1
|
Paramasivam P, Choi SW, Poddar R, Paul S. Impairment of neuronal tyrosine phosphatase STEP worsens post-ischemic inflammation and brain injury under hypertensive condition. J Neuroinflammation 2024; 21:271. [PMID: 39438980 PMCID: PMC11515672 DOI: 10.1186/s12974-024-03227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Hypertension is associated with poor outcome and higher mortality in patients with ischemic stroke. The impairment of adaptive vascular mechanisms under hypertensive condition compromises collateral blood flow after arterial occlusion in patients with acute ischemic stroke resulting in hypoperfusion. The increased oxidative stress caused by hypoperfusion is thought to be a trigger for the rapid evolution of ischemic infarct volume under hypertensive condition. However, the cellular factors and pathways that contribute to the exacerbation of ischemic brain injury under hypertensive condition is not yet understood. The current study reveals that predisposition to hypertension leads to basal loss of function of the neuron-specific tyrosine phosphatase STEP, which plays a crucial role in neuroprotection against excitotoxic insult. The findings further show that a mild ischemic insult in hypertensive rats triggers an early onset and sustained activation of the neuronal extracellular signal regulated kinase (ERK MAPK), a member of the mitogen activated protein kinase family and a substrate of STEP. This leads to rapid increase in the activation of neuronal NF-κB, expression of neuronal cyclooxygenase-2 and subsequent biosynthesis of the pro-inflammatory mediator prostaglandin E2, resulting in rapid morphological transformation of microglia to the pro-inflammatory state and subsequent exacerbation of ischemic brain injury. Restoration of STEP signaling with intravenous administration of a STEP-derived peptide mimetic reduces the pro-inflammatory response in neurons, activation of microglia, and ischemic brain injury. The findings suggest that the basal loss of STEP function under hypertensive condition contributes to the exacerbation of ischemic brain injury by enhancing post-ischemic inflammatory response. The study not only presents a novel role of STEP in regulating neuroimmune communication but also highlights the therapeutic potential of a STEP-mimetic in mitigating ischemic brain damage under hypertensive condition.
Collapse
Affiliation(s)
- Prabu Paramasivam
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Seong Won Choi
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
2
|
Walters JM, Noblet HA, Chung HJ. An emerging role of STriatal-Enriched protein tyrosine Phosphatase in hyperexcitability-associated brain disorders. Neurobiol Dis 2024; 200:106641. [PMID: 39159894 DOI: 10.1016/j.nbd.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific tyrosine phosphatase that is associated with numerous neurological and neuropsychiatric disorders. STEP dephosphorylates and inactivates various kinases and phosphatases critical for neuronal function and health including Fyn, Pyk2, ERK1/2, p38, and PTPα. Importantly, STEP dephosphorylates NMDA and AMPA receptors, two major glutamate receptors that mediate fast excitatory synaptic transmission. This STEP-mediated dephosphorylation leads to their internalization and inhibits both Hebbian synaptic potentiation and homeostatic synaptic scaling. Hence, STEP has been widely accepted to weaken excitatory synaptic strength. However, emerging evidence implicates a novel role of STEP in neuronal hyperexcitability and seizure disorders. Genetic deletion and pharmacological blockade of STEP reduces seizure susceptibility in acute seizure mouse models and audiogenic seizures in a mouse model of Fragile X syndrome. Pharmacologic inhibition of STEP also decreases hippocampal activity and neuronal intrinsic excitability. Here, we will highlight the divergent roles of STEP in excitatory synaptic transmission and neuronal intrinsic excitability, present the potential underlying mechanisms, and discuss their impact on STEP-associated neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jennifer M Walters
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hayden A Noblet
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hee Jung Chung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Meur S, Karati D. Fyn Kinase in Alzheimer's Disease: Unraveling Molecular Mechanisms and Therapeutic Implications. Mol Neurobiol 2024:10.1007/s12035-024-04286-2. [PMID: 38890236 DOI: 10.1007/s12035-024-04286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Alzheimer's disease, characterized by the accumulation of abnormal protein aggregates and neuronal damage in the brain, leads to a gradual decline in cognitive function and memory. As a complex neurodegenerative disorder, it involves disruptions in various biochemical pathways and neurotransmitter systems, contributing to the progressive loss of neurons and synaptic connections. The complexity of Alzheimer's signaling pathways complicates treatment, presenting a formidable challenge in the quest for effective therapeutic interventions. A member of the Src family of kinases (SFKs), Fyn, is a type of non-receptor tyrosine kinase that has been linked to multiple essential CNS processes, such as myelination and synaptic transmission. Fyn is an appealing target for AD treatments because it is uniquely linked to the two major pathologies in AD by its interaction with tau, in addition to being activated by amyloid-beta (Aβ) through PrPC. Fyn mediates neurotoxicity and synaptic impairments caused by Aβ and is involved in regulating the process of Aβ synthesis.Additionally, the tau protein's tyrosine phosphorylation is induced by Fyn. Fyn is also a challenging target because of its widespread body expression and strong homology with other kinases of the Src family, which could cause unintentional off-target effects. This review emphasizes signaling pathways mediated by Fyn that govern neuronal development and plasticity while also summarizing the most noteworthy recent research relevant to Fyn kinase's function in the brain. Additionally, the therapeutic inhibition of Fyn kinase has been discussed, with a focus on the Fyn kinase inhibitors that are in clinical trials, which presents a fascinating opportunity for targeting Fyn kinase in the creation of possible therapeutic approaches for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
4
|
Deep SN, Seelig S, Paul S, Poddar R. Homocysteine-induced sustained GluN2A NMDA receptor stimulation leads to mitochondrial ROS generation and neurotoxicity. J Biol Chem 2024; 300:107253. [PMID: 38569938 PMCID: PMC11081806 DOI: 10.1016/j.jbc.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
Homocysteine, a sulfur-containing amino acid derived from methionine metabolism, is a known agonist of N-methyl-D-aspartate receptor (NMDAR) and is involved in neurotoxicity. Our previous findings showed that neuronal exposure to elevated homocysteine levels leads to sustained low-level increase in intracellular Ca2+, which is dependent on GluN2A subunit-containing NMDAR (GluN2A-NMDAR) stimulation. These studies further showed a role of ERK MAPK in homocysteine-GluN2A-NMDAR-mediated neuronal death. However, the intracellular mechanisms associated with such sustained GluN2A-NMDAR stimulation and subsequent Ca2+ influx have remained unexplored. Using live-cell imaging with Fluo3-AM and biochemical approaches, we show that homocysteine-GluN2A NMDAR-induced initial Ca2+ influx triggers sequential phosphorylation and subsequent activation of the proline rich tyrosine kinase 2 (Pyk2) and Src family kinases, which in turn phosphorylates GluN2A-Tyr1325 residue of GluN2A-NMDARs to maintain channel activity. The continuity of this cycle of events leads to sustained Ca2+ influx through GluN2A-NMDAR. Our findings also show that lack of activation of the regulatory tyrosine phosphatase STEP, which can limit Pyk2 and Src family kinase activity further contributes to the maintenance of this cycle. Additional studies using live-cell imaging of neurons expressing a redox-sensitive GFP targeted to the mitochondrial matrix show that treatment with homocysteine leads to a progressive increase in mitochondrial reactive oxygen species generation, which is dependent on GluN2A-NMDAR-mediated sustained ERK MAPK activation. This later finding demonstrates a novel role of GluN2A-NMDAR in homocysteine-induced mitochondrial ROS generation and highlights the role of ERK MAPK as the intermediary signaling pathway between GluN2A-NMDAR stimulation and mitochondrial reactive oxygen species generation.
Collapse
Affiliation(s)
- Satya Narayan Deep
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Sarah Seelig
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
5
|
He Y, Nan D, Wang H. Role of Non-Receptor-Type Tyrosine Phosphatases in Brain-Related Diseases. Mol Neurobiol 2023; 60:6530-6541. [PMID: 37458988 DOI: 10.1007/s12035-023-03487-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/05/2023] [Indexed: 09/28/2023]
Abstract
The non-receptor protein tyrosine phosphatase is a class of enzymes that catalyze the dephosphorylation of phosphotyrosines in protein molecules. They are involved in cellular signaling by regulating the phosphorylation status of a variety of receptors and signaling molecules within the cell, thereby influencing cellular physiological and pathological processes. In this article, we detail multiple non-receptor tyrosine phosphatase and non-receptor tyrosine phosphatase genes involved in the pathological process of brain disease. These include PTPN6, PTPN11, and PTPN13, which are involved in glioma signaling; PTPN1, PTPN5, and PTPN13, which are involved in the pathogenesis of Alzheimer's disease Tau protein lesions, PTPN23, which may be involved in the pathogenesis of Epilepsy and PTPN1, which is involved in the pathogenesis of Parkinson's disease. The role of mitochondrial tyrosine phosphatase in brain diseases was also discussed. Non-receptor tyrosine phosphatases have great potential for targeted therapies in brain diseases and are highly promising research areas.
Collapse
Affiliation(s)
- Yatong He
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ding Nan
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
6
|
Joly-Amado A, Kulkarni N, Nash KR. Reelin Signaling in Neurodevelopmental Disorders and Neurodegenerative Diseases. Brain Sci 2023; 13:1479. [PMID: 37891846 PMCID: PMC10605156 DOI: 10.3390/brainsci13101479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Reelin is an extracellular matrix glycoprotein involved in neuronal migration during embryonic brain development and synaptic plasticity in the adult brain. The role of Reelin in the developing central nervous system has been extensively characterized. Indeed, a loss of Reelin or a disruption in its signaling cascade leads to neurodevelopmental defects and is associated with ataxia, intellectual disability, autism, and several psychiatric disorders. In the adult brain, Reelin is critically involved in neurogenesis and synaptic plasticity. Reelin's signaling potentiates glutamatergic and GABAergic neurotransmission, induces synaptic maturation, and increases AMPA and NMDA receptor subunits' expression and activity. As a result, there is a growing literature reporting that a loss of function and/or reduction of Reelin is implicated in numerous neurodegenerative diseases. The present review summarizes the current state of the literature regarding the implication of Reelin and Reelin-mediated signaling during aging and neurodegenerative disorders, highlighting Reelin as a possible target in the prevention or treatment of progressive neurodegeneration.
