1
|
Abstract
While the involvement of actin polymerization in cell migration is well-established, much less is known about the role of transmembrane water flow in cell motility. Here, we investigate the role of water influx in a prototypical migrating cell, the neutrophil, which undergoes rapid, directed movement to sites of injury, and infection. Chemoattractant exposure both increases cell volume and potentiates migration, but the causal link between these processes are not known. We combine single-cell volume measurements and a genome-wide CRISPR screen to identify the regulators of chemoattractant-induced neutrophil swelling, including NHE1, AE2, PI3K-gamma, and CA2. Through NHE1 inhibition in primary human neutrophils, we show that cell swelling is both necessary and sufficient for the potentiation of migration following chemoattractant stimulation. Our data demonstrate that chemoattractant-driven cell swelling complements cytoskeletal rearrangements to enhance migration speed.
Collapse
Affiliation(s)
- Tamas L Nagy
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Strickland
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
2
|
Wang T, Liu L, Rampisela D, Dong X, Keith KA, Benardete EA, Shan FY. A Cerebellar Tumor-to-Tumor Metastasis in a Patient With Von Hippel-Lindau Disease. Appl Immunohistochem Mol Morphol 2024; 32:244-248. [PMID: 38712587 DOI: 10.1097/pai.0000000000001197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/15/2024] [Indexed: 05/08/2024]
Abstract
Tumor-to-tumor metastasis in the central nerve system is uncommon in our routine practice. Most reports include metastatic breast cancer into meningioma. Here we report a metastatic clear cell renal cell carcinoma (ccRCC) into a cerebellar hemangioblastoma in a patient with von Hippel-Lindau (VHL) disease. Imaging cannot distinguish metastatic ccRCC from primary cerebellar hemangioblastoma. Immuno-molecular studies are proven to be diagnostic. We also reviewed previously documented tumor-to-tumor metastasis of ccRCC to cerebellar hemangioblastoma in VHL disease. Lastly, we discussed potential mechanisms involved in the metastasis of ccRCC to hemangioblastoma in the cerebellum in patients with VHL.
Collapse
Affiliation(s)
| | | | | | | | | | - Ethan A Benardete
- Department of Neurosurgery, Baylor Scott and White Health, Temple, TX
| | - Frank Y Shan
- Department of Pathology
- Department of Neurosurgery, Baylor Scott and White Health, Temple, TX
| |
Collapse
|
3
|
Szulc A, Woźniak M. Targeting Pivotal Hallmarks of Cancer for Enhanced Therapeutic Strategies in Triple-Negative Breast Cancer Treatment-In Vitro, In Vivo and Clinical Trials Literature Review. Cancers (Basel) 2024; 16:1483. [PMID: 38672570 PMCID: PMC11047913 DOI: 10.3390/cancers16081483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This literature review provides a comprehensive overview of triple-negative breast cancer (TNBC) and explores innovative targeted therapies focused on specific hallmarks of cancer cells, aiming to revolutionize breast cancer treatment. TNBC, characterized by its lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), presents distinct features, categorizing these invasive breast tumors into various phenotypes delineated by key elements in molecular assays. This article delves into the latest advancements in therapeutic strategies targeting components of the tumor microenvironment and pivotal hallmarks of cancer: deregulating cellular metabolism and the Warburg effect, acidosis and hypoxia, the ability to metastasize and evade the immune system, aiming to enhance treatment efficacy while mitigating systemic toxicity. Insights from in vitro and in vivo studies and clinical trials underscore the promising effectiveness and elucidate the mechanisms of action of these novel therapeutic interventions for TNBC, particularly in cases refractory to conventional treatments. The integration of targeted therapies tailored to the molecular characteristics of TNBC holds significant potential for optimizing clinical outcomes and addressing the pressing need for more effective treatment options for this aggressive subtype of breast cancer.
Collapse
Affiliation(s)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
4
|
Stock C. pH-regulated single cell migration. Pflugers Arch 2024; 476:639-658. [PMID: 38214759 PMCID: PMC11006768 DOI: 10.1007/s00424-024-02907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Over the last two decades, extra- and intracellular pH have emerged as fundamental regulators of cell motility. Fundamental physiological and pathological processes relying on appropriate cell migration, such as embryonic development, wound healing, and a proper immune defense on the one hand, and autoimmune diseases, metastatic cancer, and the progression of certain parasitic diseases on the other, depend on surrounding pH. In addition, migrating single cells create their own localized pH nanodomains at their surface and in the cytosol. By this means, the migrating cells locally modulate their adhesion to, and the re-arrangement and digestion of, the extracellular matrix. At the same time, the cytosolic nanodomains tune cytoskeletal dynamics along the direction of movement resulting in concerted lamellipodia protrusion and rear end retraction. Extracellular pH gradients as found in wounds, inflamed tissues, or the periphery of tumors stimulate directed cell migration, and long-term exposure to acidic conditions can engender a more migratory and invasive phenotype persisting for hours up to several generations of cells after they have left the acidic milieu. In the present review, the different variants of pH-dependent single cell migration are described. The underlying pH-dependent molecular mechanisms such as conformational changes of adhesion molecules, matrix protease activity, actin (de-)polymerization, and signaling events are explained, and molecular pH sensors stimulated by H+ signaling are presented.
Collapse
Affiliation(s)
- Christian Stock
- Department of Gastroenterology, Hepatology, Infectiology & Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
5
|
Nagy TL, Strickland E, Weiner OD. Neutrophils actively swell to potentiate rapid migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.540704. [PMID: 37292824 PMCID: PMC10245588 DOI: 10.1101/2023.05.15.540704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While the involvement of actin polymerization in cell migration is well-established, much less is known about the role of transmembrane water flow in cell motility. Here, we investigate the role of water influx in a prototypical migrating cell, the neutrophil, which undergoes rapid, directed movement to sites of injury and infection. Chemoattractant exposure both increases cell volume and potentiates migration, but the causal link between these processes is not known. We combine single cell volume measurements and a genome-wide CRISPR screen to identify the regulators of chemoattractant-induced neutrophil swelling, including NHE1, AE2, PI3K-gamma, and CA2. Through NHE1 inhibition in primary human neutrophils, we show that cell swelling is both necessary and sufficient for the potentiation of migration following chemoattractant stimulation. Our data demonstrate that chemoattractant-driven cell swelling complements cytoskeletal rearrangements to enhance migration speed.
Collapse
Affiliation(s)
- Tamas L Nagy
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Evelyn Strickland
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Kim HJ, Hong JH. Multiple Regulatory Signals and Components in the Modulation of Bicarbonate Transporters. Pharmaceutics 2024; 16:78. [PMID: 38258089 PMCID: PMC10820580 DOI: 10.3390/pharmaceutics16010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Bicarbonate transporters are responsible for the appropriate flux of bicarbonate across the plasma membrane to perform various fundamental cellular functions. The functions of bicarbonate transporters, including pH regulation, cell migration, and inflammation, are highlighted in various cellular systems, encompassing their participation in both physiological and pathological processes. In this review, we focused on recently identified modulatory signaling components that regulate the expression and activity of bicarbonate transporters. Moreover, we addressed recent advances in our understanding of cooperative systems of bicarbonate transporters and channelopathies. This current review aims to provide a new, in-depth understanding of numerous human diseases associated with the dysfunction of bicarbonate transporters.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
7
|
Zhong J, Dong J, Ruan W, Duan X. Potential Theranostic Roles of SLC4 Molecules in Human Diseases. Int J Mol Sci 2023; 24:15166. [PMID: 37894847 PMCID: PMC10606849 DOI: 10.3390/ijms242015166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The solute carrier family 4 (SLC4) is an important protein responsible for the transport of various ions across the cell membrane and mediating diverse physiological functions, such as the ion transporting function, protein-to-protein interactions, and molecular transduction. The deficiencies in SLC4 molecules may cause multisystem disease involving, particularly, the respiratory system, digestive, urinary, endocrine, hematopoietic, and central nervous systems. Currently, there are no effective strategies to treat these diseases. SLC4 proteins are also found to contribute to tumorigenesis and development, and some of them are regarded as therapeutic targets in quite a few clinical trials. This indicates that SLC4 proteins have potential clinical prospects. In view of their functional characteristics, there is a critical need to review the specific functions of bicarbonate transporters, their related diseases, and the involved pathological mechanisms. We summarize the diseases caused by the mutations in SLC4 family genes and briefly introduce the clinical manifestations of these diseases as well as the current treatment strategies. Additionally, we illustrate their roles in terms of the physiology and pathogenesis that has been currently researched, which might be the future therapeutic and diagnostic targets of diseases and a new direction for drug research and development.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.Z.); (J.D.); (W.R.)
| |
Collapse
|
8
|
Malcolm JR, Sajjaboontawee N, Yerlikaya S, Plunkett-Jones C, Boxall PJ, Brackenbury WJ. Voltage-gated sodium channels, sodium transport and progression of solid tumours. CURRENT TOPICS IN MEMBRANES 2023; 92:71-98. [PMID: 38007270 DOI: 10.1016/bs.ctm.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Sodium (Na+) concentration in solid tumours of different origin is highly dysregulated, and this corresponds to the aberrant expression of Na+ transporters. In particular, the α subunits of voltage gated Na+ channels (VGSCs) raise intracellular Na+ concentration ([Na+]i) in malignant cells, which influences the progression of solid tumours, predominantly driving cancer cells towards a more aggressive and metastatic phenotype. Conversely, re-expression of VGSC β subunits in cancer cells can either enhance tumour progression or promote anti-tumourigenic properties. Metastasis is the leading cause of cancer-related mortality, highlighting an important area of research which urgently requires improved therapeutic interventions. Here, we review the extent to which VGSC subunits are dysregulated in solid tumours, and consider the implications of such dysregulation on solid tumour progression. We discuss current understanding of VGSC-dependent mechanisms underlying increased invasive and metastatic potential of solid tumours, and how the complex relationship between the tumour microenvironment (TME) and VGSC expression may further drive tumour progression, in part due to the interplay of infiltrating immune cells, cancer-associated fibroblasts (CAFs) and insufficient supply of oxygen (hypoxia). Finally, we explore past and present clinical trials that investigate utilising existing VGSC modulators as potential pharmacological options to support adjuvant chemotherapies to prevent cancer recurrence. Such research demonstrates an exciting opportunity to repurpose therapeutics in order to improve the disease-free survival of patients with aggressive solid tumours.
