1
|
Demaree IS, Kumar S, Tennessen K, Hoang QQ, White FA, Obukhov AG. Effects of TRPC1's Lysines on Heteromeric TRPC5-TRPC1 Channel Function. Cells 2024; 13:2019. [PMID: 39682767 DOI: 10.3390/cells13232019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND TRPC5 proteins form plasma membrane cation channels and are expressed in the nervous and cardiovascular systems. TRPC5 activation leads to cell depolarization and increases neuronal excitability, whereas a homologous TRPC1 inhibits TRPC5 function via heteromerization. The mechanism underlying the inhibitory effect of TRPC1 in TRPC5/TRPC1 heteromers remains unknown. METHODS We used electrophysiological techniques to examine the roles of subunit stoichiometry and positively charged luminal residues of TRPC1 on TRPC5/TRPC1 function. We also performed molecular dynamics simulations. RESULTS We found that increasing the relative amount of TRPC1 in TRPC5/TRPC1 heteromers reduced histamine-induced cation influx through the heteromeric channels. Consistently, histamine-induced cation influx was small in cells co-expressing TRPC5-TRPC1 concatemers and TRPC1, and large in cells co-expressing TRPC5-TRPC1 concatemers and TRPC5. Molecular dynamics simulations revealed that the TRPC1 protein has two positively charged lysine residues that are facing the heteromeric channel pore lumen. Substitution of these lysines with asparagines decreased TRPC1's inhibitory effect on TRPC5/TRPC1 function, indicating that these lysines may regulate cation influx through TRPC5/TRPC1 heteromers. Additionally, we established that extracellular Mg2+ inhibits cation influx through TRPC5/TRPC1, contributing to channel regulation. CONCLUSIONS We revealed that the inhibitory effect of TRPC1 on heteromeric TRPC5/TRPC1 function likely involves luminal lysines of TRPC1.
Collapse
Affiliation(s)
- Isaac S Demaree
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sanjay Kumar
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Life Science, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya 824236, India
| | - Kayla Tennessen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Quyen Q Hoang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fletcher A White
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Bröker-Lai J, Rego Terol J, Richter C, Mathar I, Wirth A, Kopf S, Moreno-Pérez A, Büttner M, Tan LL, Makke M, Poschet G, Hermann J, Tsvilovskyy V, Haberkorn U, Wartenberg P, Susperreguy S, Berlin M, Ottenheijm R, Philippaert K, Wu M, Wiedemann T, Herzig S, Belkacemi A, Levinson RT, Agarwal N, Camacho Londoño JE, Klebl B, Dinkel K, Zufall F, Nussbaumer P, Boehm U, Hell R, Nawroth P, Birnbaumer L, Leinders-Zufall T, Kuner R, Zorn M, Bruns D, Schwarz Y, Freichel M. TRPC5 controls the adrenaline-mediated counter regulation of hypoglycemia. EMBO J 2024; 43:5813-5836. [PMID: 39375537 PMCID: PMC11612138 DOI: 10.1038/s44318-024-00231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024] Open
Abstract
Hypoglycemia triggers autonomic and endocrine counter-regulatory responses to restore glucose homeostasis, a response that is impaired in patients with diabetes and its long-term complication hypoglycemia-associated autonomic failure (HAAF). We show that insulin-evoked hypoglycemia is severely aggravated in mice lacking the cation channel proteins TRPC1, TRPC4, TRPC5, and TRPC6, which cannot be explained by alterations in glucagon or glucocorticoid action. By using various TRPC compound knockout mouse lines, we pinpointed the failure in sympathetic counter-regulation to the lack of the TRPC5 channel subtype in adrenal chromaffin cells, which prevents proper adrenaline rise in blood plasma. Using electrophysiological analyses, we delineate a previously unknown signaling pathway in which stimulation of PAC1 or muscarinic receptors activates TRPC5 channels in a phospholipase-C-dependent manner to induce sustained adrenaline secretion as a crucial step in the sympathetic counter response to insulin-induced hypoglycemia. By comparing metabolites in the plasma, we identified reduced taurine levels after hypoglycemia induction as a commonality in TRPC5-deficient mice and HAAF patients.
Collapse
Affiliation(s)
- Jenny Bröker-Lai
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - José Rego Terol
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Christin Richter
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Ilka Mathar
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Angela Wirth
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Stefan Kopf
- Klinik für Endokrinologie, Diabetologie, Stoffwechsel und Klinische Chemie, Heidelberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Ana Moreno-Pérez
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Michael Büttner
- Metabolomics Core Technology Platform, Centre for Organismal Studies Heidelberg (COS Heidelberg), Heidelberg, Germany
| | - Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Mazen Makke
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies Heidelberg (COS Heidelberg), Heidelberg, Germany
| | - Julia Hermann
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Uwe Haberkorn
- Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Wartenberg
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Sebastian Susperreguy
- Signal Transduction Laboratory, Institute of Biomedical Research (BIOMED UCA CONICET) Edificio San José, Piso 3 School of Biomedical Sciences, Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Michael Berlin
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Moya Wu
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Tobias Wiedemann
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Anouar Belkacemi
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Rebecca T Levinson
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Nitin Agarwal
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Juan E Camacho Londoño
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, Dortmund, Germany
| | | | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | | | - Ulrich Boehm
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Rüdiger Hell
- Metabolomics Core Technology Platform, Centre for Organismal Studies Heidelberg (COS Heidelberg), Heidelberg, Germany
| | - Peter Nawroth
- Klinik für Endokrinologie, Diabetologie, Stoffwechsel und Klinische Chemie, Heidelberg, Germany
- Deutsches Zentrum für Diabetesforschung (DZD e.V), München-Neuherberg, Germany
| | - Lutz Birnbaumer
- Signal Transduction Laboratory, Institute of Biomedical Research (BIOMED UCA CONICET) Edificio San José, Piso 3 School of Biomedical Sciences, Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Markus Zorn
- Klinik für Endokrinologie, Diabetologie, Stoffwechsel und Klinische Chemie, Heidelberg, Germany
| | - Dieter Bruns
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Yvonne Schwarz
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany.
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
3
|
Qi WH, Tang N, Zhao ZJ, Li XQ. Transient receptor potential channels in viral infectious diseases: Biological characteristics and regulatory mechanisms. J Adv Res 2024:S2090-1232(24)00541-1. [PMID: 39551130 DOI: 10.1016/j.jare.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Viral infectious diseases have long posed a challenge to humanity. In recent decades, transient receptor potential (TRP) channels have emerged as newly investigated cation channels. Increasing evidence suggests that TRP channel-mediated Ca2+ homeostasis disruptions, along with associated pathological changes, are critical factors in the onset and progression of viral infectious diseases. However, the precise roles and mechanisms of TRP channels in these diseases remain to be systematically elucidated. AIM OF REVIEW The aim of this review is to systematically summarize recent advances in understanding TRP channels in viral infections, and based on current progress and challenges, propose future directions for research. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the classification and biological functions of the TRP family, explores the mechanisms by which TRP channels contribute to viral infections, and highlights specific mechanisms at three levels: virus, host, and outcome. These include the direct role in viral biology and replication, the indirect role in host immunity and inflammation, and the resulting pathological changes. Additionally, we discuss the potential applications of the TRP family in the treatment of viral infectious diseases and propose future research directions.
Collapse
Affiliation(s)
- Wen-Hui Qi
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, Air Force Medical University, Xi'an, Shaanxi 710032, China; Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Na Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, Air Force Medical University, Xi'an, Shaanxi 710032, China; Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Zhi-Jing Zhao
- Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China; Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Xiao-Qiang Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, Air Force Medical University, Xi'an, Shaanxi 710032, China; Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
4
|
Zong P, Li CX, Feng J, Cicchetti M, Yue L. TRP Channels in Stroke. Neurosci Bull 2024; 40:1141-1159. [PMID: 37995056 PMCID: PMC11306852 DOI: 10.1007/s12264-023-01151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/24/2023] Open
Abstract
Ischemic stroke is a devastating disease that affects millions of patients worldwide. Unfortunately, there are no effective medications for mitigating brain injury after ischemic stroke. TRP channels are evolutionally ancient biosensors that detect external stimuli as well as tissue or cellular injury. To date, many members of the TRP superfamily have been reported to contribute to ischemic brain injury, including the TRPC subfamily (1, 3, 4, 5, 6, 7), TRPV subfamily (1, 2, 3, 4) and TRPM subfamily (2, 4, 7). These TRP channels share structural similarities but have distinct channel functions and properties. Their activation during ischemic stroke can be beneficial, detrimental, or even both. In this review, we focus on discussing the interesting features of stroke-related TRP channels and summarizing the underlying cellular and molecular mechanisms responsible for their involvement in ischemic brain injury.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
- Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT, 06269, USA.
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Mara Cicchetti
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
- Department of Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
| |
Collapse
|
5
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
6
|
Zheng F, Phelan KD, Shwe UT. Increased Susceptibility to Pilocarpine-Induced Status Epilepticus and Reduced Latency in TRPC1/4 Double Knockout Mice. Neurol Int 2023; 15:1469-1479. [PMID: 38132974 PMCID: PMC10745782 DOI: 10.3390/neurolint15040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
Canonical transient receptor potential channels (TRPCs) are a family of calcium-permeable cation channels. Previous studies have shown that heteromeric channels comprising TRPC1 and TRPC4 mediate epileptiform bursting in lateral septal neurons and hippocampal CA1 pyramidal neurons, suggesting that TRPC1/4 channels play a pro-seizure role. In this study, we utilized electroencephalography (EEG) recording and spectral analysis to assess the role of TRPC1/4 channels in the pilocarpine model of status epilepticus (SE). We found that, surprisingly, TRPC1/4 double knockout (DKO) mice exhibited an increased susceptibility to pilocarpine-induced SE. Furthermore, SE latency was also significantly reduced in TRPC1/4 DKO mice. Further studies are needed to reveal the underlying mechanisms of our unexpected results.