Collapse
Affiliation(s)
- Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (N.K.); (K.R.N.)
| | | | | |
Collapse
|
7
|
Bagwe PV, Deshpande RD, Juhasz G, Sathaye S, Joshi SV. Uncovering the Significance of STEP61 in Alzheimer's Disease: Structure, Substrates, and Interactome. Cell Mol Neurobiol 2023; 43:3099-3113. [PMID: 37219664 DOI: 10.1007/s10571-023-01364-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
STEP (STriatal-Enriched Protein Tyrosine Phosphatase) is a brain-specific phosphatase that plays an important role in controlling signaling molecules involved in neuronal activity and synaptic development. The striatum is the main location of the STEP enzyme. An imbalance in STEP61 activity is a risk factor for Alzheimer's disease (AD). It can contribute to the development of numerous neuropsychiatric diseases, including Parkinson's disease (PD), schizophrenia, fragile X syndrome (FXS), Huntington's disease (HD), alcoholism, cerebral ischemia, and stress-related diseases. The molecular structure, chemistry, and molecular mechanisms associated with STEP61's two major substrates, Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAr) and N-methyl-D-aspartate receptors (NMDARs), are crucial in understanding the relationship between STEP61 and associated illnesses. STEP's interactions with its substrate proteins can alter the pathways of long-term potentiation and long-term depression. Therefore, understanding the role of STEP61 in neurological illnesses, particularly Alzheimer's disease-associated dementia, can provide valuable insights for possible therapeutic interventions. This review provides valuable insights into the molecular structure, chemistry, and molecular mechanisms associated with STEP61. This brain-specific phosphatase controls signaling molecules involved in neuronal activity and synaptic development. This review can aid researchers in gaining deep insights into the complex functions of STEP61.
Collapse
Affiliation(s)
- Pritam V Bagwe
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Radni D Deshpande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Gabor Juhasz
- Clinical Research Unit (CRU Global Hungary Ltd.), Budapest, Hungary
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Shreerang V Joshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
8
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
9
|
Pan L, Li T, Wang R, Deng W, Pu H, Deng M. Roles of Phosphorylation of N-Methyl-D-Aspartate Receptor in Chronic Pain. Cell Mol Neurobiol 2023; 43:155-175. [PMID: 35032275 DOI: 10.1007/s10571-022-01188-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
Phosphorylation of N-methyl-D-aspartate receptor (NMDAR) is widely regarded as a vital modification of synaptic function. Various protein kinases are responsible for direct phosphorylation of NMDAR, such as cyclic adenosine monophosphate-dependent protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, Src family protein tyrosine kinases, cyclin-dependent kinase 5, and casein kinase II. The detailed function of these kinases on distinct subunits of NMDAR has been reported previously and contributes to phosphorylation at sites predominately within the C-terminal of NMDAR. Phosphorylation underlies both structural and functional changes observed in chronic pain, and studies have demonstrated that inhibitors of kinases are significantly effective in alleviating pain behavior in different chronic pain models. In addition, the exploration of drugs that aim to disrupt the interaction between kinases and NMDAR is promising in clinical research. Based on research regarding the modulation of NMDAR in chronic pain models, this review provides an overview of the phosphorylation of NMDAR-related mechanisms underlying chronic pain to elucidate molecular and pharmacologic references for chronic pain management.
Collapse
Affiliation(s)
- Liangyu Pan
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Tiansheng Li
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Weiheng Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, Hunan, China.
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
10
|
Proteomic and phosphoproteomic landscapes of acute myeloid leukemia. Blood 2022; 140:1533-1548. [PMID: 35895896 PMCID: PMC9523374 DOI: 10.1182/blood.2022016033] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023] Open
Abstract
We have developed a deep-scale proteome and phosphoproteome database from 44 representative acute myeloid leukemia (AML) patients from the LAML TCGA dataset and 6 healthy bone marrow-derived controls. After confirming data quality, we orthogonally validated several previously undescribed features of AML revealed by the proteomic data. We identified examples of posttranscriptionally regulated proteins both globally (ie, in all AML samples) and also in patients with recurrent AML driver mutations. For example, samples with IDH1/2 mutations displayed elevated levels of the 2-oxoglutarate-dependent histone demethylases KDM4A/B/C, despite no changes in messenger RNA levels for these genes; we confirmed this finding in vitro. In samples with NPMc mutations, we identified several nuclear importins with posttranscriptionally increased protein abundance and showed that they interact with NPMc but not wild-type NPM1. We identified 2 cell surface proteins (CD180 and MRC1/CD206) expressed on AML blasts of many patients (but not healthy CD34+ stem/progenitor cells) that could represent novel targets for immunologic therapies and confirmed these targets via flow cytometry. Finally, we detected nearly 30 000 phosphosites in these samples; globally, AML samples were associated with the abnormal phosphorylation of specific residues in PTPN11, STAT3, AKT1, and PRKCD. FLT3-TKD samples were associated with increased phosphorylation of activating tyrosines on the cytoplasmic Src-family tyrosine kinases FGR and HCK and related signaling proteins. PML-RARA-initiated AML samples displayed a unique phosphorylation signature, and TP53-mutant samples showed abundant phosphorylation of serine-183 on TP53 itself. This publicly available database will serve as a foundation for further investigations of protein dysregulation in AML pathogenesis.
Collapse
|
11
|
Moskaliuk VS, Kozhemyakina RV, Bazovkina DV, Terenina E, Khomenko TM, Volcho KP, Salakhutdinov NF, Kulikov AV, Naumenko VS, Kulikova E. On an association between fear-induced aggression and striatal-enriched protein tyrosine phosphatase (STEP) in the brain of Norway rats. Pharmacotherapy 2022; 147:112667. [DOI: 10.1016/j.biopha.2022.112667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
|
12
|
Carvajal FJ, Cerpa W. Regulation of Phosphorylated State of NMDA Receptor by STEP 61 Phosphatase after Mild-Traumatic Brain Injury: Role of Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101575. [PMID: 34679709 PMCID: PMC8533270 DOI: 10.3390/antiox10101575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/21/2023] Open
Abstract
Traumatic Brain Injury (TBI) mediates neuronal death through several events involving many molecular pathways, including the glutamate-mediated excitotoxicity for excessive stimulation of N-methyl-D-aspartate receptors (NMDARs), producing activation of death signaling pathways. However, the contribution of NMDARs (distribution and signaling-associated to the distribution) remains incompletely understood. We propose a critical role of STEP61 (Striatal-Enriched protein tyrosine phosphatase) in TBI; this phosphatase regulates the dephosphorylated state of the GluN2B subunit through two pathways: by direct dephosphorylation of tyrosine-1472 and indirectly via dephosphorylation and inactivation of Fyn kinase. We previously demonstrated oxidative stress’s contribution to NMDAR signaling and distribution using SOD2+/− mice such a model. We performed TBI protocol using a controlled frontal impact device using C57BL/6 mice and SOD2+/− animals. After TBI, we found alterations in cognitive performance, NMDAR-dependent synaptic function (decreased synaptic form of NMDARs and decreased synaptic current NMDAR-dependent), and increased STEP61 activity. These changes are reduced partially with the STEP61-inhibitor TC-2153 treatment in mice subjected to TBI protocol. This study contributes with evidence about the role of STEP61 in the neuropathological progression after TBI and also the alteration in their activity, such as an early biomarker of synaptic damage in traumatic lesions.
Collapse
Affiliation(s)
- Francisco J. Carvajal
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
- Correspondence: ; Tel.: +56-2-2354-2656; Fax: +56-2-2354-2660
| |
Collapse
|
13
|
Kulikova EA, Fursenko DV, Bazhenova EY, Kulikov AV. Decrease in the Activity of Striatal-Enriched Protein-Tyrosine-Phosphatase (STEP) in the Brain of Danio rerio Treated with p-Chlorophenylalanine and Pargyline. Mol Biol 2021. [DOI: 10.1134/s0026893321020254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Guglietti B, Sivasankar S, Mustafa S, Corrigan F, Collins-Praino LE. Fyn Kinase Activity and Its Role in Neurodegenerative Disease Pathology: a Potential Universal Target? Mol Neurobiol 2021; 58:5986-6005. [PMID: 34432266 DOI: 10.1007/s12035-021-02518-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Fyn is a non-receptor tyrosine kinase belonging to the Src family of kinases (SFKs) which has been implicated in several integral functions throughout the central nervous system (CNS), including myelination and synaptic transmission. More recently, Fyn dysfunction has been associated with pathological processes observed in neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). Neurodegenerative diseases are amongst the leading cause of death and disability worldwide and, due to the ageing population, prevalence is predicted to rise in the coming years. Symptoms across neurodegenerative diseases are both debilitating and degenerative in nature and, concerningly, there are currently no disease-modifying therapies to prevent their progression. As such, it is important to identify potential new therapeutic targets. This review will outline the role of Fyn in normal/homeostatic processes, as well as degenerative/pathological mechanisms associated with neurodegenerative diseases, such as demyelination, pathological protein aggregation, neuroinflammation and cognitive dysfunction.
Collapse
Affiliation(s)
- Bianca Guglietti
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Srisankavi Sivasankar
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Sanam Mustafa
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia
| | - Frances Corrigan
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Lyndsey E Collins-Praino
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia. .,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
15
|
Maternal Ethanol Exposure Acutely Elevates Src Family Kinase Activity in the Fetal Cortex. Mol Neurobiol 2021; 58:5210-5223. [PMID: 34272687 PMCID: PMC8497457 DOI: 10.1007/s12035-021-02467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
Fetal alcohol syndrome (FAS) is characterized by disrupted fetal brain development and postnatal cognitive impairment. The targets of alcohol are diverse, and it is not clear whether there are common underlying molecular mechanisms producing these disruptions. Prior work established that acute ethanol exposure causes a transient increase in tyrosine phosphorylation of multiple proteins in cultured embryonic cortical cells. In this study, we show that a similar tyrosine phosphorylation transient occurs in the fetal brain after maternal dosing with ethanol. Using phospho-specific antibodies and immunohistochemistry, we mapped regions of highest tyrosine phosphorylation in the fetal cerebral cortex and found that areas of dendritic and axonal growth showed elevated tyrosine phosphorylation 10 min after maternal ethanol exposure. These were also areas of Src expression and Src family kinase (SFK) activation loop phosphorylation (pY416) expression. Importantly, maternal pretreatment with the SFK inhibitor dasatinib completely prevents both the pY416 increase and the tyrosine phosphorylation response. The phosphorylation response was observed in the perisomatic region and neurites of immature migrating and differentiating primary neurons. Importantly, the initial phosphotyrosine transient (~ 30 min) targets both Src and Dab1, two critical elements in Reelin signaling, a pathway required for normal cortical development. This initial phosphorylation response is followed by sustained reduction in Ser3 phosphorylation of n-cofilin, a critical actin severing protein and an identified downstream effector of Reelin signaling. This biochemical disruption is associated with sustained reduction of F-actin content and disrupted Golgi apparatus morphology in developing cortical neurons. The finding outlines a model in which the initial activation of SFKs by ethanol has the potential to disrupt multiple developmentally important signaling systems for several hours after maternal exposure.