Collapse
Affiliation(s)
- Jodie R Malcolm
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Nattanan Sajjaboontawee
- Department of Biology, University of York, Heslington, York, United Kingdom; York Biomedical Research Institute, University of York, Heslington, York, United Kingdom
| | - Serife Yerlikaya
- Department of Biology, University of York, Heslington, York, United Kingdom; Istanbul Medipol University, Research Institute for Health Sciences and Technologies, Istanbul, Turkey
| | | | - Peter J Boxall
- Department of Biology, University of York, Heslington, York, United Kingdom; York and Scarborough Teaching Hospitals NHS Foundation Trust, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, United Kingdom; York Biomedical Research Institute, University of York, Heslington, York, United Kingdom.
| |
Collapse
|
9
|
Venkateswaran G, McDonald PC, Chafe SC, Brown WS, Gerbec ZJ, Awrey SJ, Parker SJ, Dedhar S. A Carbonic Anhydrase IX/SLC1A5 Axis Regulates Glutamine Metabolism Dependent Ferroptosis in Hypoxic Tumor Cells. Mol Cancer Ther 2023; 22:1228-1242. [PMID: 37348875 PMCID: PMC10543979 DOI: 10.1158/1535-7163.mct-23-0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
The ability of tumor cells to alter their metabolism to support survival and growth presents a challenge to effectively treat cancers. Carbonic anhydrase IX (CAIX) is a hypoxia-induced, metabolic enzyme that plays a crucial role in pH regulation in tumor cells. Recently, through a synthetic lethal screen, we identified CAIX to play an important role in redox homeostasis. In this study, we show that CAIX interacts with the glutamine (Gln) transporter, solute carrier family 1 member 5 (SLC1A5), and coordinately functions to maintain redox homeostasis through the glutathione/glutathione peroxidase 4 (GSH/GPX4) axis. Inhibition of CAIX increases Gln uptake by SLC1A5 and concomitantly increases GSH levels. The combined inhibition of CAIX activity and Gln metabolism or the GSH/GPX4 axis results in an increase in lipid peroxidation and induces ferroptosis, both in vitro and in vivo. Thus, this study demonstrates cotargeting of CAIX and Gln metabolism as a potential strategy to induce ferroptosis in tumor cells.
Collapse
Affiliation(s)
- Geetha Venkateswaran
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Shawn C. Chafe
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Wells S. Brown
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Zachary J. Gerbec
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Shannon J. Awrey
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Seth J. Parker
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Puzderova B, Belvoncikova P, Grossmannova K, Csaderova L, Labudova M, Fecikova S, Pastorek J, Barathova M. Propranolol, Promising Chemosensitizer and Candidate for the Combined Therapy through Disruption of Tumor Microenvironment Homeostasis by Decreasing the Level of Carbonic Anhydrase IX. Int J Mol Sci 2023; 24:11094. [PMID: 37446271 DOI: 10.3390/ijms241311094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Resistance to chemotherapy represents a persisting medical problem, ranking among main causes of chemotherapy failure and cancer mortality. There is a possibility to utilize and repurpose already existing therapeutics which were not primarily intended for oncological treatment. Overactivation of adrenergic receptors and signaling dysregulation promotes tumor progression, metastatic potential, immune system evasion, tumor angiogenesis and drug resistance. The non-selective beta-blocker propranolol, approved in infantile haemangioma treatment, has a high potential for use in cancer therapy. We analyzed the effects of propranolol and 5-fluorouracil combination on sensitive and resistant cells derived from colorectal carcinoma in monolayers, single-component and co-culture spheroids and in vivo mouse models. Our results revealed that propranolol is able to exert its effect not only in chemosensitive colorectal cells, but also in 5-fluorouracil resistant cells. Propranolol disrupts the hypoxic adaptation machinery by inhibiting HIF1α, carbonic anhydrase IX, and activates apoptosis, which may be important in the management of chemo-resistant patients. We showed that propranolol slows down the growth of xenografts formed from colorectal cancer cells, even from cells already adapted to the β-blocker. We provide clear evidence that blockade of β-adrenergic receptors affects essential signaling pathways modulating tumor microenvironment and thus the response to anticancer therapy. Our findings indicate that propranolol could be repurposed to serve as chemosensitizer in combined therapy aimed at disrupting homeostasis of tumor microenvironment.
Collapse
Affiliation(s)
- Barbora Puzderova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Petra Belvoncikova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Katarina Grossmannova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Lucia Csaderova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Martina Labudova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Silvia Fecikova
- National Institute of Lung Disaeses, Thorax Surgery and Tuberculosis, Vyšné Hágy 1, 059 84 Vysoké Tatry, Slovakia
| | | | - Monika Barathova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
11
|
Eloranta K, Pihlajoki M, Liljeström E, Nousiainen R, Soini T, Lohi J, Cairo S, Wilson DB, Parkkila S, Heikinheimo M. SLC-0111, an inhibitor of carbonic anhydrase IX, attenuates hepatoblastoma cell viability and migration. Front Oncol 2023; 13:1118268. [PMID: 36776327 PMCID: PMC9909558 DOI: 10.3389/fonc.2023.1118268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Background In response to hypoxia, tumor cells undergo transcriptional reprogramming including upregulation of carbonic anhydrase (CA) IX, a metalloenzyme that maintains acid-base balance. CAIX overexpression has been shown to correlate with poor prognosis in various cancers, but the role of this CA isoform in hepatoblastoma (HB) has not been examined. Methods We surveyed the expression of CAIX in HB specimens and assessed the impact of SLC-0111, a CAIX inhibitor, on cultured HB cells in normoxic and hypoxic conditions. Results CAIX immunoreactivity was detected in 15 out of 21 archival pathology HB specimens. The CAIX-positive cells clustered in the middle of viable tumor tissue or next to necrotic areas. Tissue expression of CAIX mRNA was associated with metastasis and poor clinical outcome of HB. Hypoxia induced a striking upregulation of CAIX mRNA and protein in three HB cell models: the immortalized human HB cell line HUH6 and patient xenograft-derived lines HB-295 and HB-303. Administration of SLC-0111 abrogated the hypoxia-induced upregulation of CAIX and decreased HB cell viability, both in monolayer and spheroid cultures. In addition, SLC-0111 reduced HB cell motility in a wound healing assay. Transcriptomic changes triggered by SLC-0111 administration differed under normoxic vs. hypoxic conditions, although SLC-0111 elicited upregulation of several tumor suppressor genes under both conditions. Conclusion Hypoxia induces CAIX expression in HB cells, and the CAIX inhibitor SLC-0111 has in vitro activity against these malignant cells.
Collapse
Affiliation(s)
- Katja Eloranta
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Marjut Pihlajoki
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland,*Correspondence: Marjut Pihlajoki,
| | - Emmi Liljeström
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ruth Nousiainen
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Tea Soini
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Stefano Cairo
- Xentech, Evry, Evry, France,Istituto di Ricerca Pediatrica, Padova, Italy,Champions Oncology, Hackensack, NJ, United States
| | - David B. Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,FICAN Mid, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Markku Heikinheimo
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland,Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States,Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
| |
Collapse
|
12
|
Zatovicova M, Kajanova I, Takacova M, Jelenska L, Sedlakova O, Labudova M, Pastorekova S. ADAM10 mediates shedding of carbonic anhydrase IX ectodomain non‑redundantly to ADAM17. Oncol Rep 2022; 49:27. [PMID: 36524367 PMCID: PMC9813547 DOI: 10.3892/or.2022.8464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Carbonic anhydrase IX (CA IX) is a transmembrane enzyme participating in adaptive responses of tumors to hypoxia and acidosis. CA IX regulates pH, facilitates metabolic reprogramming, and supports migration, invasion and metastasis of cancer cells. Extracellular domain (ECD) of CA IX can be shed to medium and body fluids by a disintegrin and metalloproteinase (ADAM) 17. Here we show for the first time that CA IX ECD shedding can be also executed by ADAM10, a close relative of ADAM17, via an overlapping cleavage site in the stalk region of CA IX connecting its exofacial catalytic site with the transmembrane region. This finding is supported by biochemical evidence using recombinant human ADAM10 protein, colocalization of ADAM10 with CA IX, ectopic expression of a dominant‑negative mutant of ADAM10 and RNA interference‑mediated suppression of ADAM10. Induction of the CA IX ECD cleavage with ADAM17 and/or ADAM10 activators revealed their additive effect. Similarly, additive effect was observed with an ADAM17‑inhibiting antibody and an ADAM10‑preferential inhibitor GI254023X. These data indicated that ADAM10 is a CA IX sheddase acting on CA IX non‑redundantly to ADAM17.
Collapse
Affiliation(s)
- Miriam Zatovicova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, 84505 Bratislava, Slovakia
| | - Ivana Kajanova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, 84505 Bratislava, Slovakia
| | - Martina Takacova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, 84505 Bratislava, Slovakia
| | - Lenka Jelenska
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, 84505 Bratislava, Slovakia
| | - Olga Sedlakova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, 84505 Bratislava, Slovakia
| | - Martina Labudova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, 84505 Bratislava, Slovakia
| | - Silvia Pastorekova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, 84505 Bratislava, Slovakia,Correspondence to: Professor Silvia Pastorekova, Biomedical Research Center of The Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, Dubravska cesta 9, 84505 Bratislava, Slovakia, E-mail:
| |
Collapse
|
13
|
Russell S, Xu L, Kam Y, Abrahams D, Ordway B, Lopez AS, Bui MM, Johnson J, Epstein T, Ruiz E, Lloyd MC, Swietach P, Verduzco D, Wojtkowiak J, Gillies RJ. Proton export upregulates aerobic glycolysis. BMC Biol 2022; 20:163. [PMID: 35840963 PMCID: PMC9287933 DOI: 10.1186/s12915-022-01340-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/30/2022] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Aggressive cancers commonly ferment glucose to lactic acid at high rates, even in the presence of oxygen. This is known as aerobic glycolysis, or the "Warburg Effect." It is widely assumed that this is a consequence of the upregulation of glycolytic enzymes. Oncogenic drivers can increase the expression of most proteins in the glycolytic pathway, including the terminal step of exporting H+ equivalents from the cytoplasm. Proton exporters maintain an alkaline cytoplasmic pH, which can enhance all glycolytic enzyme activities, even in the absence of oncogene-related expression changes. Based on this observation, we hypothesized that increased uptake and fermentative metabolism of glucose could be driven by the expulsion of H+ equivalents from the cell. RESULTS To test this hypothesis, we stably transfected lowly glycolytic MCF-7, U2-OS, and glycolytic HEK293 cells to express proton-exporting systems: either PMA1 (plasma membrane ATPase 1, a yeast H+-ATPase) or CA-IX (carbonic anhydrase 9). The expression of either exporter in vitro enhanced aerobic glycolysis as measured by glucose consumption, lactate production, and extracellular acidification rate. This resulted in an increased intracellular pH, and metabolomic analyses indicated that this was associated with an increased flux of all glycolytic enzymes upstream of pyruvate kinase. These cells also demonstrated increased migratory and invasive phenotypes in vitro, and these were recapitulated in vivo by more aggressive behavior, whereby the acid-producing cells formed higher-grade tumors with higher rates of metastases. Neutralizing tumor acidity with oral buffers reduced the metastatic burden. CONCLUSIONS Therefore, cancer cells which increase export of H+ equivalents subsequently increase intracellular alkalization, even without oncogenic driver mutations, and this is sufficient to alter cancer metabolism towards an upregulation of aerobic glycolysis, a Warburg phenotype. Overall, we have shown that the traditional understanding of cancer cells favoring glycolysis and the subsequent extracellular acidification is not always linear. Cells which can, independent of metabolism, acidify through proton exporter activity can sufficiently drive their metabolism towards glycolysis providing an important fitness advantage for survival.
