1
|
Vitaliti A, Reggio A, Palma A. Macrophages and autophagy: partners in crime. FEBS J 2024. [PMID: 39439196 DOI: 10.1111/febs.17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Macrophages and autophagy are intricately linked, both playing vital roles in maintaining homeostasis and responding to disease. Macrophages, known for their 'eating' function, rely on a sophisticated digestion system to process a variety of targets, from apoptotic cells to pathogens. The connection between macrophages and autophagy is established early in their development, influencing both differentiation and mature functions. Autophagy regulates essential immune functions, such as inflammation control, pathogen clearance, and antigen presentation, linking innate and adaptive immunity. Moreover, it modulates cytokine production, ensuring a balanced inflammatory response that prevents excessive tissue damage. Autophagy also plays a critical role in macrophage polarization, influencing their shift between pro-inflammatory and anti-inflammatory states. This review explores the role of autophagy in macrophages, emphasizing its impact across various tissues and pathological conditions, and detailing the cellular and molecular mechanisms by which autophagy shapes macrophage function.
Collapse
Affiliation(s)
- Alessandra Vitaliti
- Department of Chemical Science and Technologies, "Tor Vergata" University of Rome, Italy
| | - Alessio Reggio
- Saint Camillus International University of Health Sciences, Rome, Italy
| | - Alessandro Palma
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Italy
| |
Collapse
|
2
|
Galué-Parra A, de Moraes LS, Hage AAP, Castro de Sena CB, Nascimento JLMD, da Silva EO. In vitro immunomodulatory effects of Caryocar villosum oil on murine macrophages. Biomed Pharmacother 2024; 179:117360. [PMID: 39232387 DOI: 10.1016/j.biopha.2024.117360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Macrophages undergo activation in response to multiple stimuli, including pathogens, growth factors and natural products. The inflammatory response and oxidative stress play critical roles in such macrophage activation. Some natural products reportedly promote immunoregulatory effects and the control of macrophage activation. Caryocar villosum (Cv), a native amazon plant, contains compounds that are an important source of molecules capable of macrophage activation. Herein, we demonstrate the immunomodulatory effects of oil obtained from Caryocar villosum (CvO) on macrophages. Macrophages were treated with varying concentrations of CvO, and resulting cellular morphological and functional changes were evaluated, including the production of nitric oxide (NO), reactive oxygen species (ROS), cytokines and phagocytic activity. Treatment of cells with 50 and 100 μg/mL CvO induced morphological and physiological alterations in the macrophages, such as increased cell surface and phagocytic activity. Additionally, treatment increased the productions of inflammatory cytokines (INF-γ, TNF-α, IL-6) and anti-inflammatory cytokines (IL-17 and IL-10) by macrophages, and significantly decreased ROS levels. In conclusion, these data suggest that, due to molecular diversity, CvO promoted an immunomodulatory effect on macrophages, mediated by an increased production of cytokines, and inhibition of ROS generation and phagocytic activity. Thus, CvO presents potential as a therapeutic agent for the treatment of inflammatory and non-inflammatory diseases.
Collapse
Affiliation(s)
- Adan Galué-Parra
- Laboratory of Structural Biology, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil; Postgraduate Program in Biology of Infectious and Parasitic Agents, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil; National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lienne Silveira de Moraes
- Laboratory of Structural Biology, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil
| | - Amanda Anastácia Pinto Hage
- Laboratory of Structural Biology, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil
| | - Chubert Bernardo Castro de Sena
- Laboratory of Structural Biology, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil; National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Luiz Martins do Nascimento
- Laboratory of Molecular and Cellular Neurochemistry, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil; National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edilene Oliveira da Silva
- Laboratory of Structural Biology, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil; Postgraduate Program in Biology of Infectious and Parasitic Agents, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil; National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Liu Z, Zeinalzadeh Z, Huang T, Han Y, Peng L, Wang D, Zhou Z, Ousmane D, Wang J. Identification of endoplasmic reticulum stress-associated genes and subtypes for predicting risk signature and depicting immune features in inflammatory bowel disease. Heliyon 2024; 10:e37053. [PMID: 39296237 PMCID: PMC11409092 DOI: 10.1016/j.heliyon.2024.e37053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) becomes a significant factor in inflammatory bowel disease (IBD), like Crohn's disease (CD) and ulcerative colitis (UC). Our research was aimed at identifying molecular markers to enhance our understanding of ERS and inflammation in IBD, recognizing risk factors and high-risk groups at the molecular level, and developing a predictive model on the grounds of based on ERS-associated genes. This research adopted the least absolute shrinkage and selection operator (LASSO) regression and logistic regression to build a predictive model, and categorized IBD patients into high- and low-risk groups, and then identified four gene clusters. Our key findings included a significant increase in drug target gene expression in high-risk groups, notable discrepancies in immune levels, and functions between high-risk and low-risk groups. Notably, the TAP1 gene emerged as a strong predictor with the highest diagnostic value (area under the curve [AUC] = 0.941). TAP1 encodes proteins required for antigenic peptide transfer across the endoplasmic reticulum (ER) membrane, and its potential as a diagnostic marker and therapeutic target is reflected by its overexpression in IBD tissues. Our study established a new ERS-associated gene model which could forecast the risk, immunological status, and treatment efficacy of patients with IBD. These findings suggest potential targets for personalized therapy and highlight the significance of ERS in the etiology and therapy of IBD. Future studies should explore the therapeutic potential of targeting TAP1 and other ERS-related genes for IBD management.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Zahra Zeinalzadeh
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yingying Han
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Lushan Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Dan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Zongjiang Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Diabate Ousmane
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
4
|
Zhu M, Cheng Y, Zuo L, Bin B, Shen H, Meng T, Wu Z, Rao P, Tang Y, Li S, Xu H, Sun G, Wang H, Zhang G, Liu J. siRNA-loaded folic acid-modified TPGS alleviate MASH via targeting ER stress sensor XBP1 and reprogramming macrophages. Int J Biol Sci 2024; 20:3823-3841. [PMID: 39113706 PMCID: PMC11302883 DOI: 10.7150/ijbs.96113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/04/2024] [Indexed: 08/10/2024] Open
Abstract
Macrophages show high plasticity and play a vital role in the progression of metabolic dysfunction-associated steatohepatitis (MASH). X-box binding protein 1 (XBP1), a key sensor of the unfolded protein response, can modulate macrophage-mediated pro-inflammatory responses in the pathogenesis of MASH. However, how XBP1 influences macrophage plasticity and promotes MASH progression remains unclear. Herein, we formulated an Xbp1 siRNA delivery system based on folic acid modified D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles (FT@XBP1) to explore the precise role of macrophage-specific Xbp1 deficiency in the progression of MASH. FT@XBP1 was specifically internalized into hepatic macrophages and subsequently inhibited the expression of spliced XBP1 both in vitro and in vivo. It promoted M1-phenotype macrophage repolarization to M2 macrophages, reduced the release of pro-inflammatory factors, and alleviated hepatic steatosis, liver injury, and fibrosis in mice with fat-, fructose- and cholesterol-rich diet-induced MASH. Mechanistically, FT@XBP1 promoted macrophage polarization toward the M2 phenotype and enhanced the release of exosomes that could inhibit the activation of hepatic stellate cells. A promising macrophage-targeted siRNA delivery system was revealed to pave a promising strategy in the treatment of MASH.
Collapse
Affiliation(s)
- Manman Zhu
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Yong Cheng
- School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Li Zuo
- Department of Pathology, Laboratory of Mucosal Barrier Pathobiology, Anhui Medical University, Hefei230032, Anhui, China
| | - Bao Bin
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Haiyuan Shen
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Tao Meng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Zihao Wu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Peng Rao
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Yue Tang
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Shuojiao Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Honghai Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Guoping Sun
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Jiatao Liu
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
5
|
Huang X, Jiang F, Ma Y, Zhu K, Wang Z, Hua Z, Yu J, Zhang L. A bibliometric analysis of endoplasmic reticulum stress and atherosclerosis. Front Physiol 2024; 15:1392454. [PMID: 38938744 PMCID: PMC11210825 DOI: 10.3389/fphys.2024.1392454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The mechanisms underlying the occurrence and development of atherosclerosis (AS) are diverse, among which endoplasmic reticulum stress (ERS) is an important mechanism that should not be overlooked. However, up to now, there has been no bibliometric study on the relationship between ERS and AS. To understand the research progress in ERS and AS, this paper conducted a statistical analysis of publications in this field using bibliometrics. A total of 1,035 records were retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, and the R package "bibliometric" were used to analyze the spatiotemporal distribution, countries, authors, institutions, journals, references, and keywords of the literature, and to present the basic information of this field through visualized maps, as well as determine the collaboration relationships among researchers in this field. This field has gradually developed and stabilized over the past 20 years. The current research hotspots in this field mainly include the relationship between ERS and AS-related cells, the mechanisms by which ERS promotes AS, related diseases, and associated cytokines, etc. Vascular calcification, endothelial dysfunction, NLRP3 inflammasome, and heart failure represent the frontier research in this field and are becoming new research hotspots. It is hoped that this study will provide new insights for research and clinical work in the field of ERS and AS.
Collapse
Affiliation(s)
- Xinyu Huang
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Feng Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Yongbo Ma
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Kunpeng Zhu
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Zhenyuan Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Zhen Hua
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Jie Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| |
Collapse
|
6
|
Liu S, Zhang B, Zhou J, Lv J, Zhang J, Li X, Yang W, Guo Y. Inhibition of differentiation of monocyte-derived macrophages toward an M2-Like phenotype May Be a neglected mechanism of β-AR receptor blocker therapy for atherosclerosis. Front Pharmacol 2024; 15:1378787. [PMID: 38903990 PMCID: PMC11188457 DOI: 10.3389/fphar.2024.1378787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
The clinical efficacy of adrenergic β-receptor (β-AR) blockers in significantly stabilizing atherosclerotic plaques has been extensively supported by evidence-based medical research; however, the underlying mechanism remains unclear. Recent findings have highlighted the impact of lipid-induced aberrant polarization of macrophages during normal inflammatory-repair and regenerative processes on atherosclerosis formation and progression. In this review, we explore the relationship between macrophage polarization and atherosclerosis, as well as the influence of β-AR blockers on macrophage polarization. Based on the robust evidence supporting the use of β-AR blockers for treating atherosclerosis, we propose that their main mechanism involves inhibiting monocyte-derived macrophage differentiation towards an M2-like phenotype.
