1
|
Zhou P, Liu W, Ma J. Roles of Menin in T cell differentiation and function: Current knowledge and perspectives. Immunology 2024; 173:258-273. [PMID: 39011567 DOI: 10.1111/imm.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
The commitment to specific T lymphocytes (T cell) lineages is governed by distinct transcription factors, whose expression is modulated through epigenetic mechanisms. Unravelling these epigenetic mechanisms that regulate T cell differentiation and function holds significant importance for understanding T cells. Menin, a multifunctional scaffolding protein, is implicated in various cellular processes, such as cell proliferation, cell cycle control, DNA repair and transcriptional regulation, primarily through epigenetic mechanisms. Existing research indicates Menin's impact on T cell differentiation and function, while a comprehensive and systematic review is currently lacking to consolidate these findings. In the current review, we have highlighted recent studies on the role of Menin in T cell differentiation and function, focusing mainly on its impact on the memory Th2 maintenance, Th17 differentiation and maintenance, CD4+ T cell senescence, and effector CD8+ T cell survival. Considering Menin's crucial function in maintaining effector T cell function, the potential of inhibiting Menin activity in mitigating inflammatory diseases associated with excessive T cell activation has also been emphasised.
Collapse
Affiliation(s)
- Pingping Zhou
- Department of Immunology, Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Weiru Liu
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jian Ma
- Department of Immunology, Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Liu P, Shi C, Qiu L, Shang D, Lu Z, Tu Z, Liu H. Menin signaling and therapeutic targeting in breast cancer. Curr Probl Cancer 2024; 51:101118. [PMID: 38968834 DOI: 10.1016/j.currproblcancer.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
To date, mounting evidence have shown that patients with multiple endocrine neoplasia type 1 (MEN1) may face an increased risk for breast carcinogenesis. The product of the MEN1 gene, menin, was also indicated to be an important regulator in breast cancer signaling network. Menin directly interacts with MLL, EZH2, JunD, NF-κB, PPARγ, VDR, Smad3, β-catenin and ERα to modulate gene transcriptions leading to cell proliferation inhibition. Moreover, interaction of menin-FANCD2 contributes to the enhancement of BRCA1-mediated DNA repair mechanism. Ectopic expression of menin causes Bax-, Bak- and Caspase-8-dependent apoptosis. However, despite numbers of menin inhibitors were exploited in other cancers, data on the usage of menin inhibitors in breast cancer treatment remain limited. In this review, we focused on the menin associated signaling pathways and gene transcription regulations, with the aim of elucidating its molecular mechanisms and of guiding the development of novel menin targeted drugs in breast cancer therapy.
Collapse
Affiliation(s)
- Peng Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ziwen Lu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
3
|
Adriaanse FRS, Schneider P, Arentsen-Peters STCJM, da Fonseca AMN, Stutterheim J, Pieters R, Zwaan CM, Stam RW. Distinct Responses to Menin Inhibition and Synergy with DOT1L Inhibition in KMT2A-Rearranged Acute Lymphoblastic and Myeloid Leukemia. Int J Mol Sci 2024; 25:6020. [PMID: 38892207 PMCID: PMC11173273 DOI: 10.3390/ijms25116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pediatric acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) exhibit favorable survival rates. However, for AML and ALL patients carrying KMT2A gene translocations clinical outcome remains unsatisfactory. Key players in KMT2A-fusion-driven leukemogenesis include menin and DOT1L. Recently, menin inhibitors like revumenib have garnered attention for their potential therapeutic efficacy in treating KMT2A-rearranged acute leukemias. However, resistance to menin inhibition poses challenges, and identifying which patients would benefit from revumenib treatment is crucial. Here, we investigated the in vitro response to revumenib in KMT2A-rearranged ALL and AML. While ALL samples show rapid, dose-dependent induction of leukemic cell death, AML responses are much slower and promote myeloid differentiation. Furthermore, we reveal that acquired resistance to revumenib in KMT2A-rearranged ALL cells can occur either through the acquisition of MEN1 mutations or independently of mutations in MEN1. Finally, we demonstrate significant synergy between revumenib and the DOT1L inhibitor pinometostat in KMT2A-rearranged ALL, suggesting that such drug combinations represent a potent therapeutic strategy for these patients. Collectively, our findings underscore the complexity of resistance mechanisms and advocate for precise patient stratification to optimize the use of menin inhibitors in KMT2A-rearranged acute leukemia.
Collapse
Affiliation(s)
- Fabienne R. S. Adriaanse
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC-Sophia’s Children’s Hospital, 3015 CN Rotterdam, The Netherlands
| | - Pauline Schneider
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | | | - Janine Stutterheim
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Rob Pieters
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - C. Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC-Sophia’s Children’s Hospital, 3015 CN Rotterdam, The Netherlands
| | - Ronald W. Stam
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
4
|
Thomas X. Small Molecule Menin Inhibitors: Novel Therapeutic Agents Targeting Acute Myeloid Leukemia with KMT2A Rearrangement or NPM1 Mutation. Oncol Ther 2024; 12:57-72. [PMID: 38300432 PMCID: PMC10881917 DOI: 10.1007/s40487-024-00262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Recent advances have included insights into the clinical value of genomic abnormalities in acute myeloid leukemia (AML) and consequently the development of numerous targeted therapeutic agents that have improved clinical outcome. In this setting, various clinical trials have recently explored novel therapeutic agents either used alone or in combination with intensive chemotherapy or low-intensity treatments. Among them, menin inhibitors could represent a novel group of targeted therapies in AML driven by rearrangement of the lysine methyltransferase 2A (KMT2A) gene, previously known as mixed-lineage leukemia (MLL), or by mutation of the nucleophosmin 1 (NPM1) gene. Recent phase 1/2 clinical trials confirmed the efficacy of SNDX-5613 (revumenib) and KO-539 (ziftomenib) and their acceptable tolerability. Several small molecule menin inhibitors are currently being evaluated as a combination therapy with standard of care treatments. The current paper reviews the recent progress in exploring the inhibitors of menin-KMT2A interactions and their application prospects in the treatment of acute leukemias.
Collapse
Affiliation(s)
- Xavier Thomas
- Department of Clinical Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Bâtiment 1G, 165 Chemin du Grand Revoyet, 69495, Pierre-Bénite Cedex, France.
| |
Collapse
|
5
|
Juul-Dam KL, Shukla NN, Cooper TM, Cuglievan B, Heidenreich O, Kolb EA, Rasouli M, Hasle H, Zwaan CM. Therapeutic targeting in pediatric acute myeloid leukemia with aberrant HOX/MEIS1 expression. Eur J Med Genet 2023; 66:104869. [PMID: 38174649 PMCID: PMC11195042 DOI: 10.1016/j.ejmg.2023.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/21/2023] [Accepted: 10/22/2023] [Indexed: 01/05/2024]
Abstract
Despite advances in the clinical management of childhood acute myeloid leukemia (AML) during the last decades, outcome remains fatal in approximately one third of patients. Primary chemoresistance, relapse and acute and long-term toxicities to conventional myelosuppressive therapies still constitute significant challenges and emphasize the unmet need for effective targeted therapies. Years of scientific efforts have translated into extensive insights on the heterogeneous spectrum of genetics and oncogenic signaling pathways of AML and identified a subset of patients characterized by upregulation of HOXA and HOXB homeobox genes and myeloid ecotropic virus insertion site 1 (MEIS1). Aberrant HOXA/MEIS1 expression is associated with genotypes such as rearrangements in Histone-lysine N-methyltransferase 2A (KMT2A-r), nucleoporin 98 (NUP98-r) and mutated nucleophosmin (NPM1c) that are found in approximately one third of children with AML. AML with upregulated HOXA/MEIS1 shares a number of molecular vulnerabilities amenable to recently developed molecules targeting the assembly of protein complexes or transcriptional regulators. The interaction between the nuclear scaffold protein menin and KMT2A has gained particular interest and constitutes a molecular dependency for maintenance of the HOXA/MEIS1 transcription program. Menin inhibitors disrupt the menin-KMT2A complex in preclinical models of KMT2A-r, NUP98-r and NPM1c acute leukemias and its occupancy at target genes leading to leukemic cell differentiation and apoptosis. Early-phase clinical trials are either ongoing or in development and preliminary data suggests tolerable toxicities and encouraging efficacy of menin inhibitors in adults with relapsed or refractory KMT2A-r and NPM1c AML. The Pediatric Acute Leukemia/European Pediatric Acute Leukemia (PedAL/EUPAL) project is focused to advance and coordinate informative clinical trials with new agents and constitute an ideal framework for testing of menin inhibitors in pediatric study populations. Menin inhibitors in combination with standard chemotherapy or other targeting agents may enhance anti-leukemic effects and constitute rational treatment strategies for select genotypes of childhood AML, and provide enhanced safety to avoid differentiation syndrome. In this review, we discuss the pathophysiological mechanisms in KMT2A-r, NUP98-r and NPM1c AML, emerging molecules targeting the HOXA/MEIS1 transcription program with menin inhibitors as the most prominent examples and future therapeutic implications of these agents in childhood AML.
Collapse
Affiliation(s)
- Kristian L Juul-Dam
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Todd M Cooper
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Branko Cuglievan
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - E Anders Kolb
- Division of Oncology, Nemours/Alfred I. Dupont Hospital for Children, Wilmington, DE, USA
| | - Milad Rasouli
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Jha S, Simonds WF. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr Rev 2023; 44:779-818. [PMID: 36961765 PMCID: PMC10502601 DOI: 10.1210/endrev/bnad009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Recent data suggest an increase in the overall incidence of parathyroid disorders, with primary hyperparathyroidism (PHPT) being the most prevalent parathyroid disorder. PHPT is associated with morbidities (fractures, kidney stones, chronic kidney disease) and increased risk of death. The symptoms of PHPT can be nonspecific, potentially delaying the diagnosis. Approximately 15% of patients with PHPT have an underlying heritable form of PHPT that may be associated with extraparathyroidal manifestations, requiring active surveillance for these manifestations as seen in multiple endocrine neoplasia type 1 and 2A. Genetic testing for heritable forms should be offered to patients with multiglandular disease, recurrent PHPT, young onset PHPT (age ≤40 years), and those with a family history of parathyroid tumors. However, the underlying genetic cause for the majority of patients with heritable forms of PHPT remains unknown. Distinction between sporadic and heritable forms of PHPT is useful in surgical planning for parathyroidectomy and has implications for the family. The genes currently known to be associated with heritable forms of PHPT account for approximately half of sporadic parathyroid tumors. But the genetic cause in approximately half of the sporadic parathyroid tumors remains unknown. Furthermore, there is no systemic therapy for parathyroid carcinoma, a rare but potentially fatal cause of PHPT. Improved understanding of the molecular characteristics of parathyroid tumors will allow us to identify biomarkers for diagnosis and novel targets for therapy.