Collapse
Affiliation(s)
- Fang Zheng
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - U Thaung Shwe
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
7
|
Cole BA, Becker EBE. Modulation and Regulation of Canonical Transient Receptor Potential 3 (TRPC3) Channels. Cells 2023; 12:2215. [PMID: 37759438 PMCID: PMC10526463 DOI: 10.3390/cells12182215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Canonical transient receptor potential 3 (TRPC3) channel is a non-selective cation permeable channel that plays an essential role in calcium signalling. TRPC3 is highly expressed in the brain and also found in endocrine tissues and smooth muscle cells. The channel is activated directly by binding of diacylglycerol downstream of G-protein coupled receptor activation. In addition, TRPC3 is regulated by endogenous factors including Ca2+ ions, other endogenous lipids, and interacting proteins. The molecular and structural mechanisms underlying activation and regulation of TRPC3 are incompletely understood. Recently, several high-resolution cryogenic electron microscopy structures of TRPC3 and the closely related channel TRPC6 have been resolved in different functional states and in the presence of modulators, coupled with mutagenesis studies and electrophysiological characterisation. Here, we review the recent literature which has advanced our understanding of the complex mechanisms underlying modulation of TRPC3 by both endogenous and exogenous factors. TRPC3 plays an important role in Ca2+ homeostasis and entry into cells throughout the body, and both pathological variants and downstream dysregulation of TRPC3 channels have been associated with a number of diseases. As such, TRPC3 may be a valuable therapeutic target, and understanding its regulatory mechanisms will aid future development of pharmacological modulators of the channel.
Collapse
Affiliation(s)
- Bethan A. Cole
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Esther B. E. Becker
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
8
|
Park CH, Kim J, Lee JE, Kwak M, So I. Pore residues of transient receptor potential channels canonical 1 and 4 heteromer determine channel properties. Am J Physiol Cell Physiol 2023; 325:C42-C51. [PMID: 37212545 DOI: 10.1152/ajpcell.00488.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Transient receptor potential channels canonical 1 and 4 (TRPC1 and TRPC4) are proteins belonging to the same TRPC channel family, and the two are known to form a heterotetrameric channel. TRPC4 can form a homotetrameric, nonselective cation channel by itself, but the involvement of the TRPC1 subunit changes several major characteristics of the channel. In this study, we focused on the pore region (selectivity filter, pore helix, and S6 helix) of TRPC1 and TRPC4 as a determinant of the identity and characteristics of a heteromeric TRPC1/4 channel: decreased calcium permeability of the channel and outward-rectifying current-voltage (I-V) curve. Mutants and chimeras of the pore residues were created, and their currents were recorded using whole cell patch clamp. The lower gate mutants of TRPC4 exhibited diminished calcium permeability as measured by GCaMP6 fluorescence. Also, chimeric channels substituting the pore region of TRPC1 to TRPC4 were made to locate the pore region that is critical in the production of an outward-rectifying I-V curve characteristic of TRPC1/4 heteromeric channels.NEW & NOTEWORTHY Heteromer research has been a challenging field due to lack of structural studies. Using chimeras and single mutants, we present evidence that the pore region of TRPC1/4 heteromer contributes to determining the channel's characteristics such as calcium permeability, I-V curve, and conductance.
Collapse
Affiliation(s)
- Christine Haewon Park
- Department of Physiology, Seoul National University School of Medicine, Seoul, Korea
| | - Jinsung Kim
- Department of Physiology, Seoul National University School of Medicine, Seoul, Korea
| | - Jung Eun Lee
- Department of Physiology, Seoul National University School of Medicine, Seoul, Korea
| | - Misun Kwak
- Department of Physiology, Seoul National University School of Medicine, Seoul, Korea
| | - Insuk So
- Department of Physiology, Seoul National University School of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Martin-García D, Téllez T, Redondo M, García-Aranda M. Calcium Homeostasis in the Development of Resistant Breast Tumors. Cancers (Basel) 2023; 15:2872. [PMID: 37296835 PMCID: PMC10251880 DOI: 10.3390/cancers15112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is one of the main health problems worldwide. Only in 2020, this disease caused more than 19 million new cases and almost 10 million deaths, with breast cancer being the most diagnosed worldwide. Today, despite recent advances in breast cancer treatment, a significant percentage of patients will either not respond to therapy or will eventually experience lethal progressive disease. Recent studies highlighted the involvement of calcium in the proliferation or evasion of apoptosis in breast carcinoma cells. In this review, we provide an overview of intracellular calcium signaling and breast cancer biology. We also discuss the existing knowledge on how altered calcium homeostasis is implicated in breast cancer development, highlighting the potential utility of Ca2+ as a predictive and prognostic biomarker, as well as its potential for the development of new pharmacological treatments to treat the disease.
Collapse
Affiliation(s)
- Desirée Martin-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain; (D.M.-G.); (T.T.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
| | - Teresa Téllez
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain; (D.M.-G.); (T.T.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain; (D.M.-G.); (T.T.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, Autovia A-7 km 187, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, Autovia A-7 km 187, 29602 Marbella, Spain
| |
Collapse
|
10
|
Freichel M, Tsvilovskyy V, Philippaert K. Resolving the heteromeric composition and macromolecular environment of TRPC channels in the brain. Cell Calcium 2023; 111:102714. [PMID: 36921407 DOI: 10.1016/j.ceca.2023.102714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Affiliation(s)
- Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
11
|
Kollewe A, Schwarz Y, Oleinikov K, Raza A, Haupt A, Wartenberg P, Wyatt A, Boehm U, Ectors F, Bildl W, Zolles G, Schulte U, Bruns D, Flockerzi V, Fakler B. Subunit composition, molecular environment, and activation of native TRPC channels encoded by their interactomes. Neuron 2022; 110:4162-4175.e7. [PMID: 36257322 DOI: 10.1016/j.neuron.2022.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022]
Abstract
In the mammalian brain TRPC channels, a family of Ca2+-permeable cation channels, are involved in a variety of processes from neuronal growth and synapse formation to transmitter release, synaptic transmission and plasticity. The molecular appearance and operation of native TRPC channels, however, remained poorly understood. Here, we used high-resolution proteomics to show that TRPC channels in the rodent brain are macro-molecular complexes of more than 1 MDa in size that result from the co-assembly of the tetrameric channel core with an ensemble of interacting proteins (interactome). The core(s) of TRPC1-, C4-, and C5-containing channels are mostly heteromers with defined stoichiometries for each subtype, whereas TRPC3, C6, and C7 preferentially form homomers. In addition, TRPC1/C4/C5 channels may co-assemble with the metabotropic glutamate receptor mGluR1, thus guaranteeing both specificity and reliability of channel activation via the phospholipase-Ca2+ pathway. Our results unveil the subunit composition of native TRPC channels and resolve the molecular details underlying their activation.
Collapse
Affiliation(s)
- Astrid Kollewe
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Yvonne Schwarz
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Katharina Oleinikov
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Ahsan Raza
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Alexander Haupt
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Philipp Wartenberg
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Amanda Wyatt
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Ulrich Boehm
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Fabien Ectors
- Transgenic facility, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Dieter Bruns
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Schänzlestr. 18, 79104 Freiburg, Germany; Center for Basics in NeuroModulation, Breisacherstr. 4, 79106 Freiburg, Germany.
| |
Collapse
|
12
|
Transient Receptor Potential (TRP) Channels in Tumor Vascularization. Int J Mol Sci 2022; 23:ijms232214253. [PMID: 36430727 PMCID: PMC9692925 DOI: 10.3390/ijms232214253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Tumor diseases are unfortunately quick spreading, even though numerous studies are under way to improve early diagnosis and targeted treatments that take into account both the different characteristics associated with the various tumor types and the conditions of individual patients. In recent years, studies have focused on the role of ion channels in tumor development, as these proteins are involved in several cellular processes relevant to neoplastic transformation. Among all ion channels, many studies have focused on the superfamily of Transient Receptor Potential (TRP) channels, which are non-selective cation channels mediating extracellular Ca2+ influx. In this review, we examined the role of different endothelial TRP channel isoforms in tumor vessel formation, a process that is essential in tumor growth and metastasis.
Collapse
|
13
|
Su CL, Cheng CC, Yen PH, Huang JX, Ting YJ, Chiang PH. Wireless neuromodulation in vitro and in vivo by intrinsic TRPC-mediated magnetomechanical stimulation. Commun Biol 2022; 5:1166. [PMID: 36323817 PMCID: PMC9630493 DOI: 10.1038/s42003-022-04124-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Various magnetic deep brain stimulation (DBS) methods have been developing rapidly in the last decade for minimizing the invasiveness of DBS. However, current magnetic DBS methods, such as magnetothermal and magnetomechanical stimulation, require overexpressing exogeneous ion channels in the central nervous system (CNS). It is unclear whether magnetomechanical stimulation can modulate non-transgenic CNS neurons or not. Here, we reveal that the torque of magnetic nanodiscs with weak and slow alternative magnetic field (50 mT at 10 Hz) could activate neurons through the intrinsic transient receptor potential canonical channels (TRPC), which are mechanosensitive ion channels widely expressed in the brain. The immunostaining with c-fos shows the increasement of neuronal activity by wireless DBS with magnetomechanical approach in vivo. Overall, this research demonstrates a magnetic nanodiscs-based magnetomechanical approach that can be used for wireless neuronal stimulation in vitro and untethered DBS in vivo without implants or genetic manipulation.