Collapse
Affiliation(s)
| | | | - Jingqun Zhou
- Affiliated Renhe Hospital, China Three Gorges University, Yichang, China
| | | | | | | | | | | |
Collapse
|
7
|
Hou X, Qu X, Chen W, Sang X, Ye Y, Wang C, Guo Y, Shi H, Yang C, Zhu K, Zhang Y, Xu H, Lv L, Zhang D, Hou L. CD36 deletion prevents white matter injury by modulating microglia polarization through the Traf5-MAPK signal pathway. J Neuroinflammation 2024; 21:148. [PMID: 38840180 PMCID: PMC11155181 DOI: 10.1186/s12974-024-03143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND White matter injury (WMI) represents a significant etiological factor contributing to neurological impairment subsequent to Traumatic Brain Injury (TBI). CD36 receptors are recognized as pivotal participants in the pathogenesis of neurological disorders, including stroke and spinal cord injury. Furthermore, dynamic fluctuations in the phenotypic polarization of microglial cells have been intimately associated with the regenerative processes within the injured tissue following TBI. Nevertheless, there is a paucity of research addressing the impact of CD36 receptors on WMI and microglial polarization. This investigation aims to elucidate the functional role and mechanistic underpinnings of CD36 in modulating microglial polarization and WMI following TBI. METHODS TBI models were induced in murine subjects via controlled cortical impact (CCI). The spatiotemporal patterns of CD36 expression were examined through quantitative polymerase chain reaction (qPCR), Western blot analysis, and immunofluorescence staining. The extent of white matter injury was assessed via transmission electron microscopy, Luxol Fast Blue (LFB) staining, and immunofluorescence staining. Transcriptome sequencing was employed to dissect the molecular mechanisms underlying CD36 down-regulation and its influence on white matter damage. Microglial polarization status was ascertained using qPCR, Western blot analysis, and immunofluorescence staining. In vitro, a Transwell co-culture system was employed to investigate the impact of CD36-dependent microglial polarization on oligodendrocytes subjected to oxygen-glucose deprivation (OGD). RESULTS Western blot and qPCR analyses revealed that CD36 expression reached its zenith at 7 days post-TBI and remained sustained at this level thereafter. Immunofluorescence staining exhibited robust CD36 expression in astrocytes and microglia following TBI. Genetic deletion of CD36 ameliorated TBI-induced white matter injury, as evidenced by a reduced SMI-32/MBP ratio and G-ratio. Transcriptome sequencing unveiled differentially expressed genes enriched in processes linked to microglial activation, regulation of neuroinflammation, and the TNF signaling pathway. Additionally, bioinformatics analysis pinpointed the Traf5-p38 axis as a critical signaling pathway. In vivo and in vitro experiments indicated that inhibition of the CD36-Traf5-MAPK axis curtailed microglial polarization toward the pro-inflammatory phenotype. In a Transwell co-culture system, BV2 cells treated with LPS + IFN-γ exacerbated the damage of post-OGD oligodendrocytes, which could be rectified through CD36 knockdown in BV2 cells. CONCLUSIONS This study illuminates that the suppression of CD36 mitigates WMI by constraining microglial polarization towards the pro-inflammatory phenotype through the down-regulation of the Traf5-MAPK signaling pathway. Our findings present a potential therapeutic strategy for averting neuroinflammatory responses and ensuing WMI damage resulting from TBI.
Collapse
Affiliation(s)
- Xiaoxiang Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Xiaolin Qu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Wen Chen
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Xianzheng Sang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Yichao Ye
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Chengqing Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Yangu Guo
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Hantong Shi
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Chengzi Yang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Kaixin Zhu
- Department of Neurosurgery, The First Naval Hospital of Southern Theater Command, Zhanjiang, China
| | - Yelei Zhang
- Department of Neurosurgery, Xishan People's Hospital of Wuxi City, Wuxi, China
| | - Haoxiang Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Liquan Lv
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China.
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China.
| |
Collapse
|
8
|
Javanshir E, Ebrahimi ZJ, Mirzohreh ST, Ghaffari S, Banisefid E, Alamdari NM, Roshanravan N. Disparity of gene expression in coronary artery disease: insights from MEIS1, HIRA, and Myocardin. Mol Biol Rep 2024; 51:712. [PMID: 38824221 DOI: 10.1007/s11033-024-09657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Coronary artery disease (CAD) in young adults can have devastating consequences. The cardiac developmental gene MEIS1 plays important roles in vascular networks and heart development. This gene effects on the regeneration capacity of the heart. Considering role of MEIS1 in cardiac tissue development and the progression of myocardial infarction this study investigated the expression levels of the MEIS1, HIRA, and Myocardin genes in premature CAD patients compared to healthy subjects and evaluated the relationships between these genes and possible inflammatory factors. METHODS AND RESULTS The study conducted a case-control design involving 35 CAD patients and 35 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were collected, and gene expression analysis was performed using real-time PCR. Compared with control group, the number of PBMCs in the CAD group exhibited greater MEIS1 and HIRA gene expression, with fold changes of 2.45 and 3.6. The expression of MEIS1 exhibited a negative correlation with IL-10 (r= -0.312) expression and positive correlation with Interleukin (IL)-6 (r = 0.415) and tumor necrosis factor (TNF)-α (r = 0.534) gene expression. Moreover, there was an inverse correlation between the gene expression of HIRA and that of IL-10 (r= -0.326), and a positive correlation was revealed between the expression of this gene and that of the IL-6 (r = 0.453) and TNF-α (r = 0.572) genes. CONCLUSION This research demonstrated a disparity in expression levels of MEIS1, HIRA, and Myocardin, between CAD and healthy subjects. The results showed that, MEIS1 and HIRA play significant roles in regulating the synthesis of proinflammatory cytokines, namely, TNF-α and IL-6.
Collapse
Affiliation(s)
- Elnaz Javanshir
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Banisefid
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Neda Roshanravan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Huang J, Wei J, Xia X, Xiao S, Jin S, Zou Q, Zuo Y, Li Y, Li J. A sequential macrophage activation strategy for bone regeneration: A micro/nano strontium-releasing composite scaffold loaded with lipopolysaccharide. Mater Today Bio 2024; 26:101063. [PMID: 38698884 PMCID: PMC11063594 DOI: 10.1016/j.mtbio.2024.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 05/05/2024] Open
Abstract
Effective tissue repair relies on the orchestration of different macrophage phenotypes, both the M2 phenotype (promotes tissue repair) and M1 phenotype (pro-inflammatory) deserve attention. In this study, we propose a sequential immune activation strategy to mediate bone regeneration, by loading lipopolysaccharide (LPS) onto the surface of a strontium (Sr) ions -contained composite scaffold, which was fabricated by combining Sr-doped micro/nano-hydroxyapatite (HA) and dual degradable matrices of polycaprolactone (PCL) and poly (lactic-co-glycolic acid) (PLGA). Our strategy involves the sequential release of LPS to promote macrophage homing and induce the expression of the pro-inflammatory M1 phenotype, followed by the release of Sr ions to suppress inflammation. In vitro and in vivo experiments demonstrated that, the appropriate pro-inflammatory effects at the initial stage of implantation, along with the anti-inflammatory effects at the later stage, as well as the structural stability of the scaffolds conferred by the composition, can synergistically promote the regeneration and repair of bone defects.
Collapse
Affiliation(s)
- Jinhui Huang
- Yunnan Key Laboratory of Stomatology, School and Hospital of Stomatology, Kunming Medical University, Kunming, 650106, China
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Jiawei Wei
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Xue Xia
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Shiqi Xiao
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Shue Jin
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
10
|
Deng J, Liu J, Chen W, Liang Q, He Y, Sun G. Effects of Natural Products through Inhibiting Endoplasmic Reticulum Stress on Attenuation of Idiopathic Pulmonary Fibrosis. Drug Des Devel Ther 2024; 18:1627-1650. [PMID: 38774483 PMCID: PMC11108075 DOI: 10.2147/dddt.s388920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
With ever-increasing intensive studies of idiopathic pulmonary fibrosis (IPF), significant progresses have been made. Endoplasmic reticulum stress (ERS)/unfolded protein reaction (UPR) is associated with the development and progression of IPF, and targeting ERS/UPR may be beneficial in the treatment of IPF. Natural product is a tremendous source of new drug discovery, and accumulating studies have reported that many natural products show potential therapeutic effects for IPF via modulating one or more branches of the ERS signaling pathway. Therefore, this review focuses on critical roles of ERS in IPF development, and summarizes herbal preparations and bioactive compounds which protect against IPF through regulating ERS.
Collapse
Affiliation(s)
- JiuLing Deng
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - Jing Liu
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - WanSheng Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Qing Liang
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - YuQiong He
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - GuangChun Sun
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| |
Collapse
|
11
|
Derler M, Teubenbacher T, Carapuig A, Nieswandt B, Fessler J, Kolb D, Mussbacher M. Platelets induce endoplasmic reticulum stress in macrophages in vitro. J Thromb Haemost 2024; 22:1475-1488. [PMID: 38278417 DOI: 10.1016/j.jtha.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/23/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress is a key feature of lipid-laden macrophages and contributes to the development of atherosclerotic plaques. Blood platelets are known to interact with macrophages and fine-tune effector functions such as inflammasome activation and phagocytosis. However, the effect of platelets on ER stress induction is unknown. OBJECTIVES The objective of this study is to elucidate the potential of platelets in regulating ER stress in macrophages in vitro. METHODS Bone marrow-derived macrophages and RAW 264.7 cells were incubated with isolated murine platelets, and ER stress and inflammation markers were determined by reverse transcription-quantitative polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. ER morphology was investigated by electron microscopy. Cell viability, lipid accumulation, and activation were measured by flow cytometry. To gain mechanistic insights, coincubation experiments were performed with platelet decoys/releasates as well as lipopolysaccharide, blocking antibodies, and TLR4 inhibitors. RESULTS Coincubation of platelets and macrophages led to elevated levels of ER stress markers (BIP, IRE1α, CHOP, and XBP1 splicing) in murine and human macrophages, which led to a pronounced enlargement of the ER. Macrophage ER stress was accompanied by increased release of proinflammatory cytokines and intracellular lipid accumulation, but not cell death. Platelet decoys, but not platelet releasates or lysate from other cells, phenocopied the effect of platelets. Blocking TLR4 inhibited inflammatory activation of macrophages but did not affect ER stress induction by platelet coincubation. CONCLUSION To our knowledge, this study is the first to demonstrate that platelets induce ER stress and unfolded protein response in macrophages by heat-sensitive membrane proteins, independent of inflammatory activation of macrophages.