Collapse
Affiliation(s)
- Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| |
Collapse
|
7
|
Fiskus W, Mill CP, Birdwell C, Davis JA, Das K, Boettcher S, Kadia TM, DiNardo CD, Takahashi K, Loghavi S, Soth MJ, Heffernan T, McGeehan GM, Ruan X, Su X, Vakoc CR, Daver N, Bhalla KN. Targeting of epigenetic co-dependencies enhances anti-AML efficacy of Menin inhibitor in AML with MLL1-r or mutant NPM1. Blood Cancer J 2023; 13:53. [PMID: 37055414 PMCID: PMC10102188 DOI: 10.1038/s41408-023-00826-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Monotherapy with Menin inhibitor (MI), e.g., SNDX-5613, induces clinical remissions in patients with relapsed/refractory AML harboring MLL1-r or mtNPM1, but most patients either fail to respond or eventually relapse. Utilizing single-cell RNA-Seq, ChiP-Seq, ATAC-Seq, RNA-Seq, RPPA, and mass cytometry (CyTOF) analyses, present pre-clinical studies elucidate gene-expression correlates of MI efficacy in AML cells harboring MLL1-r or mtNPM1. Notably, MI-mediated genome-wide, concordant, log2 fold-perturbations in ATAC-Seq and RNA-Seq peaks were observed at the loci of MLL-FP target genes, with upregulation of mRNAs associated with AML differentiation. MI treatment also reduced the number of AML cells expressing the stem/progenitor cell signature. A protein domain-focused CRISPR-Cas9 screen in MLL1-r AML cells identified targetable co-dependencies with MI treatment, including BRD4, EP300, MOZ and KDM1A. Consistent with this, in vitro co-treatment with MI and BET, MOZ, LSD1 or CBP/p300 inhibitor induced synergistic loss of viability of AML cells with MLL1-r or mtNPM1. Co-treatment with MI and BET or CBP/p300 inhibitor also exerted significantly superior in vivo efficacy in xenograft models of AML with MLL1-r. These findings highlight novel, MI-based combinations that could prevent escape of AML stem/progenitor cells following MI monotherapy, which is responsible for therapy-refractory AML relapse.
Collapse
Affiliation(s)
- Warren Fiskus
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - John A Davis
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kaberi Das
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steffen Boettcher
- University of Zurich and University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Tapan M Kadia
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Koichi Takahashi
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Soth
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tim Heffernan
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Xinjia Ruan
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Su
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Naval Daver
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kapil N Bhalla
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Li F, Liu R, Negi V, Yang P, Lee J, Jagannathan R, Moulik M, Yechoor VK. VGLL4 and MENIN function as TEAD1 corepressors to block pancreatic β cell proliferation. Cell Rep 2023; 42:111904. [PMID: 36662616 PMCID: PMC9970006 DOI: 10.1016/j.celrep.2022.111904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/18/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
TEAD1 and the mammalian Hippo pathway regulate cellular proliferation and function, though their regulatory function in β cells remains poorly characterized. In this study, we demonstrate that while β cell-specific TEAD1 deletion results in a cell-autonomous increase of β cell proliferation, β cell-specific deletion of its canonical coactivators, YAP and TAZ, does not affect proliferation, suggesting the involvement of other cofactors. Using an improved split-GFP system and yeast two-hybrid platform, we identify VGLL4 and MENIN as TEAD1 corepressors in β cells. We show that VGLL4 and MENIN bind to TEAD1 and repress the expression of target genes, including FZD7 and CCN2, which leads to an inhibition of β cell proliferation. In conclusion, we demonstrate that TEAD1 plays a critical role in β cell proliferation and identify VGLL4 and MENIN as TEAD1 corepressors in β cells. We propose that these could be targeted to augment proliferation in β cells for reversing diabetes.
Collapse
Affiliation(s)
- Feng Li
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ruya Liu
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vinny Negi
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ping Yang
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeongkyung Lee
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Mousumi Moulik
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vijay K. Yechoor
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Lead contact,Correspondence: (F.L.), (V.K.Y.)
| |
Collapse
|
9
|
Ye Z, Chen H, Ji S, Hu Y, Lou X, Zhang W, Jing D, Fan G, Zhang Y, Chen X, Zhuo Q, Chen J, Xu X, Yu X, Xu J, Qin Y, Gao H. MEN1 promotes ferroptosis by inhibiting mTOR-SCD1 axis in pancreatic neuroendocrine tumors. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1599-1609. [PMID: 36604142 PMCID: PMC9828289 DOI: 10.3724/abbs.2022162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pancreatic neuroendocrine tumor (pNET) is the second most common malignant tumors of the pancreas. Multiple endocrine neoplasia 1 ( MEN1) is the most frequently mutated gene in pNETs and MEN1-encoded protein, menin, is a scaffold protein that interacts with transcription factors and chromatin-modifying proteins to regulate various signaling pathways. However, the role of MEN1 in lipid metabolism has not been studied in pNETs. In this study, we perform targeted metabolomics analysis and find that MEN1 promotes the generation and oxidation of polyunsaturated fat acids (PUFAs). Meanwhile lipid peroxidation is a hallmark of ferroptosis, and we confirm that MEN1 promotes ferroptosis by inhibiting the activation of mTOR signaling which is the central hub of metabolism. We show that stearoyl-coA desaturase (SCD1) is the downstream of MEN1-mTOR signaling and oleic acid (OA), a metabolite of SCD1, recues the lipid peroxidation caused by MEN1 overexpression. The negative correlation between MEN1 and SCD1 is further verified in clinical specimens. Furthermore, we find that BON-1 and QGP-1 cells with MEN1 overexpression are more sensitive to everolimus, a widely used drug in pNETs that targets mTOR signaling. In addition, combined use everolimus with ferroptosis inducer, RSL3, possesses a more powerful ability to kill cells, which may provide a new strategy for the comprehensive therapy of pNETs.
Collapse
Affiliation(s)
- Zeng Ye
- Center for Neuroendocrine TumorsFudan University Shanghai Cancer CenterShanghai200032China,Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Shanghai Pancreatic Cancer InstituteShanghai200032China,Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Haidi Chen
- Center for Neuroendocrine TumorsFudan University Shanghai Cancer CenterShanghai200032China,Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Shanghai Pancreatic Cancer InstituteShanghai200032China,Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Shunrong Ji
- Center for Neuroendocrine TumorsFudan University Shanghai Cancer CenterShanghai200032China,Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Shanghai Pancreatic Cancer InstituteShanghai200032China,Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Yuheng Hu
- Center for Neuroendocrine TumorsFudan University Shanghai Cancer CenterShanghai200032China,Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Shanghai Pancreatic Cancer InstituteShanghai200032China,Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Xin Lou
- Center for Neuroendocrine TumorsFudan University Shanghai Cancer CenterShanghai200032China,Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Shanghai Pancreatic Cancer InstituteShanghai200032China,Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Wuhu Zhang
- Center for Neuroendocrine TumorsFudan University Shanghai Cancer CenterShanghai200032China,Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Shanghai Pancreatic Cancer InstituteShanghai200032China,Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Desheng Jing
- Center for Neuroendocrine TumorsFudan University Shanghai Cancer CenterShanghai200032China,Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Shanghai Pancreatic Cancer InstituteShanghai200032China,Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Guixiong Fan
- Center for Neuroendocrine TumorsFudan University Shanghai Cancer CenterShanghai200032China,Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Shanghai Pancreatic Cancer InstituteShanghai200032China,Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Yue Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe Third Affiliated Hospital of Soochow UniversityChangzhou213003China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe Third Affiliated Hospital of Soochow UniversityChangzhou213003China
| | - Qifeng Zhuo
- Center for Neuroendocrine TumorsFudan University Shanghai Cancer CenterShanghai200032China,Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Shanghai Pancreatic Cancer InstituteShanghai200032China,Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Jie Chen
- Center for Neuroendocrine TumorsFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Shanghai Pancreatic Cancer InstituteShanghai200032China,Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Xiaowu Xu
- Center for Neuroendocrine TumorsFudan University Shanghai Cancer CenterShanghai200032China,Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Shanghai Pancreatic Cancer InstituteShanghai200032China,Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Xianjun Yu
- Center for Neuroendocrine TumorsFudan University Shanghai Cancer CenterShanghai200032China,Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Shanghai Pancreatic Cancer InstituteShanghai200032China,Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Jin Xu
- Center for Neuroendocrine TumorsFudan University Shanghai Cancer CenterShanghai200032China,Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Shanghai Pancreatic Cancer InstituteShanghai200032China,Pancreatic Cancer InstituteFudan UniversityShanghai200032China,Correspondence address. Tel: +86-21-64175590; (H.G.) / (Y.Q.) / (J.X.) @
| | - Yi Qin
- Center for Neuroendocrine TumorsFudan University Shanghai Cancer CenterShanghai200032China,Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Shanghai Pancreatic Cancer InstituteShanghai200032China,Pancreatic Cancer InstituteFudan UniversityShanghai200032China,Correspondence address. Tel: +86-21-64175590; (H.G.) / (Y.Q.) / (J.X.) @
| | - Heli Gao
- Center for Neuroendocrine TumorsFudan University Shanghai Cancer CenterShanghai200032China,Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Shanghai Pancreatic Cancer InstituteShanghai200032China,Pancreatic Cancer InstituteFudan UniversityShanghai200032China,Correspondence address. Tel: +86-21-64175590; (H.G.) / (Y.Q.) / (J.X.) @
| |
Collapse
|
10
|
Welsch C, Flügel AK, Rondot S, Schulze E, Sircar I, Nußbaumer J, Bojunga J. Distinct clinical phenotypes in a family with a novel truncating MEN1 frameshift mutation. BMC Endocr Disord 2022; 22:64. [PMID: 35287658 PMCID: PMC8919629 DOI: 10.1186/s12902-022-00978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND MEN1 mutations can inactivate or disrupt menin function and are leading to multiple endocrine neoplasia type 1, a rare heritable tumor syndrome. CASE PRESENTATION We report on a MEN1 family with a novel heterozygous germline mutation, c.674delG; p.Gly225Aspfs*56 in exon 4 of the MEN1 gene. Diagnosis and clinical phenotyping of MEN1 was established by laboratory tests, ultrasound, biopsy, MRI imaging and endosonography. The clinical course of the disease was followed in the index patient and her family members for eight years. The mutation was associated with distinct clinical phenotypes in the index patient and three family members harboring p.Gly225Aspfs*56. Family members affected showed primary hyperparathyroidism but variable patterns of associated endocrine tumors, adrenal cortical adenomas, prolactinoma, multifocal pancreatic neuroendocrine tumors, insulinoma and nonsecretory neuroendocrine tumors of the pancreas. The mutation c.674delG; p.Gly225Aspfs*56 leads to a frameshift from codon 225 with early truncation of the menin protein. In silico analysis predicts loss of multiple protein-menin interactions in p.Gly225Aspfs*56, potentially rendering menin insufficient to control cell division and replication. However, no aggressive neuroendocrine tumors were observed in the follow-up of this family. CONCLUSIONS We report a novel heterozygous MEN1 frameshift mutation, potentially causing (at least partial) inactivation of menin tumor suppression potential but lacking a genotype-phenotype correlation. Our study highlights the importance of personalized care with appropriate testing and counseling in MEN1 families.