Collapse
|
16
|
Mahaman YAR, Huang F, Embaye KS, Wang X, Zhu F. The Implication of STEP in Synaptic Plasticity and Cognitive Impairments in Alzheimer's Disease and Other Neurological Disorders. Front Cell Dev Biol 2021; 9:680118. [PMID: 34195199 PMCID: PMC8236946 DOI: 10.3389/fcell.2021.680118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a tyrosine phosphatase that has been implicated in Alzheimer’s disease (AD), the most common form of dementia, and many other neurological diseases. The protein level and activity of STEP have been found to be elevated in most of these disorders, and specifically in AD as a result of dysregulation of different pathways including PP2B/DARPP32/PP1, PKA as well as impairments of both proteasomal and lysosomal systems. The upregulation in STEP leads to increased binding to, and dephosphorylation of, its substrates which are mainly found to be synaptic plasticity and thus learning and memory related proteins. These proteins include kinases like Fyn, Pyk2, ERK1/2 and both NMDA and AMPA receptor subunits GluN2B and GluA2. The dephosphorylation of these molecules results in inactivation of these kinases and internalization of NMDA and AMPA receptor complexes leading to synapse loss and cognitive impairments. In this study, we aim to review STEP regulation and its implications in AD as well as other neurological disorders and then summarize data on targeting STEP as therapeutic strategy in these diseases.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China.,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kidane Siele Embaye
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
Lambert LJ, Grotegut S, Celeridad M, Gosalia P, Backer LJSD, Bobkov AA, Salaniwal S, Chung TDY, Zeng FY, Pass I, Lombroso PJ, Cosford NDP, Tautz L. Development of a Robust High-Throughput Screening Platform for Inhibitors of the Striatal-Enriched Tyrosine Phosphatase (STEP). Int J Mol Sci 2021; 22:ijms22094417. [PMID: 33922601 PMCID: PMC8122956 DOI: 10.3390/ijms22094417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Many human diseases are the result of abnormal expression or activation of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Not surprisingly, more than 30 tyrosine kinase inhibitors (TKIs) are currently in clinical use and provide unique treatment options for many patients. PTPs on the other hand have long been regarded as “undruggable” and only recently have gained increased attention in drug discovery. Striatal-enriched tyrosine phosphatase (STEP) is a neuron-specific PTP that is overactive in Alzheimer’s disease (AD) and other neurodegenerative and neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, and fragile X syndrome. An emergent model suggests that the increase in STEP activity interferes with synaptic function and contributes to the characteristic cognitive and behavioral deficits present in these diseases. Prior efforts to generate STEP inhibitors with properties that warrant clinical development have largely failed. To identify novel STEP inhibitor scaffolds, we developed a biophysical, label-free high-throughput screening (HTS) platform based on the protein thermal shift (PTS) technology. In contrast to conventional HTS using STEP enzymatic assays, we found the PTS platform highly robust and capable of identifying true hits with confirmed STEP inhibitory activity and selectivity. This new platform promises to greatly advance STEP drug discovery and should be applicable to other PTP targets.
Collapse
Affiliation(s)
- Lester J Lambert
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (L.J.L.); (M.C.); (L.J.D.B.); (N.D.C.)
| | - Stefan Grotegut
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Maria Celeridad
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (L.J.L.); (M.C.); (L.J.D.B.); (N.D.C.)
| | - Palak Gosalia
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Laurent JS De Backer
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (L.J.L.); (M.C.); (L.J.D.B.); (N.D.C.)
| | - Andrey A Bobkov
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Sumeet Salaniwal
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Thomas DY Chung
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Fu-Yue Zeng
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Ian Pass
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Paul J Lombroso
- Child Study Center, Departments of Psychiatry and Departments of Neurobiology, Yale University, 230 South Frontage Rd, New Haven, CT 06520, USA;
| | - Nicholas DP Cosford
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (L.J.L.); (M.C.); (L.J.D.B.); (N.D.C.)
| | - Lutz Tautz
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (L.J.L.); (M.C.); (L.J.D.B.); (N.D.C.)
- Correspondence:
| |
Collapse
|
18
|
Won S, Roche KW. Regulation of glutamate receptors by striatal-enriched tyrosine phosphatase 61 (STEP 61 ). J Physiol 2021; 599:443-451. [PMID: 32170729 PMCID: PMC11526339 DOI: 10.1113/jp278703] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/25/2020] [Indexed: 12/26/2022] Open
Abstract
Phosphorylation regulates glutamate receptor trafficking. The cytosolic C-terminal domains of both NMDA receptors (NMDARs) and AMPA receptors (AMPARs) have distinct motifs, which are substrates for serine/threonine and tyrosine phosphorylation. Decades of research have shown how phosphorylation of glutamate receptors mediates protein binding and receptor trafficking, ultimately controlling synaptic transmission and plasticity. STEP is a protein tyrosine phosphatase (also known as PTPN5), with several isoforms resulting from alternative splicing. Targets of STEP include a variety of important synaptic substrates, among which are the tyrosine kinase Fyn and glutamate receptors. In particular, STEP61 , the longest isoform, dephosphorylates the NMDAR subunit GluN2B and strongly regulates the expression of NMDARs at synapses. This interplay between STEP, Fyn and GluN2B-containing NMDARs has been characterized by multiple groups. More recently, STEP61 was shown to bind to AMPARs in a subunit-specific manner and differentially regulate synaptic NMDARs and AMPARs. Because of its many effects on synaptic proteins, STEP has been implicated in regulating excitatory synapses during plasticity and playing a role in synaptic dysfunction in a variety of neurological disorders. In this review, we will highlight the ways in which STEP61 differentially regulates NMDARs and AMPARs, as well as its role in plasticity and disease.
Collapse
Affiliation(s)
- Sehoon Won
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
19
|
Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp Neurol 2020; 335:113518. [PMID: 33144066 DOI: 10.1016/j.expneurol.2020.113518] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Stroke is the leading cause of disability and thesecond leading cause of death worldwide. With the global population aged 65 and over growing faster than all other age groups, the incidence of stroke is also increasing. In addition, there is a shift in the overall stroke burden towards younger age groups, particularly in low and middle-income countries. Stroke in most cases is caused due to an abrupt blockage of an artery (ischemic stroke), but in some instances stroke may be caused due to bleeding into brain tissue when a blood vessel ruptures (hemorrhagic stroke). Although treatment options for stroke are still limited, with the advancement in recanalization therapy using both pharmacological and mechanical thrombolysis some progress has been made in helping patients recover from ischemic stroke. However, there is still a substantial need for the development of therapeutic agents for neuroprotection in acute ischemic stroke to protect the brain from damage prior to and during recanalization, extend the therapeutic time window for intervention and further improve functional outcome. The current review has assessed the past challenges in developing neuroprotective strategies, evaluated the recent advances in clinical trials, discussed the recent initiative by the National Institute of Neurological Disorders and Stroke in USA for the search of novel neuroprotectants (Stroke Preclinical Assessment Network, SPAN) and identified emerging neuroprotectants being currently evaluated in preclinical studies. The underlying molecular mechanism of each of the neuroprotective strategies have also been summarized, which could assist in the development of future strategies for combinational therapy in stroke treatment.
Collapse
Affiliation(s)
- Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
20
|
Chatterjee M, Singh P, Xu J, Lombroso PJ, Kurup PK. Inhibition of striatal-enriched protein tyrosine phosphatase (STEP) activity reverses behavioral deficits in a rodent model of autism. Behav Brain Res 2020; 391:112713. [PMID: 32461127 PMCID: PMC7346720 DOI: 10.1016/j.bbr.2020.112713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorders (ASDs) are highly prevalent childhood illnesses characterized by impairments in communication, social behavior, and repetitive behaviors. Studies have found aberrant synaptic plasticity and neuronal connectivity during the early stages of brain development and have suggested that these contribute to an increased risk for ASD. STEP is a protein tyrosine phosphatase that regulates synaptic plasticity and is implicated in several cognitive disorders. Here we test the hypothesis that STEP may contribute to some of the aberrant behaviors present in the VPA-induced mouse model of ASD. In utero VPA exposure of pregnant dams results in autistic-like behavior in the pups, which is associated with a significant increase in the STEP expression in the prefrontal cortex. The elevated STEP protein levels are correlated with increased dephosphorylation of STEP substrates GluN2B, Pyk2 and ERK, suggesting upregulated STEP activity. Moreover, pharmacological inhibition of STEP rescues the sociability, repetitive and abnormal anxiety phenotypes commonly associated with ASD. These data suggest that STEP may play a role in the VPA model of ASD and STEP inhibition may have a potential therapeutic benefit in this model.
Collapse
Affiliation(s)
- Manavi Chatterjee
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States.
| | - Priya Singh
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States
| | - Jian Xu
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Psychiatry, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Paul J Lombroso
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Psychiatry, Yale University, 333 Cedar Street, New Haven, CT 06520, United States; Department of Neuroscience, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Pradeep K Kurup
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Surgery, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL 35233, United States.
| |
Collapse
|
21
|
Fyn Tyrosine Kinase as Harmonizing Factor in Neuronal Functions and Dysfunctions. Int J Mol Sci 2020; 21:ijms21124444. [PMID: 32580508 PMCID: PMC7352836 DOI: 10.3390/ijms21124444] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/25/2022] Open
Abstract
Fyn is a non-receptor or cytoplasmatic tyrosine kinase (TK) belonging to the Src family kinases (SFKs) involved in multiple transduction pathways in the central nervous system (CNS) including synaptic transmission, myelination, axon guidance, and oligodendrocyte formation. Almost one hundred years after the original description of Fyn, this protein continues to attract extreme interest because of its multiplicity of actions in the molecular signaling pathways underlying neurodevelopmental as well as neuropathologic events. This review highlights and summarizes the most relevant recent findings pertinent to the role that Fyn exerts in the brain, emphasizing aspects related to neurodevelopment and synaptic plasticity. Fyn is a common factor in healthy and diseased brains that targets different proteins and shapes different transduction signals according to the neurological conditions. We will primarily focus on Fyn-mediated signaling pathways involved in neuronal differentiation and plasticity that have been subjected to considerable attention lately, opening the fascinating scenario to target Fyn TK for the development of potential therapeutic interventions for the treatment of CNS injuries and certain neurodegenerative disorders like Alzheimer’s disease.