Collapse
Affiliation(s)
- Martina Derler
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Theresa Teubenbacher
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Anna Carapuig
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, Chair of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany; Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Johannes Fessler
- Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Center for Medical Research, Core Facility Ultrastructure Analysis, Medical University of Graz, Graz, Austria; Division of Cell Biology, Histology, and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
12
|
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung KF, Diamant Z, Eguiluz‐Gracia I, Knol EF, Jesenak M, Levi‐Schaffer F, Nocentini G, O'Mahony L, Palomares O, Redegeld F, Sokolowska M, Van Esch BCAM, Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy 2024; 79:1089-1122. [PMID: 38108546 PMCID: PMC11497319 DOI: 10.1111/all.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
Collapse
Affiliation(s)
- F. Roth‐Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - I. M. Adcock
- Molecular Cell Biology Group, National Heart & Lung InstituteImperial College LondonLondonUK
| | - C. Benito‐Villalvilla
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - R. Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
| | - L. Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence CenterLund UniversityLundSweden
| | - G. Caramori
- Department of Medicine and SurgeryUniversity of ParmaPneumologiaItaly
| | - L. Cari
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - K. F. Chung
- Experimental Studies Medicine at National Heart & Lung InstituteImperial College London & Royal Brompton & Harefield HospitalLondonUK
| | - Z. Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical ScienceSkane University HospitalLundSweden
- Department of Respiratory Medicine, First Faculty of MedicineCharles University and Thomayer HospitalPragueCzech Republic
- Department of Clinical Pharmacy & PharmacologyUniversity Groningen, University Medical Center Groningen and QPS‐NLGroningenThe Netherlands
| | - I. Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Málaga‐Instituto de Investigación Biomédica de Málaga (IBIMA)‐ARADyALMálagaSpain
| | - E. F. Knol
- Departments of Center of Translational Immunology and Dermatology/AllergologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M. Jesenak
- Department of Paediatrics, Department of Pulmonology and Phthisiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in MartinUniversity Teaching HospitalMartinSlovakia
| | - F. Levi‐Schaffer
- Institute for Drug Research, Pharmacology Unit, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - G. Nocentini
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - L. O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - O. Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - F. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichDavosSwitzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - B. C. A. M. Van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - C. Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoSalernoItaly
| |
Collapse
|
13
|
Liu B, Zhang X, Liu Z, Pan H, Yang H, Wu Q, Lv Y, Shen T. A novel model for predicting prognosis in patients with idiopathic pulmonary fibrosis based on endoplasmic reticulum stress-related genes. Cell Biol Int 2024; 48:483-495. [PMID: 38238919 DOI: 10.1002/cbin.12121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 03/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease of unknown pathogenic origin. Endoplasmic reticulum (ER) stress refers to the process by which cells take measures to ER function when the morphology and function of the reticulum are changed. Recent studies have demonstrated that the ER was involved in the evolution and progression of IPF. In this study, we obtained transcriptome data and relevant clinical information from the Gene Expression Omnibus database and conducted bioinformatics analysis. Among the 544 ER stress-related genes (ERSRGs), 78 were identified as differentially expressed genes (DEGs). These DEGs were primarily enriched in response to ER stress, protein binding, and protein processing. Two genes (HTRA2 and KTN1) were included for constructing an accurate molecular signature. The overall survival of patients was remarkably worse in the high-risk group than in the low-risk group. We further analyzed the difference in immune cells between high-risk and low-risk groups. M0 and M2 macrophages were significantly increased in the high-risk group. Our results suggested that ERSRGs might play a critical role in the development of IPF by regulating the immune microenvironment in the lungs, which provide new insights on predicting the prognosis of patients with IPF.
Collapse
Affiliation(s)
- Bin Liu
- Department of Medical Aspects of Specifc Environments, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Zikai Liu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Haihong Pan
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Hongxu Yang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Qing Wu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yan Lv
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Maccari S, Profumo E, Saso L, Marano G, Buttari B. Propranolol Promotes Monocyte-to-Macrophage Differentiation and Enhances Macrophage Anti-Inflammatory and Antioxidant Activities by NRF2 Activation. Int J Mol Sci 2024; 25:3683. [PMID: 38612493 PMCID: PMC11011821 DOI: 10.3390/ijms25073683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Adrenergic pathways represent the main channel of communication between the nervous system and the immune system. During inflammation, blood monocytes migrate within tissue and differentiate into macrophages, which polarize to M1 or M2 macrophages with tissue-damaging or -reparative properties, respectively. This study investigates whether the β-adrenergic receptor (β-AR)-blocking drug propranolol modulates the monocyte-to-macrophage differentiation process and further influences macrophages in their polarization toward M1- and M2-like phenotypes. Six-day-human monocytes were cultured with M-CSF in the presence or absence of propranolol and then activated toward an M1 pro-inflammatory state or an M2 anti-inflammatory state. The chronic exposure of monocytes to propranolol during their differentiation into macrophages promoted the increase in the M1 marker CD16 and in the M2 markers CD206 and CD163 and peroxisome proliferator-activated receptor ɣ expression. It also increased endocytosis and the release of IL-10, whereas it reduced physiological reactive oxygen species. Exposure to the pro-inflammatory conditions of propranolol-differentiated macrophages resulted in an anti-inflammatory promoting effect. At the molecular level, propranolol upregulated the expression of the oxidative stress regulators NRF2, heme oxygenase-1 and NQO1. By contributing to regulating macrophage activities, propranolol may represent a novel anti-inflammatory and immunomodulating compound with relevant therapeutic potential in several inflammatory diseases.
Collapse
Affiliation(s)
- Sonia Maccari
- Center for Gender Medicine, Italian National Institute of Health, 00161 Rome, Italy; (S.M.); (G.M.)
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| | - Giuseppe Marano
- Center for Gender Medicine, Italian National Institute of Health, 00161 Rome, Italy; (S.M.); (G.M.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| |
Collapse
|
15
|
Jannini-Sá YAP, Creyns B, Hogaboam CM, Parks WC, Hohmann MS. Macrophages in Lung Repair and Fibrosis. Results Probl Cell Differ 2024; 74:257-290. [PMID: 39406909 DOI: 10.1007/978-3-031-65944-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Macrophages are key regulators of tissue repair and fibrosis. Following injury, macrophages undergo marked phenotypic and functional changes to play crucial roles throughout the phases of tissue repair. Idiopathic Pulmonary Fibrosis, which is the most common fibrosing lung disease, has been described as an aberrant reparative response to repetitive alveolar epithelial injury in a genetically susceptible aging individual. The marked destruction of the lung architecture results from the excessive secretion of extracellular matrix by activated fibroblasts and myofibroblasts. Accumulating evidence suggests that macrophages have a pivotal regulatory role in pulmonary fibrosis. The origins and characteristics of macrophages in the lung and their role in regulating lung homeostasis, repair, and fibrosis are reviewed herein. We discuss recent studies that have employed single-cell RNA-sequencing to improve the identification and characterization of macrophage populations in the context of homeostatic and fibrotic conditions. We also discuss the current understanding of the macrophage-mediated mechanisms underlying the initiation and progression of pulmonary fibrosis, with a focus on the phenotypic and functional changes that aging macrophages acquire and how these changes ultimately contribute to age-related chronic lung diseases.
Collapse
Affiliation(s)
- Yago A P Jannini-Sá
- Women's Guild Lung Institute, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brecht Creyns
- Women's Guild Lung Institute, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cory M Hogaboam
- Women's Guild Lung Institute, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - William C Parks
- Women's Guild Lung Institute, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Miriam S Hohmann
- Women's Guild Lung Institute, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Chen F, Xue Q, He N, Zhang X, Li S, Zhao C. The association and application of sonodynamic therapy and autophagy in diseases. Life Sci 2023; 334:122215. [PMID: 37907152 DOI: 10.1016/j.lfs.2023.122215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Sonodynamic therapy (SDT) is a new non-invasive treatment method proposed based on photodynamic therapy (PDT). It has advantages such as high precision, strong tissue penetration, minimal side effects, and good patient compliance. With the maturation of nanomedicine, the application of nanosonosensitizers has further propelled the development of SDT. In recent years, people have developed many new types of sonosensitizers and explored the mechanisms of SDT. Among them, the studies about the relationship between autophagy and SDT have attracted increasing attention. After the SDT, cells usually undergo autophagy as a self-protective mechanism to resist external stimuli and reduce cell damage, which is beneficial for the treatment of atherosclerosis (AS), diabetes, and myocardial infarction but counterproductive in cancer treatment. However, under certain treatment conditions, excessive upregulation of autophagy can also promote cell death, which is beneficial for cancer treatment. This article reviews the latest research progress on the relationship between SDT and autophagy in cancers, AS, diabetes, and myocardial infarction. We also discuss and propose the challenges and prospects in enhancing SDT efficacy by regulating autophagy, with the hope of promoting the development of this promising therapeutic approach.
Collapse
Affiliation(s)
- Fang Chen
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qingwen Xue
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xuehui Zhang
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Cheng Zhao
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
17
|
Scott TE, Lewis CV, Zhu M, Wang C, Samuel CS, Drummond GR, Kemp-Harper BK. IL-4 and IL-13 induce equivalent expression of traditional M2 markers and modulation of reactive oxygen species in human macrophages. Sci Rep 2023; 13:19589. [PMID: 37949903 PMCID: PMC10638413 DOI: 10.1038/s41598-023-46237-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
In cardiovascular disease, pathological and protective roles are reported for the Th2 cytokines IL-4 and IL-13, respectively. We hypothesised that differential effects on macrophage function are responsible. Type I and II receptor subunit (IL-2Rγ, IL-4Rα and IL-13Rα1) and M2 marker (MRC-1, CCL18, CCL22) expression was assessed via RT-qPCR in IL-4- and IL-13-treated human primary macrophages. Downstream signalling was evaluated via STAT1, STAT3 and STAT6 inhibitors, and IL-4- and IL-13-induced reactive oxygen species (ROS) generation assessed. IL-4 and IL-13 exhibited equivalent potency and efficacy for M2 marker induction, which was attenuated by STAT3 inhibition. Both cytokines enhanced PDBu-stimulated superoxide generation however this effect was 17% greater with IL-4 treatment. Type I IL-4 receptor expression was increased on M1-like macrophages but did not lead to a differing ability of these cytokines to modulate M1-like macrophage superoxide production. Overall, this study did not identify major differences in the ability of IL-4 and IL-13 to modulate macrophage function, suggesting that the opposing roles of these cytokines in cardiovascular disease are likely to be via actions on other cell types. Future studies should directly compare IL-4 and IL-13 in vivo to more thoroughly investigate the therapeutic validity of selective targeting of these cytokines.