Collapse
Affiliation(s)
- Chih-Lun Su
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan, R.O.C
| | - Chao-Chun Cheng
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan, R.O.C
| | - Ping-Hsiang Yen
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan, R.O.C
| | - Jun-Xuan Huang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan, R.O.C
| | - Yen-Jing Ting
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan, R.O.C
| | - Po-Han Chiang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan, R.O.C..
| |
Collapse
|
14
|
Cullimore B, Baumann J, Rudzitis CN, Jo AO, Kirdajova D, Križaj D. Mechanotransduction mechanisms in central nervous system glia. Neural Regen Res 2022; 18:1031-1032. [PMID: 36254988 PMCID: PMC9827760 DOI: 10.4103/1673-5374.355758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Brenan Cullimore
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jackson Baumann
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA,Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Christopher N. Rudzitis
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrew O. Jo
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA,Department of Bioengineering, University of Utah, Salt Lake City, UT, USA,Department of Neurobiology, University of Utah, Salt Lake City, UT, USA,Correspondence to: David Križaj, .
| |
Collapse
|
15
|
Müller I, Alt P, Rajan S, Schaller L, Geiger F, Dietrich A. Transient Receptor Potential (TRP) Channels in Airway Toxicity and Disease: An Update. Cells 2022; 11:2907. [PMID: 36139480 PMCID: PMC9497104 DOI: 10.3390/cells11182907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Our respiratory system is exposed to toxicants and pathogens from both sides: the airways and the vasculature. While tracheal, bronchial and alveolar epithelial cells form a natural barrier in the airways, endothelial cells protect the lung from perfused toxic compounds, particulate matter and invading microorganism in the vascular system. Damages induce inflammation by our immune response and wound healing by (myo)fibroblast proliferation. Members of the transient receptor potential (TRP) superfamily of ion channel are expressed in many cells of the respiratory tract and serve multiple functions in physiology and pathophysiology. TRP expression patterns in non-neuronal cells with a focus on TRPA1, TRPC6, TRPM2, TRPM5, TRPM7, TRPV2, TRPV4 and TRPV6 channels are presented, and their roles in barrier function, immune regulation and phagocytosis are summarized. Moreover, TRP channels as future pharmacological targets in chronic obstructive pulmonary disease (COPD), asthma, cystic and pulmonary fibrosis as well as lung edema are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Nussbaumstr. 26, 80336 Munich, Germany
| |
Collapse
|
16
|
Yu Y, Li W, Jiang J. TRPC channels as emerging targets for seizure disorders. Trends Pharmacol Sci 2022; 43:787-798. [PMID: 35840362 PMCID: PMC9378536 DOI: 10.1016/j.tips.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
Epilepsy is characterized by seizures of diverse types that affect about 1-2% of the population worldwide. Current antiseizure medications are unsatisfactory, as they merely provide symptomatic relief, are ineffective in about one-third of patients, and cause unbearable adverse effects. Transient receptor potential canonical (TRPC) channels are a group of nonselective cation channels involved in many physiological functions. In this review, we provide an overview of recent preclinical studies using both genetic and pharmacological strategies that reveal these receptor-operated calcium-permeable channels may also play fundamental roles in many aspects of epileptic seizures. We also propose that TRPC channels represent appealing targets for epilepsy treatment, with a goal of helping to advance the discovery and development of new antiseizure and/or antiepileptogenic therapies.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
17
|
Kazandzhieva K, Mammadova-Bach E, Dietrich A, Gudermann T, Braun A. TRP channel function in platelets and megakaryocytes: basic mechanisms and pathophysiological impact. Pharmacol Ther 2022; 237:108164. [PMID: 35247518 DOI: 10.1016/j.pharmthera.2022.108164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
Abstract
Transient receptor potential (TRP) proteins form a superfamily of cation channels that are expressed in a wide range of tissues and cell types. During the last years, great progress has been made in understanding the molecular complexity and the functions of TRP channels in diverse cellular processes, including cell proliferation, migration, adhesion and activation. The diversity of functions depends on multiple regulatory mechanisms by which TRP channels regulate Ca2+ entry mechanisms and intracellular Ca2+ dynamics, either through membrane depolarization involving cation influx or store- and receptor-operated mechanisms. Abnormal function or expression of TRP channels results in vascular pathologies, including hypertension, ischemic stroke and inflammatory disorders through effects on vascular cells, including the components of blood vessels and platelets. Moreover, some TRP family members also regulate megakaryopoiesis and platelet production, indicating a complex role of TRP channels in pathophysiological conditions. In this review, we describe potential roles of TRP channels in megakaryocytes and platelets, as well as their contribution to diseases such as thrombocytopenia, thrombosis and stroke. We also critically discuss the potential of TRP channels as possible targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Kalina Kazandzhieva
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany.
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
18
|
Fakhar M, Najumuddin, Zahid S, Rashid S. Structural basis of Klotho binding to VEGFR2 and TRPC1 and repurposing calcium channel blockers as TRPC1 antagonists for the treatment of age-related cardiac hypertrophy. Arch Biochem Biophys 2022; 719:109171. [DOI: 10.1016/j.abb.2022.109171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
|
19
|
Hermann C, Treder A, Näher M, Geiseler R, Gudermann T, Mederos Y Schnitzler M, Storch U. The normalized slope conductance as a tool for quantitative analysis of current-voltage relations. Biophys J 2022; 121:1435-1448. [PMID: 35300969 PMCID: PMC9072577 DOI: 10.1016/j.bpj.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/02/2021] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
The patch-clamp method which was rewarded with the Nobel Prize in 1991 is a well-established and indispensable method to study ion channels in living cells and to biophysically characterize non-voltage-gated ion channels that comprise about 70% of all ion channels in the human genome. To investigate the biophysical properties of non-voltage-gated ion channels, whole-cell measurements with application of continuous voltage-ramps are routinely conducted to obtain current-voltage (IV) relationships. However, adequate tools for detailed and quantitative analysis of IV curves are still missing. We use the example of the transient receptor potential classical (TRPC) channel family to elucidate whether the normalized slope conductance (NSC) is an appropriate tool for a reliable discrimination of the IV curves of diverse TRPC channels that differ in their individual curve progression. We provide a robust calculation method for the NSC, and by applying this method we find that TRPC channel activators and modulators can evoke different NSC progressions independent from their expression levels which is pointing to distinguishable active channel states. TRPC6 mutations of patients suffering from focal segmental glomerulosclerosis (FSGS) resulted in distinct NSC progressions suggesting that the NSC is suitable to investigate structure-function relations and might help unravel the unknown pathomechanisms leading to FSGS. Altogether, the NCS represents an effective algorithm for extended biophysical characterization of non-voltage-gated ion channels.
Collapse
Affiliation(s)
- Christian Hermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Aaron Treder
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marius Näher
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Roman Geiseler
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany;; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Michael Mederos Y Schnitzler
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany;; DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany.
| | - Ursula Storch
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany;; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, 80336 Munich, Germany.
| |
Collapse
|
20
|
Bon RS, Wright DJ, Beech DJ, Sukumar P. Pharmacology of TRPC Channels and Its Potential in Cardiovascular and Metabolic Medicine. Annu Rev Pharmacol Toxicol 2022; 62:427-446. [PMID: 34499525 DOI: 10.1146/annurev-pharmtox-030121-122314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient receptor potential canonical (TRPC) proteins assemble to form homo- or heterotetrameric, nonselective cation channels permeable to K+, Na+, and Ca2+. TRPC channels are thought to act as complex integrators of physical and chemical environmental stimuli. Although the understanding of essential physiological roles of TRPC channels is incomplete, their implication in various pathological mechanisms and conditions of the nervous system, kidneys, and cardiovascular system in combination with the lack of major adverse effects of TRPC knockout or TRPC channel inhibition is driving the search of TRPC channel modulators as potential therapeutics. Here, we review the most promising small-molecule TRPC channel modulators, the understanding of their mode of action, and their potential in the study and treatment of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - David J Wright
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - David J Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - Piruthivi Sukumar
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| |
Collapse
|
21
|
Sporkova A, Ghosh S, Al-Hasani J, Hecker M. Lin11-Isl1-Mec3 Domain Proteins as Mechanotransducers in Endothelial and Vascular Smooth Muscle Cells. Front Physiol 2021; 12:769321. [PMID: 34867475 PMCID: PMC8640458 DOI: 10.3389/fphys.2021.769321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Arterial hypertension is the leading risk factor for cardiovascular morbidity and mortality worldwide. However, little is known about the cellular mechanisms underlying it. In small arteries and arterioles, a chronic increase in blood pressure raises wall tension and hence stretches, namely, the medial vascular smooth muscle cells (VSMC) but also endothelial cell (EC) to cell contacts. Initially compensated by an increase in vascular tone, the continuous biomechanical strain causes a prominent change in gene expression in both cell types, frequently driving an arterial inward remodeling process that ultimately results in a reduction in lumen diameter, stiffening of the vessel wall, and fixation of blood pressure, namely, diastolic blood pressure, at the elevated level. Sensing and propagation of this supraphysiological stretch into the nucleus of VSMC and EC therefore seems to be a crucial step in the initiation and advancement of hypertension-induced arterial remodeling. Focal adhesions (FA) represent an important interface between the extracellular matrix and Lin11-Isl1-Mec3 (LIM) domain-containing proteins, which can translocate from the FA into the nucleus where they affect gene expression. The varying biomechanical cues to which vascular cells are exposed can thus be rapidly and specifically propagated to the nucleus. Zyxin was the first protein described with such mechanotransducing properties. It comprises 3 C-terminal LIM domains, a leucine-rich nuclear export signal, and N-terminal features that support its association with the actin cytoskeleton. In the cytoplasm, zyxin promotes actin assembly and organization as well as cell motility. In EC, zyxin acts as a transcription factor, whereas in VSMC, it has a less direct effect on mechanosensitive gene expression. In terms of homology and structural features, lipoma preferred partner is the nearest relative of zyxin among the LIM domain proteins. It is almost exclusively expressed by smooth muscle cells in the adult, resides like zyxin at FA but seems to affect mechanosensitive gene expression indirectly, possibly via altering cortical actin dynamics. Here, we highlight what is currently known about the role of these LIM domain proteins in mechanosensing and transduction in vascular cells.