Collapse
Affiliation(s)
- Shonagh Russell
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
- Graduate School, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620 USA
| | - Liping Xu
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Yoonseok Kam
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA 9505 USA
| | - Dominique Abrahams
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Bryce Ordway
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
- Graduate School, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620 USA
| | - Alex S. Lopez
- Anatomic Pathology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Marilyn M. Bui
- Anatomic Pathology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
- Analytic Microscopy Core, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Joseph Johnson
- Analytic Microscopy Core, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | | | - Epifanio Ruiz
- Small Animal Imaging Department, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Mark C. Lloyd
- Inspirata, Inc., One North Dale Mabry Hwy. Suite 600, Tampa, FL 33609 USA
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT UK
| | - Daniel Verduzco
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Jonathan Wojtkowiak
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Robert J. Gillies
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| |
Collapse
|
14
|
Cancer Therapeutic Targeting of Hypoxia Induced Carbonic Anhydrase IX: From Bench to Bedside. Cancers (Basel) 2022; 14:cancers14143297. [PMID: 35884358 PMCID: PMC9322110 DOI: 10.3390/cancers14143297] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Tumor hypoxia remains a significant problem in the effective treatment of most cancers. Tumor cells within hypoxic niches tend to be largely resistant to most therapeutic modalities, and adaptation of the cells within the hypoxic microenvironment imparts the cells with aggressive, invasive behavior. Thus, a major goal of successful cancer therapy should be the eradication of hypoxic tumor cells. Carbonic Anhydrase IX (CAIX) is an exquisitely hypoxia induced protein, selectively expressed on hypoxic tumor cells, and thus has garnered significant attention as a therapeutic target. In this Commentary, we discuss the current status of targeting CAIX, and future strategies for effective, durable cancer treatment. Abstract Carbonic Anhydrase IX (CAIX) is a major metabolic effector of tumor hypoxia and regulates intra- and extracellular pH and acidosis. Significant advances have been made recently in the development of therapeutic targeting of CAIX. These approaches include antibody-based immunotherapy, as well as use of antibodies to deliver toxic and radioactive payloads. In addition, a large number of small molecule inhibitors which inhibit the enzymatic activity of CAIX have been described. In this commentary, we highlight the current status of strategies targeting CAIX in both the pre-clinical and clinical space, and discuss future perspectives that leverage inhibition of CAIX in combination with additional targeted therapies to enable effective, durable approaches for cancer therapy.
Collapse
|
15
|
Stevens RP, Alexeyev MF, Kozhukhar N, Pastukh V, Paudel SS, Bell J, Tambe DT, Stevens T, Lee JY. Carbonic anhydrase IX proteoglycan-like and intracellular domains mediate pulmonary microvascular endothelial cell repair and angiogenesis. Am J Physiol Lung Cell Mol Physiol 2022; 323:L48-L57. [PMID: 35672011 DOI: 10.1152/ajplung.00337.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lungs of patients with acute respiratory distress syndrome (ARDS) have hyperpermeable capillaries that must undergo repair in an acidic microenvironment. Pulmonary microvascular endothelial cells (PMVECs) have an acid-resistant phenotype, in part due to carbonic anhydrase IX (CA IX). CA IX also facilitates PMVEC repair by promoting aerobic glycolysis, migration, and network formation. Molecular mechanisms of how CA IX performs such a wide range of functions are unknown. CA IX is comprised of four domains known as the proteoglycan-like (PG), catalytic (CA), transmembrane (TM), and intracellular (IC) domains. We hypothesized that the PG and CA domains mediate PMVEC pH homeostasis and repair, and the IC domain regulates aerobic glycolysis and PI3k/Akt signaling. The functions of each CA IX domain were investigated using PMVEC cell lines that express either a full-length CA IX protein or a CA IX protein harboring a domain deletion. We found that the PG domain promotes intracellular pH homeostasis, migration, and network formation. The CA and IC domains mediate Akt activation but negatively regulate aerobic glycolysis. The IC domain also supports migration while inhibiting network formation. Finally, we show that exposure to acidosis suppresses aerobic glycolysis and migration, even though intracellular pH is maintained in PMVECs. Thus, we report that 1) The PG and IC domains mediate PMVEC migration and network formation, 2) the CA and IC domains support PI3K/Akt signaling, and 3) acidosis impairs PMVEC metabolism and migration independent of intracellular pH homeostasis.
Collapse
Affiliation(s)
- Reece P Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Viktoriya Pastukh
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Jessica Bell
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Dhananjay T Tambe
- Department of Mechanical, Aerospace, and Biomedical Engineering, College of Medicine, University of South Alabama, Mobile, Alabama, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Ji Young Lee
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, Alabama, United States.,Division of Pulmonary and Critical Care Medicine, College of Medicine, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
16
|
Carroll CP, Bolland H, Vancauwenberghe E, Collier P, Ritchie AA, Clarke PA, Grabowska AM, Harris AL, McIntyre A. Targeting hypoxia regulated sodium driven bicarbonate transporters reduces triple negative breast cancer metastasis. Neoplasia 2022; 25:41-52. [PMID: 35150959 PMCID: PMC8844412 DOI: 10.1016/j.neo.2022.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/25/2022]
Abstract
Regions of low oxygen (hypoxia) are found in >50% of breast tumours, most frequently in the more aggressive triple negative breast cancer subtype (TNBC). Metastasis is the cause of 90% of breast cancer patient deaths. Regions of tumour hypoxia tend to be more acidic and both hypoxia and acidosis increase tumour metastasis. In line with this the metastatic process is dependent on pH regulatory mechanisms. We and others have previously identified increased hypoxic expression of Na+ driven bicarbonate transporters (NDBTs) as a major mechanism of tumour pH regulation. Hypoxia induced the expression of NDBTs in TNBC, most frequently SLC4A4 and SLC4A5. NDBT inhibition (S0859) and shRNA knockdown suppressed migration (40% reduction) and invasion (70% reduction) in vitro. Tumour xenograft metastasis in vivo was significantly reduced by NDBT knockdown. To investigate the mechanism by which NDBTs support metastasis, we investigated their role in regulation of phospho-signalling, epithelial-to-mesenchymal transition (EMT) and metabolism. NDBT knockdown resulted in an attenuation in hypoxic phospho-signalling activation; most notably LYN (Y397) reduced by 75%, and LCK (Y394) by 72%. The metastatic process is associated with EMT. We showed that NDBT knockdown inhibited EMT, modulating the expression of key EMT transcription factors and ablating the expression of vimentin whilst increasing the expression of E-cadherin. NDBT knockdown also altered metabolic activity reducing overall ATP and extracellular lactate levels. These results demonstrate that targeting hypoxia-induced NDBT can be used as an approach to modulate phospho-signalling, EMT, and metabolic activity and reduce tumour migration, invasion, and metastasis in vivo.
Collapse
Affiliation(s)
- Christopher Paul Carroll
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham
| | - Hannah Bolland
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham
| | - Eric Vancauwenberghe
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham
| | - Pamela Collier
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Alison A Ritchie
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Philip A Clarke
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Anna M Grabowska
- Ex Vivo Cancer Pharmacology Centre, Biodiscovery Institute, University of Nottingham
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Alan McIntyre
- Hypoxia and Acidosis Group, Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham.
| |
Collapse
|
17
|
Engineered protein-small molecule conjugates empower selective enzyme inhibition. Cell Chem Biol 2022; 29:328-338.e4. [PMID: 34363759 PMCID: PMC8807807 DOI: 10.1016/j.chembiol.2021.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Abstract
Potent, specific ligands drive precision medicine and fundamental biology. Proteins, peptides, and small molecules constitute effective ligand classes. Yet greater molecular diversity would aid the pursuit of ligands to elicit precise biological activity against challenging targets. We demonstrate a platform to discover protein-small molecule (PriSM) hybrids to combine unique pharmacophore activities and shapes with constrained, efficiently engineerable proteins. In this platform, a fibronectin protein library is displayed on yeast with a single cysteine coupled to acetazolamide via a maleimide-poly(ethylene glycol) linker. Magnetic and flow cytometric sorts enrich specific binders to carbonic anhydrase isoforms. Isolated PriSMs exhibit potent, specific inhibition of carbonic anhydrase isoforms with efficacy superior to that of acetazolamide or protein alone, including an 80-fold specificity increase and 9-fold potency gain. PriSMs are engineered with multiple linker lengths, protein conjugation sites, and sequences against two different isoforms, which reveal platform flexibility and impacts of molecular designs. PriSMs advance the molecular diversity of efficiently engineerable ligands.
Collapse
|
18
|
Yin L, Lu Y, Cao C, Lu Z, Wei J, Zhu X, Chen J, Guo F, Tu M, Xi C, Zhang K, Wu J, Gao W, Jiang K, Miao Y, Li Q, Peng Y. CA9-Related Acidic Microenvironment Mediates CD8+ T Cell Related Immunosuppression in Pancreatic Cancer. Front Oncol 2022; 11:832315. [PMID: 35155218 PMCID: PMC8828571 DOI: 10.3389/fonc.2021.832315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE This study aims to integrate pancreatic cancer TCGA, GEO, and single-cell RNA-sequencing (scRNA-seq) datasets, and explore the potential prognostic markers and underlying mechanisms of the immune microenvironment of pancreatic cancer through bioinformatics methods, in vitro and in vivo assays. METHODS Expression data and clinicopathological data of pancreatic cancer TCGA, GEO (GSE131050), single cell sequencing (PAAD_CRA001160) dataset were downloaded. We used R/Bioconductor edgeR for differential expression analysis. ClusterProfiler was utilized to perform GO enrichment analysis on differentially expressed genes. The online software CIBERSORT was used to reanalyze the mRNA expression data of pancreatic cancer. CellRanger, RunPCA, FindNeighbors, FindClusters, RunTSNE and RunUMAP were used to perform preprocessing, cell clustering and expression profile analysis on single-cell sequencing data sets. We analyzed intracellular pH with or without CA9 inhibitor SLC-0111. Indirect co-culture model of human pancreatic cancer cell lines and healthy individual-derived PBMCs were used to determine the effect of CA9-related Acidic Microenvironment on CD8+ T cells. RESULTS The CIBERSORT analysis of TCGA pancreatic cancer transcriptome sequencing data showed that among the 22 immune microenvironment components, CD8+ T cell infiltration was significantly correlated with the prognosis of pancreatic cancer patients. The differential expression analysis of the TCGA data grouped by the level of CD8+ T cell infiltration indicates that the expression of carbonic anhydrase 9 (CA9) is the most significant, and the survival analysis suggests that CA9 is associated with the overall survival of pancreatic cancer. TCGA data and GEO data set GSE131050 expression correlation analysis suggests that CA9 and CD8 expression are closely related. Pancreatic cancer single-cell sequencing data set PAAD_CRA001160 analysis results show that CA9 is mainly expressed in pancreatic cancer cell clusters, and the expression of the cancer cell subgroup CA9 in the single-cell data set is correlated with CD8+ T cell infiltration. CONCLUSION Pancreatic cancer cells may inhibit the infiltration of CD8+ T cells through CA9. Further exploration of its related mechanisms can be used to explore the immune escape pathway of pancreatic cancer and provides new perspectives immune targeted therapy.