Collapse
|
22
|
Kulikova EA, Fursenko DV, Bazhenova EY, Kulikov AV. Pargyline and р-Chlorophenylalanine Decrease Expression of Ptpn5 Encoding Striatal-Enriched Protein Tyrosine Phosphatase (STEP) in the Mouse Striatum. Mol Biol 2020. [DOI: 10.1134/s0026893320020090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Poddar R, Rajagopal S, Winter L, Allan AM, Paul S. A peptide mimetic of tyrosine phosphatase STEP as a potential therapeutic agent for treatment of cerebral ischemic stroke. J Cereb Blood Flow Metab 2019; 39:1069-1084. [PMID: 29215306 PMCID: PMC6547188 DOI: 10.1177/0271678x17747193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extensive research over the last two decades has advanced our understanding of the pathophysiology of ischemic stroke. However, current pharmacologic therapies are still limited to rapid reperfusion using thrombolytic agents, and neuroprotective approaches that can reduce the consequences of ischemic and reperfusion injury, are still not available. To bridge this gap, we have evaluated the long-term efficacy and therapeutic time window of a novel peptide-based neuroprotectant TAT-STEP, derived from the brain-enriched and neuron-specific tyrosine phosphatase STEP. Using a rat model of transient middle cerebral artery occlusion (90 min), we show that a single intravenous administration of the peptide at the onset of reperfusion (early) or 6 h after the onset of the insult (delayed) reduces mortality rate. In the surviving rats, MRI scans of the brain at days 1, 14 and 28 after the insult show significant reduction in infarct size and improvement of structural integrity within the infarcted area following peptide treatment, regardless of the time of administration. Behavioral assessments show significant improvement in normal gait, motor coordination, sensory motor function and spatial memory following early or delayed peptide treatment. The study establishes for the first time the therapeutic potential of a tyrosine phosphatase in ischemic brain injury.
Collapse
Affiliation(s)
- Ranjana Poddar
- 1 Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | - Lucas Winter
- 1 Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Andrea M Allan
- 2 Department of Neurosciences, 1 University of New Mexico, Albuquerque, NM, USA
| | - Surojit Paul
- 1 Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,2 Department of Neurosciences, 1 University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
24
|
The STEP 61 interactome reveals subunit-specific AMPA receptor binding and synaptic regulation. Proc Natl Acad Sci U S A 2019; 116:8028-8037. [PMID: 30936304 DOI: 10.1073/pnas.1900878116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific protein phosphatase that regulates a variety of synaptic proteins, including NMDA receptors (NAMDRs). To better understand STEP's effect on other receptors, we used mass spectrometry to identify the STEP61 interactome. We identified a number of known interactors, but also ones including the GluA2 subunit of AMPA receptors (AMPARs). We show that STEP61 binds to the C termini of GluA2 and GluA3 as well as endogenous AMPARs in hippocampus. The synaptic expression of GluA2 and GluA3 is increased in STEP-KO mouse brain, and STEP knockdown in hippocampal slices increases AMPAR-mediated synaptic currents. Interestingly, STEP61 overexpression reduces the synaptic expression and synaptic currents of both AMPARs and NMDARs. Furthermore, STEP61 regulation of synaptic AMPARs is mediated by lysosomal degradation. Thus, we report a comprehensive list of STEP61 binding partners, including AMPARs, and reveal a central role for STEP61 in differentially organizing synaptic AMPARs and NMDARs.
Collapse
|
25
|
Cheng R, Tang M, Martinez I, Ayodele T, Baez P, Reyes-Dumeyer D, Lantigua R, Medrano M, Jimenez-Velazquez I, Lee JH, Beecham GW, Reitz C. Linkage analysis of multiplex Caribbean Hispanic families loaded for unexplained early-onset cases identifies novel Alzheimer's disease loci. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:554-562. [PMID: 30406174 PMCID: PMC6215058 DOI: 10.1016/j.dadm.2018.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction Less than 10% of early-onset Alzheimer's disease (EOAD) is explained by known mutations. Methods We conducted genetic linkage analysis of 68 well-phenotyped Caribbean Hispanic families without clear inheritance patterns or mutations in APP, PSEN1, and PSEN2 and with two or more individuals with EOAD. Results We identified 16 (logarithm of odds > 3.6) linked regions, including eight novel loci for EOAD (2p15, 5q14.1, 11p15.1, 13q21.22, 13q33.1, 16p12.1, 20p12.1, and 20q11.21) and eight regions previously associated with late-onset Alzheimer's disease. The strongest signal was observed at 16p12.1 (25 cM, 33 Mb; heterogeneity logarithm of odds = 5.3), ∼3 Mb upstream of the ceroid lipofuscinosis 3 (CLN3) gene associated with juvenile neuronal ceroid lipofuscinosis (JNCL), which functions in retromer trafficking and has been reported to alter intracellular processing of the amyloid precursor protein. Discussion This study supports the notion that the genetic architectures of unexplained EOAD and late-onset AD overlap partially, but not fully.
Collapse
Affiliation(s)
- Rong Cheng
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.,The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
| | - Min Tang
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.,The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
| | - Izri Martinez
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Temitope Ayodele
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Penelope Baez
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Dolly Reyes-Dumeyer
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Rafael Lantigua
- Department of Medicine, Columbia University, New York, NY, USA
| | - Martin Medrano
- School of Medicine, Pontificia Universidad Catolica Madre y Maestra, Santiago, Dominican Republic
| | - Ivonne Jimenez-Velazquez
- Department of Internal Medicine, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Joseph H Lee
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.,The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA.,Department of Epidemiology, Columbia University, New York, NY, USA
| | - Gary W Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.,The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA.,Department of Epidemiology, Columbia University, New York, NY, USA.,Department of Neurology, Columbia University, New York, NY, USA
| |
Collapse
|
26
|
Carvajal FJ, Mira RG, Rovegno M, Minniti AN, Cerpa W. Age-related NMDA signaling alterations in SOD2 deficient mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2010-2020. [PMID: 29577983 DOI: 10.1016/j.bbadis.2018.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/23/2022]
Abstract
Oxidative stress affects the survival and function of neurons. Hence, they have a complex and highly regulated machinery to handle oxidative changes. The dysregulation of this antioxidant machinery is associated with a wide range of neurodegenerative conditions. Therefore, we evaluated signaling alterations, synaptic properties and behavioral performance in 2 and 6-month-old heterozygous manganese superoxide dismutase knockout mice (SOD2+/- mice). We found that their low antioxidant capacity generated direct oxidative damage in proteins, lipids, and DNA. However, only 6-month-old heterozygous knockout mice presented behavioral impairments. On the other hand, synaptic plasticity, synaptic strength and NMDA receptor (NMDAR) dependent postsynaptic potentials were decreased in an age-dependent manner. We also analyzed the phosphorylation state of the NMDAR subunit GluN2B. We found that while the levels of GluN2B phosphorylated on tyrosine 1472 (synaptic form) remain unchanged, we detected increased levels of GluN2B phosphorylated on tyrosine 1336 (extrasynaptic form), establishing alterations in the synaptic/extrasynaptic ratio of GluN2B. Additionally, we found increased levels of two phosphatases associated with dephosphorylation of p-1472: striatal-enriched protein tyrosine phosphatase (STEP) and phosphatase and tensin homolog deleted on chromosome Ten (PTEN). Moreover, we found decreased levels of p-CREB, a master transcription factor activated by synaptic stimulation. In summary, we describe mechanisms by which glutamatergic synapses are altered under oxidative stress conditions. Our results uncovered new putative therapeutic targets for conditions where NMDAR downstream signaling is altered. This work also contributes to our understanding of processes such as synapse formation, learning, and memory in neuropathological conditions.
Collapse
Affiliation(s)
- Francisco J Carvajal
- Laboratorio de Función y Patología Neuronal, Santiago, Chile; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo G Mira
- Laboratorio de Función y Patología Neuronal, Santiago, Chile; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alicia N Minniti
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Santiago, Chile; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
27
|
Castonguay D, Dufort-Gervais J, Ménard C, Chatterjee M, Quirion R, Bontempi B, Schneider JS, Arnsten AFT, Nairn AC, Norris CM, Ferland G, Bézard E, Gaudreau P, Lombroso PJ, Brouillette J. The Tyrosine Phosphatase STEP Is Involved in Age-Related Memory Decline. Curr Biol 2018; 28:1079-1089.e4. [PMID: 29576474 DOI: 10.1016/j.cub.2018.02.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/27/2017] [Accepted: 02/19/2018] [Indexed: 01/22/2023]
Abstract
Cognitive disabilities that occur with age represent a growing and expensive health problem. Age-associated memory deficits are observed across many species, but the underlying molecular mechanisms remain to be fully identified. Here, we report elevations in the levels and activity of the striatal-enriched phosphatase (STEP) in the hippocampus of aged memory-impaired mice and rats, in aged rhesus monkeys, and in people diagnosed with amnestic mild cognitive impairment (aMCI). The accumulation of STEP with aging is related to dysfunction of the ubiquitin-proteasome system that normally leads to the degradation of STEP. Higher level of active STEP is linked to enhanced dephosphorylation of its substrates GluN2B and ERK1/2, CREB inactivation, and a decrease in total levels of GluN2B and brain-derived neurotrophic factor (BDNF). These molecular events are reversed in aged STEP knockout and heterozygous mice, which perform similarly to young control mice in the Morris water maze (MWM) and Y-maze tasks. In addition, administration of the STEP inhibitor TC-2153 to old rats significantly improved performance in a delayed alternation T-maze memory task. In contrast, viral-mediated STEP overexpression in the hippocampus is sufficient to induce memory impairment in the MWM and Y-maze tests, and these cognitive deficits are reversed by STEP inhibition. In old LOU/C/Jall rats, a model of healthy aging with preserved memory capacities, levels of STEP and GluN2B are stable, and phosphorylation of GluN2B and ERK1/2 is unaltered. Altogether, these data suggest that elevated levels of STEP that appear with advancing age in several species contribute to the cognitive declines associated with aging.