Collapse
Affiliation(s)
- Alexandra Sporkova
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Subhajit Ghosh
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Jaafar Al-Hasani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| |
Collapse
|
22
|
Carver CM, DeWitt HR, Stoja AP, Shapiro MS. Blockade of TRPC Channels Limits Cholinergic-Driven Hyperexcitability and Seizure Susceptibility After Traumatic Brain Injury. Front Neurosci 2021; 15:681144. [PMID: 34489621 PMCID: PMC8416999 DOI: 10.3389/fnins.2021.681144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
We investigated the contribution of excitatory transient receptor potential canonical (TRPC) cation channels to posttraumatic hyperexcitability in the brain 7 days following controlled cortical impact model of traumatic brain injury (TBI) to the parietal cortex in male adult mice. We investigated if TRPC1/TRPC4/TRPC5 channel expression is upregulated in excitatory neurons after TBI in contribution to epileptogenic hyperexcitability in key hippocampal and cortical circuits that have substantial cholinergic innervation. This was tested by measuring TRPC1/TRPC4/TRPC5 protein and messenger RNA (mRNA) expression, assays of cholinergic function, neuronal Ca2+ imaging in brain slices, and seizure susceptibility after TBI. We found region-specific increases in expression of TRPC1, TRPC4, and TRPC5 subunits in the hippocampus and cortex following TBI. The dentate gyrus, CA3 region, and cortex all exhibited robust upregulation of TRPC4 mRNA and protein. TBI increased cFos activity in dentate gyrus granule cells (DGGCs) and layer 5 pyramidal neurons both at the time of TBI and 7 days post-TBI. DGGCs displayed greater magnitude and duration of acetylcholine-induced rises in intracellular Ca2+ in brain slices from mice subjected to TBI. The TBI mice also exhibited greater seizure susceptibility in response to pentylenetetrazol-induced kindling. Blockade of TRPC4/TRPC5 channels with M084 reduced neuronal hyperexcitation and impeded epileptogenic progression of kindling. We observed that the time-dependent upregulation of TRPC4/TRPC5-containing channels alters cholinergic responses and activity of principal neurons acting to increase proexcitatory sensitivity. The underlying mechanism includes acutely decreased acetylcholinesterase function, resulting in greater Gq/11-coupled muscarinic receptor activation of TRPC channels. Overall, our evidence suggests that TBI-induced plasticity of TRPC channels strongly contributes to overt hyperexcitability and primes the hippocampus and cortex for seizures.
Collapse
Affiliation(s)
- Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Haley R DeWitt
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Aiola P Stoja
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
23
|
Zergane M, Kuebler WM, Michalick L. Heteromeric TRP Channels in Lung Inflammation. Cells 2021; 10:cells10071654. [PMID: 34359824 PMCID: PMC8307017 DOI: 10.3390/cells10071654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Activation of Transient Receptor Potential (TRP) channels can disrupt endothelial barrier function, as their mediated Ca2+ influx activates the CaM (calmodulin)/MLCK (myosin light chain kinase)-signaling pathway, and thereby rearranges the cytoskeleton, increases endothelial permeability and thus can facilitate activation of inflammatory cells and formation of pulmonary edema. Interestingly, TRP channel subunits can build heterotetramers, whereas heteromeric TRPC1/4, TRPC3/6 and TRPV1/4 are expressed in the lung endothelium and could be targeted as a protective strategy to reduce endothelial permeability in pulmonary inflammation. An update on TRP heteromers and their role in lung inflammation will be provided with this review.
Collapse
Affiliation(s)
- Meryam Zergane
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
- German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
- The Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| | - Laura Michalick
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
- German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany
| |
Collapse
|
24
|
Vanneste M, Segal A, Voets T, Everaerts W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat Rev Urol 2021; 18:139-159. [PMID: 33536636 DOI: 10.1038/s41585-021-00428-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
Disruptions to sensory pathways in the lower urinary tract commonly occur and can give rise to lower urinary tract symptoms (LUTS). The unmet clinical need for treatment of LUTS has stimulated research into the molecular mechanisms that underlie neuronal control of the bladder and transient receptor potential (TRP) channels have emerged as key regulators of the sensory processes that regulate bladder function. TRP channels function as molecular sensors in urothelial cells and afferent nerve fibres and can be considered the origin of bladder sensations. TRP channels in the lower urinary tract contribute to the generation of normal and abnormal bladder sensations through a variety of mechanisms, and have demonstrated potential as targets for the treatment of LUTS in functional disorders of the lower urinary tract.
Collapse
Affiliation(s)
- Matthias Vanneste
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
25
|
Jeon J, Bu F, Sun G, Tian JB, Ting SM, Li J, Aronowski J, Birnbaumer L, Freichel M, Zhu MX. Contribution of TRPC Channels in Neuronal Excitotoxicity Associated With Neurodegenerative Disease and Ischemic Stroke. Front Cell Dev Biol 2021; 8:618663. [PMID: 33490083 PMCID: PMC7820370 DOI: 10.3389/fcell.2020.618663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The seven canonical members of transient receptor potential (TRPC) proteins form cation channels that evoke membrane depolarization and intracellular calcium concentration ([Ca2+] i ) rise, which are not only important for regulating cell function but their deregulation can also lead to cell damage. Recent studies have implicated complex roles of TRPC channels in neurodegenerative diseases including ischemic stroke. Brain ischemia reduces oxygen and glucose supply to neurons, i.e., Oxygen and Glucose Deprivation (OGD), resulting in [Ca2+] i elevation, ion dyshomeostasis, and excitotoxicity, which are also common in many forms of neurodegenerative diseases. Although ionotropic glutamate receptors, e.g., N-methyl-D-aspartate receptors, are well established to play roles in excitotoxicity, the contribution of metabotropic glutamate receptors and their downstream effectors, i.e., TRPC channels, should not be neglected. Here, we summarize the current findings about contributions of TRPC channels in neurodegenerative diseases, with a focus on OGD-induced neuronal death and rodent models of cerebral ischemia/reperfusion. TRPC channels play both detrimental and protective roles to neurodegeneration depending on the TRPC subtype and specific pathological conditions involved. When illustrated the mechanisms by which TRPC channels are involved in neuronal survival or death seem differ greatly, implicating diverse and complex regulation. We provide our own data showing that TRPC1/C4/C5, especially TRPC4, may be generally detrimental in OGD and cerebral ischemia/reperfusion. We propose that although TRPC channels significantly contribute to ischemic neuronal death, detailed mechanisms and specific roles of TRPC subtypes in brain injury at different stages of ischemia/reperfusion and in different brain regions need to be carefully and systematically investigated.
Collapse
Affiliation(s)
- Jaepyo Jeon
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Fan Bu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Guanghua Sun
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jin-Bin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shun-Ming Ting
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jun Li
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jaroslaw Aronowski
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Lutz Birnbaumer
- Institute for Biomedical Research (BIOMED UCA-CONICET), Buenos Aires, Argentina.,School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, Argentina.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Marc Freichel
- Department of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
26
|
Hypertension management in 2030: a kaleidoscopic view. J Hum Hypertens 2021; 35:812-817. [PMID: 33139827 PMCID: PMC7605343 DOI: 10.1038/s41371-020-00438-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 01/31/2023]
Abstract
The last decade has witnessed the healthcare system going paperless with increased use of electronic healthcare records. Artificial intelligence tools including smartphones and smart watches have changed the landscape of day-to-day lives. Digitisation, decentralisation of healthcare and empowerment of allied healthcare providers and patients themselves have made shared clinical decision-making a reality. The year 2020 quickly turned into an unprecedented time in our lives with the entry of COVID-19. Amidst a pandemic, healthcare systems rapidly adapted and transformed, and changes that otherwise would have taken a decade, took a mere few weeks (Webster, Lancet 395:1180-1, 2020). This essay reviews evidence of transformation in the realm of hypertension management, namely diagnosis, lifestyle changes, therapeutics and prevention of hypertension at both individual and population levels, and presents an extrapolation of how this transformation might shape the next decade.
Collapse
|
27
|
Wright DJ, Simmons KJ, Johnson RM, Beech DJ, Muench SP, Bon RS. Human TRPC5 structures reveal interaction of a xanthine-based TRPC1/4/5 inhibitor with a conserved lipid binding site. Commun Biol 2020; 3:704. [PMID: 33230284 PMCID: PMC7683545 DOI: 10.1038/s42003-020-01437-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023] Open
Abstract
TRPC1/4/5 channels are non-specific cation channels implicated in a wide variety of diseases, and TRPC1/4/5 inhibitors have recently entered clinical trials. However, fundamental and translational studies require a better understanding of TRPC1/4/5 channel regulation by endogenous and exogenous factors. Although several potent and selective TRPC1/4/5 modulators have been reported, the paucity of mechanistic insights into their modes-of-action remains a barrier to the development of new chemical probes and drug candidates. Xanthine-based modulators include the most potent and selective TRPC1/4/5 inhibitors described to date, as well as TRPC5 activators. Our previous studies suggest that xanthines interact with a, so far, elusive pocket of TRPC1/4/5 channels that is essential to channel gating. Here we report the structure of a small-molecule-bound TRPC1/4/5 channel-human TRPC5 in complex with the xanthine Pico145-to 3.0 Å. We found that Pico145 binds to a conserved lipid binding site of TRPC5, where it displaces a bound phospholipid. Our findings explain the mode-of-action of xanthine-based TRPC1/4/5 modulators, and suggest a structural basis for TRPC1/4/5 modulation by endogenous factors such as (phospho)lipids and Zn2+ ions. These studies lay the foundations for the structure-based design of new generations of TRPC1/4/5 modulators.
Collapse
Affiliation(s)
- David J Wright
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Katie J Simmons
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Rachel M Johnson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- School of Biomedical Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - David J Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen P Muench
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
- School of Biomedical Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
28
|
How TRPC Channels Modulate Hippocampal Function. Int J Mol Sci 2020; 21:ijms21113915. [PMID: 32486187 PMCID: PMC7312571 DOI: 10.3390/ijms21113915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential canonical (TRPC) proteins constitute a group of receptor-operated calcium-permeable nonselective cationic membrane channels of the TRP superfamily. They are largely expressed in the hippocampus and are able to modulate neuronal functions. Accordingly, they have been involved in different hippocampal functions such as learning processes and different types of memories, as well as hippocampal dysfunctions such as seizures. This review covers the mechanisms of activation of these channels, how these channels can modulate neuronal excitability, in particular the after-burst hyperpolarization, and in the persistent activity, how they control synaptic plasticity including pre- and postsynaptic processes and how they can interfere with cell survival and neurogenesis.