Collapse
Affiliation(s)
- Christoph Welsch
- Department of Internal Medicine 1, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Anna Katharina Flügel
- Department of Internal Medicine 1, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Susanne Rondot
- MVZ Labor Dr. Limbach & Kollegen GbR, Molecular Endocrinology, Heidelberg, Germany
| | - Egbert Schulze
- MVZ Labor Dr. Limbach & Kollegen GbR, Molecular Endocrinology, Heidelberg, Germany
| | - Ishani Sircar
- Department of Internal Medicine 1, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
- endokrinologikum Frankfurt, Frankfurt am Main, Germany
| | - Judith Nußbaumer
- Department of Internal Medicine 1, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Jörg Bojunga
- Department of Internal Medicine 1, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Effective Menin inhibitor-based combinations against AML with MLL rearrangement or NPM1 mutation (NPM1c). Blood Cancer J 2022; 12:5. [PMID: 35017466 PMCID: PMC8752621 DOI: 10.1038/s41408-021-00603-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Treatment with Menin inhibitor (MI) disrupts the interaction between Menin and MLL1 or MLL1-fusion protein (FP), inhibits HOXA9/MEIS1, induces differentiation and loss of survival of AML harboring MLL1 re-arrangement (r) and FP, or expressing mutant (mt)-NPM1. Following MI treatment, although clinical responses are common, the majority of patients with AML with MLL1-r or mt-NPM1 succumb to their disease. Pre-clinical studies presented here demonstrate that genetic knockout or degradation of Menin or treatment with the MI SNDX-50469 reduces MLL1/MLL1-FP targets, associated with MI-induced differentiation and loss of viability. MI treatment also attenuates BCL2 and CDK6 levels. Co-treatment with SNDX-50469 and BCL2 inhibitor (venetoclax), or CDK6 inhibitor (abemaciclib) induces synergistic lethality in cell lines and patient-derived AML cells harboring MLL1-r or mtNPM1. Combined therapy with SNDX-5613 and venetoclax exerts superior in vivo efficacy in a cell line or PD AML cell xenografts harboring MLL1-r or mt-NPM1. Synergy with the MI-based combinations is preserved against MLL1-r AML cells expressing FLT3 mutation, also CRISPR-edited to introduce mtTP53. These findings highlight the promise of clinically testing these MI-based combinations against AML harboring MLL1-r or mtNPM1.
Collapse
|
12
|
Lei H, Zhang SQ, Fan S, Bai HR, Zhao HY, Mao S, Xin M. Recent Progress of Small Molecule Menin-MLL Interaction Inhibitors as Therapeutic Agents for Acute Leukemia. J Med Chem 2021; 64:15519-15533. [PMID: 34726905 DOI: 10.1021/acs.jmedchem.1c00872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mixed lineage leukemia (MLL) gene rearrangements are associated with acute leukemia. The protein menin is regarded as a critical oncogenic cofactor of the resulting MLL fusion proteins in acute leukemia. A direct interaction between menin and the MLL amino terminal sequences is necessary for MLL fusion protein-mediated leukemogenesis. Thus, inhibition of the interaction between menin and MLL has emerged as a novel therapeutic strategy. Recent improvements in structural biology and chemical reactivity have promoted the design and development of selective and potent menin-MLL interaction inhibitors. In this Perspective, different classes of menin-MLL interaction inhibitors are comprehensively summarized. Further research potential, challenges, and opportunities in the field are also discussed.
Collapse
Affiliation(s)
- Hao Lei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Shu Fan
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Huan-Rong Bai
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| |
Collapse
|
13
|
Therapeutic implications of menin inhibition in acute leukemias. Leukemia 2021; 35:2482-2495. [PMID: 34131281 DOI: 10.1038/s41375-021-01309-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/31/2023]
Abstract
Menin inhibitors are novel targeted agents currently in clinical development for the treatment of genetically defined subsets of acute leukemia. Menin has a tumor suppressor function in endocrine glands. Germline mutations in the gene encoding menin cause the multiple endocrine neoplasia type 1 (MEN1) syndrome, a hereditary condition associated with tumors of the endocrine glands. However, menin is also critical for leukemogenesis in subsets driven by rearrangement of the Lysine Methyltransferase 2A (KMT2A) gene, previously known as mixed-lineage leukemia (MLL), which encodes an epigenetic modifier. These seemingly opposing functions of menin can be explained by its various roles in gene regulation. Therefore, leukemias with rearrangement of KMT2A are predicted to respond to menin inhibition with early clinical data validating this proof-of-concept. These leukemias affect infants, children and adults, and lead to adverse outcomes with current standard therapies. Recent studies have identified novel targets in acute leukemia that are susceptible to menin inhibition, such as mutated Nucleophosmin 1 (NPM1), the most common genetic alteration in adult acute myeloid leukemia (AML). In addition to these alterations, other leukemia subsets with similar transcriptional dependency could be targeted through menin inhibition. This led to rationally designed clinical studies, investigating small-molecule oral menin inhibitors in relapsed acute leukemias with promising early results. Herein, we discuss the physiologic and malignant biology of menin, the mechanisms of leukemia in these susceptible subsets, and future therapeutic strategies using these inhibitors in acute leukemia.
Collapse
|
14
|
Zhang M, Aguilar A, Xu S, Huang L, Chinnaswamy K, Sleger T, Wang B, Gross S, Nicolay BN, Ronseaux S, Harvey K, Wang Y, McEachern D, Kirchhoff PD, Liu Z, Stuckey J, Tron AE, Liu T, Wang S. Discovery of M-1121 as an Orally Active Covalent Inhibitor of Menin-MLL Interaction Capable of Achieving Complete and Long-Lasting Tumor Regression. J Med Chem 2021; 64:10333-10349. [PMID: 34196551 DOI: 10.1021/acs.jmedchem.1c00789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeting the menin-MLL protein-protein interaction is being pursued as a new therapeutic strategy for the treatment of acute leukemia carrying MLL-rearrangements (MLLr leukemia). Herein, we report M-1121, a covalent and orally active inhibitor of the menin-MLL interaction capable of achieving complete and persistent tumor regression. M-1121 establishes covalent interactions with Cysteine 329 located in the MLL binding pocket of menin and potently inhibits growth of acute leukemia cell lines carrying MLL translocations with no activity in cell lines with wild-type MLL. Consistent with the mechanism of action, M-1121 drives dose-dependent down-regulation of HOXA9 and MEIS1 gene expression in the MLL-rearranged MV4;11 leukemia cell line. M-1121 is orally bioavailable and shows potent antitumor activity in vivo with tumor regressions observed at tolerated doses in the MV4;11 subcutaneous and disseminated models of MLL-rearranged leukemia. Together, our findings support development of an orally active covalent menin inhibitor as a new therapy for MLLr leukemia.
Collapse
Affiliation(s)
- Meng Zhang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Angelo Aguilar
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shilin Xu
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Liyue Huang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Taryn Sleger
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Bo Wang
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Stefan Gross
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Brandon N Nicolay
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Sebastien Ronseaux
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Kaitlin Harvey
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul D Kirchhoff
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhaomin Liu
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adriana E Tron
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Tao Liu
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Shaomeng Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Medicinal Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Spatiotemporal Patterns of Menin Localization in Developing Murine Brain: Co-Expression with the Elements of Cholinergic Synaptic Machinery. Cells 2021; 10:cells10051215. [PMID: 34065662 PMCID: PMC8156519 DOI: 10.3390/cells10051215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
Menin, a product of MEN1 (multiple endocrine neoplasia type 1) gene is an important regulator of tissue development and maintenance; its perturbation results in multiple tumors—primarily of the endocrine tissue. Despite its abundance in the developing central nervous system (CNS), our understanding of menin’s role remains limited. Recently, we discovered menin to play an important role in cholinergic synaptogenesis in the CNS, whereas others have shown its involvement in learning, memory, depression and apoptosis. For menin to play these important roles in the CNS, its expression patterns must be corroborated with other components of the synaptic machinery imbedded in the learning and memory centers; this, however, remains to be established. Here, we report on the spatio-temporal expression patterns of menin, which we found to exhibit dynamic distribution in the murine brain from early development, postnatal period to a fully-grown adult mouse brain. We demonstrate here that menin expression is initially widespread in the brain during early embryonic stages, albeit with lower intensity, as determined by immunohistochemistry and gene expression. With the progression of development, however, menin expression became highly localized to learning, memory and cognition centers in the CNS. In addition to menin expression patterns throughout development, we provide the first direct evidence for its co-expression with nicotinic acetylcholine, glutamate and GABA (gamma aminobutyric acid) receptors—concomitant with the expression of both postsynaptic (postsynaptic density protein PSD-95) and presynaptic (synaptotagamin) proteins. This study is thus the first to provide detailed analysis of spatio-temporal patterns of menin expression from initial CNS development to adulthood. When taken together with previously published studies, our data underscore menin’s importance in the cholinergic neuronal network assembly underlying learning, memory and cognition.
Collapse
|
16
|
Brandi ML, Agarwal SK, Perrier ND, Lines KE, Valk GD, Thakker RV. Multiple Endocrine Neoplasia Type 1: Latest Insights. Endocr Rev 2021; 42:133-170. [PMID: 33249439 PMCID: PMC7958143 DOI: 10.1210/endrev/bnaa031] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Multiple endocrine neoplasia type 1 (MEN1), a rare tumor syndrome that is inherited in an autosomal dominant pattern, is continuing to raise great interest for endocrinology, gastroenterology, surgery, radiology, genetics, and molecular biology specialists. There have been 2 major clinical practice guidance papers published in the past 2 decades, with the most recent published 8 years ago. Since then, several new insights on the basic biology and clinical features of MEN1 have appeared in the literature, and those data are discussed in this review. The genetic and molecular interactions of the MEN1-encoded protein menin with transcription factors and chromatin-modifying proteins in cell signaling pathways mediated by transforming growth factor β/bone morphogenetic protein, a few nuclear receptors, Wnt/β-catenin, and Hedgehog, and preclinical studies in mouse models have facilitated the understanding of the pathogenesis of MEN1-associated tumors and potential pharmacological interventions. The advancements in genetic diagnosis have offered a chance to recognize MEN1-related conditions in germline MEN1 mutation-negative patients. There is rapidly accumulating knowledge about clinical presentation in children, adolescents, and pregnancy that is translatable into the management of these very fragile patients. The discoveries about the genetic and molecular signatures of sporadic neuroendocrine tumors support the development of clinical trials with novel targeted therapies, along with advancements in diagnostic tools and surgical approaches. Finally, quality of life studies in patients affected by MEN1 and related conditions represent an effort necessary to develop a pharmacoeconomic interpretation of the problem. Because advances are being made both broadly and in focused areas, this timely review presents and discusses those studies collectively.