Collapse
Affiliation(s)
- Lingdi Yin
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Yichao Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Cheng Cao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Jishu Wei
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Xiaole Zhu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Jianmin Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Feng Guo
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Min Tu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Chunhua Xi
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Kai Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Junli Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Wentao Gao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Qiang Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Yunpeng Peng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Understanding metabolic alterations and heterogeneity in cancer progression through validated immunodetection of key molecular components: a case of carbonic anhydrase IX. Cancer Metastasis Rev 2022; 40:1035-1053. [PMID: 35080763 PMCID: PMC8825433 DOI: 10.1007/s10555-021-10011-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Abstract
Cancer metabolic heterogeneity develops in response to both intrinsic factors (mutations leading to activation of oncogenic pathways) and extrinsic factors (physiological and molecular signals from the extracellular milieu). Here we review causes and consequences of metabolic alterations in cancer cells with focus on hypoxia and acidosis, and with particular attention to carbonic anhydrase IX (CA IX). CA IX is a cancer-associated enzyme induced and activated by hypoxia in a broad range of tumor types, where it participates in pH regulation as well as in molecular mechanisms supporting cancer cells’ invasion and metastasis. CA IX catalyzes reversible conversion of carbon dioxide to bicarbonate ion plus proton and cooperates with a spectrum of molecules transporting ions or metabolites across the plasma membrane. Thereby CA IX contributes to extracellular acidosis as well as to buffering intracellular pH, which is essential for cell survival, metabolic performance, and proliferation of cancer cells. Since CA IX expression pattern reflects gradients of oxygen, pH, and other intratumoral factors, we use it as a paradigm to discuss an impact of antibody quality and research material on investigating metabolic reprogramming of tumor tissue. Based on the validation, we propose the most reliable CA IX-specific antibodies and suggest conditions for faithful immunohistochemical analysis of molecules contributing to heterogeneity in cancer progression.
Collapse
|
20
|
Grossmannova K, Barathova M, Belvoncikova P, Lauko V, Csaderova L, Tomka J, Dulka T, Pastorek J, Madaric J. Hypoxia Marker Carbonic Anhydrase IX Is Present in Abdominal Aortic Aneurysm Tissue and Plasma. Int J Mol Sci 2022; 23:ijms23020879. [PMID: 35055064 PMCID: PMC8778372 DOI: 10.3390/ijms23020879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Abdominal aortic aneurysms (AAA) are a significant cause of premature deaths worldwide. Since there is no specific treatment for reducing AAA progression, it is crucial to understand the pathogenesis leading to aneurysm wall weakening/remodeling and identify new proteins involved in this process which could subsequently serve as novel therapeutic targets. In this study, we analyzed the presence of the hypoxia-related proteins carbonic anhydrase IX (CA IX), hypoxia-inducible factor 1α (HIF-1α), and AKT as the key molecule in the phosphoinositide-3-kinase pathway in the AAA wall. Additionally, we used a blood-based assay to examine soluble CA IX (s-CA IX) levels in the plasma of AAA patients. Using western blotting, we detected CA IX protein in 12 out of 15 AAA tissue samples. Immunohistochemistry staining proved CA IX expression in the media of the aneurysmal wall. Evaluation of phosphorylated (p-AKT) and total AKT showed elevated levels of both forms in AAA compared to normal aorta. Using ELISA, we determined the concentration of s-CA IX >20 pg/mL in 13 out of 15 AAA patients. Results obtained from in silico analysis of CA9 and aneurysm-associated genes suggest a role for CA IX in aneurysmal wall remodeling. Our results prove the presence of hypoxia-related CA IX in AAA tissues and indicate a possible role of CA IX in hypoxia-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Katarina Grossmannova
- Department of Cancer Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (K.G.); (P.B.); (L.C.)
| | - Monika Barathova
- Department of Cancer Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (K.G.); (P.B.); (L.C.)
- Correspondence: ; Tel.: +421-2-59302439
| | - Petra Belvoncikova
- Department of Cancer Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (K.G.); (P.B.); (L.C.)
| | - Viliam Lauko
- Department of Laboratory Medicine, National Institute of Cardiovascular Disease, Pod Krásnou Hôrkou 1, 83101 Bratislava, Slovakia;
| | - Lucia Csaderova
- Department of Cancer Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (K.G.); (P.B.); (L.C.)
| | - Jan Tomka
- Department of Vascular Surgery, National Institute of Cardiovascular Disease, Pod Krásnou Hôrkou 1, 83101 Bratislava, Slovakia; (J.T.); (T.D.)
| | - Tomas Dulka
- Department of Vascular Surgery, National Institute of Cardiovascular Disease, Pod Krásnou Hôrkou 1, 83101 Bratislava, Slovakia; (J.T.); (T.D.)
| | | | - Juraj Madaric
- Department of Angiology, National Institute of Cardiovascular Disease, Pod Krásnou Hôrkou 1, 83101 Bratislava, Slovakia;
| |
Collapse
|
21
|
Horikawa M, Sabe H, Onodera Y. Dual roles of AMAP1 in the transcriptional regulation and intracellular trafficking of carbonic anhydrase IX. Transl Oncol 2022; 15:101258. [PMID: 34742153 PMCID: PMC8577137 DOI: 10.1016/j.tranon.2021.101258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The cell-surface enzyme carbonic anhydrase IX (CAIX/CA9) promotes tumor growth, survival, invasion, and metastasis, mainly via its pH-regulating functions. Owing to its tumor-specific expression, CAIX-targeting antibodies/chemicals are utilized for therapeutic and diagnostic purposes. However, mechanisms of CAIX trafficking, which affects such CAIX-targeting modalities remain unclear. In this study, roles of the AMAP1-PRKD2 pathway, which mediates integrin recycling of invasive cancer cells, in CAIX trafficking were investigated. METHODS Using highly invasive MDA-MB-231 breast cancer cells, the physical association and colocalization of endogenous proteins were analyzed by immunoprecipitation and immunofluorescence, protein/mRNA levels were quantified by western blotting/qPCR, and cell-surface transport and intracellular/extracellular pH regulation were measured by biotin-labeling and fluorescent dye-based assays, respectively. The correlation between mRNA levels and patients' prognoses was analyzed using a TCGA breast cancer dataset. RESULTS AMAP1 associated with the CAIX protein complex, and they colocalized at the plasma membrane and tubulovesicular structures. AMAP1 knockdown reduced total/surface CAIX, induced its lysosomal accumulation and degradation, and affected intracellular/extracellular pH. PRKD2 knockdown excluded AMAP1 from the CAIX complex and reduced total CAIX in a lysosome-dependent manner. Unexpectedly, AMAP1 knockdown also reduced CAIX mRNA. AMAP1 interacted with PIAS3, which stabilizes HIF-1α, a transcriptional regulator of CA9. AMAP1 knockdown inhibited the PIAS3-HIF-1α interaction and destabilized the HIF-1α protein. High-ASAP1 (AMAP1-encoding gene) together with high-PIAS3 correlated with high-CA9 and an unfavorable prognosis in breast cancer. CONCLUSION The AMAP1-PRKD2 pathway regulates CAIX trafficking, and modulates its total/surface expression. The AMAP1-PIAS3 interaction augments CA9 transcription by stabilizing HIF-1α, presumably contributing to an unfavorable prognosis.
Collapse
Affiliation(s)
- Mei Horikawa
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Yasuhito Onodera
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan; Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
22
|
Therapeutic targeting of the hypoxic tumour microenvironment. Nat Rev Clin Oncol 2021; 18:751-772. [PMID: 34326502 DOI: 10.1038/s41571-021-00539-4] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia is prevalent in human tumours and contributes to microenvironments that shape cancer evolution and adversely affect therapeutic outcomes. Historically, two different tumour microenvironment (TME) research communities have been discernible. One has focused on physicochemical gradients of oxygen, pH and nutrients in the tumour interstitium, motivated in part by the barrier that hypoxia poses to effective radiotherapy. The other has focused on cellular interactions involving tumour and non-tumour cells within the TME. Over the past decade, strong links have been established between these two themes, providing new insights into fundamental aspects of tumour biology and presenting new strategies for addressing the effects of hypoxia and other microenvironmental features that arise from the inefficient microvascular system in solid tumours. This Review provides a perspective on advances at the interface between these two aspects of the TME, with a focus on translational therapeutic opportunities relating to the elimination and/or exploitation of tumour hypoxia.
Collapse
|
23
|
Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases. Cell Mol Life Sci 2021; 78:8109-8125. [PMID: 34778915 PMCID: PMC8629801 DOI: 10.1007/s00018-021-04011-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/10/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022]
Abstract
The incidence of gastrointestinal (GI) mucosal diseases, including various types of gastritis, ulcers, inflammatory bowel disease and GI cancer, is increasing. Therefore, it is necessary to identify new therapeutic targets. Ion channels/transporters are located on cell membranes, and tight junctions (TJs) affect acid–base balance, the mucus layer, permeability, the microbiota and mucosal blood flow, which are essential for maintaining GI mucosal integrity. As ion channel/transporter dysfunction results in various GI mucosal diseases, this review focuses on understanding the contribution of ion channels/transporters to protecting the GI mucosal barrier and the relationship between GI mucosal disease and ion channels/transporters, including Cl−/HCO3− exchangers, Cl− channels, aquaporins, Na+/H+ exchangers, and K+ channels. Here, we provide novel prospects for the treatment of GI mucosal diseases.
Collapse
|
24
|
Daum AK, Dittmann J, Jansen L, Peters S, Dahmen U, Heger JI, Hoppe-Seyler F, Gille A, Clement JH, Runnebaum IB, Dürst M, Backsch C. ITIH5 shows tumor suppressive properties in cervical cancer cells grown as multicellular tumor spheroids. Am J Transl Res 2021; 13:10298-10314. [PMID: 34650698 PMCID: PMC8507072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Cervical cancer (CC) arises from premalignant cervical intraepithelial neoplasia (CIN) induced by a persistent infection with human papillomaviruses. The multi-stepwise disease progression is driven by genetic and epigenetic alterations. Our previous studies demonstrated a clear downregulation of inter-α-trypsin-inhibitor-heavy chain 5 (ITIH5) at mRNA and protein levels in CC compared to CIN2/3 and normal cervical tissue. Initial in vitro functional analyses revealed a suppressive effect of ITIH5 on relevant mechanisms for cancer progression in conventional two dimensional (2D) cell culture model systems. Based on these studies, we aimed to investigate the functional relevance of ITIH5 in multicellular tumor spheroid (MCTS) models, which resemble in vivo tumors more closely. We successfully established CC cell line-derived MCTS using the hanging-drop technique. ITIH5 was ectopically overexpressed in HeLa and SiHa cells and its functional relevance was investigated under three dimensional (3D) culture conditions. We found that ITIH5 re-expression significantly suppressed tumor spheroid growth and spheroid invasiveness of both HeLa and SiHa spheroids. Immunohistochemical (IHC) analyses revealed a significant reduction in Ki-67 cell proliferation index and CAIX-positive areas indicative for hypoxia and acidification. Furthermore, we observed an increase in cPARP-positive cells suggesting a higher rate of apoptosis upon ITIH5 overexpression. An effect of ITIH5 expression on the susceptibility of cervical MCTS towards cytostatic drug treatment was not observed. Collectively, these data uncover pronounced anti-proliferative effects of ITIH5 under 3D cell culture conditions and provide further functional evidence that the downregulation of ITIH5 expression during cervical carcinogenesis could support cancer development.
