1
|
Mann G, Mora S, Adegoke OAJ. KIC (ketoisocaproic acid) and leucine have divergent effects on tissue insulin signaling but not on whole-body insulin sensitivity in rats. PLoS One 2024; 19:e0309324. [PMID: 39163364 PMCID: PMC11335129 DOI: 10.1371/journal.pone.0309324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
Plasma levels of branched-chain amino acids and their metabolites, the branched-chain ketoacids are increased in insulin resistance. Our previous studies showed that leucine and its metabolite KIC suppress insulin-stimulated glucose uptake in L6 myotubes along with the activation of the S6K1-IRS-1 pathway. Because other tissue and fiber types can be differentially regulated by KIC, we analyzed the effect of KIC gavage on whole-body insulin sensitivity and insulin signaling in vivo. We hypothesized that KIC gavage would reduce whole-body insulin sensitivity and increase S6K1-IRS-1 phosphorylation in various tissues and muscle fibers. Five-week-old male Sprague-Dawley rats were starved for 24 hours and then gavaged with 0.75ml/100g of water, leucine (22.3g/L) or KIC (30g/L) twice, ten minutes apart. They were then euthanized at different time points post-gavage (0.5-3h), and muscle, liver, and heart tissues were dissected. Other sets of gavaged animals underwent an insulin tolerance test. Phosphorylation (ph) of S6K1 (Thr389), S6 (Ser235/6) and IRS-1 (Ser612) was increased at 30 minutes post leucine gavage in skeletal muscles irrespective of fiber type. Ph-S6 (Ser235/6) was also increased in liver and heart 30 minutes after leucine gavage. KIC gavage increased ph-S6 (Ser235/6) in the liver. Neither Leucine nor KIC influenced whole-body insulin tolerance, nor ph-Akt (Ser473) in skeletal muscle and heart. BCKD-E1 α abundance was highest in the heart and liver, while ph-BCKD-E1 α (Ser293) was higher in the gastrocnemius and EDL compared to the soleus. Our data suggests that only leucine activates the S6K1-IRS-1 signaling axis in skeletal muscle, liver and heart, while KIC only does so in the liver. The effect of leucine and KIC on the S6K1-IRS-1 signaling pathway is uncoupled from whole-body insulin sensitivity. These results suggest that KIC and leucine may not induce insulin resistance, and the contributions of other tissues may regulate whole-body insulin sensitivity in response to leucine/KIC gavage.
Collapse
Affiliation(s)
- Gagandeep Mann
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Stephen Mora
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Olasunkanmi A. John Adegoke
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Hernández-Gómez KG, Velázquez-Villegas LA, Granados-Portillo O, Avila-Nava A, González-Salazar LE, Serralde-Zúñiga AE, Palacios-González B, Pichardo-Ontiveros E, Guizar-Heredia R, López-Barradas AM, Sánchez-Tapia M, Larios-Serrato V, Olin-Sandoval V, Díaz-Villaseñor A, Medina-Vera I, Noriega LG, Alemán-Escondrillas G, Ortiz-Ortega VM, Torres N, Tovar AR, Guevara-Cruz M. Acute Effects of Dietary Protein Consumption on the Postprandial Metabolic Response, Amino Acid Levels and Circulating MicroRNAs in Patients with Obesity and Insulin Resistance. Int J Mol Sci 2024; 25:7716. [PMID: 39062958 PMCID: PMC11276941 DOI: 10.3390/ijms25147716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The post-nutritional intervention modulation of miRNA expression has been previously investigated; however, post-acute dietary-ingestion-related miRNA expression dynamics in individuals with obesity and insulin resistance (IR) are unknown. We aimed to determine the acute effects of protein ingestion from different dietary sources on the postprandial metabolic response, amino acid levels, and circulating miRNA expression in adults with obesity and IR. This clinical trial included adults with obesity and IR who consumed (1) animal-source protein (AP; calcium caseinate) or (2) vegetable-source protein (VP; soy protein isolate). Glycaemic, insulinaemic, and glucagon responses, amino acid levels, and exosomal microRNAs isolated from plasma were analysed. Post-AP ingestion, the area under the curve (AUC) of insulin (p = 0.04) and the plasma concentrations of branched-chain (p = 0.007) and gluconeogenic (p = 0.01) amino acids increased. The effects of different types of proteins on the concentration of miRNAs were evaluated by measuring their plasma circulating levels. Compared with the baseline, the AP group presented increased circulating levels of miR-27a-3p, miR-29b-3p, and miR-122-5p (p < 0.05). Subsequent analysis over time at 0, 30, and 60 min revealed the same pattern and differences between treatments. We demonstrated that a single dose of dietary protein has acute effects on hormonal and metabolic regulation and increases exosomal miRNA expression in individuals with obesity and IR.