Collapse
Affiliation(s)
| | | | - Nancy D Perrier
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Gerlof D Valk
- University Medical Center Utrecht, CX Utrecht, the Netherlands
| | | |
Collapse
|
17
|
Zhang Y, Rong D, Li B, Wang Y. Targeting Epigenetic Regulators with Covalent Small-Molecule Inhibitors. J Med Chem 2021; 64:7900-7925. [PMID: 33599482 DOI: 10.1021/acs.jmedchem.0c02055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic regulation of gene expression plays a critical role in various physiological processes, and epigenetic dysregulation is implicated in a number of diseases, prominently including cancer. Epigenetic regulators have been validated as potential therapeutic targets, and significant progress has been made in the discovery and development of epigenetic-based inhibitors. However, successful epigenetic drug discovery is still facing challenges, including moderate selectivity, limited efficacy, and acquired drug resistance. Inspired by the advantages of covalent small-molecule inhibitors, targeted covalent inhibition has attracted increasing interest in epigenetic drug discovery. In this review, we comprehensively summarize the structure-based design and characterization of covalent inhibitors targeting epigenetic writers, readers, and erasers and highlight their potential benefits in enhancing selectivity across the enzyme family and improving in vivo efficacy. We also discuss the challenges and opportunities of covalent small-molecule inhibitors and hope to shed light on future epigenetic drug discovery.
Collapse
Affiliation(s)
- Yi Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deqin Rong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bingbing Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
18
|
Chou CW, Tan X, Hung CN, Lieberman B, Chen M, Kusi M, Mitsuya K, Lin CL, Morita M, Liu Z, Chen CL, Huang THM. Menin and Menin-Associated Proteins Coregulate Cancer Energy Metabolism. Cancers (Basel) 2020; 12:E2715. [PMID: 32971831 PMCID: PMC7564175 DOI: 10.3390/cancers12092715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 01/24/2023] Open
Abstract
The interplay between glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) is central to maintain energy homeostasis. It remains to be determined whether there is a mechanism governing metabolic fluxes based on substrate availability in microenvironments. Here we show that menin is a key transcription factor regulating the expression of OXPHOS and glycolytic genes in cancer cells and primary tumors with poor prognosis. A group of menin-associated proteins (MAPs), including KMT2A, MED12, WAPL, and GATA3, is found to restrain menin's full function in this transcription regulation. shRNA knockdowns of menin and MAPs result in reduced ATP production with proportional alterations of cellular energy generated through glycolysis and OXPHOS. When shRNA knockdown cells are exposed to metabolic stress, the dual functionality can clearly be distinguished among these metabolic regulators. A MAP can negatively counteract the regulatory mode of menin for OXPHOS while the same protein positively influences glycolysis. A close-proximity interaction between menin and MAPs allows transcriptional regulation for metabolic adjustment. This coordinate regulation by menin and MAPs is necessary for cells to rapidly adapt to fluctuating microenvironments and to maintain essential metabolic functions.
Collapse
Affiliation(s)
- Chih-Wei Chou
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Xi Tan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Chia-Nung Hung
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
- Department of Life Science, Tunghai University, Taichung 407, Taiwan
| | - Brandon Lieberman
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Meizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Meena Kusi
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Kohzoh Mitsuya
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Chun-Lin Lin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Masahiro Morita
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Tim Hui-Ming Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| |
Collapse
|
19
|
Nelakurti DD, Pappula AL, Rajasekaran S, Miles WO, Petreaca RC. Comprehensive Analysis of MEN1 Mutations and Their Role in Cancer. Cancers (Basel) 2020; 12:cancers12092616. [PMID: 32937789 PMCID: PMC7565326 DOI: 10.3390/cancers12092616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cancers are characterized by accumulation of genetic mutations in key cell cycle regulators that alter or disable the function of these genes. Such mutations can be inherited or arise spontaneously during the life of the individual. The MEN1 gene prevents uncontrolled cell division and it is considered a tumor suppressor. Inherited MEN1 mutations are associated with certain parathyroid and pancreatic syndromes while spontaneous mutations have been detected in cancer cells. We investigated whether inherited mutations appear in cancer cells which would suggest that patients with parathyroid and pancreatic syndromes have a predisposition to develop cancer. We find a weak correlation between the spectrum of inherited mutations and those appearing spontaneously. Thus, inherited MEN1 mutations may not be a good predictor of tumorigenesis. Abstract MENIN is a scaffold protein encoded by the MEN1 gene that functions in multiple biological processes, including cell proliferation, migration, gene expression, and DNA damage repair. MEN1 is a tumor suppressor gene, and mutations that disrupts MEN1 function are common to many tumor types. Mutations within MEN1 may also be inherited (germline). Many of these inherited mutations are associated with a number of pathogenic syndromes of the parathyroid and pancreas, and some also predispose patients to hyperplasia. In this study, we cataloged the reported germline mutations from the ClinVar database and compared them with the somatic mutations detected in cancers from the Catalogue of Somatic Mutations in Cancer (COSMIC) database. We then used statistical software to determine the probability of mutations being pathogenic or driver. Our data show that many confirmed germline mutations do not appear in tumor samples. Thus, most mutations that disable MEN1 function in tumors are somatic in nature. Furthermore, of the germline mutations that do appear in tumors, only a fraction has the potential to be pathogenic or driver mutations.
Collapse
Affiliation(s)
- Devi D. Nelakurti
- Biomedical Science Undergraduate Program, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Amrit L. Pappula
- Computer Science and Engineering Undergraduate Program, The Ohio State University, Columbus, OH 43210, USA;
| | - Swetha Rajasekaran
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
| | - Wayne O. Miles
- Department of Cancer Biology and Genetics, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Ruben C. Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
- Correspondence:
| |
Collapse
|
20
|
Antunes ETB, Ottersbach K. The MLL/SET family and haematopoiesis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194579. [PMID: 32389825 PMCID: PMC7294230 DOI: 10.1016/j.bbagrm.2020.194579] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/08/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
As demonstrated through early work in Drosophila, members of the MLL/SET family play essential roles during embryonic development through their participation in large protein complexes that are central to epigenetic regulation of gene expression. One of its members, MLL1, has additionally received a lot of attention as it is a potent oncogenic driver in different types of leukaemia when aberrantly fused to a large variety of partners as a result of chromosomal translocations. Its exclusive association with cancers of the haematopoietic system has prompted a large number of investigations into the role of MLL/SET proteins in haematopoiesis, a summary of which was attempted in this review. Interestingly, MLL-rearranged leukaemias are particularly prominent in infant and paediatric leukaemia, which commonly initiate in utero. This, together with the known function of MLL/SET proteins in embryonic development, has focussed research efforts in recent years on understanding the role of this protein family in developmental haematopoiesis and how this may be subverted by MLL oncofusions in infant leukaemia. A detailed understanding of these prenatal events is essential for the development of new treatments that improve the survival specifically of this very young patient group.
Collapse
Affiliation(s)
- Eric T B Antunes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Katrin Ottersbach
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
21
|
Linhares BM, Grembecka J, Cierpicki T. Targeting epigenetic protein-protein interactions with small-molecule inhibitors. Future Med Chem 2020; 12:1305-1326. [PMID: 32551894 PMCID: PMC7421387 DOI: 10.4155/fmc-2020-0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetic protein-protein interactions (PPIs) play essential roles in regulating gene expression, and their dysregulations have been implicated in many diseases. These PPIs are comprised of reader domains recognizing post-translational modifications on histone proteins, and of scaffolding proteins that maintain integrities of epigenetic complexes. Targeting PPIs have become focuses for development of small-molecule inhibitors and anticancer therapeutics. Here we summarize efforts to develop small-molecule inhibitors targeting common epigenetic PPI domains. Potent small molecules have been reported for many domains, yet small domains that recognize methylated lysine side chains on histones are challenging in inhibitor development. We posit that the development of potent inhibitors for difficult-to-prosecute epigenetic PPIs may be achieved by interdisciplinary approaches and extensive explorations of chemical space.
Collapse
Affiliation(s)
- Brian M Linhares
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomasz Cierpicki
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Schwaller J. Learning from mouse models of MLL fusion gene-driven acute leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194550. [PMID: 32320749 DOI: 10.1016/j.bbagrm.2020.194550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/17/2020] [Accepted: 04/05/2020] [Indexed: 01/28/2023]
Abstract
5-10% of human acute leukemias carry chromosomal translocations involving the mixed lineage leukemia (MLL) gene that result in the expression of chimeric protein fusing MLL to >80 different partners of which AF4, ENL and AF9 are the most prevalent. In contrast to many other leukemia-associated mutations, several MLL-fusions are powerful oncogenes that transform hematopoietic stem cells but also more committed progenitor cells. Here, I review different approaches that were used to express MLL fusions in the murine hematopoietic system which often, but not always, resulted in highly penetrant and transplantable leukemias that closely phenocopied the human disease. Due to its simple and reliable nature, reconstitution of irradiated mice with bone marrow cells retrovirally expressing the MLL-AF9 fusion became the most frequently in vivo model to study the biology of acute myeloid leukemia (AML). I review some of the most influential studies that used this model to dissect critical protein interactions, the impact of epigenetic regulators, microRNAs and microenvironment-dependent signals for MLL fusion-driven leukemia. In addition, I highlight studies that used this model for shRNA- or genome editing-based screens for cellular vulnerabilities that allowed to identify novel therapeutic targets of which some entered clinical trials. Finally, I discuss some inherent characteristics of the widely used mouse model based on retroviral expression of the MLL-AF9 fusion that can limit general conclusions for the biology of AML. This article is part of a Special Issue entitled: The MLL family of proteins in normal development and disease edited by Thomas A Milne.