Collapse
Affiliation(s)
- Tara E Scott
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Caitlin V Lewis
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mingyu Zhu
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chao Wang
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
18
|
Dzhalilova D, Kosyreva A, Lokhonina A, Tsvetkov I, Vishnyakova P, Makarova O, Fatkhudinov T. Molecular and phenotypic distinctions of macrophages in tolerant and susceptible to hypoxia rats. PeerJ 2023; 11:e16052. [PMID: 37842051 PMCID: PMC10573310 DOI: 10.7717/peerj.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 10/17/2023] Open
Abstract
Individual hypoxia tolerance is a major influence on the course and outcome of infectious and inflammatory diseases. Macrophages, which play central roles in systemic inflammatory response and other immunity reactions, are subject to functional activation orchestrated by several transcription factors including hypoxia inducible factors (HIFs). HIF-1 expression levels and the lipopolysaccharide (LPS)-induced systemic inflammatory response severity have been shown to correlate with hypoxia tolerance. Molecular and functional features of macrophages, depending on the organisms resistance to hypoxia, can determine the severity of the course of infectious and inflammatory diseases, including the systemic inflammatory response. The purpose is the comparative molecular and functional characterization of non-activated and LPS-activated bone marrow-derived macrophages under normoxia in rats with different tolerance to oxygen deprivation. Hypoxia resistance was assessed by gasping time measurement in an 11,500 m altitude-equivalent hypobaric decompression chamber. Based on the outcome, the animals were assigned to three groups termed 'tolerant to hypoxia' (n = 12), 'normal', and 'susceptible to hypoxia' (n = 13). The 'normal' group was excluded from subsequent experiments. One month after hypoxia resistance test, the blood was collected from the tail vein to isolate monocytes. Non-activated and LPS-activated macrophage cultures were investigated by PCR, flow cytometry and Western blot methods. Gene expression patterns of non-activated cultured macrophages from tolerant and susceptible to hypoxia animals differed. We observed higher expression of VEGF and CD11b and lower expression of Tnfa, Il1b and Epas1 in non-activated cultures obtained from tolerant to hypoxia animals, whereas HIF-1α mRNA and protein expression levels were similar. LPS-activated macrophage cultures derived from susceptible to hypoxia animals expressed higher levels of Hif1a and CCR7 than the tolerant group; in addition, the activation was associated with increased content of HIF-1α in cell culture medium. The observed differences indicate a specific propensity toward pro-inflammatory macrophage polarization in susceptible to hypoxia rats.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Ivan Tsvetkov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Polina Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Timur Fatkhudinov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| |
Collapse
|
19
|
Chen X, Hocher CF, Shen L, Krämer BK, Hocher B. Reno- and cardioprotective molecular mechanisms of SGLT2 inhibitors beyond glycemic control: from bedside to bench. Am J Physiol Cell Physiol 2023; 325:C661-C681. [PMID: 37519230 DOI: 10.1152/ajpcell.00177.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Large placebo-controlled clinical trials have shown that sodium-glucose cotransporter-2 inhibitors (SGLT2i) delay the deterioration of renal function and reduce cardiovascular events in a glucose-independent manner, thereby ultimately reducing mortality in patients with chronic kidney disease (CKD) and/or heart failure. These existing clinical data stimulated preclinical studies aiming to understand the observed clinical effects. In animal models, it was shown that the beneficial effect of SGLT2i on the tubuloglomerular feedback (TGF) improves glomerular pressure and reduces tubular workload by improving renal hemodynamics, which appears to be dependent on salt intake. High salt intake might blunt the SGLT2i effects on the TGF. Beyond the salt-dependent effects of SGLT2i on renal hemodynamics, SGLT2i inhibited several key aspects of macrophage-mediated renal inflammation and fibrosis, including inhibiting the differentiation of monocytes to macrophages, promoting the polarization of macrophages from a proinflammatory M1 phenotype to an anti-inflammatory M2 phenotype, and suppressing the activation of inflammasomes and major proinflammatory factors. As macrophages are also important cells mediating atherosclerosis and myocardial remodeling after injury, the inhibitory effects of SGLT2i on macrophage differentiation and inflammatory responses may also play a role in stabilizing atherosclerotic plaques and ameliorating myocardial inflammation and fibrosis. Recent studies suggest that SGLT2i may also act directly on the Na+/H+ exchanger and Late-INa in cardiomyocytes thus reducing Na+ and Ca2+ overload-mediated myocardial damage. In addition, the renal-cardioprotective mechanisms of SGLT2i include systemic effects on the sympathetic nervous system, blood volume, salt excretion, and energy metabolism.
Collapse
Affiliation(s)
- Xin Chen
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Carl-Friedrich Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Klinik für Innere Medizin, Bundeswehrkrankenhaus Berlin, Berlin, Germany
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- IMD Institut für Medizinische Diagnostik Berlin-Potsdam GbR, Berlin, Germany
| |
Collapse
|
20
|
Shimai R, Hanafusa K, Nakayama H, Oshima E, Kato M, Kano K, Matsuo I, Miyazaki T, Tokano T, Hirabayashi Y, Iwabuchi K, Minamino T. Lysophosphatidylglucoside/GPR55 signaling promotes foam cell formation in human M2c macrophages. Sci Rep 2023; 13:12740. [PMID: 37544935 PMCID: PMC10404585 DOI: 10.1038/s41598-023-39904-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023] Open
Abstract
Atherosclerosis is a major cause of cerebral and cardiovascular diseases. Intravascular plaques, a well-known pathological finding of atherosclerosis, have a necrotic core composed of macrophages and dead cells. Intraplaque macrophages, which are classified into various subtypes, play key roles in maintenance of normal cellular microenvironment. Excessive uptake of oxidized low-density lipoprotein causes conversion of macrophages to foam cells, and consequent progression/exacerbation of atherosclerosis. G-protein-coupled receptor 55 (GPR55) signaling has been reported to associate with atherosclerosis progression. We demonstrated recently that lysophosphatidylglucoside (lysoPtdGlc) is a specific ligand of GPR55, although in general physiological ligands of GPR55 are poorly understood. Phosphatidylglucoside is expressed on human monocytes and can be converted to lysoPtdGlc. In the present study, we examined possible involvement of lysoPtdGlc/GPR55 signaling in foam cell formation. In monocyte-derived M2c macrophages, lysoPtdGlc/GPR55 signaling inhibited translocation of ATP binding cassette subfamily A member 1 to plasma membrane, and cholesterol efflux. Such inhibitory effect was reversed by GPR55 antagonist ML193. LysoPtdGlc/GPR55 signaling in M2c macrophages was involved in excessive lipid accumulation, thereby promoting foam cell formation. Our findings suggest that lysoPtdGlc/GPR55 signaling is a potential therapeutic target for inhibition of atherosclerosis progression.
Collapse
Affiliation(s)
- Ryosuke Shimai
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Tomioka, Urayasu, Chiba, 279-0021, Japan
| | - Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Tomioka, Urayasu, Chiba, 279-0021, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Tomioka, Urayasu, Chiba, 279-0021, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, 2-5-1 Takasu, Urayasu, Chiba, 279-0021, Japan
| | - Eriko Oshima
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Tomioka, Urayasu, Chiba, 279-0021, Japan
| | - Masaki Kato
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Koki Kano
- Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Ichiro Matsuo
- Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Tetsuro Miyazaki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Takashi Tokano
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Yoshio Hirabayashi
- RIKEN Cluster for Pioneering Research, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Tomioka, Urayasu, Chiba, 279-0021, Japan.
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, 2-5-1 Takasu, Urayasu, Chiba, 279-0021, Japan.
- Preparation Office for Establishment of the Faculty of Pharmaceutical Science, Juntendo University, 6-8-1 Hinode , Urayasu, Chiba, 279-0013, Japan.
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| |
Collapse
|
21
|
Shin HS, Shin JJ, Park J, Arab I, Suk K, Lee WH. Role of Macrophage lncRNAs in Mediating Inflammatory Processes in Atherosclerosis and Sepsis. Biomedicines 2023; 11:1905. [PMID: 37509544 PMCID: PMC10377468 DOI: 10.3390/biomedicines11071905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are molecules >200 bases in length without protein-coding functions implicated in signal transduction and gene expression regulation via interaction with proteins or RNAs, exhibiting various functions. The expression of lncRNAs has been detected in many cell types, including macrophages, a type of immune cell involved in acute and chronic inflammation, removal of dead or damaged cells, and tissue repair. Increasing evidence indicates that lncRNAs play essential roles in macrophage functions and disease development. Additionally, many animal studies have reported that blockage or modulation of lncRNA functions alleviates disease severity or morbidity rate. The present review summarizes the current knowledge regarding lncRNAs expressed in macrophages, focusing on their molecular targets and the biological processes regulated by them during the development of inflammatory diseases such as atherosclerosis and sepsis. Possible application of this information to lncRNA-targeting therapy is also discussed. The studies regarding macrophage lncRNAs described in this review can help provide valuable information for developing treatments for various pathological conditions involving macrophages.
Collapse
Affiliation(s)
- Hyeung-Seob Shin
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Joon Shin
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Imene Arab
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
22
|
Dey SK, Kumar S, Rani D, Maurya SK, Banerjee P, Verma M, Senapati S. Implications of vitamin D deficiency in systemic inflammation and cardiovascular health. Crit Rev Food Sci Nutr 2023; 64:10438-10455. [PMID: 37350746 DOI: 10.1080/10408398.2023.2224880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Clinical, epidemiological, and molecular studies have sufficiently highlighted the vitality of vitamin D [25(OH)D and 1,25(OH)2D] in human health and wellbeing. Globally, vitamin D deficiency (VDD) has become a public health concern among all age groups. There is a very high prevalence of VDD per the estimates from several epidemiological studies on different ethnic populations. But, population-specific scales do not support these estimates to define VDD clinically and consistent genetic associations. However, clinical studies have shown the relevance of serum vitamin D screening and oral supplementation in improving health conditions, pointing toward a more prominent role of vitamin D in health and wellness. Routinely, the serum concentration of vitamin D is measured to determine the deficiency and is correlated with physiological conditions and clinical symptoms. Recent research points toward a more inclusive role of vitamin D in different disease pathologies and is not just limited to otherwise bone health and overall growth. VDD contributes to the natural history of systemic ailments, including cardiovascular and systemic immune diseases. Considering its significant impact on premature morbidity and mortality, there is a compelling need to comprehensively review and document the direct and indirect implications of VDD in immune system deregulation, systemic inflammatory conditions, and cardio-metabolism. The recommendations from this review call for furthering our research concerning vitamin D and its direct and indirect implications.
Collapse
Affiliation(s)
- Sanjay Kumar Dey
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Shashank Kumar
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Diksha Rani
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | | | - Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Madhur Verma
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
23
|
Oh J, Riek AE, Bauerle KT, Dusso A, McNerney KP, Barve RA, Darwech I, Sprague JE, Moynihan C, Zhang RM, Kutz G, Wang T, Xing X, Li D, Mrad M, Wigge NM, Castelblanco E, Collin A, Bambouskova M, Head RD, Sands MS, Bernal-Mizrachi C. Embryonic vitamin D deficiency programs hematopoietic stem cells to induce type 2 diabetes. Nat Commun 2023; 14:3278. [PMID: 37311757 PMCID: PMC10264405 DOI: 10.1038/s41467-023-38849-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
Environmental factors may alter the fetal genome to cause metabolic diseases. It is unknown whether embryonic immune cell programming impacts the risk of type 2 diabetes in later life. We demonstrate that transplantation of fetal hematopoietic stem cells (HSCs) made vitamin D deficient in utero induce diabetes in vitamin D-sufficient mice. Vitamin D deficiency epigenetically suppresses Jarid2 expression and activates the Mef2/PGC1a pathway in HSCs, which persists in recipient bone marrow, resulting in adipose macrophage infiltration. These macrophages secrete miR106-5p, which promotes adipose insulin resistance by repressing PIK3 catalytic and regulatory subunits and down-regulating AKT signaling. Vitamin D-deficient monocytes from human cord blood have comparable Jarid2/Mef2/PGC1a expression changes and secrete miR-106b-5p, causing adipocyte insulin resistance. These findings suggest that vitamin D deficiency during development has epigenetic consequences impacting the systemic metabolic milieu.