Collapse
Affiliation(s)
- Karla G. Hernández-Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Laura A. Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Omar Granados-Portillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Azalia Avila-Nava
- Hospital Regional de Alta Especialidad de la Península de Yucatán, IMSS-Bienestar, Mérida 97130, Yucatán, Mexico
| | - Luis E. González-Salazar
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Aurora E. Serralde-Zúñiga
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable del INMEGEN en el Centro de Investigación Sobre el Envejecimiento, Mexico City 14330, Mexico
| | - Edgar Pichardo-Ontiveros
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Rocio Guizar-Heredia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Adriana M. López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Violeta Larios-Serrato
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 11340, Mexico
| | - Viridiana Olin-Sandoval
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico City 04510, Mexico
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Gabriela Alemán-Escondrillas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Victor M. Ortiz-Ortega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
3
|
Cava E, Padua E, Campaci D, Bernardi M, Muthanna FMS, Caprio M, Lombardo M. Investigating the Health Implications of Whey Protein Consumption: A Narrative Review of Risks, Adverse Effects, and Associated Health Issues. Healthcare (Basel) 2024; 12:246. [PMID: 38255133 PMCID: PMC10815430 DOI: 10.3390/healthcare12020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
This narrative review critically examines the current research on the health implications of whey protein (WP) supplementation, with a focus on potential risks and adverse effects. WP, commonly consumed for muscle building and weight loss, has been associated with various health concerns. Our comprehensive analysis involved a thorough search of multiple databases, resulting in the inclusion of 21 preclinical and human studies that collectively offer a detailed overview of WP's health impacts. The review reveals significant findings, such as WP's potential link to liver and kidney damage, alterations in gut microbiota, increased acne incidence, impacts on bone mass, and emotional and behavioural changes. These findings underscore the complexity of WP's effects on human health, indicating both beneficial and detrimental outcomes in relation to different posologies in a variety of settings. Our study suggests caution for the protein intake in situations of hepatic and renal compromised functions, as well as in acne susceptibility, while possible beneficial effects can be achieved for the intestinal microbiota, humoral and behavioural level, and finally bone and muscle mass in elderly. We emphasizes the importance of balanced WP consumption and call for more in-depth research to understand its long-term health effects. Health professionals and individuals considering WP supplementation should be aware of these potential risks and approach its use with informed caution.
Collapse
Affiliation(s)
- Edda Cava
- Clinical Nutrition and Dietetics, San Camillo Forlanini Hospital, Rome, cir.ne Gianicolense 87, 00152 Rome, Italy;
| | - Elvira Padua
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (E.P.); (D.C.); (M.B.); (M.C.)
| | - Diego Campaci
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (E.P.); (D.C.); (M.B.); (M.C.)
| | - Marco Bernardi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (E.P.); (D.C.); (M.B.); (M.C.)
| | - Fares M. S. Muthanna
- Pharmacy Department, Faculty of Medicine and Health Sciences, University of Science and Technology-Aden, Alshaab Street, Enmaa City 22003, Yemen;
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (E.P.); (D.C.); (M.B.); (M.C.)
- Laboratory of Cardiovascular Endocrinology, San Raffaele Research Institute, IRCCS San Raffaele Roma, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (E.P.); (D.C.); (M.B.); (M.C.)