Collapse
Affiliation(s)
- Ann-Kathrin Daum
- Department of Gynecology and Reproductive Medicine, Jena University Hospital, Friedrich-Schiller-UniversityJena, Germany
- Current address: German Cancer Research Center (DKFZ), Division of Cancer Genome ResearchHeidelberg, Germany
| | - Jessica Dittmann
- Department of Gynecology and Reproductive Medicine, Jena University Hospital, Friedrich-Schiller-UniversityJena, Germany
| | - Lars Jansen
- Department of Gynecology and Reproductive Medicine, Jena University Hospital, Friedrich-Schiller-UniversityJena, Germany
| | - Sven Peters
- Department of Ophthalmology, Jena University Hospital, Friedrich-Schiller-UniversityJena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Friedrich-Schiller-UniversityJena, Germany
| | - Julia I Heger
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Friedrich-Schiller-UniversityJena, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ)Heidelberg, Germany
| | - Alexandra Gille
- Department of Gynecology and Reproductive Medicine, Jena University Hospital, Friedrich-Schiller-UniversityJena, Germany
| | - Joachim H Clement
- Department of Hematology and Medical Oncology, Jena University Hospital, Friedrich-Schiller-UniversityJena, Germany
| | - Ingo B Runnebaum
- Department of Gynecology and Reproductive Medicine, Jena University Hospital, Friedrich-Schiller-UniversityJena, Germany
| | - Matthias Dürst
- Department of Gynecology and Reproductive Medicine, Jena University Hospital, Friedrich-Schiller-UniversityJena, Germany
| | - Claudia Backsch
- Department of Gynecology and Reproductive Medicine, Jena University Hospital, Friedrich-Schiller-UniversityJena, Germany
| |
Collapse
|
25
|
Post-translational modifications in tumor-associated carbonic anhydrases. Amino Acids 2021; 54:543-558. [PMID: 34436666 DOI: 10.1007/s00726-021-03063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Human carbonic anhydrases IX (hCA IX) and XII (hCA XII) are two proteins associated with tumor formation and development. These enzymes have been largely investigated both from a biochemical and a functional point of view. However, limited data are currently available on the characterization of their post-translational modifications (PTMs) and the functional implication of these structural changes in the tumor environment. In this review, we summarize existing literature data on PTMs of hCA IX and hCA XII, such as disulphide bond formation, phosphorylation, O-/N-linked glycosylation, acetylation and ubiquitination, highlighting, when possible, their specific role in cancer pathological processes.
Collapse
|
26
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
27
|
Chen H, Chengalvala V, Hu H, Sun D. Tumor-derived exosomes: Nanovesicles made by cancer cells to promote cancer metastasis. Acta Pharm Sin B 2021; 11:2136-2149. [PMID: 34522581 PMCID: PMC8424275 DOI: 10.1016/j.apsb.2021.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomedicine usually refers to nanoparticles that deliver the functional drugs and siRNAs to treat cancer. Recent research has suggested that cancer cells can also make nanoparticles that also deliver functional molecules in promoting cancer metastasis, which is the leading cause of various cancer mortalities. This nanoparticle is called tumor-derived vesicles, or better-known as tumor-derived exosomes (TEXs). TEXs are nanoscale membrane vesicles (30-140 nm) that are released continuously by various types of cancer cells and contain tumor-derived functional biomolecules, including lipids, proteins, and genetic molecules. These endogenous TEXs can interact with host immune cells and epithelial cells locally and systemically. More importantly, they can reprogram the recipient cells in favor of promoting metastasis through facilitating tumor cell local invasion, intravasation, immune evasion, extravasation, and survival and growth in distant organs. Growing evidence suggests that TEXs play a key role in cancer metastasis. Here, we will review the most recent findings of how cancer cells harness TEXs to promote cancer metastasis through modulating vascular permeability, suppressing systemic immune surveillance, and creating metastatic niches. We will also summarize recent research in targeting TEXs to treat cancer metastasis.
Collapse
Affiliation(s)
- Hongwei Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Venkata Chengalvala
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Stevens RP, Paudel SS, Johnson SC, Stevens T, Lee JY. Endothelial metabolism in pulmonary vascular homeostasis and acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2021; 321:L358-L376. [PMID: 34159794 PMCID: PMC8384476 DOI: 10.1152/ajplung.00131.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022] Open
Abstract
Capillary endothelial cells possess a specialized metabolism necessary to adapt to the unique alveolar-capillary environment. Here, we highlight how endothelial metabolism preserves the integrity of the pulmonary circulation by controlling vascular permeability, defending against oxidative stress, facilitating rapid migration and angiogenesis in response to injury, and regulating the epigenetic landscape of endothelial cells. Recent reports on single-cell RNA-sequencing reveal subpopulations of pulmonary capillary endothelial cells with distinctive reparative capacities, which potentially offer new insight into their metabolic signature. Lastly, we discuss broad implications of pulmonary vascular metabolism on acute respiratory distress syndrome, touching on emerging findings of endotheliitis in coronavirus disease 2019 (COVID-19) lungs.
Collapse
Affiliation(s)
- Reece P Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Santina C Johnson
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama
- Department of Biomolecular Engineering, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ji Young Lee
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, Alabama
- Division of Pulmonary and Critical Care Medicine, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
29
|
Mokhtari RB, Qorri B, Baluch N, Sparaneo A, Fabrizio FP, Muscarella LA, Tyker A, Kumar S, Cheng HLM, Szewczuk MR, Das B, Yeger H. Next-generation multimodality of nutrigenomic cancer therapy: sulforaphane in combination with acetazolamide actively target bronchial carcinoid cancer in disabling the PI3K/Akt/mTOR survival pathway and inducing apoptosis. Oncotarget 2021; 12:1470-1489. [PMID: 34316328 PMCID: PMC8310668 DOI: 10.18632/oncotarget.28011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Aberrations in the PI3K/AKT/mTOR survival pathway in many cancers are the most common genomic abnormalities. The phytochemical and bioactive agent sulforaphane (SFN) has nutrigenomic potential in activating the expression of several cellular protective genes via the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 is primarily related to mechanisms of endogenous cellular defense and survival. The efficacy of SFN in combination with acetazolamide (AZ) was investigated in reducing typical H727 and atypical H720 BC survival, migration potential, and apoptosis in vitro and in vivo preclinical xenograft tissues. MATERIALS AND METHODS Microscopic imaging, immunocytochemistry, wound healing assay, caspase-cleaved cytokeratin 18 (M30, CCK18) CytoDeath ELISA assay, immunofluorescence labeling assays for apoptosis, hypoxia, Western Blotting, Tunnel assay, measurement of 5-HT secretion by carbon fiber amperometry assay, quantitative methylation-specific PCR (qMSP), morphologic changes, cell viability, apoptosis activity and the expression levels of phospho-Akt1, Akt1, HIF-1α, PI3K, p21, CAIX, 5-HT, phospho-mTOR, and mTOR in xenografts derived from typical H727 and atypical H720 BC cell lines. RESULTS Combining AZ+SFN reduced tumor cell survival compared to each agent alone, both in vitro and in vivo xenograft tissues. AZ+SFN targeted multiple pathways involved in cell cycle, serotonin secretion, survival, and growth pathways, highlighting its therapeutic approach. Both H727 and H720 cells were associated with induction of apoptosis, upregulation of the p21 cell cycle inhibitor, and downregulation of the PI3K/Akt/mTOR pathway, suggesting that the PI3K/Akt/mTOR pathway is a primary target of the AZ+SFN combination therapy. CONCLUSIONS Combining SFN+AZ significantly inhibits the PI3K/Akt/mTOR pathway and significantly reducing 5-HT secretion in carcinoid syndrome.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, USA.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angelo Sparaneo
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo FG, Italy
| | - Federico Pio Fabrizio
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo FG, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo FG, Italy
| | - Albina Tyker
- Department of Internal Medicine, University of Chicago, Chicago, IL, USA
| | - Sushil Kumar
- Q.P.S. Holdings LLC, Pencader Corporate Center, Newark, DE, USA
| | - Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Canada
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Bikul Das
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, USA.,Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, Assam, India.,Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, USA
| | - Herman Yeger
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Kazokaitė-Adomaitienė J, Becker HM, Smirnovienė J, Dubois LJ, Matulis D. Experimental Approaches to Identify Selective Picomolar Inhibitors for Carbonic Anhydrase IX. Curr Med Chem 2021; 28:3361-3384. [PMID: 33138744 DOI: 10.2174/0929867327666201102112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Carbonic anhydrases (CAs) regulate pH homeostasis via the reversible hydration of CO2, thereby emerging as essential enzymes for many vital functions. Among 12 catalytically active CA isoforms in humans, CA IX has become a relevant therapeutic target because of its role in cancer progression. Only two CA IX inhibitors have entered clinical trials, mostly due to low affinity and selectivity properties. OBJECTIVE The current review presents the design, development, and identification of the selective nano- to picomolar CA IX inhibitors VD11-4-2, VR16-09, and VD12-09. METHODS AND RESULTS Compounds were selected from our database, composed of over 400 benzensulfonamides, synthesized at our laboratory, and tested for their binding to 12 human CAs. Here we discuss the CA CO2 hydratase activity/inhibition assay and several biophysical techniques, such as fluorescent thermal shift assay and isothermal titration calorimetry, highlighting their contribution to the analysis of compound affinity and structure- activity relationships. To obtain sufficient amounts of recombinant CAs for inhibitor screening, several gene cloning and protein purification strategies are presented, including site-directed CA mutants, heterologous CAs from Xenopus oocytes, and native endogenous CAs. The cancer cell-based methods, such as clonogenicity, extracellular acidification, and mass spectrometric gas-analysis are reviewed, confirming nanomolar activities of lead inhibitors in intact cancer cells. CONCLUSIONS Novel CA IX inhibitors are promising derivatives for in vivo explorations. Furthermore, the simultaneous targeting of several proteins involved in proton flux upon tumor acidosis and the disruption of transport metabolons might improve cancer management.
Collapse
Affiliation(s)
- Justina Kazokaitė-Adomaitienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Joana Smirnovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Netherlands
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
31
|
Oishi N, Hundal T, Phillips JL, Dasari S, Hu G, Viswanatha DS, He R, Mai M, Jacobs HK, Ahmed NH, Syrbu SI, Salama Y, Chapman JR, Vega F, Sidhu J, Bennani NN, Epstein AL, Medeiros JL, Clemens MW, Miranda RN, Feldman AL. Molecular profiling reveals a hypoxia signature in breast implant-associated anaplastic large cell lymphoma. Haematologica 2021; 106:1714-1724. [PMID: 32414854 PMCID: PMC8168507 DOI: 10.3324/haematol.2019.245860] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/17/2023] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIAALCL) is a recently characterized T-cell malignancy that has raised significant patient safety concerns and led to worldwide impact on the implants used and clinical management of patients undergoing reconstructive or cosmetic breast surgery. Molecular signatures distinguishing BIA-ALCL from other anaplastic large cell lymphomas have not been fully elucidated and classification of BIA-ALCL as a World Health Organization entity remains provisional. We performed RNA sequencing and gene set enrichment analysis comparing BIA-ALCL to non-BIAALCL and identified dramatic upregulation of hypoxia signaling genes including the hypoxia-associated biomarker CA9 (carbonic anyhydrase- 9). Immunohistochemistry validated CA9 expression in all BIA-ALCL, with only minimal expression in non-BIA-ALCL. Growth induction in BIA-ALCL-derived cell lines cultured under hypoxic conditions was proportional to upregulation of CA9 expression, and RNA sequencing demonstrated induction of the same gene signature observed in BIAALCL tissue samples compared to non-BIA-ALCL. CA9 silencing blocked hypoxia-induced BIA-ALCL cell growth and cell cycle-associated gene expression, whereas CA9 overexpression in BIA-ALCL cells promoted growth in a xenograft mouse model. Furthermore, CA9 was secreted into BIA-ALCL cell line supernatants and was markedly elevated in human BIA-ALCL seroma samples. Finally, serum CA9 concentrations in mice bearing BIA-ALCL xenografts were significantly elevated compared to those in control serum. Together, these findings characterize BIA-ALCL as a hypoxia-associated neoplasm, likely attributable to the unique microenvironment in which it arises. These data support classification of BIA-ALCL as a distinct entity and uncover opportunities for investigating hypoxia-related proteins such as CA9 as novel biomarkers and therapeutic targets in this disease.