Collapse
Affiliation(s)
- Juerg Schwaller
- University Children's Hospital Beider Basel (UKBB), Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland.
| |
Collapse
|
23
|
The Study of Menin Expression as a Diagnostic Factor in HBV-Related Hepatocellular Carcinoma. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2020. [DOI: 10.5812/archcid.88188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Fisher JN, Thanasopoulou A, Juge S, Tzankov A, Bagger FO, Mendez MA, Peters AHFM, Schwaller J. Transforming activities of the NUP98-KMT2A fusion gene associated with myelodysplasia and acute myeloid leukemia. Haematologica 2019; 105:1857-1867. [PMID: 31558671 PMCID: PMC7327646 DOI: 10.3324/haematol.2019.219188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022] Open
Abstract
Inv(11)(p15q23), found in myelodysplastic syndromes and acute myeloid leukemia, leads to expression of a fusion protein consisting of the N-terminal of nucleoporin 98 (NUP98) and the majority of the lysine methyltransferase 2A (KMT2A). To explore the transforming potential of this fusion we established inducible iNUP98-KMT2A transgenic mice. After a median latency of 80 weeks, over 90% of these mice developed signs of disease, with anemia and reduced bone marrow cellularity, increased white blood cell numbers, extramedullary hematopoiesis, and multilineage dysplasia. Additionally, induction of iNUP98-KMT2A led to elevated lineage marker-negative Sca-1+ c-Kit+ cell numbers in the bone marrow, which outcompeted wildtype cells in repopulation assays. Six iNUP98-KMT2A mice developed transplantable acute myeloid leukemia with leukemic blasts infiltrating multiple organs. Notably, as reported for patients, iNUP98-KMT2A leukemic blasts did not express increased levels of the HoxA-B-C gene cluster, and in contrast to KMT2A-AF9 leukemic cells, the cells were resistant to pharmacological targeting of menin and BET family proteins by MI-2-2 or JQ1, respectively. Expression of iNUP98-KMT2A in mouse embryonic fibroblasts led to an accumulation of cells in G1 phase, and abrogated replicative senescence. In bone marrow-derived hematopoietic progenitors, iNUP98-KMT2A expression similarly resulted in increased cell numbers in the G1 phase of the cell cycle, with aberrant gene expression of Sirt1, Tert, Rbl2, Twist1, Vim, and Prkcd, mimicking that seen in mouse embryonic fibroblasts. In summary, we demonstrate that iNUP98-KMT2A has in vivo transforming activity and interferes with cell cycle progression rather than primarily blocking differentiation.
Collapse
Affiliation(s)
- James N Fisher
- University Children's Hospital Basel (UKBB).,Department of Biomedicine, University of Basel
| | - Angeliki Thanasopoulou
- University Children's Hospital Basel (UKBB).,Department of Biomedicine, University of Basel
| | - Sabine Juge
- University Children's Hospital Basel (UKBB).,Department of Biomedicine, University of Basel
| | | | - Frederik O Bagger
- University Children's Hospital Basel (UKBB).,Department of Biomedicine, University of Basel
| | - Max A Mendez
- University Children's Hospital Basel (UKBB).,Department of Biomedicine, University of Basel
| | - Antoine H F M Peters
- Faculty of Sciences, University of Basel.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Juerg Schwaller
- University Children's Hospital Basel (UKBB) .,Department of Biomedicine, University of Basel
| |
Collapse
|
25
|
Crump NT, Milne TA. Why are so many MLL lysine methyltransferases required for normal mammalian development? Cell Mol Life Sci 2019; 76:2885-2898. [PMID: 31098676 PMCID: PMC6647185 DOI: 10.1007/s00018-019-03143-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
Abstract
The mixed lineage leukemia (MLL) family of proteins became known initially for the leukemia link of its founding member. Over the decades, the MLL family has been recognized as an important class of histone H3 lysine 4 (H3K4) methyltransferases that control key aspects of normal cell physiology and development. Here, we provide a brief history of the discovery and study of this family of proteins. We address two main questions: why are there so many H3K4 methyltransferases in mammals; and is H3K4 methylation their key function?
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Xing B, Ma J, Jiang Z, Feng Z, Ling S, Szigety K, Su W, Zhang L, Jia R, Sun Y, Zhang L, Kong X, Ma X, Hua X. GLP-1 signaling suppresses menin's transcriptional block by phosphorylation in β cells. J Cell Biol 2019; 218:855-870. [PMID: 30792230 PMCID: PMC6400573 DOI: 10.1083/jcb.201805049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/23/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Both menin and glucagon-like peptide 1 (GLP-1) pathways play central yet opposing role in regulating β cell function, with menin suppressing, and GLP-1 promoting, β cell function. However, little is known as to whether or how GLP-1 pathway represses menin function. Here, we show that GLP-1 signaling-activated protein kinase A (PKA) directly phosphorylates menin at the serine 487 residue, relieving menin-mediated suppression of insulin expression and cell proliferation. Mechanistically, Ser487-phosphorylated menin gains increased binding affinity to nuclear actin/myosin IIa proteins and gets sequestrated from the Ins1 promoter. This event leads to reduced binding of repressive epigenetic histone modifiers suppressor variegation 3-9 homologue protein 1 (SUV39H1) and histone deacetylases 1 (HDAC1) at the locus and subsequently increased Ins1 gene transcription. Ser487 phosphorylation of menin also increases expression of proproliferative cyclin D2 and β cell proliferation. Our results have uncovered a previously unappreciated physiological link in which GLP-1 signaling suppresses menin function through phosphorylation-triggered and actin/myosin cytoskeletal protein-mediated derepression of gene transcription.
Collapse
Affiliation(s)
- Bowen Xing
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Zongzhe Jiang
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Zijie Feng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sunbin Ling
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Katy Szigety
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Wen Su
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Longmei Zhang
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Ruirui Jia
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Yanmei Sun
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Lin Zhang
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Xiangchen Kong
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Xiaosong Ma
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Xianxin Hua
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China .,Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
27
|
Mercher T, Schwaller J. Pediatric Acute Myeloid Leukemia (AML): From Genes to Models Toward Targeted Therapeutic Intervention. Front Pediatr 2019; 7:401. [PMID: 31681706 PMCID: PMC6803505 DOI: 10.3389/fped.2019.00401] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
This review aims to provide an overview of the current knowledge of the genetic lesions driving pediatric acute myeloid leukemia (AML), emerging biological concepts, and strategies for therapeutic intervention. Hereby, we focus on lesions that preferentially or exclusively occur in pediatric patients and molecular markers of aggressive disease with often poor outcome including fusion oncogenes that involve epigenetic regulators like KMT2A, NUP98, or CBFA2T3, respectively. Functional studies were able to demonstrate cooperation with signaling mutations leading to constitutive activation of FLT3 or the RAS signal transduction pathways. We discuss the issues faced to faithfully model pediatric acute leukemia in mice. Emerging experimental evidence suggests that the disease phenotype is dependent on the appropriate expression and activity of the driver fusion oncogenes during a particular window of opportunity during fetal development. We also highlight biochemical studies that deciphered some molecular mechanisms of malignant transformation by KMT2A, NUP98, and CBFA2T3 fusions, which, in some instances, allowed the development of small molecules with potent anti-leukemic activities in preclinical models (e.g., inhibitors of the KMT2A-MENIN interaction). Finally, we discuss other potential therapeutic strategies that not only target driver fusion-controlled signals but also interfere with the transformed cell state either by exploiting the primed apoptosis or vulnerable metabolic states or by increasing tumor cell recognition and elimination by the immune system.
Collapse
Affiliation(s)
- Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, Université Paris Diderot, Université Paris-Sud, Villejuif, France
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital Beider Basel (UKBB), University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Kamilaris CDC, Stratakis CA. Multiple Endocrine Neoplasia Type 1 (MEN1): An Update and the Significance of Early Genetic and Clinical Diagnosis. Front Endocrinol (Lausanne) 2019; 10:339. [PMID: 31263451 PMCID: PMC6584804 DOI: 10.3389/fendo.2019.00339] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare hereditary tumor syndrome inherited in an autosomal dominant manner and characterized by a predisposition to a multitude of endocrine neoplasms primarily of parathyroid, enteropancreatic, and anterior pituitary origin, as well as nonendocrine neoplasms. Other endocrine tumors in MEN1 include foregut carcinoid tumors, adrenocortical tumors, and rarely pheochromocytoma. Nonendocrine manifestations include meningiomas and ependymomas, lipomas, angiofibromas, collagenomas, and leiomyomas. MEN1 is caused by inactivating mutations of the tumor suppressor gene MEN1 which encodes the protein menin. This syndrome can affect all age groups, with 17% of patients developing MEN1-associated tumors before 21 years of age. Despite advances in the diagnosis and treatment of MEN1-associated tumors, patients with MEN1 continue to have decreased life expectancy primarily due to malignant neuroendocrine tumors. The most recent clinical practice guidelines for MEN1, published in 2012, highlight the need for early genetic and clinical diagnosis of MEN1 and recommend an intensive surveillance approach for both patients with this syndrome and asymptomatic carriers starting at the age of 5 years with the goal of timely detection and management of MEN1-associated neoplasms and ultimately decreased disease-specific morbidity and mortality. Unfortunately, there is no clear genotype-phenotype correlation and individual mutation-dependent surveillance is not possible currently.
Collapse
|
29
|
Abstract
Pancreatic neuroendocrine tumors are rare tumors of the pancreas originating from the islets of the Langerhans. These tumors comprise 1% to 3% of all newly diagnosed pancreatic cancers every year and have a unique heterogeneity in clinical presentation. Whole-genome sequencing has led to an increased understanding of the molecular biology of these tumors. In this review, we will summarize the current knowledge of the signaling pathways involved in the tumorigenesis of pancreatic neuroendocrine tumors as well as the major studies targeting these pathways at preclinical and clinical levels.
Collapse
|
30
|
Pikman Y, Stegmaier K. Targeted therapy for fusion-driven high-risk acute leukemia. Blood 2018; 132:1241-1247. [PMID: 30049809 PMCID: PMC6148448 DOI: 10.1182/blood-2018-04-784157] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/14/2018] [Indexed: 11/20/2022] Open
Abstract
Despite continued progress in drug development for acute leukemias, outcomes for patients with some subtypes have not changed significantly in the last decade. Recurrent chromosomal translocations have long been recognized as driver events in leukemia, and many of these oncogenic fusions portend high-risk disease. Improved understanding of the molecular underpinnings of these fusions, coupled with novel chemistry approaches, now provide new opportunity for therapeutic inroads into the treatment of leukemia driven by these fusions.
Collapse
Affiliation(s)
- Yana Pikman
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA; and
| | - Kimberly Stegmaier
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA; and
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| |
Collapse
|
31
|
Li JWY, Hua X, Reidy-Lagunes D, Untch BR. MENIN loss as a tissue-specific driver of tumorigenesis. Mol Cell Endocrinol 2018; 469:98-106. [PMID: 28965973 PMCID: PMC8064664 DOI: 10.1016/j.mce.2017.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022]
Abstract
The MEN1 gene encodes MENIN, a tumor suppressor that plays a role in multiple cellular processes. Germline and somatic mutations in MEN1 have been identified in hereditary and sporadic tumors of neuroendocrine origins suggesting context-specific functions. In this review, we focus on the development of mutational Men1 in vivo models, the known cellular activities of MENIN and efforts to identify vulnerabilities in tumors with MENIN loss.