Collapse
|
29
|
Bendiks L, Geiger F, Gudermann T, Feske S, Dietrich A. Store-operated Ca 2+ entry in primary murine lung fibroblasts is independent of classical transient receptor potential (TRPC) channels and contributes to cell migration. Sci Rep 2020; 10:6812. [PMID: 32321939 PMCID: PMC7176639 DOI: 10.1038/s41598-020-63677-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Stromal interaction molecules (STIM1, 2) are acting as sensors for Ca2+ in intracellular stores and activate Orai channels at the plasma membrane for store-operated Ca2+ entry (SOCE), while classical transient receptor potential (TRPC) channel mediate receptor-operated Ca2+ entry (ROCE). Several reports, however, indicate a role for TRPC in SOCE in certain cell types. Here, we analyzed Ca2+ influx and cell function in TRPC1/6-deficient (TRPC1/6-/-) and STIM1/2- deficient (STIM1/2ΔpmLF) primary murine lung fibroblasts (pmLF). As expected, SOCE was decreased in STIM1/2- deficient pmLF and ROCE was decreased in TRPC1/6-/- pmLF compared to control cells. By contrast, SOCE was not significantly different in TRPC1/6-/- pmLF and ROCE was similar in STIM1/2-deficient pmLF compared to Wt cells. Most interestingly, cell proliferation, migration and nuclear localization of nuclear factor of activated T-cells (NFATc1 and c3) were decreased after ablation of STIM1/2 proteins in pmLF. In conclusion, TRPC1/6 channels are not involved in SOCE and STIM1/2 deficiency resulted in decreased cell proliferation and migration in pmLF.
Collapse
Affiliation(s)
- Larissa Bendiks
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Munich, Germany
| | - Fabienne Geiger
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Munich, Germany
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Munich, Germany.
| |
Collapse
|
30
|
It takes more than two to tango: mechanosignaling of the endothelial surface. Pflugers Arch 2020; 472:419-433. [PMID: 32239285 PMCID: PMC7165135 DOI: 10.1007/s00424-020-02369-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
The endothelial surface is a highly flexible signaling hub which is able to sense the hemodynamic forces of the streaming blood. The subsequent mechanosignaling is basically mediated by specific structures, like the endothelial glycocalyx building the top surface layer of endothelial cells as well as mechanosensitive ion channels within the endothelial plasma membrane. The mechanical properties of the endothelial cell surface are characterized by the dynamics of cytoskeletal proteins and play a key role in the process of signal transmission from the outside (lumen of the blood vessel) to the interior of the cell. Thus, the cell mechanics directly interact with the function of mechanosensitive structures and ion channels. To precisely maintain the vascular tone, a coordinated functional interdependency between endothelial cells and vascular smooth muscle cells is necessary. This is given by the fact that mechanosensitive ion channels are expressed in both cell types and that signals are transmitted via autocrine/paracrine mechanisms from layer to layer. Thus, the outer layer of the endothelial cells can be seen as important functional mechanosensitive and reactive cellular compartment. This review aims to describe the known mechanosensitive structures of the vessel building a bridge between the important role of physiological mechanosignaling and the proper vascular function. Since mutations and dysfunction of mechanosensitive proteins are linked to vascular pathologies such as hypertension, they play a potent role in the field of channelopathies and mechanomedicine.
Collapse
|
31
|
Asghar MY, Törnquist K. Transient Receptor Potential Canonical (TRPC) Channels as Modulators of Migration and Invasion. Int J Mol Sci 2020; 21:E1739. [PMID: 32138386 PMCID: PMC7084769 DOI: 10.3390/ijms21051739] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Calcium (Ca2+) is perhaps the most versatile signaling molecule in cells. Ca2+ regulates a large number of key events in cells, ranging from gene transcription, motility, and contraction, to energy production and channel gating. To accomplish all these different functions, a multitude of channels, pumps, and transporters are necessary. A group of channels participating in these processes is the transient receptor potential (TRP) family of cation channels. These channels are divided into 29 subfamilies, and are differentially expressed in man, rodents, worms, and flies. One of these subfamilies is the transient receptor potential canonical (TRPC) family of channels. This ion channel family comprises of seven isoforms, labeled TRPC1-7. In man, six functional forms are expressed (TRPC1, TRPC3-7), whereas TRPC2 is a pseudogene; thus, not functionally expressed. In this review, we will describe the importance of the TRPC channels and their interacting molecular partners in the etiology of cancer, particularly in regard to regulating migration and invasion.
Collapse
Affiliation(s)
- Muhammad Yasir Asghar
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland;
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Kid Törnquist
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland;
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| |
Collapse
|
32
|
Kepura F, Braun E, Dietrich A, Plant TD. TRPC1 Regulates the Activity of a Voltage-Dependent Nonselective Cation Current in Hippocampal CA1 Neurons. Cells 2020; 9:cells9020459. [PMID: 32085504 PMCID: PMC7072794 DOI: 10.3390/cells9020459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/26/2022] Open
Abstract
The cation channel subunit TRPC1 is strongly expressed in central neurons including neurons in the CA1 region of the hippocampus where it forms complexes with TRPC4 and TRPC5. To investigate the functional role of TRPC1 in these neurons and in channel function, we compared current responses to group I metabotropic glutamate receptor (mGluR I) activation and looked for major differences in dendritic morphology in neurons from TRPC1+/+ and TRPC1-/- mice. mGluR I stimulation resulted in the activation of a voltage-dependent nonselective cation current in both genotypes. Deletion of TRPC1 resulted in a modification of the shape of the current-voltage relationship, leading to an inward current increase. In current clamp recordings, the percentage of neurons that responded to depolarization in the presence of an mGluR I agonist with a plateau potential was increased in TRPC1-/- mice. There was also a small increase in the minor population of CA1 neurons that have more than one apical dendrite in TRPC1-/- mice. We conclude that TRPC1 has an inhibitory effect on receptor-operated nonselective cation channels in hippocampal CA1 neurons probably as a result of heterotetramer formation with other TRPC isoforms, and that TRPC1 deletion has only minor effects on dendritic morphology.
Collapse
Affiliation(s)
- Frauke Kepura
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
| | - Eva Braun
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
| | - Alexander Dietrich
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München, Germany
| | - Tim D. Plant
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany
- Correspondence: ; Tel.: +49-6421-28-65038
| |
Collapse
|
33
|
Elzamzamy OM, Penner R, Hazlehurst LA. The Role of TRPC1 in Modulating Cancer Progression. Cells 2020; 9:cells9020388. [PMID: 32046188 PMCID: PMC7072717 DOI: 10.3390/cells9020388] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/22/2022] Open
Abstract
Calcium ions (Ca2+) play an important role as second messengers in regulating a plethora of physiological and pathological processes, including the progression of cancer. Several selective and non-selective Ca2+-permeable ion channels are implicated in mediating Ca2+ signaling in cancer cells. In this review, we are focusing on TRPC1, a member of the TRP protein superfamily and a potential modulator of store-operated Ca2+ entry (SOCE) pathways. While TRPC1 is ubiquitously expressed in most tissues, its dysregulated activity may contribute to the hallmarks of various types of cancers, including breast cancer, pancreatic cancer, glioblastoma multiforme, lung cancer, hepatic cancer, multiple myeloma, and thyroid cancer. A range of pharmacological and genetic tools have been developed to address the functional role of TRPC1 in cancer. Interestingly, the unique role of TRPC1 has elevated this channel as a promising target for modulation both in terms of pharmacological inhibition leading to suppression of tumor growth and metastasis, as well as for agonistic strategies eliciting Ca2+ overload and cell death in aggressive metastatic tumor cells.
Collapse
Affiliation(s)
- Osama M Elzamzamy
- Clinical and Translational Sciences Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Reinhold Penner
- The Queen’s Medical Center and University of Hawaii, Honolulu, HI 96813, USA;
| | - Lori A Hazlehurst
- Pharmaceutical Sciences, School of Pharmacy and WVU Cancer Institute, West Virginia University, Morganton, WV 26506, USA
- Correspondence: ; Tel.: +1-304-293-3398
| |
Collapse
|
34
|
Wei J, Zhu J, Zhang J, Jiang S, Qu L, Wang L, Buggs J, Tan X, Cheng F, Liu R. Aging Impairs Renal Autoregulation in Mice. Hypertension 2020; 75:405-412. [PMID: 31838907 PMCID: PMC7027982 DOI: 10.1161/hypertensionaha.119.13588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Impaired renal autoregulation permits more transmission of disturbance in systemic blood pressure, which initiates barotrauma in intrarenal microvasculatures such as glomerular and tubulointerstitial capillaries, contributing to the development of kidney damage and deterioration in renal function, especially under the conditions with high blood pressure. Although it has been postulated that autoregulatory efficiency is attenuated in the aging kidney, direct evidence remains lacking. In the present study, we measured the autoregulation of renal blood flow, myogenic response of afferent arteriole (Af-Art), tubuloglomerular feedback in vivo with micropuncture, as well as tubuloglomerular feedback in vitro in isolated perfused juxtaglomerular apparatus in young and aged C57BL/6 mice. We found that renal blood flow was not significantly changed in response to a defined elevation of renal arterial pressure in young mice but significantly increased in aged mice. Additionally, myogenic response of Af-Art measured by microperfusion with a stepwise increase in perfusion pressure was significantly blunted in the aging kidney, which is associated with the attenuation of intraluminal pressure-induced intracellular calcium increases, as well as the reduced expression of integrin α5 (Itga5) in Af-Art. Moreover, both tubuloglomerular feedback in vivo and in vitro were nearly inactive in the aging kidney, which is associated with the significantly reduced expression of adenosine A1 receptor (A1AR) and suppressed vasoconstrictor response to adenosine in Af-Art. In conclusion, this study demonstrates that aging impairs renal autoregulation with blunted myogenic response and inhibited tubuloglomerular feedback response. The underlying mechanisms involve the downregulations of integrin α5 and A1AR in the Af-Art.