Collapse
Affiliation(s)
- Jisu Oh
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy E Riek
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin T Bauerle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, VA Medical Center, St. Louis, MO, USA
| | - Adriana Dusso
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle P McNerney
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Isra Darwech
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Clare Moynihan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rong M Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Greta Kutz
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Marguerite Mrad
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas M Wigge
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Alejandro Collin
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Monika Bambouskova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard D Head
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Bernal-Mizrachi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, VA Medical Center, St. Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
24
|
Yuan Y, Zhang Q, Wu B, Huang T, Gong P, Xiang L. Oncostatin M regulates macrophages polarization in osseointegration via yes-associated protein. Int Immunopharmacol 2023; 120:110348. [PMID: 37220694 DOI: 10.1016/j.intimp.2023.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVES Oncostatin M(OSM), secreted by monocytes and macrophages, has been noted to participate in bone homeostasis and macrophage polarization, which might be regulated by yes-associated protein (YAP). This study aimed to elucidate the influence and mechanisms of OSM-YAP on macrophages polarization in osseointegration. MATERIAL AND METHODS In vitro, flow cytometry, real-time PCR, and Elisa were performed to evaluate inflammatory function in bone marrow-derived macrophages (BMDMs) with OSM, siOSMR, and YAP inhibitor verteporfin (VP). In vivo, macrophage-specific YAP-deficient mice were generated to investigate the role of OSM via YAP signaling in osseointegration. RESULTS This study demonstrated that OSM could inhibit the M1 polarization, promote the M2 polarization, and induce the expression of osteogenic-related factors via VP. The conditional knock-out of YAP inhibited the osseointegration in mice, and promoted the inflammatory reaction around the implants, while OSM could restore the effect. CONCLUSIONS Our results demonstrated that OSM might play an important role in the polarization of BMDMs, and bone formation around dental and femoral implants. This effect was closely conducted by Hippo-YAP pathway. CLINICAL SIGNIFICANCE Understanding the role and mechanism of OSM in macrophage polarization around dental implants could improve comprehension of signal network of osseointegration, and it might offer a potential target of therapies to accelerate osseointegration and reduce inflammatory reactions.
Collapse
Affiliation(s)
- Ying Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 400016, China
| | - Qin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianyu Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Hu M, Yao Z, Xu L, Peng M, Deng G, Liu L, Jiang X, Cai X. M2 macrophage polarization in systemic sclerosis fibrosis: pathogenic mechanisms and therapeutic effects. Heliyon 2023; 9:e16206. [PMID: 37234611 PMCID: PMC10208842 DOI: 10.1016/j.heliyon.2023.e16206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma), is an autoimmune rheumatic disease characterized by fibrosis of the skin and internal organs, and vasculopathy. Preventing fibrosis by targeting aberrant immune cells that drive extracellular matrix (ECM) over-deposition is a promising therapeutic strategy for SSc. Previous research suggests that M2 macrophages play an essential part in the fibrotic process of SSc. Targeted modulation of molecules that influence M2 macrophage polarization, or M2 macrophages, may hinder the progression of fibrosis. Here, in an effort to offer fresh perspectives on the management of scleroderma and fibrotic diseases, we review the molecular mechanisms underlying the regulation of M2 macrophage polarization in SSc-related organ fibrosis, potential inhibitors targeting M2 macrophages, and the mechanisms by which M2 macrophages participate in fibrosis.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhongliu Yao
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Li Xu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Muzi Peng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guiming Deng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liang Liu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xueyu Jiang
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Yueyang Hospital of Chinese Medicine, Hunan University of Chinese Medicine, Yueyang, Hunan 414000, China
| | - Xiong Cai
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
26
|
Duraisamy P, Ravi S, Krishnan M, Livya CM, Manikandan B, Raman T, Munusamy A, Ramar M. Scoparia dulcis and Indigofera tinctoria as potential herbal remedies against 7-ketocholesterol-induced pro-inflammatory mediators of macrophage polarization. J Herb Med 2023. [DOI: 10.1016/j.hermed.2023.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
27
|
Titanium dioxide nanoparticle-based hydroxyl and superoxide radical production for oxidative stress biological simulations. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Tigue ML, Loberg MA, Goettel JA, Weiss WA, Lee E, Weiss VL. Wnt Signaling in the Phenotype and Function of Tumor-Associated Macrophages. Cancer Res 2023; 83:3-11. [PMID: 36214645 PMCID: PMC9812914 DOI: 10.1158/0008-5472.can-22-1403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023]
Abstract
Tumor-associated macrophages (TAM) play an important role in supporting tumor growth and suppressing antitumor immune responses, and TAM infiltration has been associated with poor patient prognosis in various cancers. TAMs can be classified as pro-inflammatory, M1-like, or anti-inflammatory, M2-like. While multiple factors within the tumor microenvironment affect the recruitment, polarization, and functions of TAMs, accumulating evidence suggests that Wnt signaling represents an important, targetable driver of an immunosuppressive, M2-like TAM phenotype. TAM production of Wnt ligands mediates TAM-tumor cross-talk to support cancer cell proliferation, invasion, and metastasis. Targeting TAM polarization and the protumorigenic functions of TAMs through inhibitors of Wnt signaling may prove a beneficial treatment strategy in cancers where macrophages are prevalent in the microenvironment.
Collapse
Affiliation(s)
- Megan L Tigue
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew A Loberg
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy A Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - William A Weiss
- Departments of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Vivian L Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
29
|
Fu Z, Hou Y, Haugen HJ, Chen X, Tang K, Fang L, Liu Y, Zhang S, Ma Q, Chen L. TiO 2 nanostructured implant surface-mediated M2c polarization of inflammatory monocyte requiring intact cytoskeleton rearrangement. J Nanobiotechnology 2023; 21:1. [PMID: 36593461 PMCID: PMC9809010 DOI: 10.1186/s12951-022-01751-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Microgravity directly disturbs the reorganization of the cytoskeleton, exerting profound effects on the physiological process of macrophages. Although it has been established that macrophage M1/M2 polarization could be manipulated by the surface nanostructure of biomaterial in our previous study under normal gravity, how will inflammatory monocytes (iMos)-derived macrophages respond to diverse nanostructured Ti surfaces under normal gravity or microgravity remains unrevealed. RESULTS In this study, Cytochalasin D, a cytoskeleton relaxant, was employed to establish the simulated microgravity (SMG) environment. Our results showed that human iMos polarized into M2c macrophages on NT5 surface but M1 type on NT20 surface with divergent inflammatory phenotypes according to the profile of macrophage polarization featured molecules under normal gravity. However, such manipulative effects of NTs surfaces on iMos-derived macrophages were strikingly weakened by SMG, characterized by the altered macrophage morphology, changed cytokine secretion profile, and decreased cell polarization capacity. CONCLUSIONS To our knowledge, this is the first metallic implantable material study focusing on the functions of specific monocyte subsets and its crucial role of the cytoskeleton in materials-mediated host immune response, which enriches our mechanism knowledge about the crosstalk between immunocytes and biomaterials. The results obtained in the present study may also provide potential targets and strategies for biomaterial development and clinical treatment via precise immune-regulation under normal gravity and microgravity.
Collapse
Affiliation(s)
- Zhaoyue Fu
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Yongli Hou
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Håvard Jostein Haugen
- grid.5510.10000 0004 1936 8921Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Xutao Chen
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Kang Tang
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Liang Fang
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Yong Liu
- grid.233520.50000 0004 1761 4404The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, 710032 Shaanxi China
| | - Shu Zhang
- grid.233520.50000 0004 1761 4404The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, 710032 Shaanxi China
| | - Qianli Ma
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China ,grid.5510.10000 0004 1936 8921Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Lihua Chen
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China ,grid.233520.50000 0004 1761 4404The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, 710032 Shaanxi China
| |
Collapse
|
30
|
Xu W, Lu M, Xie S, Zhou D, Zhu M, Liang C. Endoplasmic Reticulum Stress Promotes Prostate Cancer Cells to Release Exosome and Up-regulate PD-L1 Expression via PI3K/Akt Signaling Pathway in Macrophages. J Cancer 2023; 14:1062-1074. [PMID: 37151385 PMCID: PMC10158521 DOI: 10.7150/jca.81933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/18/2023] [Indexed: 05/09/2023] Open
Abstract
Mounting evidence has demonstrated that endoplasmic reticulum stress (ERS) serves an important role in shaping the immunosuppressive microenvironment by modulating resident tumor-associated macrophages (TAMs). However, the communication between ER‑stressed tumor cells and TAMs is not fully understood. Exosomes have been reported to play a vital role in intercellular communication. Therefore, in order to investigate the role of ER stress‑related exosomes in prostate cancer cells promoting macrophage infiltration and polarization, laser scanning confocal microscope, RT-PCR, flow cytometric analysis, western‑blotting and cytokine bead array analyses were performed.The results demonstrated that TG-EXO downregulated the expression of PD-L1 on macrophages through flow cytometry analysis. In addition, Compared with CON-EXO, the expression of macrophage-associated inflammatory cytokines IL-12, TNF-α and IL-1βwas significantly decreased in TG-EXO treatment (P< 0.05). TG-EXO upregulated the expression levels of IL-6, IL-10 and TGF-β cytokinesin macrophages. Our research shows that TG-EXO increased PI3K/AKT signaling pathway compared to the CON-EXO group. In summary, we found exosomes from TG-treated prostate cancer cells altered the immunosupression status and affected macrophages polarization by up-regulating the expression of PD-L1 and inflammatory factors and PI3K/AKT pathway.