Collapse
Affiliation(s)
- Naoki Oishi
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tanya Hundal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jessica L Phillips
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Guangzhen Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David S Viswanatha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rong He
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ming Mai
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hailey K Jacobs
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Nada H Ahmed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sergei I Syrbu
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Youssef Salama
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Francisco Vega
- Department of Pathology, University of Miami, Miami, FL, USA
| | - Jagmohan Sidhu
- Department of Pathology and Laboratory Medicine, United Health Services, Binghamton, NY, USA
| | | | - Alan L Epstein
- Dept of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Jeffrey L Medeiros
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mark W Clemens
- Department of Plastic Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto N Miranda
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
32
|
Sodium bicarbonate transporter NBCe1 regulates proliferation and viability of human prostate cancer cells LNCaP and PC3. Oncol Rep 2021; 46:129. [PMID: 34013380 PMCID: PMC8144930 DOI: 10.3892/or.2021.8080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
Studies on cultured cancer cells or cell lines have revealed multiple acid extrusion mechanisms and their involvement in cancer cell growth and progression. In the present study, the role of the sodium bicarbonate transporters (NBCs) in prostate cancer cell proliferation and viability was examined. qPCR revealed heterogeneous expression of five NBC isoforms in human prostate cancer cell lines LNCaP, PC3, 22RV1, C4-2, DU145, and the prostate cell line RWPE-1. In fluorescence pH measurement of LNCaP cells, which predominantly express NBCe1, Na+ and HCO3–-mediated acid extrusion was identified by bath ion replacement and sensitivity to the NBC inhibitor S0859. NBCe1 knockdown using siRNA oligonucleotides decreased the number of viable cells, and pharmacological inhibition with S0859 (50 µM) resulted in a similar decrease. NBCe1 knockdown and inhibition also increased cell death, but this effect was small and slow. In PC3 cells, which express all NBC isoforms, NBCe1 knockdown decreased viable cell number and increased cell death. The effects of NBCe1 knockdown were comparable to those by S0859, indicating that NBCe1 among NBCs primarily contributes to PC3 cell proliferation and viability. S0859 inhibition also decreased the formation of cell spheres in 3D cultures. Immunohistochemistry of human prostate cancer tissue microarrays revealed NBCe1 localization to the glandular epithelial cells in prostate tissue and robust expression in acinar and duct adenocarcinoma. In conclusion, our study demonstrates that NBCe1 regulates acid extrusion in prostate cancer cells and inhibiting or abolishing this transporter decreases cancer cell proliferation.
Collapse
|
33
|
Zhang X, Liu X, Cui W, Zhang R, Liu Y, Li Y, Hao J. Sohlh2 alleviates malignancy of EOC cells under hypoxia via inhibiting the HIF1α/CA9 signaling pathway. Biol Chem 2021; 401:263-271. [PMID: 31318683 DOI: 10.1515/hsz-2019-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/08/2019] [Indexed: 01/26/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most common and deadly ovarian cancer. Most of the patients have abdominal/pelvic invasion and metastasis at the time of diagnosis, but the underlying mechanism remains unclear. Insufficiency of blood perfusion and diffusion within most solid tumors can lead to a hypoxic tumor microenvironment and promotes tumor malignancy. In the present study, we detected the role of the spermatogenesis- and oogenesis-specific basic helix-loop-helix (bHLH) transcription factor 2 (sohlh2) on migration, invasion and epithelial-mesenchymal transition (EMT) of EOC cell lines under hypoxia in vitro. We also investigated the possible mechanism underlying it. The results showed that sohlh2 inhibited the migration, invasion and EMT of EOC cells and might function through suppression of the hypoxia-inducible factor 1α (HIF1α)/carbonic anhydrase 9 (CA9) signaling pathway. Our results may open a new avenue for the further development of diagnostic tools and novel therapeutics that will benefit EOC patients.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Xinyu Liu
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Weiwei Cui
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Ruihong Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Yang Liu
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Yongkun Li
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
34
|
Becker HM, Deitmer JW. Proton Transport in Cancer Cells: The Role of Carbonic Anhydrases. Int J Mol Sci 2021; 22:ijms22063171. [PMID: 33804674 PMCID: PMC8003680 DOI: 10.3390/ijms22063171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Intra- and extracellular pH regulation is a pivotal function of all cells and tissues. Net outward transport of H+ is a prerequisite for normal physiological function, since a number of intracellular processes, such as metabolism and energy supply, produce acid. In tumor tissues, distorted pH regulation results in extracellular acidification and the formation of a hostile environment in which cancer cells can outcompete healthy local host cells. Cancer cells employ a variety of H+/HCO3−-coupled transporters in combination with intra- and extracellular carbonic anhydrase (CA) isoforms, to alter intra- and extracellular pH to values that promote tumor progression. Many of the transporters could closely associate to CAs, to form a protein complex coined “transport metabolon”. While transport metabolons built with HCO3−-coupled transporters require CA catalytic activity, transport metabolons with monocarboxylate transporters (MCTs) operate independently from CA catalytic function. In this article, we assess some of the processes and functions of CAs for tumor pH regulation and discuss the role of intra- and extracellular pH regulation for cancer pathogenesis and therapeutic intervention.
Collapse
Affiliation(s)
- Holger M. Becker
- Zoology and Animal Physiology, Institute of Zoology, TU Dresden, D-01217 Dresden, Germany
- Correspondence:
| | - Joachim W. Deitmer
- Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;
| |
Collapse
|
35
|
Itoh R, Hatano N, Murakami M, Mitsumori K, Kawasaki S, Wakagi T, Kanzaki Y, Kojima H, Kawaai K, Mikoshiba K, Hamada K, Mizutani A. Both IRBIT and long-IRBIT bind to and coordinately regulate Cl -/HCO 3- exchanger AE2 activity through modulating the lysosomal degradation of AE2. Sci Rep 2021; 11:5990. [PMID: 33727633 PMCID: PMC7966362 DOI: 10.1038/s41598-021-85499-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/02/2021] [Indexed: 02/04/2023] Open
Abstract
Anion exchanger 2 (AE2) plays crucial roles in regulating cell volume homeostasis and cell migration. We found that both IRBIT and Long-IRBIT (L-IRBIT) interact with anion exchanger 2 (AE2). The interaction occurred between the conserved AHCY-homologous domain of IRBIT/L-IRBIT and the N-terminal cytoplasmic region of AE2. Interestingly, AE2 activity was reduced in L-IRBIT KO cells, but not in IRBIT KO cells. Moreover, AE2 activity was slightly increased in IRBIT/L-IRBIT double KO cells. These changes in AE2 activity resulted from changes in the AE2 expression level of each mutant cell, and affected the regulatory volume increase and cell migration. The activity and expression level of AE2 in IRBIT/L-IRBIT double KO cells were downregulated if IRBIT, but not L-IRBIT, was expressed again in the cells, and the downregulation was cancelled by the co-expression of L-IRBIT. The mRNA levels of AE2 in each KO cell did not change, and the downregulation of AE2 in L-IRBIT KO cells was inhibited by bafilomycin A1. These results indicate that IRBIT binding facilitates the lysosomal degradation of AE2, which is inhibited by coexisting L-IRBIT, suggesting a novel regulatory mode of AE2 activity through the binding of two homologous proteins with opposing functions.
Collapse
Affiliation(s)
- Ryo Itoh
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Naoya Hatano
- Division of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Momoko Murakami
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Kosuke Mitsumori
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Satoko Kawasaki
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Tomoka Wakagi
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Yoshino Kanzaki
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Hiroyuki Kojima
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Katsuhiko Mikoshiba
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Koichi Hamada
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Akihiro Mizutani
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
36
|
Trampert DC, van de Graaf SFJ, Jongejan A, Oude Elferink RPJ, Beuers U. Hepatobiliary acid-base homeostasis: Insights from analogous secretory epithelia. J Hepatol 2021; 74:428-441. [PMID: 33342564 DOI: 10.1016/j.jhep.2020.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/03/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Many epithelia secrete bicarbonate-rich fluid to generate flow, alter viscosity, control pH and potentially protect luminal and intracellular structures from chemical stress. Bicarbonate is a key component of human bile and impaired biliary bicarbonate secretion is associated with liver damage. Major efforts have been undertaken to gain insight into acid-base homeostasis in cholangiocytes and more can be learned from analogous secretory epithelia. Extrahepatic examples include salivary and pancreatic duct cells, duodenocytes, airway and renal epithelial cells. The cellular machinery involved in acid-base homeostasis includes carbonic anhydrase enzymes, transporters of the solute carrier family, and intra- and extracellular pH sensors. This pH-regulatory system is orchestrated by protein-protein interactions, the establishment of an electrochemical gradient across the plasma membrane and bicarbonate sensing of the intra- and extracellular compartment. In this review, we discuss conserved principles identified in analogous secretory epithelia in the light of current knowledge on cholangiocyte physiology. We present a framework for cholangiocellular acid-base homeostasis supported by expression analysis of publicly available single-cell RNA sequencing datasets from human cholangiocytes, which provide insights into the molecular basis of pH homeostasis and dysregulation in the biliary system.
Collapse
Affiliation(s)
- David C Trampert
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ronald P J Oude Elferink
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Ulrich Beuers
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
37
|
Koltai T. Targeting the pH Paradigm at the Bedside: A Practical Approach. Int J Mol Sci 2020; 21:E9221. [PMID: 33287221 PMCID: PMC7730959 DOI: 10.3390/ijms21239221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
The inversion of the pH gradient in malignant tumors, known as the pH paradigm, is increasingly becoming accepted by the scientific community as a hallmark of cancer. Accumulated evidence shows that this is not simply a metabolic consequence of a dysregulated behavior, but rather an essential process in the physiopathology of accelerated proliferation and invasion. From the over-simplification of increased lactate production as the cause of the paradigm, as initially proposed, basic science researchers have arrived at highly complex and far-reaching knowledge, that substantially modified that initial belief. These new developments show that the paradigm entails a different regulation of membrane transporters, electrolyte exchangers, cellular and membrane enzymes, water trafficking, specialized membrane structures, transcription factors, and metabolic changes that go far beyond fermentative glycolysis. This complex world of dysregulations is still shuttered behind the walls of experimental laboratories and has not yet reached bedside medicine. However, there are many known pharmaceuticals and nutraceuticals that are capable of targeting the pH paradigm. Most of these products are well known, have low toxicity, and are also inexpensive. They need to be repurposed, and this would entail shorter clinical studies and enormous cost savings if we compare them with the time and expense required for the development of a new molecule. Will targeting the pH paradigm solve the "cancer problem"? Absolutely not. However, reversing the pH inversion would strongly enhance standard treatments, rendering them more efficient, and in some cases permitting lower doses of toxic drugs. This article's goal is to describe how to reverse the pH gradient inversion with existing drugs and nutraceuticals that can easily be used in bedside medicine, without adding toxicity to established treatments. It also aims at increasing awareness among practicing physicians that targeting the pH paradigm would be able to improve the results of standard therapies. Some clinical cases will be presented as well, showing how the pH gradient inversion can be treated at the bedside in a simple manner with repurposed drugs.