| |
Collapse
|
4
|
Takahashi T, Kidachi K, Yukawa M, Hachinohe T, Takashima Y, Fujimura M, Saito A, Soga D, Ota C, Niizuma E, Sato K, Ogasawara H, Kurose Y. D-aspartate stimulates growth hormone secretion in wethers. J Anim Sci 2024; 102:skae318. [PMID: 39432441 PMCID: PMC11630845 DOI: 10.1093/jas/skae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
Growth hormone (GH) is an essential factor in enhancing the productivity of animals. In ruminants, L-aspartate (L-Asp) stimulates the secretion of GH; however, the effect of D-Asp on GH remains unknown. Here, we examined the effect of D-Asp on GH secretion in wethers. Blood GH, insulin, adrenaline, noradrenaline, non-esterified fatty acid (NEFA), and glucose concentrations were evaluated in response to the intravenous infusion of a high-dose (0.1 mmol/kg/min) of D-Asp for 20 min. Further, concentrations of these biomolecules were evaluated when a low-dose (0.05 mmol/kg/min) of D-Asp was continuously infused intravenously for 20 min. Finally, the direct effect of D-Asp on GH secretion was determined using cultured sections of the anterior pituitary tissue from wethers. Infusion of the high-dose of D-Asp markedly increased blood GH concentrations (P < 0.05), resulting in an increase in the area under the curve (AUC). Plasma GH concentrations and AUC also increased in response to infusion of a low D-Asp dose. Infusion of a high and low D-Asp dose caused a prolonged reduction in plasma insulin concentrations, and the AUC was lower (P < 0.05). Plasma NEFA concentrations gradually increased after the end of D-Asp infusion, with a low D-Asp dose infusion resulting in significantly higher concentrations at 90 min (P < 0.05). Plasma adrenaline, noradrenaline, and glucose concentrations did not show significant changes despite differences in the dose of D-Asp. Although D-Asp treatments stimulated GH secretion in the cultured sections of pituitary tissues, the effect was not significant. These results suggest that D-Asp stimulates the secretion of GH in wethers through not only a direct action on the pituitary gland but also through another pathway of GH stimulation.
Collapse
Affiliation(s)
- Tatsuyuki Takahashi
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kyosuke Kidachi
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Mikiko Yukawa
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Tomoki Hachinohe
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Yuina Takashima
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Mao Fujimura
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Atsuko Saito
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Daichi Soga
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Chihiro Ota
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Eri Niizuma
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Katsuyoshi Sato
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Hideki Ogasawara
- Field Science Center, School of Veterinary Medicine, Kitasato University, Hokkaido, Japan
| | - Yohei Kurose
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
5
|
Al Shidhani A, Al Hinai A, Al Thihli K, Al Mandhari H, Al Yaarubi S, Ullah I, Al-Hashmi N, Al Murshedi F. Congenital Hyperinsulinism and Maple Syrup Urine Disease: A Challenging Combination. J Clin Res Pediatr Endocrinol 2023; 15:302-306. [PMID: 34738771 PMCID: PMC10448551 DOI: 10.4274/jcrpe.galenos.2021.2021.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/28/2021] [Indexed: 12/01/2022] Open
Abstract
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycemia in infancy. CHI is a challenging disease to diagnose and manage. Moreover, complicating the course of the disease with another metabolic disease, in this case maple syrup urine disease (MSUD), adds more challenges to the already complex management. We report a term neonate who developed symptomatic, non-ketotic hypoglycemia with a blood glucose (BG) level of 1.9 mmol/L at 21-hours of life. A critical sample at that time showed high serum insulin and C-peptide levels confirming the diagnosis of CHI. Tandem mass spectrometry done at the same time was suggestive of MSUD which was confirmed by high performance liquid chromatography. The diagnosis of both conditions was subsequently confirmed by molecular genetic testing. His hypoglycemia was managed with high glucose infusion with medical therapy for CHI and branched chain amino acids (BCAA) restricted medical formula. At the age of four months, a near-total pancreatectomy was done, due to the failure of conventional therapy. Throughout his complicated course, he required meticulous monitoring of his BG and modified plasma amino acid profile aiming to maintain the BG at ≥3.9 mmol/L and levels of the three BCAAs at the disease therapeutic targets for his age. The patient is currently 29 months old and has normal growth and development. This patient is perhaps the only known case of the co-occurrence of CHI with MSUD. Both hypoglycemia and leucine encephalopathy can result in death or permanent neurological damage. The management of CHI and MSUD in combination is very challenging.