Collapse
Affiliation(s)
- Jin Wei
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jinxiu Zhu
- The first affiliated hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Larry Qu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa General Hospital, Tampa, Florida
| | - Xuerui Tan
- The first affiliated hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
35
|
Negri S, Faris P, Berra-Romani R, Guerra G, Moccia F. Endothelial Transient Receptor Potential Channels and Vascular Remodeling: Extracellular Ca 2 + Entry for Angiogenesis, Arteriogenesis and Vasculogenesis. Front Physiol 2020; 10:1618. [PMID: 32038296 PMCID: PMC6985578 DOI: 10.3389/fphys.2019.01618] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Vasculogenesis, angiogenesis and arteriogenesis represent three crucial mechanisms involved in the formation and maintenance of the vascular network in embryonal and post-natal life. It has long been known that endothelial Ca2+ signals are key players in vascular remodeling; indeed, multiple pro-angiogenic factors, including vascular endothelial growth factor, regulate endothelial cell fate through an increase in intracellular Ca2+ concentration. Transient Receptor Potential (TRP) channel consist in a superfamily of non-selective cation channels that are widely expressed within vascular endothelial cells. In addition, TRP channels are present in the two main endothelial progenitor cell (EPC) populations, i.e., myeloid angiogenic cells (MACs) and endothelial colony forming cells (ECFCs). TRP channels are polymodal channels that can assemble in homo- and heteromeric complexes and may be sensitive to both pro-angiogenic cues and subtle changes in local microenvironment. These features render TRP channels the most versatile Ca2+ entry pathway in vascular endothelial cells and in EPCs. Herein, we describe how endothelial TRP channels stimulate vascular remodeling by promoting angiogenesis, arteriogenesis and vasculogenesis through the integration of multiple environmental, e.g., extracellular growth factors and chemokines, and intracellular, e.g., reactive oxygen species, a decrease in Mg2+ levels, or hypercholesterolemia, stimuli. In addition, we illustrate how endothelial TRP channels induce neovascularization in response to synthetic agonists and small molecule drugs. We focus the attention on TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPV1, TRPV4, TRPM2, TRPM4, TRPM7, TRPA1, that were shown to be involved in angiogenesis, arteriogenesis and vasculogenesis. Finally, we discuss the role of endothelial TRP channels in aberrant tumor vascularization by focusing on TRPC1, TRPC3, TRPV2, TRPV4, TRPM8, and TRPA1. These observations suggest that endothelial TRP channels represent potential therapeutic targets in multiple disorders featured by abnormal vascularization, including cancer, ischemic disorders, retinal degeneration and neurodegeneration.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Germano Guerra
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
36
|
Post-Translational Modification and Natural Mutation of TRPC Channels. Cells 2020; 9:cells9010135. [PMID: 31936014 PMCID: PMC7016788 DOI: 10.3390/cells9010135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Transient Receptor Potential Canonical (TRPC) channels are homologues of Drosophila TRP channel first cloned in mammalian cells. TRPC family consists of seven members which are nonselective cation channels with a high Ca2+ permeability and are activated by a wide spectrum of stimuli. These channels are ubiquitously expressed in different tissues and organs in mammals and exert a variety of physiological functions. Post-translational modifications (PTMs) including phosphorylation, N-glycosylation, disulfide bond formation, ubiquitination, S-nitrosylation, S-glutathionylation, and acetylation play important roles in the modulation of channel gating, subcellular trafficking, protein-protein interaction, recycling, and protein architecture. PTMs also contribute to the polymodal activation of TRPCs and their subtle regulation in diverse physiological contexts and in pathological situations. Owing to their roles in the motor coordination and regulation of kidney podocyte structure, mutations of TRPCs have been implicated in diseases like cerebellar ataxia (moonwalker mice) and focal and segmental glomerulosclerosis (FSGS). The aim of this review is to comprehensively integrate all reported PTMs of TRPCs, to discuss their physiological/pathophysiological roles if available, and to summarize diseases linked to the natural mutations of TRPCs.
Collapse
|
37
|
Patil MJ, Salas M, Bialuhin S, Boyd JT, Jeske NA, Akopian AN. Sensitization of small-diameter sensory neurons is controlled by TRPV1 and TRPA1 association. FASEB J 2020; 34:287-302. [PMID: 31914619 PMCID: PMC7539696 DOI: 10.1096/fj.201902026r] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
Unique features of sensory neuron subtypes are manifest by their distinct physiological and pathophysiological functions. Using patch-clamp electrophysiology, Ca2+ imaging, calcitonin gene-related peptide release assay from tissues, protein biochemistry approaches, and behavioral physiology on pain models, this study demonstrates the diversity of sensory neuron pathophysiology is due in part to subtype-dependent sensitization of TRPV1 and TRPA1. Differential sensitization is influenced by distinct expression of inflammatory mediators, such as prostaglandin E2 (PGE2), bradykinin (BK), and nerve growth factor (NGF) as well as multiple kinases, including protein kinase A (PKA) and C (PKC). However, the co-expression and interaction of TRPA1 with TRPV1 proved to be the most critical for differential sensitization of sensory neurons. We identified N- and C-terminal domains on TRPV1 responsible for TRPA1-TRPV1 (A1-V1) complex formation. Ablation of A1-V1 complex with dominant-negative peptides against these domains substantially reduced the sensitization of TRPA1, as well as BK- and CFA-induced hypersensitivity. These data indicate that often occurring TRP channel complexes regulate diversity in neuronal sensitization and may provide a therapeutic target for many neuroinflammatory pain conditions.
Collapse
Affiliation(s)
- Mayur J. Patil
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- The Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224
| | - Margaux Salas
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- United States Army Institute of Surgical Research, Air Force- 59th Medical Wing, San Antonio, TX 78234
| | - Siarhei Bialuhin
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jacob T. Boyd
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Nathaniel A. Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Armen N. Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
38
|
Structure-Function Relationship and Physiological Roles of Transient Receptor Potential Canonical (TRPC) 4 and 5 Channels. Cells 2019; 9:cells9010073. [PMID: 31892199 PMCID: PMC7017149 DOI: 10.3390/cells9010073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
The study of the structure–function relationship of ion channels has been one of the most challenging goals in contemporary physiology. Revelation of the three-dimensional (3D) structure of ion channels has facilitated our understanding of many of the submolecular mechanisms inside ion channels, such as selective permeability, voltage dependency, agonist binding, and inter-subunit multimerization. Identifying the structure–function relationship of the ion channels is clinically important as well since only such knowledge can imbue potential therapeutics with practical possibilities. In a sense, recent advances in the understanding of the structure–relationship of transient receptor potential canonical (TRPC) channels look promising since human TRPC channels are calcium-permeable, non-selective cation channels expressed in many tissues such as the gastrointestinal (GI) tract, kidney, heart, vasculature, and brain. TRPC channels are known to regulate GI contractility and motility, pulmonary hypertension, right ventricular hypertrophy, podocyte injury, seizure, fear, anxiety-like behavior, and many others. In this article, we tried to elaborate recent findings of Cryo-EM (cryogenic-electron microscopy) based structural information of TRPC 4 and 5 channels and domain-specific functions of the channel, such as G-protein mediated activation mechanism, extracellular modification of the channel, homo/hetero-tetramerization, and pharmacological gating mechanisms.
Collapse
|
39
|
Schwarz Y, Oleinikov K, Schindeldecker B, Wyatt A, Weißgerber P, Flockerzi V, Boehm U, Freichel M, Bruns D. TRPC channels regulate Ca2+-signaling and short-term plasticity of fast glutamatergic synapses. PLoS Biol 2019; 17:e3000445. [PMID: 31536487 PMCID: PMC6773422 DOI: 10.1371/journal.pbio.3000445] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/01/2019] [Accepted: 08/29/2019] [Indexed: 11/18/2022] Open
Abstract
Transient receptor potential (TRP) proteins form Ca2+-permeable, nonselective cation channels, but their role in neuronal Ca2+ homeostasis is elusive. In the present paper, we show that TRPC channels potently regulate synaptic plasticity by changing the presynaptic Ca2+-homeostasis of hippocampal neurons. Specifically, loss of TRPC1/C4/C5 channels decreases basal-evoked secretion, reduces the pool size of readily releasable vesicles, and accelerates synaptic depression during high-frequency stimulation (HFS). In contrast, primary TRPC5 channel-expressing neurons, identified by a novel TRPC5–τ-green fluorescent protein (τGFP) knockin mouse line, show strong short-term enhancement (STE) of synaptic signaling during HFS, indicating a key role of TRPC5 in short-term plasticity. Lentiviral expression of either TRPC1 or TRPC5 turns classic synaptic depression of wild-type neurons into STE, demonstrating that TRPCs are instrumental in regulating synaptic plasticity. Presynaptic Ca2+ imaging shows that TRPC activity strongly boosts synaptic Ca2+ dynamics, showing that TRPC channels provide an additional presynaptic Ca2+ entry pathway, which efficiently regulates synaptic strength and plasticity. Transient receptor potential (TRP) proteins can form non-selective cation channels, but their role in synaptic transmission is poorly understood. This study shows that calcium-permeable TRPC channels provide an additional calcium entry pathway at presynaptic sites and are efficient regulators of synaptic strength and plasticity.