Collapse
Affiliation(s)
- Wei Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Meiyi Lu
- Department of Clinical Laboratory, The Affiliated Chaohu Hospital of Anhui Medical University, ChaoHu, Anhui, PR China
| | - Siqi Xie
- Department of Clinical Laboratory, The Affiliated Chaohu Hospital of Anhui Medical University, ChaoHu, Anhui, PR China
| | - Dangui Zhou
- Department of Clinical Laboratory, The Affiliated Chaohu Hospital of Anhui Medical University, ChaoHu, Anhui, PR China
| | - Mei Zhu
- Department of Clinical Laboratory, The Affiliated Chaohu Hospital of Anhui Medical University, ChaoHu, Anhui, PR China
- ✉ Corresponding authors: Mei Zhu Department of Clinical Laboratory, The Affiliated Chaohu Hospital of Anhui Medical University, ChaoHu, Anhui, 238000, PR China. ; Chaozhao Liang Department of Urology, the First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, PR China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China
- ✉ Corresponding authors: Mei Zhu Department of Clinical Laboratory, The Affiliated Chaohu Hospital of Anhui Medical University, ChaoHu, Anhui, 238000, PR China. ; Chaozhao Liang Department of Urology, the First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, PR China.
| |
Collapse
|
31
|
Khodayari N, Oshins R, Aranyos AM, Duarte S, Mostofizadeh S, Lu Y, Brantly M. Characterization of hepatic inflammatory changes in a C57BL/6J mouse model of alpha1-antitrypsin deficiency. Am J Physiol Gastrointest Liver Physiol 2022; 323:G594-G608. [PMID: 36256438 DOI: 10.1152/ajpgi.00207.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a genetic disease caused by a hepatic accumulation of mutant alpha-1 antitrypsin (ZAAT). Individuals with AATD are prone to develop a chronic liver disease that remains undiagnosed until late stage of the disease. Here, we sought to characterize the liver pathophysiology of a human transgenic mouse model for AATD with a manifestation of liver disease compared with normal transgenic mice model. Male and female transgenic mice for normal (Pi*M) and mutant variant (Pi*Z) human alpha-1 antitrypsin at 3 and 6 mo of age were subjected to this study. The progression of hepatic ZAAT accumulation, hepatocyte injury, steatosis, liver inflammation, and fibrotic features were monitored by performing an in vivo study. We have also performed a Next-Gene transcriptomic analysis of the transgenic mice liver tissue 16 h after lipopolysaccharide (LPS) administration to delineate liver inflammatory response in Pi*Z mice as compared with Pi*M. Our results show hepatic ZAAT accumulation, followed by hepatocyte ballooning and liver steatosis developed at 3 mo in Pi*Z mice compared with the mice carrying normal variant of human alpha-1 antitrypsin. We observed higher levels of hepatic immune cell infiltrations in both 3- and 6-mo-old Pi*Z mice compared with Pi*M as an indication of liver inflammation. Liver fibrosis was observed as accumulation of collagen in 6-mo-old Pi*Z liver tissues compared with Pi*M control mice. Furthermore, the transcriptomic analysis revealed a dysregulated liver immune response to LPS in Pi*Z mice compared with Pi*M. Of particular interest for translational work, this study aims to establish a mouse model of AATD with a strong manifestation of liver disease that will be a valuable in vivo tool to study the pathophysiology of AATD-mediated liver disease. Our data suggest that the human transgenic mouse model of AATD could provide a suitable model for the evaluation of therapeutic approaches and preventive reagents against AATD-mediated liver disease.NEW & NOTEWORTHY We have characterized a mouse model of human alpha-1 antitrypsin deficiency with a strong manifestation of liver disease that can be used as an in vivo tool to test preventive and therapeutic reagents. Our data explores the altered immunophenotype of alpha-1 antitrypsin-deficient liver macrophages and suggests a relationship between acute inflammation, immune response, and fibrosis.
Collapse
Affiliation(s)
- Nazli Khodayari
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Regina Oshins
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Alek M Aranyos
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Sergio Duarte
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida
| | - Sayedamin Mostofizadeh
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Yuanqing Lu
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Mark Brantly
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
32
|
Paunel-Görgülü A, Conforti A, Mierau N, Zierden M, Xiong X, Wahlers T. Peptidylarginine deiminase 4 deficiency in bone marrow cells prevents plaque progression without decreasing atherogenic inflammation in apolipoprotein E-knockout mice. Front Cardiovasc Med 2022; 9:1046273. [PMID: 36465436 PMCID: PMC9709396 DOI: 10.3389/fcvm.2022.1046273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 08/30/2023] Open
Abstract
INTRODUCTION Despite multiple studies in the past, the role of peptidylarginine deiminase 4 (PAD4) in atherosclerosis is currently insufficiently understood. In this regard, PAD4 deletion or inhibition of enzymatic activity was previously reported to ameliorate disease progression and inflammation. Besides, strong influence of neutrophil extracellular traps (NETs) on atherosclerosis burden has been proposed. Here, we studied the role of PAD4 for atherogenesis and plaque progression in a mouse model of atherosclerosis. METHODS AND RESULTS Lethally irradiated ApoE -/- mice were reconstituted with ApoE -/-/Pad4 -/- bone marrow cells and fed a high-fat diet (HFD) for 4 and 10 weeks, respectively. PAD4 deficiency did not prevent the development of atherosclerotic lesions after 4 weeks of HFD. However, after 10 weeks of HFD, mice with bone marrow cells-restricted PAD4 deficiency displayed significantly reduced lesion size, impaired lipid incorporation, decreased necrotic core area and less collagen when compared to ApoE -/- bone marrow-transplanted mice as demonstrated by histological staining. Moreover, flow cytometric analysis and quantitative real-time PCR revealed different macrophage subsets in atherosclerotic lesions and higher inflammatory response in these mice, as reflected by increased content of M1-like macrophages and upregulated aortic expression of the pro-inflammatory genes CCL2 and iNOS. Notably, diminished oxLDL uptake by in vitro-polarized M1-like macrophages was evidenced when compared to M2-like cells. CONCLUSION These results suggest that pharmacological inhibition of PAD4 may impede lipid accumulation and lesion progression despite no beneficial effects on vascular inflammation.
Collapse
Affiliation(s)
- Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Andreas Conforti
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Natalia Mierau
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Mario Zierden
- Department of Cardiology, Heart Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Xiaolin Xiong
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| |
Collapse
|
33
|
Pavlović N, Heindryckx F. Targeting ER stress in the hepatic tumor microenvironment. FEBS J 2022; 289:7163-7176. [PMID: 34331743 DOI: 10.1111/febs.16145] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 01/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. It currently ranks as one of the most aggressive and deadly cancers worldwide, with an increasing mortality rate and limited treatment options. An important hallmark of liver pathologies, such as liver fibrosis and HCC, is the accumulation of misfolded and unfolded proteins in the lumen of the endoplasmic reticulum (ER), which induces ER stress and leads to the activation of the unfolded protein response (UPR). Upon accumulation of misfolded proteins, ER stress is sensed through three transmembrane proteins, IRE1α, PERK, and ATF6, which trigger the UPR to either alleviate ER stress or induce apoptosis. Increased expression of ER stress markers has been widely shown to correlate with fibrosis, inflammation, drug resistance, and overall HCC aggressiveness, as well as poor patient prognosis. While preclinical in vivo cancer models and in vitro approaches have shown promising results by pharmacologically targeting ER stress mediators, the major challenge of this therapeutic strategy lies in specifically and effectively targeting ER stress in HCC. Furthermore, both ER stress inducers and inhibitors have been shown to ameliorate HCC progression, adding to the complexity of targeting ER stress players as an anticancer strategy. More studies are needed to better understand the dual role and molecular background of ER stress in HCC, as well as its therapeutic potential for patients with liver cancer.
Collapse
Affiliation(s)
- Nataša Pavlović
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | |
Collapse
|
34
|
Meszaros M, Bikov A. Obstructive Sleep Apnoea and Lipid Metabolism: The Summary of Evidence and Future Perspectives in the Pathophysiology of OSA-Associated Dyslipidaemia. Biomedicines 2022; 10:2754. [PMID: 36359273 PMCID: PMC9687681 DOI: 10.3390/biomedicines10112754] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is associated with cardiovascular and metabolic comorbidities, including hypertension, dyslipidaemia, insulin resistance and atherosclerosis. Strong evidence suggests that OSA is associated with an altered lipid profile including elevated levels of triglyceride-rich lipoproteins and decreased levels of high-density lipoprotein (HDL). Intermittent hypoxia; sleep fragmentation; and consequential surges in the sympathetic activity, enhanced oxidative stress and systemic inflammation are the postulated mechanisms leading to metabolic alterations in OSA. Although the exact mechanisms of OSA-associated dyslipidaemia have not been fully elucidated, three main points have been found to be impaired: activated lipolysis in the adipose tissue, decreased lipid clearance from the circulation and accelerated de novo lipid synthesis. This is further complicated by the oxidisation of atherogenic lipoproteins, adipose tissue dysfunction, hormonal changes, and the reduced function of HDL particles in OSA. In this comprehensive review, we summarise and critically evaluate the current evidence about the possible mechanisms involved in OSA-associated dyslipidaemia.
Collapse
Affiliation(s)
- Martina Meszaros
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, 8091 Zurich, Switzerland
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| | - Andras Bikov
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9MT, UK
| |
Collapse
|
35
|
Dong Y, Yang Q, Niu R, Zhang Z, Huang Y, Bi Y, Liu G. Modulation of tumor‐associated macrophages in colitis‐associated colorectal cancer. J Cell Physiol 2022; 237:4443-4459. [DOI: 10.1002/jcp.30906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Zhiyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| |
Collapse
|
36
|
Seto S, Nakamura H, Guo TC, Hikichi H, Wakabayashi K, Miyabayashi A, Nagata T, Hijikata M, Keicho N. Spatial multiomic profiling reveals the novel polarization of foamy macrophages within necrotic granulomatous lesions developed in lungs of C3HeB/FeJ mice infected with Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:968543. [PMID: 36237431 PMCID: PMC9551193 DOI: 10.3389/fcimb.2022.968543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Infection with Mycobacterium tuberculosis leads to the development of tuberculosis (TB) with the formation of granulomatous lesions. Foamy macrophages (FM) are a hallmark of TB granulomas, because they provide the primary platform of M. tuberculosis proliferation and the main source of caseous necrosis. In this study, we applied spatial multiomic profiling to identify the signatures of FM within the necrotic granulomas developed in a mouse model resembling human TB histopathology. C3HeB/FeJ mice were infected with M. tuberculosis to induce the formation of necrotic granulomas in the lungs. Using laser microdissection, necrotic granulomas were fractionated into three distinct regions, including the central caseous necrosis, the rim containing FM, and the peripheral layer of macrophages and lymphocytes, and subjected to proteomic and transcriptomic analyses. Comparison of proteomic and transcriptomic analyses of three distinct granulomatous regions revealed that four proteins/genes are commonly enriched in the rim region. Immunohistochemistry confirmed the localization of identified signatures to the rim of necrotic granulomas. We also investigated the localization of the representative markers for M1 macrophages in granulomas because the signatures of the rim included M2 macrophage markers. The localization of both macrophage markers suggests that FM in necrotic granulomas possessed the features of M1 or M2 macrophages. Gene set enrichment analysis of transcriptomic profiling revealed the upregulation of genes related to M2 macrophage activation and mTORC1 signaling in the rim. These results will provide new insights into the process of FM biogenesis, leading to further understanding of the pathophysiology of TB granulomas.