Collapse
Affiliation(s)
- Janet W Y Li
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Diane Reidy-Lagunes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian R Untch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
32
|
Iyer S, Agarwal SK. Epigenetic regulation in the tumorigenesis of MEN1-associated endocrine cell types. J Mol Endocrinol 2018; 61:R13-R24. [PMID: 29615472 PMCID: PMC5966343 DOI: 10.1530/jme-18-0050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation is emerging as a key feature in the molecular characteristics of various human diseases. Epigenetic aberrations can occur from mutations in genes associated with epigenetic regulation, improper deposition, removal or reading of histone modifications, DNA methylation/demethylation and impaired non-coding RNA interactions in chromatin. Menin, the protein product of the gene causative for the multiple endocrine neoplasia type 1 (MEN1) syndrome, interacts with chromatin-associated protein complexes and also regulates some non-coding RNAs, thus participating in epigenetic control mechanisms. Germline inactivating mutations in the MEN1 gene that encodes menin predispose patients to develop endocrine tumors of the parathyroids, anterior pituitary and the duodenopancreatic neuroendocrine tissues. Therefore, functional loss of menin in the various MEN1-associated endocrine cell types can result in epigenetic changes that promote tumorigenesis. Because epigenetic changes are reversible, they can be targeted to develop therapeutics for restoring the tumor epigenome to the normal state. Irrespective of whether epigenetic alterations are the cause or consequence of the tumorigenesis process, targeting the endocrine tumor-associated epigenome offers opportunities for exploring therapeutic options. This review presents epigenetic control mechanisms relevant to the interactions and targets of menin, and the contribution of epigenetics in the tumorigenesis of endocrine cell types from menin loss.
Collapse
Affiliation(s)
- Sucharitha Iyer
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Borkin D, Klossowski S, Pollock J, Miao H, Linhares BM, Kempinska K, Jin Z, Purohit T, Wen B, He M, Sun D, Cierpicki T, Grembecka J. Complexity of Blocking Bivalent Protein-Protein Interactions: Development of a Highly Potent Inhibitor of the Menin-Mixed-Lineage Leukemia Interaction. J Med Chem 2018; 61:4832-4850. [PMID: 29738674 PMCID: PMC7029623 DOI: 10.1021/acs.jmedchem.8b00071] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The protein-protein interaction between menin and mixed-lineage leukemia 1 (MLL1) plays an important role in development of acute leukemia with translocations of the MLL1 gene and in solid tumors. Here, we report the development of a new generation of menin-MLL1 inhibitors identified by structure-based optimization of the thienopyrimidine class of compounds. This work resulted in compound 28 (MI-1481), which showed very potent inhibition of the menin-MLL1 interaction (IC50 = 3.6 nM), representing the most potent reversible menin-MLL1 inhibitor reported to date. The crystal structure of the menin-28 complex revealed a hydrogen bond with Glu366 and hydrophobic interactions, which contributed to strong inhibitory activity of 28. Compound 28 also demonstrates pronounced activity in MLL leukemia cells and in vivo in MLL leukemia models. Thus, 28 is a valuable menin-MLL1 inhibitor that can be used for potential therapeutic applications and in further studies regarding the role of menin in cancer.
Collapse
Affiliation(s)
- Dmitry Borkin
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Szymon Klossowski
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jonathan Pollock
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brian M. Linhares
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Zhuang Jin
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Trupta Purohit
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bo Wen
- College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Miao He
- College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Duxin Sun
- College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA,Corresponding author; Jolanta Grembecka, PhD, Associate Professor, Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI, 48108, , Tel. 734-615-9319
| |
Collapse
|
34
|
Castelli G, Pelosi E, Testa U. Targeting histone methyltransferase and demethylase in acute myeloid leukemia therapy. Onco Targets Ther 2017; 11:131-155. [PMID: 29343972 PMCID: PMC5749389 DOI: 10.2147/ott.s145971] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder of myeloid progenitors characterized by the acquisition of chromosomal abnormalities, somatic mutations, and epigenetic changes that determine a consistent degree of biological and clinical heterogeneity. Advances in genomic technologies have increasingly shown the complexity and heterogeneity of genetic and epigenetic alterations in AML. Among the genetic alterations occurring in AML, frequent are the genetic alterations at the level of various genes involved in the epigenetic control of the DNA methylome and histone methylome. In fact, genes involved in DNA demethylation (such as DNMT3A, TET2, IDH1, and IDH2) or histone methylation and demethylation (EZH2, MLL, DOT1L) are frequently mutated in primary and secondary AML. Furthermore, some histone demethylases, such as LSD1, are frequently overexpressed in AML. These observations have strongly supported a major role of dysregulated epigenetic regulatory processes in leukemia onset and development. This conclusion was further supported by the observation that mutations in genes encoding epigenetic modifiers, such as DMT3A, ASXL1, TET2, IDH1, and IDH2, are usually acquired early and are present in the founding leukemic clone. These observations have contributed to development of the idea that targeting epigenetic abnormalities could represent a potentially promising strategy for the development of innovative treatments of AML. In this review, we analyze those proteins and their inhibitors that have already reached the first stages of clinical trials in AML, namely the histone methyltransferase DOT1L, the demethylase LSD1, and the MLL-interacting protein menin.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
35
|
Kempinska K, Malik B, Borkin D, Klossowski S, Shukla S, Miao H, Wang J, Cierpicki T, Grembecka J. Pharmacologic Inhibition of the Menin-MLL Interaction Leads to Transcriptional Repression of PEG10 and Blocks Hepatocellular Carcinoma. Mol Cancer Ther 2017; 17:26-38. [PMID: 29142068 DOI: 10.1158/1535-7163.mct-17-0580] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/14/2017] [Accepted: 10/27/2017] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 85% of malignant liver tumors and results in 600,000 deaths each year, emphasizing the need for new therapies. Upregulation of menin was reported in HCC patients and high levels of menin correlate with poor patient prognosis. The protein-protein interaction between menin and histone methyltransferase mixed lineage leukemia 1 (MLL1) plays an important role in the development of HCC, implying that pharmacologic inhibition of this interaction could lead to new therapeutic strategy for the HCC patients. Here, we demonstrate that the menin-MLL inhibitor MI-503 shows antitumor activity in in vitro and in vivo models of HCC and reveals the potential mechanism of menin contribution to HCC. Treatment with MI-503 selectively kills various HCC cell lines and this effect is significantly enhanced by a combination of MI-503 with sorafenib, the standard-of-care therapy for HCC. Furthermore, MI-503 reduces sphere formation and cell migration in in vitro HCC models. When applied in vivo, MI-503 gives a strong antitumor effect both as a single agent and in combination with sorafenib in mice xenograft models of HCC. Mechanistically, treatment with MI-503 downregulates expression of several genes known to play a critical role in proliferation and migration of HCC cells, including PEG10, and displaces the menin-MLL1 complex from the PEG10 promoter, resulting in reduced H3K4 methylation and transcriptional repression. Overall, our studies reveal a mechanistic link between menin and genes involved in HCC and demonstrate that pharmacologic inhibition of the menin-MLL interaction might represent a promising therapeutic approach for HCC. Mol Cancer Ther; 17(1); 26-38. ©2017 AACR.
Collapse
Affiliation(s)
| | - Bhavna Malik
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Dmitry Borkin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Szymon Klossowski
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Shirish Shukla
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jingya Wang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
36
|
Evolution of AF6-RAS association and its implications in mixed-lineage leukemia. Nat Commun 2017; 8:1099. [PMID: 29062045 PMCID: PMC5653649 DOI: 10.1038/s41467-017-01326-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/09/2017] [Indexed: 12/31/2022] Open
Abstract
Elucidation of activation mechanisms governing protein fusions is essential for therapeutic development. MLL undergoes rearrangement with numerous partners, including a recurrent translocation fusing the epigenetic regulator to a cytoplasmic RAS effector, AF6/afadin. We show here that AF6 employs a non-canonical, evolutionarily conserved α-helix to bind RAS, unique to AF6 and the classical RASSF effectors. Further, all patients with MLL-AF6 translocations express fusion proteins missing only this helix from AF6, resulting in exposure of hydrophobic residues that induce dimerization. We provide evidence that oligomerization is the dominant mechanism driving oncogenesis from rare MLL translocation partners and employ our mechanistic understanding of MLL-AF6 to examine how dimers induce leukemia. Proteomic data resolve association of dimerized MLL with gene expression modulators, and inhibiting dimerization disrupts formation of these complexes while completely abrogating leukemogenesis in mice. Oncogenic gene translocations are thus selected under pressure from protein structure/function, underscoring the complex nature of chromosomal rearrangements. Several rearrangements of the MLL gene are associated with acute leukemia, including the fusion of MLL with a RAS effector protein, AF6. Here the authors show that the truncated AF6 can induce AF6-MLL dimerization and drive its oncogenic activity.
Collapse
|
37
|
Dreijerink KMA, Timmers HTM, Brown M. Twenty years of menin: emerging opportunities for restoration of transcriptional regulation in MEN1. Endocr Relat Cancer 2017; 24:T135-T145. [PMID: 28811299 PMCID: PMC5609455 DOI: 10.1530/erc-17-0281] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
Since the discovery of the multiple endocrine neoplasia type 1 (MEN1) gene in 1997, elucidation of the molecular function of its protein product, menin, has been a challenge. Biochemical, proteomics, genetics and genomics approaches have identified various potential roles, which converge on gene expression regulation. The most consistent findings show that menin connects transcription factors and chromatin-modifying enzymes, in particular, the histone H3K4 methyltransferase complexes MLL1 and MLL2. Chromatin immunoprecipitation combined with next-generation sequencing has enabled studying genome-wide dynamics of chromatin binding by menin. We propose that menin regulates cell type-specific transcriptional programs by linking chromatin regulatory complexes to specific transcription factors. In this fashion, the MEN1 gene is a tumor suppressor gene in the endocrine tissues that are affected in MEN1. Recent studies have hinted at possibilities to pharmacologically restore the epigenetic changes caused by loss of menin function as therapeutic strategies for MEN1, for example, by inhibition of histone demethylases. The current lack of appropriate cellular model systems for MEN1-associated tumors is a limitation for compound testing, which needs to be addressed in the near future. In this review, we look back at the past twenty years of research on menin and the mechanism of disease of MEN1. In addition, we discuss how the current understanding of the molecular function of menin offers future directions to develop novel treatments for MEN1-associated endocrine tumors.