Collapse
Affiliation(s)
- Yvonne Schwarz
- Institute for Physiology, Saarland University, CIPMM, Homburg/Saar, Germany
| | | | | | - Amanda Wyatt
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Petra Weißgerber
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Ulrich Boehm
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Marc Freichel
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Dieter Bruns
- Institute for Physiology, Saarland University, CIPMM, Homburg/Saar, Germany
| |
Collapse
|
40
|
Ko J, Myeong J, Kwak M, Jeon JH, So I. Identification of phospholipase C β downstream effect on transient receptor potential canonical 1/4, transient receptor potential canonical 1/5 channels. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:357-366. [PMID: 31496873 PMCID: PMC6717798 DOI: 10.4196/kjpp.2019.23.5.357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Gαq-coupled receptor stimulation was implied in the activation process of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heterotetrameric channels. The inactivation occurs due to phosphatidylinositol 4,5-biphosphate (PI(4,5)P2) depletion. When PI(4,5)P2 depletion was induced by muscarinic stimulation or inositol polyphosphate 5-phosphatase (Inp54p), however, the inactivation by muscarinic stimulation was greater compared to that by Inp54p. The aim of this study was to investigate the complete inactivation mechanism of the heteromeric channels upon Gαq-phospholipase C β (Gαq-PLCβ) activation. We evaluated the activity of heteromeric channels with electrophysiological recording in HEK293 cells expressing TRPC channels. TRPC1/4 and TRPC1/5 heteromers undergo further inhibition in PLCβ activation and calcium/protein kinase C (PKC) signaling. Nevertheless, the key factors differ. For TRPC1/4, the inactivation process was facilitated by Ca2+ release from the endoplasmic reticulum, and for TRPC1/5, activation of PKC was concerned mostly. We conclude that the subsequent increase in cytoplasmic Ca2+ due to Ca2+ release from the endoplasmic reticulum and activation of PKC resulted in a second phase of channel inhibition following PI(4,5)P2 depletion.
Collapse
Affiliation(s)
- Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jongyun Myeong
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Misun Kwak
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
41
|
Burks SR, Lorsung RM, Nagle ME, Tu TW, Frank JA. Focused ultrasound activates voltage-gated calcium channels through depolarizing TRPC1 sodium currents in kidney and skeletal muscle. Theranostics 2019; 9:5517-5531. [PMID: 31534500 PMCID: PMC6735402 DOI: 10.7150/thno.33876] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022] Open
Abstract
Pulsed focused ultrasound (pFUS) technology is being developed for clinical neuro/immune modulation and regenerative medicine. Biological signal transduction of pFUS forces can require mechanosensitive or voltage-gated plasma membrane ion channels. Previous studies suggested pFUS is capable of activating either channel type, but their mechanistic relationship remains ambiguous. We demonstrated pFUS bioeffects increased mesenchymal stem cell tropism (MSC) by altering molecular microenvironments through cyclooxygenase-2 (COX2)-dependent pathways. This study explored specific relationships between mechanosensitive and voltage-gated Ca2+ channels (VGCC) to initiate pFUS bioeffects that increase stem cell tropism. Methods: Murine kidneys and hamstring were given pFUS (1.15 or 1.125 MHz; 4MPa peak rarefactional pressure) under ultrasound or magnetic resonance imaging guidance. Cavitation and tissue displacement were measure by hydrophone and ultrasound radiofrequency data, respectively. Elastic modeling was performed from displacement measurements. COX2 expression and MSC tropism were evaluated in the presence of pharmacological ion channel inhibitors or in transient-receptor-potential-channel-1 (TRPC1)-deficient mice. Immunohistochemistry and co-immunoprecipitation examined physical channel relationships. Fluorescent ionophore imaging of cultured C2C12 muscle cells or TCMK1 kidney cells probed physiological interactions. Results: pFUS induced tissue deformations resulting in kPa-scale forces suggesting mechanical activation of pFUS-induced bioeffects. Inhibiting VGCC or TRPC1 in vivo blocked pFUS-induced COX2 upregulation and MSC tropism to kidneys and muscle. A TRPC1/VGCC complex was observed in plasma membranes. VGCC or TRPC1 suppression blocked pFUS-induced Ca2+ transients in TCMK1 and C2C12 cells. Additionally, Ca2+ transients were blocked by reducing transmembrane Na+ potentials and observed Na+ transients were diminished by genetic TRPC1 suppression. Conclusion: This study suggests that pFUS acoustic radiation forces mechanically activate a Na+-containing TRPC1 current upstream of VGCC rather than directly opening VGCC. The electrogenic function of TRPC1 provides potential mechanistic insight into other pFUS techniques for physiological modulation and optimization strategies for clinical implementation.
Collapse
|
42
|
Grant CV, Carver CM, Hastings SD, Ramachandran K, Muniswamy M, Risinger AL, Beutler JA, Mooberry SL. Triple-negative breast cancer cell line sensitivity to englerin A identifies a new, targetable subtype. Breast Cancer Res Treat 2019; 177:345-355. [PMID: 31230251 DOI: 10.1007/s10549-019-05324-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/15/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Triple-negative breast cancers (TNBCs) represent a heterogeneous group of tumors. The lack of targeted therapies combined with the inherently aggressive nature of TNBCs results in a higher relapse rate and poorer overall survival. We evaluated the heterogeneity of TNBC cell lines for TRPC channel expression and sensitivity to cation-disrupting drugs. METHODS The TRPC1/4/5 agonist englerin A was used to identify a group of TNBC cell lines sensitive to TRPC1/4/5 activation and intracellular cation disruption. Quantitative RT-PCR, the sulforhodamine B assay, pharmacological inhibition, and siRNA-mediated knockdown approaches were employed. Epifluorescence imaging was performed to measure intracellular Ca2+ and Na+ levels. Mitochondrial membrane potential changes were monitored by confocal imaging. RESULTS BT-549 and Hs578T cells express high levels of TRPC4 and TRPC1/4, respectively, and are exquisitely, 2000- and 430-fold, more sensitive to englerin A than other TNBC cell lines. While englerin A caused a slow Na+ and nominal Ca2+ accumulation in Hs578T cells, it elicited rapid increases in cytosolic Ca2+ levels that triggered mitochondrial depolarization in BT-549 cells. Interestingly, BT-549 and Hs578T cells were also more sensitive to digoxin as compared to other TNBC cell lines. Collectively, these data reveal TRPC1/4 channels as potential biomarkers of TNBC cell lines with dysfunctional mechanisms of cation homeostasis and therefore sensitivity to cardiac glycosides. CONCLUSIONS The sensitivity of BT-549 and Hs578T cells to englerin A and digoxin suggests a subset of TNBCs are highly susceptible to cation disruption and encourages investigation of TRPC1 and TRPC4 as potential new biomarkers of sensitivity to cardiac glycosides.
Collapse
Affiliation(s)
- Corena V Grant
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA
| | - Chase M Carver
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA
| | - Shayne D Hastings
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA
| | - Karthik Ramachandran
- Department of Medicine, Division of Nephrology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA
| | - Madesh Muniswamy
- Department of Medicine, Division of Nephrology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA.,Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7979 Wurzbach Rd, San Antonio, TX, USA
| | - John A Beutler
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Susan L Mooberry
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA. .,Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7979 Wurzbach Rd, San Antonio, TX, USA.
| |
Collapse
|
43
|
Kim J, Ko J, Myeong J, Kwak M, Hong C, So I. TRPC1 as a negative regulator for TRPC4 and TRPC5 channels. Pflugers Arch 2019; 471:1045-1053. [PMID: 31222490 DOI: 10.1007/s00424-019-02289-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Transient receptor potential canonical (TRPC) channels are calcium permeable, non-selective cation channels with wide tissue-specific distribution. Among 7 TRPC channels, TRPC 1/4/5 and TRPC3/6/7 are subdivided based on amino acid sequence homology. TRPC4 and TRPC5 channels exhibit cationic current with homotetrameric form, but they also form heterotetrameric channel such as TRPC1/4 or TRPC1/5 once TRPC1 is incorporated. The expression of TRPC1 is ubiquitous whereas the expressions of TRPC4 and TRPC5 are rather focused in nervous system. With the help of conditional knock-out of TPRC1, 4 and/or 5 genes, TRPC channels made of these constituents are reported to be involved in various pathophysiological functions such as seizure, anxiety-like behaviour, fear, Huntington's disease, Parkinson's disease and many others. In heterologous expression system, many issues such as activation mechanism, stoichiometry and relative cation permeabilites of homomeric or heteromeric channels have been addressed. In this review, we discussed the role of TRPC1 channel per se in plasma membrane, role of TRPC1 in heterotetrameric conformation (TRPC1/4 or TRPC1/5) and relationship between TRPC1/4/5 channels, calcium influx and voltage-gated calcium channels.
Collapse
Affiliation(s)
- Jinsung Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Juyeon Ko
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jongyun Myeong
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Misun Kwak
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Chansik Hong
- Department of Physiology, College of Medicine, Chosun University, Kwangju, South Korea
| | - Insuk So
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
44
|
Thakore P, Earley S. Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling. Compr Physiol 2019; 9:1249-1277. [PMID: 31187891 DOI: 10.1002/cphy.c180034] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vascular endothelium is a broadly distributed and highly specialized organ. The endothelium has a number of functions including the control of blood vessels diameter through the production and release of potent vasoactive substances or direct electrical communication with underlying smooth muscle cells, regulates the permeability of the vascular barrier, stimulates the formation of new blood vessels, and influences inflammatory and thrombotic processes. Endothelial cells that make up the endothelium express a variety of cell-surface receptors and ion channels on the plasma membrane that are capable of detecting circulating hormones, neurotransmitters, oxygen tension, and shear stress across the vascular wall. Changes in these stimuli activate signaling cascades that initiate an appropriate physiological response. Increases in the global intracellular Ca2+ concentration and localized Ca2+ signals that occur within specialized subcellular microdomains are fundamentally important components of many signaling pathways in the endothelium. The transient receptor potential (TRP) channels are a superfamily of cation-permeable ion channels that act as a primary means of increasing cytosolic Ca2+ in endothelial cells. Consequently, TRP channels are vitally important for the major functions of the endothelium. In this review, we provide an in-depth discussion of Ca2+ -permeable TRP channels in the endothelium and their role in vascular regulation. © 2019 American Physiological Society. Compr Physiol 9:1249-1277, 2019.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
45
|
Photopharmacology and opto-chemogenetics of TRPC channels-some therapeutic visions. Pharmacol Ther 2019; 200:13-26. [PMID: 30974125 DOI: 10.1016/j.pharmthera.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/27/2019] [Indexed: 12/28/2022]
Abstract
Non-selective cation conductances formed by transient receptor potential canonical (TRPC) proteins govern the function and fate of a wide range of human cell types. In the past decade, evidence has accumulated for a pivotal role of these channels in human diseases, raising substantial interest in their therapeutic targeting. As yet, an appreciable number of small molecules for block and modulation of recombinant TRPC conductances have been identified. However, groundbreaking progress in TRPC pharmacology towards therapeutic applications is lagging behind due to incomplete understanding of their molecular pharmacology and their exact role in disease. A major breakthrough that is expected to overcome these hurdles is the recent success in obtaining high-resolution structure information on TRPC channel complexes and the advent of TRP photopharmacology and optogenetics. Here, we summarize current concepts of enhancing the precision of therapeutic interference with TRPC signaling and TRPC-mediated pathological processes.
