lipids and risk of metabolic syndrome, but their impact on postprandial lipids, an independent risk factor for cardiovascular disease, is unclear. We determined the effects of SNPs within a ∼410 kb region encompassing CD36 and its proximal and distal promoters on chylomicron (CM) remnants and LDL particles at fasting and at 3.5 and 6 h following a high-fat meal (Genetics of Lipid Lowering Drugs and Diet Network study, n = 1,117). Five promoter variants associated with CMs, four with delayed TG clearance and five with LDL particle number. To assess mechanisms underlying the associations, we queried expression quantitative trait loci, DNA methylation, and ChIP-seq datasets for adipose and heart tissues that function in postprandial lipid clearance. Several SNPs that associated with higher serum lipids correlated with lower adipose and heart CD36 mRNA and aligned to active motifs for PPARγ, a major CD36 regulator. The SNPs also associated with DNA methylation sites that related to reduced CD36 mRNA and higher serum lipids, but mixed-model analyses indicated that the SNPs and methylation independently influence CD36 mRNA. The findings support contributions of CD36 SNPs that reduce adipose and heart CD36 RNA expression to inter-individual variability of postprandial lipid metabolism and document changes in CD36 DNA methylation that influence both CD36 expression and lipids.
Collapse
Affiliation(s)
- Latisha Love-Gregory
- Department of Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, MO 63110
| | - Aldi T Kraja
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63110
| | - Fiona Allum
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama, Birmingham, AL 35294
| | - Åsa K Hedman
- Departments of Medical Sciences and Molecular Epidemiology, and Science for Life Laboratory, Uppsala University, Uppsala 75185, Sweden
| | - Yanan Duan
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63110
| | - Ingrid B Borecki
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63110
| | - Donna K Arnett
- Department of Epidemiology, University of Alabama, Birmingham, AL 35294
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK, and Oxford Centre for Diabetes, Endocrinology, and Metabolism and Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford OX3 7JU, UK
| | - Panos Deloukas
- William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ London, UK
| | - Jose M Ordovas
- JM-USDA-Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Paul N Hopkins
- Cardiovascular Genetics Research, University of Utah, Salt Lake City, UT 84132
| | - Elin Grundberg
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|