Collapse
Affiliation(s)
- Tomas Koltai
- Centro de Diagnostico y Tratamiento de la Obra Social del Personal de la Alimentacion, Talar de Pacheco, Buenos Aires 1617, Argentina
| |
Collapse
|
38
|
Ozensoy Guler O, Supuran CT, Capasso C. Carbonic anhydrase IX as a novel candidate in liquid biopsy. J Enzyme Inhib Med Chem 2020; 35:255-260. [PMID: 31790601 PMCID: PMC6896409 DOI: 10.1080/14756366.2019.1697251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
Among the diagnostic techniques for the identification of tumour biomarkers, the liquid biopsy is considered one that offers future research on precision diagnosis and treatment of tumours in a non-invasive manner. The approach consists of isolating tumor-derived components, such as circulating tumour cells (CTC), tumour cell-free DNA (ctDNA), and extracellular vesicles (EVs), from the patient peripheral blood fluids. These elements constitute a source of genomic and proteomic information for cancer treatment. Within the tumour-derived components of the body fluids, the enzyme indicated with the acronym CA IX and belonging to the superfamily of carbonic anhydrases (CA, EC 4.2.1.1) is a promising aspirant for checking tumours. CA IX is a transmembrane-CA isoform that is strongly overexpressed in many cancers being not much diffused in healthy tissues except the gastrointestinal tract. Here, it is summarised the role of CA IX as tumour-associated protein and its putative relationship in liquid biopsyfor diagnosing and monitoring cancer progression.
Collapse
Affiliation(s)
- Ozen Ozensoy Guler
- Department of Medical Biology, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Claudiu. T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| |
Collapse
|
39
|
Impairment of Hypoxia-Induced CA IX by Beta-Blocker Propranolol-Impact on Progression and Metastatic Potential of Colorectal Cancer Cells. Int J Mol Sci 2020; 21:ijms21228760. [PMID: 33228233 PMCID: PMC7699498 DOI: 10.3390/ijms21228760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
The coexistence of cancer and other concomitant diseases is very frequent and has substantial implications for treatment decisions and outcomes. Beta-blockers, agents that block the beta-adrenergic receptors, have been related also to cancers. In the model of multicellular spheroids formed by colorectal cancer cells we described a crosstalk between beta-blockade by propranolol and tumour microenvironment. Non-selective beta-blocker propranolol decreased ability of tumour cells to adapt to hypoxia by reducing levels of HIF1α and carbonic anhydrase IX in 3D spheroids. We indicated a double action of propranolol in the tumour microenvironment by inhibiting the stability of HIF1α, thus mediating decrease of CA IX expression and, at the same time, by its possible effect on CA IX activity by decreasing the activity of protein kinase A (PKA). Moreover, the inhibition of β-adrenoreceptors by propranolol enhanced apoptosis, decreased number of mitochondria and lowered the amount of proteins involved in oxidative phosphorylation (V-ATP5A, IV-COX2, III-UQCRC2, II-SDHB, I-NDUFB8). Propranolol reduced metastatic potential, viability and proliferation of colorectal cancer cells cultivated in multicellular spheroids. To choose the right treatment strategy, it is extremely important to know how the treatment of concomitant diseases affects the superior microenvironment that is directly related to the efficiency of anti-cancer therapy
Collapse
|
40
|
Simko V, Belvoncikova P, Csaderova L, Labudova M, Grossmannova K, Zatovicova M, Kajanova I, Skultety L, Barathova M, Pastorek J. PIMT Binding to C-Terminal Ala459 of CAIX Is Involved in Inside-Out Signaling Necessary for Its Catalytic Activity. Int J Mol Sci 2020; 21:ijms21228545. [PMID: 33198416 PMCID: PMC7696048 DOI: 10.3390/ijms21228545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/10/2023] Open
Abstract
Human carbonic anhydrase IX (CAIX), a unique member of the α carbonic anhydrase family, is a transmembrane glycoprotein with high enzymatic activity by which CAIX contributes to tumorigenesis through pH regulation. Due to its aberrant expression, CAIX is considered to be a marker of tumor hypoxia and a poor prognostic factor of several human cancers. Hypoxia-activated catalytic function of CAIX is dependent on posttranslational modification of its short intracellular domain. In this work, we have identified that C-terminal Ala459 residue, which is common across CAIX of various species as well as additional transmembrane isoforms, plays an important role in CAIX activation and in pH regulation. Moreover, structure prediction I-TASSER analysis revealed involvement of Ala459 in potential ligand binding. Using tandem mass spectrometry, Protein-L-isoaspartyl methyltransferase (PIMT) was identified as a novel interacting partner, further confirmed by an in vitro pulldown assay and an in situ proximity ligation assay. Indeed, suppression of PIMT led to increased alkalinization of culture media of C33a cells constitutively expressing CAIX in hypoxia. We suggest that binding of PIMT represents a novel intracellular signal required for enzymatic activity of CAIX with a potential unidentified downstream function.
Collapse
Affiliation(s)
- Veronika Simko
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Petra Belvoncikova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Lucia Csaderova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Martina Labudova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Katarina Grossmannova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Miriam Zatovicova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Ivana Kajanova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Ludovit Skultety
- Department of Rickettsiology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia;
| | - Monika Barathova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
- Correspondence: ; Tel.: +421-2-5930-2461
| | - Jaromir Pastorek
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
- Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| |
Collapse
|
41
|
Daunys S, Petrikaitė V. The roles of carbonic anhydrases IX and XII in cancer cell adhesion, migration, invasion and metastasis. Biol Cell 2020; 112:383-397. [PMID: 32894882 DOI: 10.1111/boc.201900099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/02/2012] [Indexed: 12/17/2022]
Abstract
The main function of carbonic anhydrases (CAs) in cancer cells is the pH regulation through a conversion of H2 O and CO2 to H+ and HCO3 - . However, the data of in vitro and in vivo studies have demonstrated that transmembrane isoforms of CA IX and CA XII are involved in various steps of cancer cell migration, invasion and metastasis. According to literature, inhibition of these CAs can affect the expression of multiple proteins. Some scientific groups have reported the possible interactions between CA IX and E-cadherin-catenin system, CA IX and integrins, CA IX, CA XII and ion transporters, which all are highly involved in cell-to-cell adhesion, the formation of membrane protrusions and focal adhesions. Nevertheless, CA IX and CA XII have a high impact on tumour growth and metastases formation. The data discussed in this review are quite recent. It highly support the role of CA IX and CA XII in various cancer metastasis processes through their interactions to other invasion proteins. Nevertheless, all findings show the great potential of these CAs in the context of research and application in clinical use.
Collapse
Affiliation(s)
- Simonas Daunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, LT-10257, Lithuania
| | - Vilma Petrikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, LT-10257, Lithuania.,Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| |
Collapse
|
42
|
Benej M, Svastova E, Banova R, Kopacek J, Gibadulinova A, Kery M, Arena S, Scaloni A, Vitale M, Zambrano N, Papandreou I, Denko NC, Pastorekova S. CA IX Stabilizes Intracellular pH to Maintain Metabolic Reprogramming and Proliferation in Hypoxia. Front Oncol 2020; 10:1462. [PMID: 32983978 PMCID: PMC7493625 DOI: 10.3389/fonc.2020.01462] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/09/2020] [Indexed: 01/14/2023] Open
Abstract
Tumor hypoxia represents a severe microenvironmental stress that is frequently associated with acidosis. Cancer cells respond to these stresses with changes in gene expression that promote survival at least in part through pH regulation and metabolic reprogramming. Hypoxia-induced carbonic anhydrase IX (CA IX) plays a critical adaptive role in response to hypoxic and acidic environments by catalytically hydrating extracellular CO2 to produce bicarbonate for buffering intracellular pH (pHi). We used proteome-wide profiling to study the cellular response to transient CA IX knockdown in hypoxia and found a decrease in the levels of key glycolytic enzymes and lactate dehydrogenase A (LDHA). Interestingly, the activity of LDH was also decreased as demonstrated by native in-gel activity assay. These changes led to a significant reduction in glycolytic flux and extracellular lactate levels in cancer cells in vitro, contributing to a decrease in proliferation. Interestingly, addition of the alternative LDH substrate alpha-ketobutyrate restored LDHA activity, extracellular acidification, pHi, and cellular proliferation. These results indicate that in the absence of CA IX, reduction of pHi disrupts LDHA activity and hinders the cellular capacity to regenerate NAD+ and secrete protons to the extracellular space. Hypoxia-induced CA IX therefore mediates adaptation to microenvironmental hypoxia and acidosis directly, by enzymatically converting extracellular CO2 to bicarbonate, and indirectly, by maintaining glycolysis-permissive intracellular milieu.
Collapse
Affiliation(s)
- Martin Benej
- The Ohio State University Wexner Medical Center and OSU Comprehensive Cancer Center, Columbus, OH, United States.,Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eliska Svastova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radivojka Banova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Juraj Kopacek
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adriana Gibadulinova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Kery
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Simona Arena
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Monica Vitale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Ioanna Papandreou
- The Ohio State University Wexner Medical Center and OSU Comprehensive Cancer Center, Columbus, OH, United States
| | - Nicholas C Denko
- The Ohio State University Wexner Medical Center and OSU Comprehensive Cancer Center, Columbus, OH, United States
| | - Silvia Pastorekova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
43
|
Zheng T, Jäättelä M, Liu B. pH gradient reversal fuels cancer progression. Int J Biochem Cell Biol 2020; 125:105796. [DOI: 10.1016/j.biocel.2020.105796] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
|
44
|
Strapcova S, Takacova M, Csaderova L, Martinelli P, Lukacikova L, Gal V, Kopacek J, Svastova E. Clinical and Pre-Clinical Evidence of Carbonic Anhydrase IX in Pancreatic Cancer and Its High Expression in Pre-Cancerous Lesions. Cancers (Basel) 2020; 12:E2005. [PMID: 32707920 PMCID: PMC7464147 DOI: 10.3390/cancers12082005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Hypoxia is a common phenomenon that occurs in most solid tumors. Regardless of tumor origin, the evolution of a hypoxia-adapted phenotype is critical for invasive cancer development. Pancreatic ductal adenocarcinoma is also characterized by hypoxia, desmoplasia, and the presence of necrosis, predicting poor outcome. Carbonic anhydrase IX (CAIX) is one of the most strict hypoxia regulated genes which plays a key role in the adaptation of cancer cells to hypoxia and acidosis. Here, we summarize clinical data showing that CAIX expression is associated with tumor necrosis, vascularization, expression of Frizzled-1, mucins, or proteins involved in glycolysis, and inevitably, poor prognosis of pancreatic cancer patients. We also describe the transcriptional regulation of CAIX in relation to signaling pathways activated in pancreatic cancers. A large part deals with the preclinical evidence supporting the relevance of CAIX in processes leading to the aggressive behavior of pancreatic tumors. Furthermore, we focus on CAIX occurrence in pre-cancerous lesions, and for the first time, we describe CAIX expression within intraductal papillary mucinous neoplasia. Our review concludes with a detailed account of clinical trials implicating that treatment consisting of conventionally used therapies combined with CAIX targeting could result in an improved anti-cancer response in pancreatic cancer patients.