Collapse
|
46
|
Rubaiy HN. Treasure troves of pharmacological tools to study transient receptor potential canonical 1/4/5 channels. Br J Pharmacol 2019; 176:832-846. [PMID: 30656647 PMCID: PMC6433652 DOI: 10.1111/bph.14578] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/25/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022] Open
Abstract
Canonical or classical transient receptor potential 4 and 5 proteins (TRPC4 and TRPC5) assemble as homomers or heteromerize with TRPC1 protein to form functional nonselective cationic channels with high calcium permeability. These channel complexes, TRPC1/4/5, are widely expressed in nervous and cardiovascular systems, also in other human tissues and cell types. It is debatable that TRPC1 protein is able to form a functional ion channel on its own. A recent explosion of molecular information about TRPC1/4/5 has emerged including knowledge of their distribution, function, and regulation suggesting these three members of the TRPC subfamily of TRP channels play crucial roles in human physiology and pathology. Therefore, these ion channels represent potential drug targets for cancer, epilepsy, anxiety, pain, and cardiac remodelling. In recent years, a number of highly selective small-molecule modulators of TRPC1/4/5 channels have been identified as being potent with improved pharmacological properties. This review will focus on recent remarkable small-molecule agonists: (-)-englerin A and tonantzitlolone and antagonists: Pico145 and HC7090, of TPRC1/4/5 channels. In addition, this work highlights other recently identified modulators of these channels such as the benzothiadiazine derivative, riluzole, ML204, clemizole, and AC1903. Together, these treasure troves of agonists and antagonists of TRPC1/4/5 channels provide valuable hints to comprehend the functional importance of these ion channels in native cells and in vivo animal models. Importantly, human diseases and disorders mediated by these proteins can be studied using these compounds to perhaps initiate drug discovery efforts to develop novel therapeutic agents.
Collapse
Affiliation(s)
- Hussein N. Rubaiy
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical SchoolUniversity of HullHullUK
| |
Collapse
|
47
|
TRPC-mediated Ca 2+ signaling and control of cellular functions. Semin Cell Dev Biol 2019; 94:28-39. [PMID: 30738858 DOI: 10.1016/j.semcdb.2019.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
Abstract
Canonical members of the TRP superfamily of ion channels have long been recognized as key elements of Ca2+ handling in a plethora of cell types. The emerging role of TRPC channels in human physiopathology has generated considerable interest in their pharmacological targeting, which requires detailed understanding of their molecular function. Although consent has been reached that receptor-phospholipase C (PLC) pathways and generation of lipid mediators constitute the prominent upstream signaling process that governs channel activity, multimodal sensing features of TRPC complexes have been demonstrated repeatedly. Downstream signaling by TRPC channels is similarly complex and involves the generation of local and global cellular Ca2+ rises, which are well-defined in space and time to govern specific cellular functions. These TRPC-mediated Ca2+ signals rely in part on Ca2+ permeation through the channels, but are essentially complemented by secondary mechanisms such as Ca2+ mobilization from storage sites and Na+/Ca2+ exchange, which involve coordinated interaction with signaling partners. Consequently, the control of cell functions by TRPC molecules is critically determined by dynamic assembly and subcellular targeting of the TRPC complexes. The very recent availability of high-resolution structure information on TRPC channel complexes has paved the way towards a comprehensive understanding of signal transduction by TRPC channels. Here, we summarize current concepts of cation permeation in TRPC complexes, TRPC-mediated shaping of cellular Ca2+ signals and the associated control of specific cell functions.
Collapse
|
48
|
Ko J, Myeong J, Shin YC, So I. Differential PI(4,5)P 2 sensitivities of TRPC4, C5 homomeric and TRPC1/4, C1/5 heteromeric channels. Sci Rep 2019; 9:1849. [PMID: 30755645 PMCID: PMC6372716 DOI: 10.1038/s41598-018-38443-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/27/2018] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential canonical (TRPC) 4 and TRPC5 channels are modulated by the Gαq-PLC pathway. Since phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) maintains TRPC4 and TRPC5 channel function, the Gαq-PLC pathway inhibits channel activity by depleting PI(4,5)P2. Here we investigated the difference in PI(4,5)P2 sensitivity between homomeric and heteromeric TRPC channels. First, by using a Danio rerio voltage-sensing phosphatase (DrVSP), we show that PI(4,5)P2 dephosphorylation robustly inhibits TRPC4α, TRPC4β, and TRPC5 homotetramer currents and also TRPC1/4α, TRPC1/4β, and TRPC1/5 heterotetramer currents. Secondly, sensitivity of channels to PI(4,5)P2 dephosphorylation was suggested through the usage of FRET in combination with patch clamping. The sensitivity increased in the sequence TRPC4β < TRPC4α < TRPC5 in homotetramers, whereas when forming heterotetramers with TRPC1, the sensitivity was approximately equal between the channels. Thirdly, we determined putative PI(4,5)P2 binding sites based on a TRPC4 prediction model. By neutralization of basic residues, we identified putative PI(4,5)P2 binding sites because the mutations reduced FRET to a PI(4,5)P2 sensor and reduced the current amplitude. Therefore, one functional TRPC4 has 8 pockets with the two main binding regions; K419, K664/R511, K518, H630. We conclude that TRPC1 channel function as a regulator in setting PI(4,5)P2 affinity for TRPC4 and TRPC5 that changes PI(4,5)P2 sensitivity.
Collapse
Affiliation(s)
- Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jongyun Myeong
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Young-Cheul Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
49
|
Picardo MCD, Sugimura YK, Dorst KE, Kallurkar PS, Akins VT, Ma X, Teruyama R, Guinamard R, Kam K, Saha MS, Del Negro CA. Trpm4 ion channels in pre-Bötzinger complex interneurons are essential for breathing motor pattern but not rhythm. PLoS Biol 2019; 17:e2006094. [PMID: 30789900 PMCID: PMC6400419 DOI: 10.1371/journal.pbio.2006094] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 03/05/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
Inspiratory breathing movements depend on pre-Bötzinger complex (preBötC) interneurons that express calcium (Ca2+)-activated nonselective cationic current (ICAN) to generate robust neural bursts. Hypothesized to be rhythmogenic, reducing ICAN is predicted to slow down or stop breathing; its contributions to motor pattern would be reflected in the magnitude of movements (output). We tested the role(s) of ICAN using reverse genetic techniques to diminish its putative ion channels Trpm4 or Trpc3 in preBötC neurons in vivo. Adult mice transduced with Trpm4-targeted short hairpin RNA (shRNA) progressively decreased the tidal volume of breaths yet surprisingly increased breathing frequency, often followed by gasping and fatal respiratory failure. Mice transduced with Trpc3-targeted shRNA survived with no changes in breathing. Patch-clamp and field recordings from the preBötC in mouse slices also showed an increase in the frequency and a decrease in the magnitude of preBötC neural bursts in the presence of Trpm4 antagonist 9-phenanthrol, whereas the Trpc3 antagonist pyrazole-3 (pyr-3) showed inconsistent effects on magnitude and no effect on frequency. These data suggest that Trpm4 mediates ICAN, whose influence on frequency contradicts a direct role in rhythm generation. We conclude that Trpm4-mediated ICAN is indispensable for motor output but not the rhythmogenic core mechanism of the breathing central pattern generator.
Collapse
Affiliation(s)
- Maria Cristina D. Picardo
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| | - Yae K. Sugimura
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| | - Kaitlyn E. Dorst
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| | - Prajkta S. Kallurkar
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| | - Victoria T. Akins
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| | - Xingru Ma
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| | - Ryoichi Teruyama
- Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Romain Guinamard
- Signalisation, Electrophysiologie et Imagerie des Lésions d’Ischémie-Reperfusion Myocardique, Normandie Université, UNICAEN, Caen, France
| | - Kaiwen Kam
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University, Chicago, Illinois, United States of America
| | - Margaret S. Saha
- Department of Biology, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| | - Christopher A. Del Negro
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, Virginia, United States of America
| |
Collapse
|
50
|
Emerging Roles of Diacylglycerol-Sensitive TRPC4/5 Channels. Cells 2018; 7:cells7110218. [PMID: 30463370 PMCID: PMC6262340 DOI: 10.3390/cells7110218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
Transient receptor potential classical or canonical 4 (TRPC4) and TRPC5 channels are members of the classical or canonical transient receptor potential (TRPC) channel family of non-selective cation channels. TRPC4 and TRPC5 channels are widely accepted as receptor-operated cation channels that are activated in a phospholipase C-dependent manner, following the Gq/11 protein-coupled receptor activation. However, their precise activation mechanism has remained largely elusive for a long time, as the TRPC4 and TRPC5 channels were considered as being insensitive to the second messenger diacylglycerol (DAG) in contrast to the other TRPC channels. Recent findings indicate that the C-terminal interactions with the scaffolding proteins Na+/H+ exchanger regulatory factor 1 and 2 (NHERF1 and NHERF2) dynamically regulate the DAG sensitivity of the TRPC4 and TRPC5 channels. Interestingly, the C-terminal NHERF binding suppresses, while the dissociation of NHERF enables, the DAG sensitivity of the TRPC4 and TRPC5 channels. This leads to the assumption that all of the TRPC channels are DAG sensitive. The identification of the regulatory function of the NHERF proteins in the TRPC4/5-NHERF protein complex offers a new starting point to get deeper insights into the molecular basis of TRPC channel activation. Future studies will have to unravel the physiological and pathophysiological functions of this multi-protein channel complex.
Collapse
|