Collapse
Affiliation(s)
- Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- *Correspondence: Shintaro Seto,
| | - Hajime Nakamura
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Tz-Chun Guo
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Haruka Hikichi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Toshi Nagata
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Naoto Keicho
- Vice Director, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
37
|
Li W, Jin K, Luo J, Xu W, Wu Y, Zhou J, Wang Y, Xu R, Jiao L, Wang T, Yang G. NF-κB and its crosstalk with endoplasmic reticulum stress in atherosclerosis. Front Cardiovasc Med 2022; 9:988266. [PMID: 36204587 PMCID: PMC9530249 DOI: 10.3389/fcvm.2022.988266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis (AS) is a common cardiovascular disease with complex pathogenesis, in which multiple pathways and their interweaving regulatory mechanism remain unclear. The primary transcription factor NF-κB plays a critical role in AS via modulating the expression of a series of inflammatory mediators under various stimuli such as cytokines, microbial antigens, and intracellular stresses. Endoplasmic reticulum (ER) stress, caused by the disrupted synthesis and secretion of protein, links inflammation, metabolic signals, and other cellular processes via the unfolded protein response (UPR). Both NF-κB and ER stress share the intersection regarding their molecular regulation and function and are regarded as critical individual contributors to AS. In this review, we summarize the multiple interactions between NF-κB and ER stress activation, including the UPR, NLRP3 inflammasome, and reactive oxygen species (ROS) generation, which have been ignored in the pathogenesis of AS. Given the multiple links between NF-κB and ER stress, we speculate that the integrated network contributes to the understanding of molecular mechanisms of AS. This review aims to provide an insight into these interactions and their underlying roles in the progression of AS, highlighting potential pharmacological targets against the atherosclerotic inflammatory process.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liqun Jiao,
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Tao Wang,
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Tao Wang,
| |
Collapse
|
38
|
Microglia and microglial-based receptors in the pathogenesis and treatment of Alzheimer’s disease. Int Immunopharmacol 2022; 110:109070. [DOI: 10.1016/j.intimp.2022.109070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022]
|
39
|
Yadav S, Dwivedi A, Tripathi A. Biology of macrophage fate decision: Implication in inflammatory disorders. Cell Biol Int 2022; 46:1539-1556. [PMID: 35842768 DOI: 10.1002/cbin.11854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/04/2022] [Accepted: 06/18/2022] [Indexed: 11/11/2022]
Abstract
The activation of immune cells in response to stimuli present in their microenvironment is regulated by their metabolic profile. Unlike the signal transduction events, which overlap to a huge degree in diverse cellular processes, the metabolome of a cell reflects a more precise picture of cell physiology and function. Different factors governing the cellular metabolome include receptor signaling, macro and micronutrients, normoxic and hypoxic conditions, energy needs, and biomass demand. Macrophages have enormous plasticity and can perform diverse functions depending upon their phenotypic state. This review presents recent updates on the cellular metabolome and molecular patterns associated with M1 and M2 macrophages, also termed "classically activated macrophages" and "alternatively activated macrophages," respectively. M1 macrophages are proinflammatory in nature and predominantly Th1-specific immune responses induce their polarization. On the contrary, M2 macrophages are anti-inflammatory in nature and primarily participate in Th2-specific responses. Interestingly, the same macrophage cell can adapt to the M1 or M2 phenotype depending upon the clues from its microenvironment. We elaborate on the various tissue niche-specific factors, which govern macrophage metabolism and heterogeneity. Furthermore, the current review provides an in-depth account of deregulated macrophage metabolism associated with pathological disorders such as cancer, obesity, and atherosclerosis. We further highlight significant differences in various metabolic pathways governing the cellular bioenergetics and their impact on macrophage effector functions and associated disorders.
Collapse
Affiliation(s)
- Sarika Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ashish Dwivedi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anurag Tripathi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
40
|
Rao Z, Zheng Y, Xu L, Wang Z, Zhou Y, Chen M, Dong N, Cai Z, Li F. Endoplasmic Reticulum Stress and Pathogenesis of Vascular Calcification. Front Cardiovasc Med 2022; 9:918056. [PMID: 35783850 PMCID: PMC9243238 DOI: 10.3389/fcvm.2022.918056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 12/05/2022] Open
Abstract
Vascular calcification (VC) is characterized by calcium phosphate deposition in blood vessel walls and is associated with many diseases, as well as increased cardiovascular morbidity and mortality. However, the molecular mechanisms underlying of VC development and pathogenesis are not fully understood, thus impeding the design of molecular-targeted therapy for VC. Recently, several studies have shown that endoplasmic reticulum (ER) stress can exacerbate VC. The ER is an intracellular membranous organelle involved in the synthesis, folding, maturation, and post-translational modification of secretory and transmembrane proteins. ER stress (ERS) occurs when unfolded/misfolded proteins accumulate after a disturbance in the ER environment. Therefore, downregulation of pathological ERS may attenuate VC. This review summarizes the relationship between ERS and VC, focusing on how ERS regulates the development of VC by promoting osteogenic transformation, inflammation, autophagy, and apoptosis, with particular interest in the molecular mechanisms occurring in various vascular cells. We also discuss, the therapeutic effects of ERS inhibition on the progress of diseases associated with VC are detailed.
Collapse
Affiliation(s)
- Zhenqi Rao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yidan Zheng
- Basic Medical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Baradaran A, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Shadbad MA, Khosravi N, Derakhshani A, Alemohammad H, Afrashteh Nour M, Safarpour H, Silvestris N, Brunetti O, Baradaran B. The cross-talk between tumor-associated macrophages and tumor endothelium: Recent advances in macrophage-based cancer immunotherapy. Biomed Pharmacother 2022; 146:112588. [PMID: 35062062 DOI: 10.1016/j.biopha.2021.112588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/02/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are among the abundant cell populations of the tumor microenvironment (TME), which have pivotal roles in tumor development, chemoresistance, immune evasion, and metastasis. Growing evidence indicates that TAMs and the cross-talk between TAMs and tumoral endothelial cells can substantially contribute to tumor angiogenesis, which is considered a vital process for cancer development. Besides, tumoral endothelial cells can regulate the leukocyte infiltration to the TME in solid cancers and contribute to immune evasion. Therefore, targeting the immunosuppressive TAMs and the cross-talk between them can be a promising strategy for improving anti-tumoral immune responses. This review aims to summarize the biology of TAMs, their recently identified roles in tumor development/angiogenesis, and recent advances in macrophage-based cancer immunotherapy approaches for treating cancers.
Collapse
Affiliation(s)
- Ali Baradaran
- Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia; Research & Development, BSD Robotics, Queensland, Australia
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Khosravi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Hajar Alemohammad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nicola Silvestris
- Medical Oncology Unit-IRCCS IstitutoTumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology DIMO-University of Bari, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit-IRCCS IstitutoTumori "Giovanni Paolo II" of Bari, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Jiao D, Wang J, Yu W, Zhang K, Zhang N, Cao L, Jiang X, Bai Y. Biocompatible reduced graphene oxide stimulated BMSCs induce acceleration of bone remodeling and orthodontic tooth movement through promotion on osteoclastogenesis and angiogenesis. Bioact Mater 2022; 15:409-425. [PMID: 35386350 PMCID: PMC8958387 DOI: 10.1016/j.bioactmat.2022.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
We has synthesized the biocompatible gelatin reduced graphene oxide (GOG) in previous research, and in this study we would further evaluate its effects on bone remodeling in the aspects of osteoclastogenesis and angiogenesis so as to verify its impact on accelerating orthodontic tooth movement. The mouse orthodontic tooth movement (OTM) model tests in vivo showed that the tooth movement was accelerated in the GOG local injection group with more osteoclastic bone resorption and neovascularization compared with the PBS injection group. The analysis on the degradation of GOG in bone marrow stromal stem cells (BMSCs) illustrated its good biocompatibility in vitro and the accumulation of GOG in spleen after local injection of GOG around the teeth in OTM model in vivo also didn't influence the survival and life of animals. The co-culture of BMSCs with hematopoietic stem cells (HSCs) or human umbilical vein endothelial cells (HUVECs) in transwell chamber systems were constructed to test the effects of GOG stimulated BMSCs on osteoclastogenesis and angiogenesis in vitro. With the GOG stimulated BMSCs co-culture in upper chamber of transwell, the HSCs in lower chamber manifested the enhanced osteoclastogenesis. Meanwhile, the co-culture of GOG stimulated BMSCs with HUVECs showed a promotive effect on the angiogenic ability of HUVECs. The mechanism analysis on the biofunctions of the GOG stimulated BMSCs illustrated the important regulatory effects of PERK pathway on osteoclastogenesis and angiogenesis. All the results showed the biosecurity of GOG and the biological functions of GOG stimulated BMSCs in accelerating bone remodeling and tooth movement. Here we observed the phenomenon of tooth movement acceleration induced by GOG in vivo. We hypothesized the pivotal role of BMSCs in the tooth movement acceleration induced by GOG. The effects of the GOG stimulated BMSCs on the osteoclastogenesis and angiogenesis were investigated in vitro. The potential mechanism of the GOG stimulated BMSCs were also analyzed in vitro and in vivo.
Collapse
Affiliation(s)
- Delong Jiao
- Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Jing Wang
- Department of Orthodontics, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Wenting Yu
- Department of Orthodontics, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Ke Zhang
- Department of Orthodontics, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Ning Zhang
- Department of Orthodontics, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Lingyan Cao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
- Corresponding author.
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
- Corresponding author.
| |
Collapse
|
43
|
Chen J, Zhang X, Millican R, Lynd T, Gangasani M, Malhotra S, Sherwood J, Hwang PT, Cho Y, Brott BC, Qin G, Jo H, Yoon YS, Jun HW. Recent Progress in in vitro Models for Atherosclerosis Studies. Front Cardiovasc Med 2022; 8:790529. [PMID: 35155603 PMCID: PMC8829969 DOI: 10.3389/fcvm.2021.790529] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is the primary cause of hardening and narrowing arteries, leading to cardiovascular disease accounting for the high mortality in the United States. For developing effective treatments for atherosclerosis, considerable efforts have been devoted to developing in vitro models. Compared to animal models, in vitro models can provide great opportunities to obtain data more efficiently, economically. Therefore, this review discusses the recent progress in in vitro models for atherosclerosis studies, including traditional two-dimensional (2D) systems cultured on the tissue culture plate, 2D cell sheets, and recently emerged microfluidic chip models with 2D culture. In addition, advanced in vitro three-dimensional models such as spheroids, cell-laden hydrogel constructs, tissue-engineered blood vessels, and vessel-on-a-chip will also be covered. Moreover, the functions of these models are also summarized along with model discussion. Lastly, the future perspectives of this field are discussed.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Tyler Lynd
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Manas Gangasani
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shubh Malhotra
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Younghye Cho
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- Family Medicine Clinic, Obesity, Metabolism, and Nutrition Center and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Brigitta C. Brott
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- Endomimetics, LLC., Birmingham, AL, United States
- Division of Cardiovascular Disease, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gangjian Qin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Young-sup Yoon
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- Endomimetics, LLC., Birmingham, AL, United States
- *Correspondence: Ho-Wook Jun
| |
Collapse
|
44
|
Stachyra K, Wiśniewska A, Kiepura A, Kuś K, Rolski F, Czepiel K, Chmura Ł, Majka G, Surmiak M, Polaczek J, van Eldik R, Suski M, Olszanecki R. Inhaled silica nanoparticles exacerbate atherosclerosis through skewing macrophage polarization towards M1 phenotype. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113112. [PMID: 34953274 DOI: 10.1016/j.ecoenv.2021.113112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Exposure to environmental nanoparticles is related to the adverse impact on health, including cardiovascular system. Various forms of nanoparticles have been reported to interact with endothelium and induce inflammation. However, the potential role of nanoparticles in the pathogenesis of atherosclerosis and their mechanisms of action are still unclear. The aim of this study was to investigate the effect of two broadly used nanomaterials, which also occur in natural environment - silicon oxide (SiO2) and ferric oxide (Fe2O3) in the form of nanoparticles (NPs) - on the development of atherosclerosis. METHODS We used apolipoprotein E-knockout mice exposed to silica and ferric oxide nanoparticles in a whole body inhalation chamber. RESULTS Inhaled silica nanoparticles augmented the atherosclerotic lesions and increased the percentage of pro-inflammatory M1 macrophages in both the plaque and the peritoneum in apoE-/- mice. Exposure to ferric oxide nanoparticles did not enhance atherogenesis process, however, it caused significant changes in the atherosclerotic plaque composition (elevated content of CD68-positive macrophages and enlarged necrotic core accompanied by the decreased level of M1 macrophages). Both silica and ferric oxide NPs altered the phenotype of T lymphocytes in the spleen by promoting polarization towards Th17 cells. CONCLUSIONS Exposure to silica and ferric oxide nanoparticles exerts impact on atherosclerosis development and plaque composition. Pro-atherogenic abilities of silica nanoparticles are associated with activation of pro-inflammatory macrophages.