Collapse
Affiliation(s)
- David Castonguay
- Department of Pharmacology and Physiology, Université de Montréal, and Hôpital du Sacré-Coeur de Montréal Research Center, Montreal, QC, Canada
| | - Julien Dufort-Gervais
- Department of Pharmacology and Physiology, Université de Montréal, and Hôpital du Sacré-Coeur de Montréal Research Center, Montreal, QC, Canada
| | - Caroline Ménard
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Medecine, Université de Montréal, Centre Hospitalier de l'Université de Montréal Research Center, Montreal, QC, Canada
| | - Manavi Chatterjee
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Rémi Quirion
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Bruno Bontempi
- Université de Bordeaux, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Jay S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher M Norris
- Department of Molecular and Biomedical Pharmacology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Guylaine Ferland
- Department of Nutrition, Université de Montréal, and Institut de Cardiologie de Montréal, Montreal, QC, Canada
| | - Erwan Bézard
- Université de Bordeaux, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pierrette Gaudreau
- Department of Medecine, Université de Montréal, Centre Hospitalier de l'Université de Montréal Research Center, Montreal, QC, Canada
| | - Paul J Lombroso
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Child Study Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Jonathan Brouillette
- Department of Pharmacology and Physiology, Université de Montréal, and Hôpital du Sacré-Coeur de Montréal Research Center, Montreal, QC, Canada; Child Study Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
28
|
Altered Intracellular Calcium Homeostasis Underlying Enhanced Glutamatergic Transmission in Striatal-Enriched Tyrosine Phosphatase (STEP) Knockout Mice. Mol Neurobiol 2018; 55:8084-8102. [PMID: 29508281 DOI: 10.1007/s12035-018-0980-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
Abstract
The striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase involved in synaptic transmission. The current hypothesis on STEP function holds that it opposes synaptic strengthening by dephosphorylating and inactivating key neuronal proteins involved in synaptic plasticity and intracellular signaling, such as the MAP kinases ERK1/2 and p38, as well as the tyrosine kinase Fyn. Although STEP has a predominant role at the post-synaptic level, it is also expressed in nerve terminals. To better investigate its physiological role at the presynaptic level, we functionally investigated brain synaptosomes and autaptic hippocampal neurons from STEP knockout (KO) mice. Synaptosomes purified from mutant mice were characterized by an increased basal and evoked glutamate release compared with wild-type animals. Under resting conditions, STEP KO synaptosomes displayed increased cytosolic Ca2+ levels accompanied by an enhanced basal activity of Ca2+/calmodulin-dependent protein kinase type II (CaMKII) and hyperphosphorylation of synapsin I at CaMKII sites. Moreover, STEP KO hippocampal neurons exhibit an increase of excitatory synaptic strength attributable to an increased size of the readily releasable pool of synaptic vesicles. These results provide new evidence that STEP plays an important role at nerve terminals in the regulation of Ca2+ homeostasis and neurotransmitter release.
Collapse
|
29
|
Nygaard HB. Targeting Fyn Kinase in Alzheimer's Disease. Biol Psychiatry 2018; 83:369-376. [PMID: 28709498 PMCID: PMC5729051 DOI: 10.1016/j.biopsych.2017.06.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 01/06/2023]
Abstract
The past decade has brought tremendous progress in unraveling the pathophysiology of Alzheimer's disease (AD). While increasingly sophisticated immunotherapy targeting soluble and aggregated brain amyloid-beta (Aβ) continues to dominate clinical research in AD, a deeper understanding of Aβ physiology has led to the recognition of distinct neuronal signaling pathways linking Aβ to synaptotoxicity and neurodegeneration and to new targets for therapeutic intervention. Identifying specific signaling pathways involving Aβ has allowed for the development of more precise therapeutic interventions targeting the most relevant molecular mechanisms leading to AD. In this review, I highlight the discovery of cellular prion protein as a high-affinity receptor for Aβ oligomers, and the downstream signaling pathway elucidated to date, converging on nonreceptor tyrosine kinase Fyn. I discuss preclinical studies targeting Fyn as a therapeutic intervention in AD and our recent experience with the safety, tolerability, and cerebrospinal fluid penetration of the Src family kinase inhibitor saracatinib in patients with AD. Fyn is an attractive target for AD therapeutics, not only based on its activation by Aβ via cellular prion protein but also due to its known interaction with tau, uniquely linking the two key pathologies in AD. Fyn is also a challenging target, with broad expression throughout the body and significant homology with other members of the Src family kinases, which may lead to unintended off-target effects. A phase 2a proof-of-concept clinical trial in patients with AD is currently under way, providing critical first data on the potential effectiveness of targeting Fyn in AD.
Collapse
Affiliation(s)
- Haakon B. Nygaard
- Assistant Professor of Medicine (Neurology), University of British Columbia, Department of Medicine, Division of Neurology, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
30
|
Siemsen BM, Lombroso PJ, McGinty JF. Intra-prelimbic cortical inhibition of striatal-enriched tyrosine phosphatase suppresses cocaine seeking in rats. Addict Biol 2018; 23:219-229. [PMID: 28349660 DOI: 10.1111/adb.12504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/30/2022]
Abstract
Cocaine self-administration in rats results in dysfunctional neuroadaptations in the prelimbic (PrL) cortex during early abstinence. Central to these adaptations is decreased phospho-extracellular signal-regulated kinase (p-ERK), which plays a key role in cocaine seeking. Normalizing ERK phosphorylation in the PrL cortex immediately after cocaine self-administration decreases subsequent cocaine seeking. The disturbance in ERK phosphorylation is accompanied by decreased phosphorylation of striatal-enriched protein tyrosine phosphatase (STEP), indicating increased STEP activity. STEP is a well-recognized ERK phosphatase but whether STEP activation during early abstinence mediates the decrease in p-ERK and is involved in relapse is unknown. Here, we show that a single intra-PrL cortical microinfusion of the selective STEP inhibitor, TC-2153, immediately after self-administration suppressed post-abstinence context-induced relapse under extinction conditions and cue-induced reinstatement, but not cocaine prime-induced drug seeking or sucrose seeking. Moreover, an intra-PrL cortical TC-2153 microinfusion immediately after self-administration prevented the cocaine-induced decrease in p-ERK within the PrL cortex during early abstinence. Interestingly, a systemic TC-2153 injection at the same timepoint failed to suppress post-abstinence context-induced relapse or cue-induced reinstatement, but did suppress cocaine prime-induced reinstatement. These data indicate that the STEP-induced ERK dephosphorylation in the PrL cortex during early abstinence is a critical neuroadaptation that promotes relapse to cocaine seeking and that systemic versus intra-PrL cortical inhibition of STEP during early abstinence differentially suppresses cocaine seeking.
Collapse
Affiliation(s)
- Ben M. Siemsen
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | | | | |
Collapse
|
31
|
Witten MR, Wissler L, Snow M, Geschwindner S, Read JA, Brandon NJ, Nairn AC, Lombroso PJ, Käck H, Ellman JA. X-ray Characterization and Structure-Based Optimization of Striatal-Enriched Protein Tyrosine Phosphatase Inhibitors. J Med Chem 2017; 60:9299-9319. [PMID: 29116812 DOI: 10.1021/acs.jmedchem.7b01292] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Excessive activity of striatal-enriched protein tyrosine phosphatase (STEP) in the brain has been detected in numerous neuropsychiatric disorders including Alzheimer's disease. Notably, knockdown of STEP in an Alzheimer mouse model effected an increase in the phosphorylation levels of downstream STEP substrates and a significant reversal in the observed cognitive and memory deficits. These data point to the promising potential of STEP as a target for drug discovery in Alzheimer's treatment. We previously reported a substrate-based approach to the development of low molecular weight STEP inhibitors with Ki values as low as 7.8 μM. Herein, we disclose the first X-ray crystal structures of inhibitors bound to STEP and the surprising finding that they occupy noncoincident binding sites. Moreover, we utilize this structural information to optimize the inhibitor structure to achieve a Ki of 110 nM, with 15-60-fold selectivity across a series of phosphatases.
Collapse
Affiliation(s)
- Michael R Witten
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Lisa Wissler
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Gothenburg, Sweden
| | - Melanie Snow
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Macclesfield SK10 4TG, United Kingdom
| | - Stefan Geschwindner
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Gothenburg, Sweden
| | - Jon A Read
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Cambridge CB4 0WG, United Kingdom
| | - Nicholas J Brandon
- Neuroscience, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Cambridge, Massachusetts 02139, United States
| | - Angus C Nairn
- Department of Psychiatry, Yale University , New Haven, Connecticut 06520, United States
| | - Paul J Lombroso
- Department of Psychiatry, Yale University , New Haven, Connecticut 06520, United States.,Child Study Center, Yale University , New Haven, Connecticut 06520, United States
| | - Helena Käck
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Gothenburg, Sweden
| | - Jonathan A Ellman
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| |
Collapse
|
32
|
Brody AH, Strittmatter SM. Synaptotoxic Signaling by Amyloid Beta Oligomers in Alzheimer's Disease Through Prion Protein and mGluR5. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:293-323. [PMID: 29413525 PMCID: PMC5835229 DOI: 10.1016/bs.apha.2017.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) represents an impending global health crisis, yet the complexity of AD pathophysiology has so far precluded the development of any interventions to successfully slow or halt AD progression. It is clear that accumulation of Amyloid-beta (Aβ) peptide triggers progressive synapse loss to cause AD symptoms. Once initiated by Aβ, disease progression is complicated and accelerated by inflammation and by tau pathology. The recognition that Aβ peptide assumes multiple distinct states and that soluble oligomeric species (Aβo) are critical for synaptic damage is central to molecular understanding of AD. This knowledge has led to the identification of specific Aβo receptors, such as cellular prion protein (PrPC), mediating synaptic toxicity and neuronal dysfunction. The identification of PrPC as an Aβo receptor has illuminated an Aβo-induced signaling cascade involving mGluR5, Fyn, and Pyk2 that links Aβ and tau pathologies. This pathway provides novel potential therapeutic targets for disease-modifying AD therapy. Here, we discuss the methods by which several putative Aβo receptors were identified. We also offer an in-depth examination of the known molecular mechanisms believed to mediate Aβo-induced synaptic dysfunction, toxicity, and memory dysfunction.
Collapse
Affiliation(s)
- A Harrison Brody
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT, United States; Yale University, New Haven, CT, United States
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT, United States; Yale University, New Haven, CT, United States.
| |
Collapse
|
33
|
Zhang S, Fan G, Hao Y, Hammell M, Wilkinson JE, Tonks NK. Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Genes Dev 2017; 31:1939-1957. [PMID: 29066500 PMCID: PMC5710140 DOI: 10.1101/gad.304261.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
Zhang et al. identified PTPN23 as a suppressor of cell motility and invasion in mammary epithelial and breast cancer cells. They validated the underlying mechanism of PTPN23 function in breast tumorigenesis as that of a key phosphatase that normally suppresses the activity of FYN in two different models. Disruption of the balanced modulation of reversible tyrosine phosphorylation has been implicated in the etiology of various human cancers, including breast cancer. Protein Tyrosine Phosphatase N23 (PTPN23) resides in chromosomal region 3p21.3, which is hemizygously or homozygously lost in some breast cancer patients. In a loss-of-function PTPome screen, our laboratory identified PTPN23 as a suppressor of cell motility and invasion in mammary epithelial and breast cancer cells. Now, our TCGA (The Cancer Genome Atlas) database analyses illustrate a correlation between low PTPN23 expression and poor survival in breast cancers of various subtypes. Therefore, we investigated the tumor-suppressive function of PTPN23 in an orthotopic transplantation mouse model. Suppression of PTPN23 in Comma 1Dβ cells induced breast tumors within 56 wk. In PTPN23-depleted tumors, we detected hyperphosphorylation of the autophosphorylation site tyrosine in the SRC family kinase (SFK) FYN as well as Tyr142 in β-catenin. We validated the underlying mechanism of PTPN23 function in breast tumorigenesis as that of a key phosphatase that normally suppresses the activity of FYN in two different models. We demonstrated that tumor outgrowth from PTPN23-deficient BT474 cells was suppressed in a xenograft model in vivo upon treatment with AZD0530, an SFK inhibitor. Furthermore, double knockout of FYN and PTPN23 via CRISPR/CAS9 also attenuated tumor outgrowth from PTPN23 knockout Cal51 cells. Overall, this mechanistic analysis of the tumor-suppressive function of PTPN23 in breast cancer supports the identification of FYN as a therapeutic target for breast tumors with heterozygous or homozygous loss of PTPN23.