Collapse
Affiliation(s)
- Koen M A Dreijerink
- Department of EndocrinologyVU University Medical Center, Amsterdam, The Netherlands
| | - H T Marc Timmers
- German Cancer Consortium (DKTK) partner site FreiburgGerman Cancer Research Center (DKFZ) and Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Myles Brown
- Department of Medical OncologyDana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Agarwal SK. The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocr Relat Cancer 2017; 24:T119-T134. [PMID: 28899949 PMCID: PMC5679100 DOI: 10.1530/erc-17-0199] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
Abstract
The identification of the multiple endocrine neoplasia type 1 (MEN1) gene in 1997 has shown that germline heterozygous mutations in the MEN1 gene located on chromosome 11q13 predisposes to the development of tumors in the MEN1 syndrome. Tumor development occurs upon loss of the remaining normal copy of the MEN1 gene in MEN1-target tissues. Therefore, MEN1 is a classic tumor suppressor gene in the context of MEN1. This tumor suppressor role of the protein encoded by the MEN1 gene, menin, holds true in mouse models with germline heterozygous Men1 loss, wherein MEN1-associated tumors develop in adult mice after spontaneous loss of the remaining non-targeted copy of the Men1 gene. The availability of genetic testing for mutations in the MEN1 gene has become an essential part of the diagnosis and management of MEN1. Genetic testing is also helping to exclude mutation-negative cases in MEN1 families from the burden of lifelong clinical screening. In the past 20 years, efforts of various groups world-wide have been directed at mutation analysis, molecular genetic studies, mouse models, gene expression studies, epigenetic regulation analysis, biochemical studies and anti-tumor effects of candidate therapies in mouse models. This review will focus on the findings and advances from these studies to identify MEN1 germline and somatic mutations, the genetics of MEN1-related states, several protein partners of menin, the three-dimensional structure of menin and menin-dependent target genes. The ongoing impact of all these studies on disease prediction, management and outcomes will continue in the years to come.
Collapse
Affiliation(s)
- Sunita K Agarwal
- Metabolic Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
39
|
He X, Wang L, Yan J, Yuan C, Witze ES, Hua X. Menin localization in cell membrane compartment. Cancer Biol Ther 2016; 17:114-22. [PMID: 26560942 DOI: 10.1080/15384047.2015.1108497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Menin is encoded by the MEN1 gene, which is mutated in an inherited human syndrome, multiple endocrine neoplasia type 1(MEN1). Menin is primarily nuclear protein, acting as a tumor suppressor in endocrine organs, but as an oncogenic factor in the mixed lineage leukemia, in a tissue-specific manner. Recently, the crystal structures of menin with different binding partners reveal menin as a key scaffold protein that functionally interacts with various partners to regulate gene transcription in the nucleus. However, outside the nucleus, menin also regulates multiple signaling pathways that traverse the cell surface membrane. The precise nature regarding to how menin associates with the membrane fraction is poorly understood. Here we show that a small fraction of menin associates with the cell membrane fraction likely via serine palmitoylation. Moreover, the majority of the membrane-associated menin may reside inside membrane vesicles, as menin is protected from trypsin-mediated proteolysis, but disruption of the membrane fraction using detergent abolishes the detection. Consistently, cellular staining for menin also reveals the distribution of menin in the cell membrane and the punctate-like cell organelles. Our findings suggest that part of intracellular menin associates with the cell membrane peripherally as well as resides within the membrane vesicles.
Collapse
Affiliation(s)
- Xin He
- a Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine , 421 Curie Blvd., Philadelphia , PA 19104 , USA
| | - Lei Wang
- a Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine , 421 Curie Blvd., Philadelphia , PA 19104 , USA.,d Department of Urology , Renmin Hospital of Wuhan University , Wuhan 430060 , Hubei , China
| | - Jizhou Yan
- b Department of Biology and Biotechnology , Shanghai Ocean University , 999 Hucheng Ring Rd Lingang New City, Shanghai , 201306 , China
| | - Chaoxing Yuan
- c The Proteomics and Systems Facility, Department of Pharmacology, University of Pennsylvania Perelman School of Medicine , Philadelphia, 421 Curie Blvd., Philadelphia , PA 19104 , USA
| | - Eric S Witze
- a Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine , 421 Curie Blvd., Philadelphia , PA 19104 , USA
| | - Xianxin Hua
- a Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine , 421 Curie Blvd., Philadelphia , PA 19104 , USA
| |
Collapse
|
40
|
Kim JH, Baddoo MC, Park EY, Stone JK, Park H, Butler TW, Huang G, Yan X, Pauli-Behn F, Myers RM, Tan M, Flemington EK, Lim ST, Ahn EYE. SON and Its Alternatively Spliced Isoforms Control MLL Complex-Mediated H3K4me3 and Transcription of Leukemia-Associated Genes. Mol Cell 2016; 61:859-73. [PMID: 26990989 DOI: 10.1016/j.molcel.2016.02.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/16/2015] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
Dysregulation of MLL complex-mediated histone methylation plays a pivotal role in gene expression associated with diseases, but little is known about cellular factors modulating MLL complex activity. Here, we report that SON, previously known as an RNA splicing factor, controls MLL complex-mediated transcriptional initiation. SON binds to DNA near transcription start sites, interacts with menin, and inhibits MLL complex assembly, resulting in decreased H3K4me3 and transcriptional repression. Importantly, alternatively spliced short isoforms of SON are markedly upregulated in acute myeloid leukemia. The short isoforms compete with full-length SON for chromatin occupancy but lack the menin-binding ability, thereby antagonizing full-length SON function in transcriptional repression while not impairing full-length SON-mediated RNA splicing. Furthermore, overexpression of a short isoform of SON enhances replating potential of hematopoietic progenitors. Our findings define SON as a fine-tuner of the MLL-menin interaction and reveal short SON overexpression as a marker indicating aberrant transcriptional initiation in leukemia.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Melody C Baddoo
- Tulane Cancer Center, Tulane University, New Orleans, LA 70112, USA
| | - Eun Young Park
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Joshua K Stone
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Hyeonsoo Park
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Thomas W Butler
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Gang Huang
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaomei Yan
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Ming Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | | | - Ssang-Taek Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Eun-Young Erin Ahn
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
41
|
Kim JY, Yu J, Abdulkadir SA, Chakravarti D. KAT8 Regulates Androgen Signaling in Prostate Cancer Cells. Mol Endocrinol 2016; 30:925-36. [PMID: 27268279 DOI: 10.1210/me.2016-1024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Androgen receptor (AR) plays pivotal roles in prostate cancer. Upon androgen stimulation, AR recruits the Protein kinase N1 (PKN1), which phosphorylates histone H3 at threonine 11, with subsequent recruitment of tryptophan, aspartic acid (WD) repeat-containing protein 5 (WDR5) and the su(var)3-9, enhancer of zeste, trithorax/mixed-lineage leukemia (SET1/MLL) histone methyltransferase complex to promote AR target gene activation and prostate cancer cell growth. However, the underlying mechanisms of target gene activation and cell growth subsequent to WDR5 recruitment are not well understood. Here, we demonstrate an epigenetic cross talk between histone modifications and AR target gene regulation. We discovered that K(lysine) acetyltransferase 8 (KAT8), a member of the MOZ, YBF2/SAS2, and TIP 60 protein 1 (MYST) family of histone acetyltransferases that catalyzes histone H4 lysine 16 acetylation, colocalized with WDR5 at AR target genes, resulting in hormone-dependent gene activation in prostate cancer cells. PKN1 or WDR5 knockdown severely inhibited KAT8 association with AR target genes and histone H4 lysine 16 acetylation upon androgen treatment. Knockdown of KAT8 significantly decreased AR target gene expression and prostate cancer cell proliferation. Collectively, these data describe a trans-histone modification pathway involving PKN1/histone H3 threonine 11 phosphorylation followed by WDR5/MLL histone methyltransferase and KAT8/histone acetyltransferase recruitment to effect androgen-dependent gene activation and prostate cancer cell proliferation.
Collapse
Affiliation(s)
- Ji-Young Kim
- Division of Reproductive Science in Medicine (J.-Y.K., D.C.), Department of Obstetrics and Gynecology; Division of Hematology/Oncology (J.Y.), Department of Medicine; Departments of Urology (S.A.A.), Pathology (S.A.A.), and Pharmacology (D.C.); and Robert H. Lurie Comprehensive Cancer Center (J.Y., S.A.A., D.C.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jindan Yu
- Division of Reproductive Science in Medicine (J.-Y.K., D.C.), Department of Obstetrics and Gynecology; Division of Hematology/Oncology (J.Y.), Department of Medicine; Departments of Urology (S.A.A.), Pathology (S.A.A.), and Pharmacology (D.C.); and Robert H. Lurie Comprehensive Cancer Center (J.Y., S.A.A., D.C.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Sarki A Abdulkadir
- Division of Reproductive Science in Medicine (J.-Y.K., D.C.), Department of Obstetrics and Gynecology; Division of Hematology/Oncology (J.Y.), Department of Medicine; Departments of Urology (S.A.A.), Pathology (S.A.A.), and Pharmacology (D.C.); and Robert H. Lurie Comprehensive Cancer Center (J.Y., S.A.A., D.C.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Debabrata Chakravarti
- Division of Reproductive Science in Medicine (J.-Y.K., D.C.), Department of Obstetrics and Gynecology; Division of Hematology/Oncology (J.Y.), Department of Medicine; Departments of Urology (S.A.A.), Pathology (S.A.A.), and Pharmacology (D.C.); and Robert H. Lurie Comprehensive Cancer Center (J.Y., S.A.A., D.C.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
42
|
Zhang P, Bergamin E, Couture JF. The many facets of MLL1 regulation. Biopolymers 2016; 99:136-45. [PMID: 23175388 DOI: 10.1002/bip.22126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 01/07/2023]
Abstract
In the last 20 years, we have witnessed an exponential number of evidences linking the human mixed lineage leukemia-1 (MLL1) gene to several acute and myelogenous leukemias. MLL1 is one of the founding members of the SET1 family of lysine methyltransferases and is key for the proper control of developmentally regulated gene expression. MLL1 is a structurally complex protein composed of several functional domains. These domains play pivotal roles for the recruitment of regulatory proteins. These MLL1 regulatory proteins (MRPs) dynamically interact with MLL1 and consequently control gene expression. In this review, we summarize recent structural and functional studies of MRPs and discuss emergent structural paradigms for the control of MLL1 activity.
Collapse
Affiliation(s)
- Pamela Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5
| | | | | |
Collapse
|
43
|
Borkin D, Pollock J, Kempinska K, Purohit T, Li X, Wen B, Zhao T, Miao H, Shukla S, He M, Sun D, Cierpicki T, Grembecka J. Property Focused Structure-Based Optimization of Small Molecule Inhibitors of the Protein-Protein Interaction between Menin and Mixed Lineage Leukemia (MLL). J Med Chem 2016; 59:892-913. [PMID: 26744767 PMCID: PMC5092235 DOI: 10.1021/acs.jmedchem.5b01305] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development of potent small molecule inhibitors of protein-protein interactions with optimized druglike properties represents a challenging task in lead optimization process. Here, we report synthesis and structure-based optimization of new thienopyrimidine class of compounds, which block the protein-protein interaction between menin and MLL fusion proteins that plays an important role in acute leukemias with MLL translocations. We performed simultaneous optimization of both activity and druglike properties through systematic exploration of substituents introduced to the indole ring of lead compound 1 (MI-136) to identify compounds suitable for in vivo studies in mice. This work resulted in the identification of compound 27 (MI-538), which showed significantly increased activity, selectivity, polarity, and pharmacokinetic profile over 1 and demonstrated a pronounced effect in a mouse model of MLL leukemia. This study, which reports detailed structure-activity and structure-property relationships for the menin-MLL inhibitors, demonstrates challenges in optimizing inhibitors of protein-protein interactions for potential therapeutic applications.