Collapse
Affiliation(s)
- Kamila Stachyra
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Anna Wiśniewska
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Anna Kiepura
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Katarzyna Kuś
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Filip Rolski
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, 265 Wielicka Street, 30-663 Krakow, Poland
| | - Klaudia Czepiel
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Łukasz Chmura
- Chair of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Grzegorz Majka
- Chair of Immunology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Street, 31-066 Krakow, Poland
| | - Justyna Polaczek
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Krakow, Poland
| | - Rudi van Eldik
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Krakow, Poland; Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Maciej Suski
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland.
| |
Collapse
|
45
|
Vogel A, Brunner JS, Hajto A, Sharif O, Schabbauer G. Lipid scavenging macrophages and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159066. [PMID: 34626791 DOI: 10.1016/j.bbalip.2021.159066] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
Macrophages are professional phagocytes, indispensable for maintenance of tissue homeostasis and integrity. Depending on their resident tissue, macrophages are exposed to highly diverse metabolic environments. Adapted to their niche, they can contribute to local metabolic turnover through metabolite uptake, conversion, storage and release. Disturbances in tissue homeostasis caused by infection, inflammation or damage dramatically alter the local milieu, impacting macrophage activation status and metabolism. In the case of persisting stimuli, defective macrophage responses ensue, which can promote tissue damage and disease. Especially relevant herein are disbalances in lipid rich environments, where macrophages are crucially involved in lipid uptake and turnover, preventing lipotoxicity. Lipid uptake is to a large extent facilitated by macrophage expressed scavenger receptors that are dynamically regulated and important in many metabolic diseases. Here, we review the receptors mediating lipid uptake and summarize recent findings on their role in health and disease. We further highlight the underlying pathways driving macrophage lipid acquisition and their impact on myeloid metabolic remodelling.
Collapse
Affiliation(s)
- Andrea Vogel
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Julia Stefanie Brunner
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Alexander Hajto
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Omar Sharif
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria.
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria.
| |
Collapse
|
46
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 227] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
47
|
Zhang HY, Xie QM, Zhao CC, Sha JF, Ruan Y, Wu HM. CpG Oligodeoxynucleotides Attenuate OVA-Induced Allergic Airway Inflammation via Suppressing JNK-Mediated Endoplasmic Reticulum Stress. J Asthma Allergy 2021; 14:1399-1410. [PMID: 34848975 PMCID: PMC8619852 DOI: 10.2147/jaa.s334541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose CpG-ODN has been found to attenuate allergic airway inflammation in our previous study. Here, we aimed to further investigate whether CpG-ODN exerts such effect via regulating endoplasmic reticulum (ER) stress and revealed the underlying mechanism. Methods Five-week-old C57BL/6 mice were randomly grouped and treated with or without CpG-ODN or/and SP600125. Meantime, RAW264.7 cells were used to investigate the effect of CpG-ODN on OVA-induced ER stress in vitro. The cellularity of bronchoalveolar lavage fluid (BALF) was classified and counted after Wright-Giemsa staining. HE and PAS staining methods were applied to analyze airway inflammation. The protein levels of IL-4, IL-5, IL-13, p-JNK, JNK, CHOP, XBP1, ATF6α and GRP78 in lung tissues were detected by Western blotting. Correspondingly, the ER stress markers were detected by Western blotting and immunofluorescence in RAW264.7 cells. Results In OVA-induced allergic airway inflammation, CpG-ODN significantly suppressed inflammatory cells infiltration, goblet cell hyperplasia and the protein expression of Th2 cytokines. Moreover, OVA exposure strongly increased the activation of ER stress with higher protein expressions of CHOP, XBP1, ATF6α and GRP78. However, these OVA-induced increase of ER stress markers were markedly suppressed by CpG-ODN treatment. In addition, exposure to OVA significantly increased the phosphorylation of JNK, which was significantly reduced by CpG-ODN treatment. Remarkably, single treatment of SP600125, an antagonist of JNK, functioned similarly as CpG-ODN in mitigating allergic airway inflammation and suppressing OVA-induced activation of ER stress; however, no significant synergistic effect was evidenced by combined treatment of SP600125 and CpG-ODN. Furthermore, in OVA-stimulated RAW264.7 cells, we also found that OVA stimulation increased the expressions of ER stress markers, and CpG-ODN significantly reduced their expression levels via suppressing the phosphorylation of JNK. Conclusion These results indicated that CpG-ODN mitigates allergic airway inflammation via suppressing the activation of JNK-medicated ER stress.
Collapse
Affiliation(s)
- Hai-Yun Zhang
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Qiu-Meng Xie
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Cui-Cui Zhao
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Jia-Feng Sha
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Ya Ruan
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Hui-Mei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| |
Collapse
|
48
|
Jha V, Kumari T, Manickam V, Assar Z, Olson KL, Min JK, Cho J. ERO1-PDI Redox Signaling in Health and Disease. Antioxid Redox Signal 2021; 35:1093-1115. [PMID: 34074138 PMCID: PMC8817699 DOI: 10.1089/ars.2021.0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Significance: Protein disulfide isomerase (PDI) and endoplasmic reticulum oxidoreductase 1 (ERO1) are crucial for oxidative protein folding in the endoplasmic reticulum (ER). These enzymes are frequently overexpressed and secreted, and they contribute to the pathology of neurodegenerative, cardiovascular, and metabolic diseases. Recent Advances: Tissue-specific knockout mouse models and pharmacologic inhibitors have been developed to advance our understanding of the cell-specific functions of PDI and ERO1. In addition to their roles in protecting cells from the unfolded protein response and oxidative stress, recent studies have revealed that PDI and ERO1 also function outside of the cells. Critical Issues: Despite the well-known contributions of PDI and ERO1 to specific disease pathology, the detailed molecular and cellular mechanisms underlying these activities remain to be elucidated. Further, although PDI and ERO1 inhibitors have been identified, the results from previous studies require careful evaluation, as many of these agents are not selective and may have significant cytotoxicity. Future Directions: The functions of PDI and ERO1 in the ER have been extensively studied. Additional studies will be required to define their functions outside the ER.
Collapse
Affiliation(s)
- Vishwanath Jha
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tripti Kumari
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vijayprakash Manickam
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zahra Assar
- Cayman Chemical Company, Inc., Ann Arbor, Michigan, USA
| | - Kirk L Olson
- Cayman Chemical Company, Inc., Ann Arbor, Michigan, USA
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
49
|
Zhao Y, Zhang W, Huo M, Wang P, Liu X, Wang Y, Li Y, Zhou Z, Xu N, Zhu H. XBP1 regulates the protumoral function of tumor-associated macrophages in human colorectal cancer. Signal Transduct Target Ther 2021; 6:357. [PMID: 34667145 PMCID: PMC8526672 DOI: 10.1038/s41392-021-00761-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 09/05/2021] [Accepted: 09/12/2021] [Indexed: 02/06/2023] Open
Abstract
Macrophages are among the most abundant immune cells in colorectal cancer (CRC). Re-educating tumor-associated macrophages (TAMs) to switch from protumoral to anti-tumoral activity is an attractive treatment strategy that warrants further investigation. However, little is known about the key pathway that is activated in TAMs. In this study, infitrating CD206+ TAMs in CRC were sorted and subjected to RNA-seq analysis. Differentially expressed genes were found to be enriched in unfolded protein response/endoplasmic reticulum stress response processes, and XBP1 splicing/activation was specifically observed in TAMs. XBP1 activation in TAMs promoted the growth and metastasis of CRC. Ablation of XBP1 inhibited the expression of the pro-tumor cytokine signature of TAMs, including IL-6, VEGFA, and IL-4. Simultaneously, XBP1 depletion could directly inhibit the expression of SIRPα and THBS1, thereby blocking “don’t eat me” recognition signals and enhancing phagocytosis. Therapeutic XBP1 gene editing using AAV2-sgXBP1 enhanced the anti-tumor activity. Together, XBP1 activation in TAMs drives CRC progression by elevating pro-tumor cytokine expression and secretion, as well as inhibiting macrophage phagocytosis. Targeting XBP1 signaling in TAMs may be a potential strategy for CRC therapy.
Collapse
Affiliation(s)
- Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Weina Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Miaomiao Huo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Peng Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xianghe Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yu Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yinuo Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Zhixiang Zhou
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Ningzhi Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Hongxia Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
50
|
Jiang Y, Tao Z, Chen H, Xia S. Endoplasmic Reticulum Quality Control in Immune Cells. Front Cell Dev Biol 2021; 9:740653. [PMID: 34660599 PMCID: PMC8511527 DOI: 10.3389/fcell.2021.740653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum quality control (ERQC) system, including endoplasmic reticulum-associated degradation (ERAD), the unfolded protein response (UPR), and autophagy, presides over cellular protein secretion and maintains proteostasis in mammalian cells. As part of the immune system, a variety of proteins are synthesized and assembled correctly for the development, activation, and differentiation of immune cells, such as dendritic cells (DCs), macrophages, myeloid-derived-suppressor cells (MDSCs), B lymphocytes, T lymphocytes, and natural killer (NK) cells. In this review, we emphasize the role of the ERQC in these immune cells, and also discuss how the imbalance of ER homeostasis affects the immune response, thereby suggesting new therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Yalan Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zehua Tao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hua Chen
- Department of Colorectal Surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|