Collapse
Affiliation(s)
- Siwei Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.,Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Gaofeng Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - John Erby Wilkinson
- Unit for Laboratory Animal Medicine, Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
34
|
Chatterjee M, Kurup PK, Lundbye CJ, Hugger Toft AK, Kwon J, Benedict J, Kamceva M, Banke TG, Lombroso PJ. STEP inhibition reverses behavioral, electrophysiologic, and synaptic abnormalities in Fmr1 KO mice. Neuropharmacology 2017; 128:43-53. [PMID: 28943283 DOI: 10.1016/j.neuropharm.2017.09.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/26/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability, with additional symptoms including attention deficit and hyperactivity, anxiety, impulsivity, and repetitive movements or actions. The majority of FXS cases are attributed to a CGG expansion that leads to transcriptional silencing and diminished expression of fragile X mental retardation protein (FMRP). FMRP, an RNA binding protein, regulates the synthesis of dendritically-translated mRNAs by stalling ribosomal translation. Loss of FMRP leads to increased translation of some of these mRNAs, including the CNS-specific tyrosine phosphatase STEP (STriatal-Enriched protein tyrosine Phosphatase). Genetic reduction of STEP in Fmr1 KO mice have diminished audiogenic seizures and a reversal of social and non-social anxiety-related abnormalities. This study investigates whether a newly discovered STEP inhibitor (TC-2153) could attenuate the behavioral and synaptic abnormalities in Fmr1 KO mice. TC-2153 reversed audiogenic seizure incidences, reduced hyperactivity, normalized anxiety states, and increased sociability in Fmr1 KO mice. Moreover, TC-2153 reduced dendritic spine density and improved synaptic aberrations in Fmr1 KO neuronal cultures as well as in vivo. TC-2153 also reversed the mGluR-mediated exaggerated LTD in brain slices derived from Fmr1 KO mice. These studies suggest that STEP inhibition may have therapeutic benefit in FXS.
Collapse
Affiliation(s)
- Manavi Chatterjee
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT, 06520, United States.
| | - Pradeep K Kurup
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT, 06520, United States
| | - Camilla J Lundbye
- Institute of Biomedicine - Physiology, Aarhus University, Aarhus, 8000, Denmark
| | | | - Jeemin Kwon
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT, 06520, United States
| | - Jessie Benedict
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT, 06520, United States
| | - Marija Kamceva
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT, 06520, United States
| | - Tue G Banke
- Institute of Biomedicine - Physiology, Aarhus University, Aarhus, 8000, Denmark
| | - Paul J Lombroso
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT, 06520, United States; Department of Psychiatry, Yale University, 230 South Frontage Rd, New Haven, CT, 06520, United States; Department of Neuroscience, Yale University, 230 South Frontage Rd, New Haven, CT, 06520, United States.
| |
Collapse
|
35
|
Kumar P, Munnangi P, Chowdary KR, Shah VJ, Shinde SR, Kolli NR, Halehalli RR, Nagarajaram HA, Maddika S. A Human Tyrosine Phosphatase Interactome Mapped by Proteomic Profiling. J Proteome Res 2017; 16:2789-2801. [PMID: 28675297 PMCID: PMC5548413 DOI: 10.1021/acs.jproteome.7b00065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosine phosphatases play a critical role in many cellular processes and pathogenesis, yet comprehensive analysis of their functional interacting proteins in the cell is limited. By utilizing a proteomic approach, here we present an interaction network of 81 human tyrosine phosphatases built on 1884 high-confidence interactions of which 85% are unreported. Our analysis has linked several phosphatases with new cellular processes and unveiled protein interactions genetically linked to various human diseases including cancer. We validated the functional importance of an identified interaction network by characterizing a distinct novel interaction between PTPN5 and Mob1a. PTPN5 dephosphorylates Mob1a at Y26 residue. Further, we identify that PTPN5 is required for proper midbody abscission during cytokinesis through regulation of Mob1a dephosphorylation. In conclusion, our study provides a valuable resource of tyrosine phosphatase interactions, which can be further utilized to dissect novel cellular functions of these enzymes.
Collapse
Affiliation(s)
- Parveen Kumar
- Graduate Studies, Manipal University , Manipal, 576104, India
| | | | | | - Varun J Shah
- Graduate Studies, Manipal University , Manipal, 576104, India
| | | | | | | | | | | |
Collapse
|
36
|
Xu J, Kurup P, Nairn AC, Lombroso PJ. Synaptic NMDA Receptor Activation Induces Ubiquitination and Degradation of STEP 61. Mol Neurobiol 2017; 55:3096-3111. [PMID: 28466270 DOI: 10.1007/s12035-017-0555-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/12/2017] [Indexed: 01/25/2023]
Abstract
NMDA receptor signaling is critical for the development of synaptic plasticity, learning, and memory, and dysregulation of NMDAR signaling is implicated in a number of neurological disorders including schizophrenia (SZ). Previous work has demonstrated that the STriatal-Enriched protein tyrosine Phosphatase 61 kDa (STEP61) is elevated in human SZ postmortem cortical samples and after administration of psychotomimetics to cultures or mice. Here, we report that activation of synaptic NMDAR by bicuculline or D-serine results in the ubiquitination and proteasomal degradation of STEP61, and increased surface localization of GluN1/GluN2B receptors. Moreover, bicuculline or D-serine treatments rescue the motor and cognitive deficits in MK-801-treated mice and reduce STEP61 in mouse frontal cortex. These results suggest that STEP61 may contribute to the therapeutic effects of D-serine.
Collapse
Affiliation(s)
- Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, USA
| | - Pradeep Kurup
- Child Study Center, Yale University School of Medicine, New Haven, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA
| | - Paul J Lombroso
- Child Study Center, Yale University School of Medicine, New Haven, USA. .,Department of Psychiatry, Yale University School of Medicine, New Haven, USA. .,Department of Neurobiology, Yale University School of Medicine, New Haven, USA.
| |
Collapse
|
37
|
Lane-Donovan C, Herz J. ApoE, ApoE Receptors, and the Synapse in Alzheimer's Disease. Trends Endocrinol Metab 2017; 28:273-284. [PMID: 28057414 PMCID: PMC5366078 DOI: 10.1016/j.tem.2016.12.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 01/24/2023]
Abstract
As the population ages, neurodegenerative diseases such as Alzheimer's disease (AD) are becoming a significant burden on patients, their families, and health-care systems. Neurodegenerative processes may start up to 15 years before outward signs and symptoms of AD, as evidenced by data from AD patients and mouse models. A major genetic risk factor for late-onset AD is the ɛ4 isoform of apolipoprotein E (ApoE4), which is present in almost 20% of the population. In this review we discuss the contribution of ApoE receptor signaling to the function of each component of the tripartite synapse - the axon terminal, the postsynaptic dendritic spine, and the astrocyte - and examine how these systems fail in the context of ApoE4 and AD.
Collapse
Affiliation(s)
- Courtney Lane-Donovan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Neuroscience, Department of Neuroanatomy, Albert Ludwig University, Freiburg, Germany.
| |
Collapse
|
38
|
Globa AK, Bamji SX. Protein palmitoylation in the development and plasticity of neuronal connections. Curr Opin Neurobiol 2017; 45:210-220. [PMID: 28366531 DOI: 10.1016/j.conb.2017.02.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/19/2017] [Accepted: 02/28/2017] [Indexed: 01/01/2023]
Abstract
Protein palmitoylation, or the reversible addition of the fatty acid, palmitate, onto substrate proteins, can impact the structure and stability of proteins as well as regulate protein-protein interactions and the trafficking and localization of proteins to cell membranes. This posttranslational modification is mediated by palmitoyl-acyltransferases, consisting of a family of 23 zDHHC proteins in mammals. This review focuses on the subcellular distribution of zDHHC proteins within the neuron and the regulation of zDHHC trafficking and function by synaptic activity. We review recent studies identifying actin binding proteins, cell adhesion molecules and synaptic scaffolding proteins as targets of palmitoylation, and examine the implications of activity-mediated palmitoylation in the establishment and plasticity of neuronal connections.
Collapse
Affiliation(s)
- Andrea K Globa
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
39
|
Poulsen ET, Iannuzzi F, Rasmussen HF, Maier TJ, Enghild JJ, Jørgensen AL, Matrone C. An Aberrant Phosphorylation of Amyloid Precursor Protein Tyrosine Regulates Its Trafficking and the Binding to the Clathrin Endocytic Complex in Neural Stem Cells of Alzheimer's Disease Patients. Front Mol Neurosci 2017; 10:59. [PMID: 28360834 PMCID: PMC5350151 DOI: 10.3389/fnmol.2017.00059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/21/2017] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is likely caused by defective amyloid precursor protein (APP) trafficking and processing in neurons leading to amyloid plaques containing the amyloid-β (Aβ) APP peptide byproducts. Understanding how APP is targeted to selected destinations inside neurons and identifying the mechanisms responsible for the generation of Aβ are thus the keys for the advancement of new therapies. We previously developed a mouse model with a mutation at tyrosine (Tyr) 682 in the C-terminus of APP. This residue is needed for APP to bind to the coating protein Clathrin and to the Clathrin adaptor protein AP2 as well as for the correct APP trafficking and sorting in neurons. By extending these findings to humans, we found that APP binding to Clathrin is decreased in neural stem cells from AD sufferers. Increased APP Tyr phosphorylation alters APP trafficking in AD neurons and it is associated to Fyn Tyr kinase activation. We show that compounds affecting Tyr kinase activity and counteracting defects in AD neurons can control APP location and compartmentalization. APP Tyr phosphorylation is thus a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Ebbe T. Poulsen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| | | | | | - Thorsten J. Maier
- Institute of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe UniversityFrankfurt, Germany
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| | | | | |
Collapse
|
40
|
Lombroso PJ, Ogren M, Kurup P, Nairn AC. Molecular underpinnings of neurodegenerative disorders: striatal-enriched protein tyrosine phosphatase signaling and synaptic plasticity. F1000Res 2016; 5. [PMID: 29098072 PMCID: PMC5642311 DOI: 10.12688/f1000research.8571.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 12/22/2022] Open
Abstract
This commentary focuses on potential molecular mechanisms related to the dysfunctional synaptic plasticity that is associated with neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Specifically, we focus on the role of striatal-enriched protein tyrosine phosphatase (STEP) in modulating synaptic function in these illnesses. STEP affects neuronal communication by opposing synaptic strengthening and does so by dephosphorylating several key substrates known to control synaptic signaling and plasticity. STEP levels are elevated in brains from patients with Alzheimer's and Parkinson's disease. Studies in model systems have found that high levels of STEP result in internalization of glutamate receptors as well as inactivation of ERK1/2, Fyn, Pyk2, and other STEP substrates necessary for the development of synaptic strengthening. We discuss the search for inhibitors of STEP activity that may offer potential treatments for neurocognitive disorders that are characterized by increased STEP activity. Future studies are needed to examine the mechanisms of differential and region-specific changes in STEP expression pattern, as such knowledge could lead to targeted therapies for disorders involving disrupted STEP activity.