Collapse
MESH Headings
- Animals
- Caco-2 Cells
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Histone-Lysine N-Methyltransferase/chemistry
- Histone-Lysine N-Methyltransferase/metabolism
- Humans
- Injections, Intraventricular
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, SCID
- Models, Molecular
- Molecular Structure
- Myeloid-Lymphoid Leukemia Protein/chemistry
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Protein Binding/drug effects
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/metabolism
- Pyrimidines/administration & dosage
- Pyrimidines/chemistry
- Pyrimidines/pharmacology
- Small Molecule Libraries/administration & dosage
- Small Molecule Libraries/chemistry
- Small Molecule Libraries/pharmacology
- Structure-Activity Relationship
- Thiophenes/administration & dosage
- Thiophenes/chemistry
- Thiophenes/pharmacology
Collapse
Affiliation(s)
- Dmitry Borkin
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Jonathan Pollock
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Katarzyna Kempinska
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Trupta Purohit
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Xiaoqin Li
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ting Zhao
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Shirish Shukla
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Miao He
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
44
|
Cierpicki T, Grembecka J. Targeting protein-protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies? Immunol Rev 2015; 263:279-301. [PMID: 25510283 DOI: 10.1111/imr.12244] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past several years, there has been an increasing research effort focused on inhibition of protein-protein interactions (PPIs) to develop novel therapeutic approaches for cancer, including hematologic malignancies. These efforts have led to development of small molecule inhibitors of PPIs, some of which already advanced to the stage of clinical trials while others are at different stages of preclinical optimization, emphasizing PPIs as an emerging and attractive class of drug targets. Here, we review several examples of recently developed inhibitors of PPIs highly relevant to hematologic cancers. We address the existing skepticism about feasibility of targeting PPIs and emphasize potential therapeutic benefit from blocking PPIs in hematologic malignancies. We then use these examples to discuss the approaches for successful identification of PPI inhibitors and provide analysis of the protein-protein interfaces, with the goal to address 'druggability' of new PPIs relevant to hematology. We discuss lessons learned to improve the success of targeting new PPIs and evaluate prospects and limits of the research in this field. We conclude that not all PPIs are equally tractable for blocking by small molecules, and detailed analysis of PPI interfaces is critical for selection of those with the highest chance of success. Together, our analysis uncovers patterns that should help to advance drug discovery in hematologic malignancies by successful targeting of new PPIs.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
45
|
Larsen MJ, Larsen SD, Fribley A, Grembecka J, Homan K, Mapp A, Haak A, Nikolovska-Coleska Z, Stuckey JA, Sun D, Sherman DH. The role of HTS in drug discovery at the University of Michigan. Comb Chem High Throughput Screen 2015; 17:210-30. [PMID: 24409957 DOI: 10.2174/1386207317666140109121546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/05/2013] [Accepted: 01/07/2014] [Indexed: 12/17/2022]
Abstract
High throughput screening (HTS) is an integral part of a highly collaborative approach to drug discovery at the University of Michigan. The HTS lab is one of four core centers that provide services to identify, produce, screen and follow-up on biomedical targets for faculty. Key features of this system are: protein cloning and purification, protein crystallography, small molecule and siRNA HTS, medicinal chemistry and pharmacokinetics. Therapeutic areas that have been targeted include anti-bacterial, metabolic, neurodegenerative, cardiovascular, anti-cancer and anti-viral. The centers work in a coordinated, interactive environment to affordably provide academic investigators with the technology, informatics and expertise necessary for successful drug discovery. This review provides an overview of these centers at the University of Michigan, along with case examples of successful collaborations with faculty.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - David H Sherman
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
46
|
Chen X, Sun S, Wang C, Chen D, Chen H, Ran X. Novel mutation 928G>C of MEN1 gene in a familial multiple endocrine neoplasia type 1 case (MEN1) with co-existence of insulinoma and glucagonoma. J Diabetes 2015; 7:426-9. [PMID: 25047095 DOI: 10.1111/1753-0407.12199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/29/2014] [Accepted: 07/02/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xiang Chen
- Laboratory of Endocrinology and Metabolism, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
47
|
Li BE, Ernst P. Two decades of leukemia oncoprotein epistasis: the MLL1 paradigm for epigenetic deregulation in leukemia. Exp Hematol 2014; 42:995-1012. [PMID: 25264566 PMCID: PMC4307938 DOI: 10.1016/j.exphem.2014.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/16/2014] [Indexed: 12/12/2022]
Abstract
MLL1, located on human chromosome 11, is disrupted in distinct recurrent chromosomal translocations in several leukemia subsets. Studying the MLL1 gene and its oncogenic variants has provided a paradigm for understanding cancer initiation and maintenance through aberrant epigenetic gene regulation. Here we review the historical development of model systems to recapitulate oncogenic MLL1-rearrangement (MLL-r) alleles encoding mixed-lineage leukemia fusion proteins (MLL-FPs) or internal gene rearrangement products. These largely mouse and human cell/xenograft systems have been generated and used to understand how MLL-r alleles affect diverse pathways to result in a highly penetrant, drug-resistant leukemia. The particular features of the animal models influenced the conclusions of mechanisms of transformation. We discuss significant downstream enablers, inhibitors, effectors, and collaborators of MLL-r leukemia, including molecules that directly interact with MLL-FPs and endogenous mixed-lineage leukemia protein, direct target genes of MLL-FPs, and other pathways that have proven to be influential in supporting or suppressing the leukemogenic activity of MLL-FPs. The use of animal models has been complemented with patient sample, genome-wide analyses to delineate the important genomic and epigenomic changes that occur in distinct subsets of MLL-r leukemia. Collectively, these studies have resulted in rapid progress toward developing new strategies for targeting MLL-r leukemia and general cell-biological principles that may broadly inform targeting aberrant epigenetic regulators in other cancers.
Collapse
Affiliation(s)
- Bin E Li
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Patricia Ernst
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Pediatrics Hematology/Oncology/BMT, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
48
|
Rodríguez-Rodero S, Delgado-Álvarez E, Fernández AF, Fernández-Morera JL, Menéndez-Torre E, Fraga MF. Epigenetic alterations in endocrine-related cancer. Endocr Relat Cancer 2014; 21:R319-30. [PMID: 24898948 DOI: 10.1530/erc-13-0070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aberrant epigenetics is a hallmark of cancer, and endocrine-related tumors are no exception. Recent research has been identifying an ever-growing number of epigenetic alterations in both genomic DNA methylation and histone post-translational modification in tumors of the endocrine system. Novel microarray and ultra-deep sequencing technologies have allowed the identification of genome-wide epigenetic patterns in some tumor types such as adrenocortical, parathyroid, and breast carcinomas. However, in other cancer types, such as the multiple endocrine neoplasia syndromes and thyroid cancer, tumor information is limited to candidate genes alone. Future research should fill this gap and deepen our understanding of the functional role of these alterations in cancer, as well as defining their possible clinical uses.
Collapse
Affiliation(s)
- Sandra Rodríguez-Rodero
- Endocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, SpainEndocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain
| | - Elías Delgado-Álvarez
- Endocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain
| | - Agustín F Fernández
- Endocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain
| | - Juan L Fernández-Morera
- Endocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain
| | - Edelmiro Menéndez-Torre
- Endocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain
| | - Mario F Fraga
- Endocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, SpainEndocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain
| |
Collapse
|
49
|
Pieterman CRC, Conemans EB, Dreijerink KMA, de Laat JM, Timmers HTM, Vriens MR, Valk GD. Thoracic and duodenopancreatic neuroendocrine tumors in multiple endocrine neoplasia type 1: natural history and function of menin in tumorigenesis. Endocr Relat Cancer 2014; 21:R121-42. [PMID: 24389729 DOI: 10.1530/erc-13-0482] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutations of the multiple endocrine neoplasia type 1 (MEN1) gene lead to loss of function of its protein product menin. In keeping with its tumor suppressor function in endocrine tissues, the majority of the MEN1-related neuroendocrine tumors (NETs) show loss of heterozygosity (LOH) on chromosome 11q13. In sporadic NETs, MEN1 mutations and LOH are also reported, indicating common pathways in tumor development. Prevalence of thymic NETs (thNETs) and pulmonary carcinoids in MEN1 patients is 2-8%. Pulmonary carcinoids may be underreported and research on natural history is limited, but disease-related mortality is low. thNETs have a high mortality rate. Duodenopancreatic NETs (dpNETs) are multiple, almost universally found at pathology, and associated with precursor lesions. Gastrinomas are usually located in the duodenal submucosa while other dpNETs are predominantly pancreatic. dpNETs are an important determinant of MEN1-related survival, with an estimated 10-year survival of 75%. Survival differs between subtypes and apart from tumor size there are no known prognostic factors. Natural history of nonfunctioning pancreatic NETs needs to be redefined because of increased detection of small tumors. MEN1-related gastrinomas seem to behave similar to their sporadic counterparts, while insulinomas seem to be more aggressive. Investigations into the molecular functions of menin have led to new insights into MEN1-related tumorigenesis. Menin is involved in gene transcription, both as an activator and repressor. It is part of chromatin-modifying protein complexes, indicating involvement of epigenetic pathways in MEN1-related NET development. Future basic and translational research aimed at NETs in large unbiased cohorts will clarify the role of menin in NET tumorigenesis and might lead to new therapeutic options.
Collapse
Affiliation(s)
- C R C Pieterman
- Division of Internal Medicine and Dermatology, Department of Internal Medicine, University Medical Center Utrecht, Internal post number L.00.408, PO Box 85500, 3508 GA Utrecht, The Netherlands Division of Biomedical Genetics, Department of Molecular Cancer Research Division of Surgical Specialties, Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Li L, Zhou R, Geng H, Yue L, Ye F, Xie Y, Liu J, Kong X, Jiang H, Huang J, Luo C. Discovery of two aminoglycoside antibiotics as inhibitors targeting the menin–mixed lineage leukaemia interface. Bioorg Med Chem Lett 2014; 24:2090-3. [DOI: 10.1016/j.bmcl.2014.03.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|