Collapse
Affiliation(s)
- Sabina Strapcova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Martina Takacova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Lucia Csaderova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Paola Martinelli
- Institute of Cancer Research, Clinic of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
- Cancer Cell Signaling, Boehringer-Ingelheim RCV Vienna, A-1121 Vienna, Austria
| | - Lubomira Lukacikova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Viliam Gal
- Alpha Medical Pathology, Ruzinovska 6, 82606 Bratislava, Slovakia;
| | - Juraj Kopacek
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Eliska Svastova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| |
Collapse
|
45
|
Tian H, Zhu X, Lv Y, Jiao Y, Wang G. Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect. Cancer Manag Res 2020; 12:5957-5974. [PMID: 32765096 PMCID: PMC7381782 DOI: 10.2147/cmar.s258196] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a tumor that exhibits glucometabolic reprogramming, with a high incidence and poor prognosis. Usually, HCC is not discovered until an advanced stage. Sorafenib is almost the only drug that is effective at treating advanced HCC, and promising metabolism-related therapeutic targets of HCC are urgently needed. The “Warburg effect” illustrates that tumor cells tend to choose aerobic glycolysis over oxidative phosphorylation (OXPHOS), which is closely related to the features of the tumor microenvironment (TME). The HCC microenvironment consists of hypoxia, acidosis and immune suppression, and contributes to tumor glycolysis. In turn, the glycolysis of the tumor aggravates hypoxia, acidosis and immune suppression, and leads to tumor proliferation, angiogenesis, epithelial–mesenchymal transition (EMT), invasion and metastasis. In 2017, a mechanism underlying the effects of gluconeogenesis on inhibiting glycolysis and blockading HCC progression was proposed. Treating HCC by increasing gluconeogenesis has attracted increasing attention from scientists, but few articles have summarized it. In this review, we discuss the mechanisms associated with the TME, glycolysis and gluconeogenesis and the current treatments for HCC. We believe that a treatment combination of sorafenib with TME improvement and/or anti-Warburg therapies will set the trend of advanced HCC therapy in the future.
Collapse
Affiliation(s)
- Huining Tian
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| |
Collapse
|
46
|
Lee SH, Griffiths JR. How and Why Are Cancers Acidic? Carbonic Anhydrase IX and the Homeostatic Control of Tumour Extracellular pH. Cancers (Basel) 2020; 12:cancers12061616. [PMID: 32570870 PMCID: PMC7352839 DOI: 10.3390/cancers12061616] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
The acidic tumour microenvironment is now recognized as a tumour phenotype that drives cancer somatic evolution and disease progression, causing cancer cells to become more invasive and to metastasise. This property of solid tumours reflects a complex interplay between cellular carbon metabolism and acid removal that is mediated by cell membrane carbonic anhydrases and various transport proteins, interstitial fluid buffering, and abnormal tumour-associated vessels. In the past two decades, a convergence of advances in the experimental and mathematical modelling of human cancers, as well as non-invasive pH-imaging techniques, has yielded new insights into the physiological mechanisms that govern tumour extracellular pH (pHe). In this review, we examine the mechanisms by which solid tumours maintain a low pHe, with a focus on carbonic anhydrase IX (CAIX), a cancer-associated cell surface enzyme. We also review the accumulating evidence that suggest a role for CAIX as a biological pH-stat by which solid tumours stabilize their pHe. Finally, we highlight the prospects for the clinical translation of CAIX-targeted therapies in oncology.
Collapse
Affiliation(s)
- Shen-Han Lee
- Department of Otorhinolaryngology, Hospital Sultanah Bahiyah, Jalan Langgar, Alor Setar 05460, Kedah, Malaysia
- Correspondence:
| | - John R. Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK;
| |
Collapse
|
47
|
CAIX-Mediated Control of LIN28/ let-7 Axis Contributes to Metabolic Adaptation of Breast Cancer Cells to Hypoxia. Int J Mol Sci 2020; 21:ijms21124299. [PMID: 32560271 PMCID: PMC7352761 DOI: 10.3390/ijms21124299] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Solid tumors, including breast cancer, are characterized by the hypoxic microenvironment, extracellular acidosis, and chemoresistance. Hypoxia marker, carbonic anhydrase IX (CAIX), is a pH regulator providing a selective survival advantage to cancer cells through intracellular neutralization while facilitating tumor invasion by extracellular acidification. The expression of CAIX in breast cancer patients is associated with poor prognosis and metastases. Importantly, CAIX-positive hypoxic tumor regions are enriched in cancer stem cells (CSCs). Here we investigated the biological effects of CA9-silencing in breast cancer cell lines. We found that CAIX-downregulation in hypoxia led to increased levels of let-7 (lethal-7) family members. Simultaneously with the increase of let-7 miRNAs in CAIX-suppressed cells, LIN28 protein levels decreased, along with downstream metabolic pathways: pyruvate dehydrogenase kinase 1 (PDK1) and phosphorylation of its substrate, pyruvate dehydrogenase (PDH) at Ser-232, causing attenuation of glycolysis. In addition to perturbed glycolysis, CAIX-knockouts, in correlation with decreased LIN28 (as CSC reprogramming factor), also exhibit reduction of the further CSC-associated markers NANOG (Homeobox protein NANOG) and ALDH1 (Aldehyde dehydrogenase isoform 1). Oppositely, overexpression of CAIX leads to the enhancement of LIN28, ALDH1, and NANOG. In conclusion, CAIX-driven regulation of the LIN28/let-7 axis augments glycolytic metabolism and enhances stem cell markers expression during CAIX-mediated adaptation to hypoxia and acidosis in carcinogenesis.
Collapse
|
48
|
Berrino E, Angeli A, Zhdanov DD, Kiryukhina AP, Milaneschi A, De Luca A, Bozdag M, Carradori S, Selleri S, Bartolucci G, Peat TS, Ferraroni M, Supuran CT, Carta F. Azidothymidine "Clicked" into 1,2,3-Triazoles: First Report on Carbonic Anhydrase-Telomerase Dual-Hybrid Inhibitors. J Med Chem 2020; 63:7392-7409. [PMID: 32463228 PMCID: PMC8154556 DOI: 10.1021/acs.jmedchem.0c00636] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Cancer cells rely on the enzyme telomerase
(EC 2.7.7.49) to promote
cellular immortality. Telomerase inhibitors (i.e., azidothymidine)
can represent promising antitumor agents, although showing high toxicity
when administered alone. Better outcomes were observed within a multipharmacological
approach instead. In this context, we exploited the validated antitumor
targets carbonic anhydrases (CAs; EC 4.2.1.1) IX and XII to attain
the first proof of concept on CA–telomerase dual-hybrid inhibitors.
Compounds 1b, 7b, 8b, and 11b showed good in vitro
inhibition potency against the CAs IX and XII, with KI values in the low nanomolar range, and strong antitelomerase
activity in PC-3 and HT-29 cells (IC50 values ranging from
5.2 to 9.1 μM). High-resolution X-ray crystallography on selected
derivatives in the adduct with hCA II as a model study allowed to
determine their binding modes and thus to set the structural determinants
necessary for further development of compounds selectively targeting
the tumoral cells.
Collapse
Affiliation(s)
- Emanuela Berrino
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Dmitry D Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia.,Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| | - Anna P Kiryukhina
- Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia
| | - Andrea Milaneschi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Alessandro De Luca
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Murat Bozdag
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Silvia Selleri
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Gianluca Bartolucci
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Thomas S Peat
- CSIRO, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Marta Ferraroni
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
49
|
Kajanova I, Zatovicova M, Jelenska L, Sedlakova O, Barathova M, Csaderova L, Debreova M, Lukacikova L, Grossmannova K, Labudova M, Golias T, Svastova E, Ludwig A, Muller P, Vojtesek B, Pastorek J, Pastorekova S. Impairment of carbonic anhydrase IX ectodomain cleavage reinforces tumorigenic and metastatic phenotype of cancer cells. Br J Cancer 2020; 122:1590-1603. [PMID: 32210366 PMCID: PMC7250822 DOI: 10.1038/s41416-020-0804-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/30/2019] [Accepted: 03/03/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Carbonic anhydrase IX (CA IX) is a hypoxia-induced enzyme regulating tumour pH and facilitating cell migration/invasion. It is primarily expressed as a transmembrane cell-surface protein, but its ectodomain can be shed by ADAM17 to extracellular space. This study aims to elucidate the impact of CA IX shedding on cancer cells. METHODS We generated a non-shed CA IX mutant by deletion of amino acids 393-402 from the stalk region and studied its phenotypic effects compared to full-length, shedding-competent CA IX using a range of assays based on immunodetection, confocal microscopy, in vitro real-time cell monitoring and in vivo tumour cell inoculation using xenografted NMRI and C57BL/6J female mice. RESULTS We demonstrated that the impairment of shedding does not alter the ability of CA IX to bind ADAM17, internalise, form oligomers and regulate pH, but induces cancer-promoting changes in extracellular proteome. Moreover, it affects intrinsic properties of cells expressing the non-shed variant, in terms of their increased ability to migrate, generate primary tumours and form metastatic lesions in lungs. CONCLUSIONS Our results show that the ectodomain shedding controls pro-tumorigenic and pro-metastatic roles of the cell-associated CA IX and suggest that this phenomenon should be considered when developing CA IX-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ivana Kajanova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Miriam Zatovicova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Lenka Jelenska
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Olga Sedlakova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Monika Barathova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Lucia Csaderova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Michaela Debreova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Lubomira Lukacikova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Katarina Grossmannova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Martina Labudova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Tereza Golias
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Eliska Svastova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Andreas Ludwig
- 0000 0001 0728 696Xgrid.1957.aInstitute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Petr Muller
- grid.419466.8RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Borivoj Vojtesek
- grid.419466.8RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Jaromir Pastorek
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Silvia Pastorekova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| |
Collapse
|
50
|
Becker HM, Deitmer JW. Transport Metabolons and Acid/Base Balance in Tumor Cells. Cancers (Basel) 2020; 12:cancers12040899. [PMID: 32272695 PMCID: PMC7226098 DOI: 10.3390/cancers12040899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Solid tumors are metabolically highly active tissues, which produce large amounts of acid. The acid/base balance in tumor cells is regulated by the concerted interplay between a variety of membrane transporters and carbonic anhydrases (CAs), which cooperate to produce an alkaline intracellular, and an acidic extracellular, environment, in which cancer cells can outcompete their adjacent host cells. Many acid/base transporters form a structural and functional complex with CAs, coined "transport metabolon". Transport metabolons with bicarbonate transporters require the binding of CA to the transporter and CA enzymatic activity. In cancer cells, these bicarbonate transport metabolons have been attributed a role in pH regulation and cell migration. Another type of transport metabolon is formed between CAs and monocarboxylate transporters, which mediate proton-coupled lactate transport across the cell membrane. In this complex, CAs function as "proton antenna" for the transporter, which mediate the rapid exchange of protons between the transporter and the surroundings. These transport metabolons do not require CA catalytic activity, and support the rapid efflux of lactate and protons from hypoxic cancer cells to allow sustained glycolytic activity and cell proliferation. Due to their prominent role in tumor acid/base regulation and metabolism, transport metabolons might be promising drug targets for new approaches in cancer therapy.
Collapse
Affiliation(s)
- Holger M. Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
- Correspondence:
| | - Joachim W. Deitmer
- Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;
| |
Collapse
|