Collapse
Affiliation(s)
- Paul J Lombroso
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, 06520, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06520, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Marilee Ogren
- Department of Psychology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Pradeep Kurup
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| |
Collapse
|
41
|
Glutamatergic neurotransmission in the prefrontal cortex mediates the suppressive effect of intra-prelimbic cortical infusion of BDNF on cocaine-seeking. Eur Neuropsychopharmacol 2016; 26:1989-1999. [PMID: 27765467 PMCID: PMC5136511 DOI: 10.1016/j.euroneuro.2016.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 12/23/2022]
Abstract
Cocaine self-administration induces dysfunctional neuroadaptations in the prefrontal cortex that underlie relapse to cocaine-seeking. Cocaine self-administration disturbs glutamatergic transmission in the nucleus accumbens that is prevented by infusion of brain-derived neurotrophic factor (BDNF) into the prelimbic area of the prefrontal cortex. Intra-prelimbic infusion of BDNF decreases cocaine-seeking in a TrkB-ERK MAP kinase-dependent manner. Neuronal activity triggers an interaction between TrkB receptors and NMDA receptors, leading to ERK activation. In the present study, infusion of the GluN2A-containing NMDA receptor antagonist, TCN-201, or the GluN2B-containing NMDA receptor antagonist, Ro-25-6981, into the prelimbic cortex of rats blocked the suppressive effect of BDNF on cocaine-seeking. During early withdrawal from cocaine self-administration, tyrosine phosphorylation of ERK, GluN2A, and GluN2B in the prelimbic cortex was reduced and this reduction of phospho-proteins was prevented by intra-prelimbic BDNF infusion. TCN-201 infusion into the prelimbic cortex inhibited the BDNF-mediated increase in pERK and pGluN2A whereas Ro-25-6981 infusion into the prelimbic cortex blocked BDNF-induced elevation of pERK and pGluN2B, indicating that both GluN2A- and GluN2B-containing NMDA receptors underlie BDNF-induced ERK activation. These data demonstrate that BDNF-mediated activation of GluN2A- and GluN2B-containing NMDA receptors underlies ERK activation in the prelimbic cortex during early withdrawal, preventing subsequent relapse to cocaine-seeking.
Collapse
|
42
|
Tian M, Xu J, Lei G, Lombroso PJ, Jackson MF, MacDonald JF. STEP activation by Gαq coupled GPCRs opposes Src regulation of NMDA receptors containing the GluN2A subunit. Sci Rep 2016; 6:36684. [PMID: 27857196 PMCID: PMC5114553 DOI: 10.1038/srep36684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are necessary for the induction of synaptic plasticity and for the consolidation of learning and memory. NMDAR function is tightly regulated by functionally opposed families of kinases and phosphatases. Herein we show that the striatal-enriched protein tyrosine phosphatase (STEP) is recruited by Gαq-coupled receptors, including the M1 muscarinic acetylcholine receptor (M1R), and opposes the Src tyrosine kinase-mediated increase in the function of NMDARs composed of GluN2A. STEP activation by M1R stimulation requires IP3Rs and can depress NMDA-evoked currents with modest intracellular Ca2+ buffering. Src recruitment by M1R stimulation requires coincident NMDAR activation and can augment NMDA-evoked currents with high intracellular Ca2+ buffering. Our findings suggest that Src and STEP recruitment is contingent on differing intracellular Ca2+ dynamics that dictate whether NMDAR function is augmented or depressed following M1R stimulation.
Collapse
Affiliation(s)
- Meng Tian
- Molecular Medicine, Robarts Research Institute, Schulich School of Medicine, the University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Jian Xu
- Child Study Center, Yale University School of Medicine, 230 South Frontage Rd, New Haven, CT, 06520, USA
| | - Gang Lei
- Molecular Medicine, Robarts Research Institute, Schulich School of Medicine, the University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Paul J Lombroso
- Child Study Center, Yale University School of Medicine, 230 South Frontage Rd, New Haven, CT, 06520, USA.,Departments of Psychiatry, and Neuroscience, Yale University School of Medicine, 230 South Frontage Rd, New Haven, CT, 06520, USA
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, University of Manitoba, Winnipeg, Manitoba, R3E 3J7, Canada
| | - John F MacDonald
- Molecular Medicine, Robarts Research Institute, Schulich School of Medicine, the University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
43
|
Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies. Neural Plast 2016; 2016:2701526. [PMID: 27630777 PMCID: PMC5007376 DOI: 10.1155/2016/2701526] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
N-Methyl-D-aspartate receptors (NMDARs) have two opposing roles in the brain. On the one hand, NMDARs control critical events in the formation and development of synaptic organization and synaptic plasticity. On the other hand, the overactivation of NMDARs can promote neuronal death in neuropathological conditions. Ca(2+) influx acts as a primary modulator after NMDAR channel activation. An imbalance in Ca(2+) homeostasis is associated with several neurological diseases including schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These chronic conditions have a lengthy progression depending on internal and external factors. External factors such as acute episodes of brain damage are associated with an earlier onset of several of these chronic mental conditions. Here, we will review some of the current evidence of how traumatic brain injury can hasten the onset of several neurological conditions, focusing on the role of NMDAR distribution and the functional consequences in calcium homeostasis associated with synaptic dysfunction and neuronal death present in this group of chronic diseases.
Collapse
|
44
|
Won S, Incontro S, Nicoll RA, Roche KW. PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61. Proc Natl Acad Sci U S A 2016; 113:E4736-44. [PMID: 27457929 PMCID: PMC4987792 DOI: 10.1073/pnas.1609702113] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation regulates surface and synaptic expression of NMDA receptors (NMDARs). Both the tyrosine kinase Fyn and the tyrosine phosphatase striatal-enriched protein tyrosine phosphatase (STEP) are known to target the NMDA receptor subunit GluN2B on tyrosine 1472, which is a critical residue that mediates NMDAR endocytosis. STEP reduces the surface expression of NMDARs by promoting dephosphorylation of GluN2B Y1472, whereas the synaptic scaffolding protein postsynaptic density protein 95 (PSD-95) stabilizes the surface expression of NMDARs. However, nothing is known about a potential functional interaction between STEP and PSD-95. We now report that STEP61 binds to PSD-95 but not to other PSD-95 family members. We find that PSD-95 expression destabilizes STEP61 via ubiquitination and degradation by the proteasome. Using subcellular fractionation, we detect low amounts of STEP61 in the PSD fraction. However, STEP61 expression in the PSD is increased upon knockdown of PSD-95 or in vivo as detected in PSD-95-KO mice, demonstrating that PSD-95 excludes STEP61 from the PSD. Importantly, only extrasynaptic NMDAR expression and currents were increased upon STEP knockdown, as is consistent with low STEP61 localization in the PSD. Our findings support a dual role for PSD-95 in stabilizing synaptic NMDARs by binding directly to GluN2B but also by promoting synaptic exclusion and degradation of the negative regulator STEP61.
Collapse
Affiliation(s)
- Sehoon Won
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Salvatore Incontro
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158
| | - Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158; Department of Physiology, University of California, San Francisco, CA, 94158
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
45
|
Hao L, Wei X, Guo P, Zhang G, Qi S. Neuroprotective Effects of Inhibiting Fyn S-Nitrosylation on Cerebral Ischemia/Reperfusion-Induced Damage to CA1 Hippocampal Neurons. Int J Mol Sci 2016; 17:ijms17071100. [PMID: 27420046 PMCID: PMC4964476 DOI: 10.3390/ijms17071100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/10/2016] [Accepted: 07/04/2016] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the effects of Fyn S-nitrosylation on brain damage. In vitro, Fyn could be S-nitrosylated by S-nitrosoglutathione (GSNO, an exogenous NO donor), and in vivo, endogenous NO synthesized by NO synthases (NOS) could enhance Fyn S-nitrosylation. Application of GSNO, 7-nitroindazole (7-NI, an inhibitor of neuronal NOS) and hydrogen maleate (MK-801, the N-methyl-d-aspartate receptor (NMDAR) antagonist) could decrease the S-nitrosylation and phosphorylation of Fyn induced by cerebral ischemia/reperfusion (I/R). Cresyl violet staining validated that these compounds exerted neuroprotective effects against the cerebral I/R-induced damage to hippocampal CA1 neurons. Taken together, in this study, we demonstrated that Fyn can be S-nitrosylated both in vitro and in vivo and that inhibiting S-nitrosylation can exert neuroprotective effects against cerebral I/R injury, potentially via NMDAR-mediated mechanisms. These findings may lead to a new field of inquiry to investigate the underlying pathogenesis of stroke and the development of novel treatment strategies.
Collapse
Affiliation(s)
- Lingyun Hao
- Research Center for Biochemistry and Molecular Biology, and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221002, China.
- Jiangsu Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221002, China.
| | - Xuewen Wei
- Research Center for Biochemistry and Molecular Biology, and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221002, China.
- Department of Laboratory Medicine, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| | - Peng Guo
- Research Center for Biochemistry and Molecular Biology, and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221002, China.
| | - Guangyi Zhang
- Research Center for Biochemistry and Molecular Biology, and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221002, China.
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology, and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
46
|
Role of Striatal-Enriched Tyrosine Phosphatase in Neuronal Function. Neural Plast 2016; 2016:8136925. [PMID: 27190655 PMCID: PMC4844879 DOI: 10.1155/2016/8136925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/27/2016] [Indexed: 11/18/2022] Open
Abstract
Striatal-enriched protein tyrosine phosphatase (STEP) is a CNS-enriched protein implicated in multiple neurologic and neuropsychiatric disorders. STEP regulates key signaling proteins required for synaptic strengthening as well as NMDA and AMPA receptor trafficking. Both high and low levels of STEP disrupt synaptic function and contribute to learning and behavioral deficits. High levels of STEP are present in human postmortem samples and animal models of Alzheimer's disease, Parkinson's disease, and schizophrenia and in animal models of fragile X syndrome. Low levels of STEP activity are present in additional disorders that include ischemia, Huntington's chorea, alcohol abuse, and stress disorders. Thus the current model of STEP is that optimal levels are required for optimal synaptic function. Here we focus on the role of STEP in Alzheimer's disease and the mechanisms by which STEP activity is increased in this illness. Both genetic lowering of STEP levels and pharmacological inhibition of STEP activity in mouse models of Alzheimer's disease reverse the biochemical and cognitive abnormalities that are present. These findings suggest that STEP is an important point for modulation of proteins required for synaptic plasticity.
Collapse
|
47
|
Kim YJ, Kang Y, Park HY, Lee JR, Yu DY, Murata T, Gondo Y, Hwang JH, Kim YH, Lee CH, Rhee M, Han PL, Chung BH, Lee HJ, Kim KS. STEP signaling pathway mediates psychomotor stimulation and morphine withdrawal symptoms, but not for reward, analgesia and tolerance. Exp Mol Med 2016; 48:e212. [PMID: 26915673 PMCID: PMC4892880 DOI: 10.1038/emm.2016.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/30/2015] [Accepted: 12/11/2015] [Indexed: 01/26/2023] Open
Abstract
Striatal-enriched protein tyrosine phosphatase (STEP) is abundantly expressed in the striatum, which strongly expresses dopamine and opioid receptors and mediates the effects of many drugs of abuse. However, little is known about the role of STEP in opioid receptor function. In the present study, we generated STEP-targeted mice carrying a nonsense mutation (C230X) in the kinase interaction domain of STEP by screening the N-ethyl-N-nitrosourea (ENU)-driven mutant mouse genomic DNA library and subsequent in vitro fertilization. It was confirmed that the C230X nonsense mutation completely abolished functional STEP protein expression in the brain. STEP(C230X-/-) mice showed attenuated acute morphine-induced psychomotor activity and withdrawal symptoms, whereas morphine-induced analgesia, tolerance and reward behaviors were unaffected. STEP(C230X-/-) mice displayed reduced hyperlocomotion in response to intrastriatal injection of the μ-opioid receptor agonist DAMGO, but the behavioral responses to δ- and κ-opioid receptor agonists remained intact. These results suggest that STEP has a key role in the regulation of psychomotor action and physical dependency to morphine. These data suggest that STEP inhibition may be a critical target for the treatment of withdrawal symptoms associated with morphine.
Collapse
Affiliation(s)
- Yoon-Jung Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Young Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jae-Ran Lee
- Biomedical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,University of Science and Technology, Daejeon, Republic of Korea
| | - Dae-Yeul Yu
- University of Science and Technology, Daejeon, Republic of Korea.,Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Takuya Murata
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,University of Science and Technology, Daejeon, Republic of Korea
| | - Myungchull Rhee
- College of Biosciences and Biotechnology, Chung-Nam National University, Daejeon, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea.,Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Republic of Korea
| | - Bong-Hyun Chung
- University of Science and Technology, Daejeon, Republic of Korea.,BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hyun-Jun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
48
|
Mao LM, Wang JQ. Dopamine D2 receptors are involved in the regulation of Fyn and metabotropic glutamate receptor 5 phosphorylation in the rat striatum in vivo. J Neurosci Res 2016; 94:329-38. [PMID: 26777117 DOI: 10.1002/jnr.23713] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
Fyn, a major Src family kinase (SFK) member that is densely expressed in striatal neurons, is actively involved in the regulation of cellular and synaptic activities in local neurons. This SFK member is likely regulated by dopamine signaling through a receptor mechanism involving dopamine D2 receptors (D2Rs). This study characterizes the D2R-dependent regulation of Fyn in the rat striatum in vivo. Moreover, we explore whether D2Rs regulate metabotropic glutamate receptor 5 (mGluR5) in its tyrosine phosphorylation and whether the D2R-SFK pathway modulates trafficking of mGluR5. We found that blockade of D2Rs by systemic administration of a D2R antagonist, eticlopride, substantially increased SFK phosphorylation in the striatum. This increase was a transient and reversible event. The eticlopride-induced SFK phosphorylation occurred predominantly in immunopurified Fyn but not in another SFK member, Src. Eticlopride also elevated tyrosine phosphorylation of mGluR5. In parallel, eticlopride enhanced synaptic delivery of active Fyn and mGluR5. Pretreatment with an SFK inhibitor blocked the eticlopride-induced tyrosine phosphorylation and synaptic trafficking of mGluR5. These results indicate that D2Rs inhibit SFK (mainly Fyn) phosphorylation in the striatum. D2Rs also inhibit tyrosine phosphorylation and synaptic recruitment of mGluR5 through a signaling mechanism likely involving Fyn.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - John Q Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri.,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| |
Collapse
|
49
|
Xu J, Kurup P, Baguley TD, Foscue E, Ellman JA, Nairn AC, Lombroso PJ. Inhibition of the tyrosine phosphatase STEP61 restores BDNF expression and reverses motor and cognitive deficits in phencyclidine-treated mice. Cell Mol Life Sci 2015; 73:1503-14. [PMID: 26450419 DOI: 10.1007/s00018-015-2057-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/02/2015] [Accepted: 09/28/2015] [Indexed: 02/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) and STriatal-Enriched protein tyrosine Phosphatase 61 (STEP61) have opposing functions in the brain, with BDNF supporting and STEP61 opposing synaptic strengthening. BDNF and STEP61 also exhibit an inverse pattern of expression in a number of brain disorders, including schizophrenia (SZ). NMDAR antagonists such as phencyclidine (PCP) elicit SZ-like symptoms in rodent models and unaffected individuals, and exacerbate psychotic episodes in SZ. Here we characterize the regulation of BDNF expression by STEP61, utilizing PCP-treated cortical culture and PCP-treated mice. PCP-treated cortical neurons showed both an increase in STEP61 levels and a decrease in BDNF expression. The reduction in BDNF expression was prevented by STEP61 knockdown or use of the STEP inhibitor, TC-2153. The PCP-induced increase in STEP61 expression was associated with the inhibition of CREB-dependent BDNF transcription. Similarly, both genetic and pharmacologic inhibition of STEP prevented the PCP-induced reduction in BDNF expression in vivo and normalized PCP-induced hyperlocomotion and cognitive deficits. These results suggest a mechanism by which STEP61 regulates BDNF expression, with implications for cognitive functioning in CNS disorders.
Collapse
Affiliation(s)
- Jian Xu
- Child Study Center, Yale University, 230 S Frontage Rd., New Haven, CT, 06520, USA
| | - Pradeep Kurup
- Child Study Center, Yale University, 230 S Frontage Rd., New Haven, CT, 06520, USA
| | - Tyler D Baguley
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT, 06520, USA
| | - Ethan Foscue
- Child Study Center, Yale University, 230 S Frontage Rd., New Haven, CT, 06520, USA
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT, 06520, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale University, 300 George St., New Haven, CT, 06520, USA
| | - Paul J Lombroso
- Child Study Center, Yale University, 230 S Frontage Rd., New Haven, CT, 06520, USA. .,Department of Psychiatry, Yale University, 300 George St., New Haven, CT, 06520, USA. .,Department of Neurobiology, Yale University, 333 Cedar St., New Haven, CT, 06520, USA.
| |
Collapse
|
50
|
Xu J, Kurup P, Azkona G, Baguley TD, Saavedra A, Nairn AC, Ellman JA, Pérez-Navarro E, Lombroso PJ. Down-regulation of BDNF in cell and animal models increases striatal-enriched protein tyrosine phosphatase 61 (STEP61 ) levels. J Neurochem 2015; 136:285-94. [PMID: 26316048 DOI: 10.1111/jnc.13295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 12/23/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates synaptic strengthening and memory consolidation, and altered BDNF expression is implicated in a number of neuropsychiatric and neurodegenerative disorders. BDNF potentiates N-methyl-D-aspartate receptor function through activation of Fyn and ERK1/2. STriatal-Enriched protein tyrosine Phosphatase (STEP) is also implicated in many of the same disorders as BDNF but, in contrast to BDNF, STEP opposes the development of synaptic strengthening. STEP-mediated dephosphorylation of the NMDA receptor subunit GluN2B promotes internalization of GluN2B-containing NMDA receptors, while dephosphorylation of the kinases Fyn, Pyk2, and ERK1/2 leads to their inactivation. Thus, STEP and BDNF have opposing functions. In this study, we demonstrate that manipulation of BDNF expression has a reciprocal effect on STEP61 levels. Reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. Moreover, a newly identified STEP inhibitor reverses the biochemical and motor abnormalities in BDNF(+/-) mice. In contrast, increased BDNF signaling upon treatment with a tropomyosin receptor kinase B agonist results in degradation of STEP61 and a subsequent increase in the tyrosine phosphorylation of STEP substrates in cultured neurons and in mouse frontal cortex. These findings indicate that BDNF-tropomyosin receptor kinase B signaling leads to degradation of STEP61 , while decreased BDNF expression results in increased STEP61 activity. A better understanding of the opposing interaction between STEP and BDNF in normal cognitive functions and in neuropsychiatric disorders will hopefully lead to better therapeutic strategies. Altered expression of BDNF and STEP61 has been implicated in several neurological disorders. BDNF and STEP61 are known to regulate synaptic strengthening, but in opposite directions. Here, we report that reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. In contrast, activation of TrkB receptor results in the degradation of STEP61 and reverses hyperlocomotor activity in BDNF(+/-) mice. Moreover, inhibition of STEP61 by TC-2153 is sufficient to enhance the Tyr phosphorylation of STEP substrates and also reverses hyperlocomotion in BDNF(+/-) mice. These findings give us a better understanding of the regulation of STEP61 by BDNF in normal cognitive functions and in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jian Xu
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Pradeep Kurup
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Garikoitz Azkona
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Tyler D Baguley
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Ana Saavedra
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Angus C Nairn
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Esther Pérez-Navarro
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Paul J Lombroso
- Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|