Collapse
Affiliation(s)
- Azza Al Shidhani
- Sultan Qaboos University Hospital, Department of Child Health, Muscat, Oman
| | | | - Khalid Al Thihli
- Sultan Qaboos University Hospital, Department of Genetics, Muscat, Oman
| | - Hilal Al Mandhari
- Sultan Qaboos University Hospital, Department of Child Health, Muscat, Oman
| | - Saif Al Yaarubi
- Sultan Qaboos University Hospital, Department of Child Health, Muscat, Oman
| | - Irfan Ullah
- Sultan Qaboos University Hospital, Department of Child Health, Muscat, Oman
| | | | | |
Collapse
|
6
|
de Marco Castro E, Valli G, Buffière C, Guillet C, Mullen B, Pratt J, Horner K, Naumann-Gola S, Bader-Mittermaier S, Paganini M, De Vito G, Roche HM, Dardevet D. Peripheral Amino Acid Appearance Is Lower Following Plant Protein Fibre Products, Compared to Whey Protein and Fibre Ingestion, in Healthy Older Adults despite Optimised Amino Acid Profile. Nutrients 2022; 15:35. [PMID: 36615694 PMCID: PMC9824653 DOI: 10.3390/nu15010035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Plant-based proteins are generally characterised by lower Indispensable Amino Acid (IAA) content, digestibility, and anabolic properties, compared to animal-based proteins. However, they are environmentally friendlier, and wider consumption is advocated. Older adults have higher dietary protein needs to prevent sarcopenia, a disease marked by an accelerated loss of muscle mass and function. Given the lower environmental footprint of plant-based proteins and the importance of optimising dietary protein quality among older adults, this paper aims to assess the net peripheral Amino Acid (AA) appearance after ingestion of three different plant protein and fibre (PPF) products, compared to whey protein with added fibre (WPF), in healthy older adults. In a randomised, single-blind, crossover design, nine healthy men and women aged ≥65 years consumed four test meals balanced in AA according to the FAO reference protein for humans, matched for leucine, to optimally stimulate muscle protein synthesis in older adults. A fasted blood sample was drawn at each visit before consuming the test meal, followed by postprandial arterialise blood sampling every 30 min for 3 h. The test meal was composed of a soup containing either WPF or PPF 1-3. The PPF blends comprised pea proteins with varying additional rice, pumpkin, soy, oat, and/or almond protein. PPF product ingestion resulted in a lower maximal increase of postprandial leucine concentration and the sum of branched-chain AA (BCAA) and IAA concentrations, compared to WPF, with no effect on their incremental area under the curve. Plasma methionine and cysteine, and to a lesser extent threonine, appearance were limited after consuming the PPF products, but not WPF. Despite equal leucine doses, the WPF induced greater postprandial insulin concentrations than the PPF products. In conclusion, the postprandial appearance of AA is highly dependent on the protein source in older adults, despite providing equivalent IAA levels and dietary fibre. Coupled with lower insulin concentrations, this could imply less anabolic potential. Further investigation is required to understand the applicability of plant-based proteins in healthy older adults.
Collapse
Affiliation(s)
- Elena de Marco Castro
- UCD Conway Institute and UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Giacomo Valli
- Neuromuscular Physiology Laboratory, Department of Biomedical Science, University of Padua, 35122 Padova, Italy
| | - Caroline Buffière
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Rte de Theix, 63122 Saint-Genès-Champanelle, France
| | - Christelle Guillet
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Rte de Theix, 63122 Saint-Genès-Champanelle, France
| | - Brian Mullen
- UCD Conway Institute and UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Jedd Pratt
- Neuromuscular Physiology Laboratory, Department of Biomedical Science, University of Padua, 35122 Padova, Italy
| | - Katy Horner
- UCD Conway Institute and UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Susanne Naumann-Gola
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str., 85354 Freising, Germany
| | | | - Matteo Paganini
- Neuromuscular Physiology Laboratory, Department of Biomedical Science, University of Padua, 35122 Padova, Italy
| | - Giuseppe De Vito
- Neuromuscular Physiology Laboratory, Department of Biomedical Science, University of Padua, 35122 Padova, Italy
| | - Helen M. Roche
- UCD Conway Institute and UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Biological Sciences, The Institute for Global Food Security, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Dominique Dardevet
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Rte de Theix, 63122 Saint-Genès-Champanelle, France
| |
Collapse
|
7
|
Broseta JJ, Roca M, Rodríguez-Espinosa D, López-Romero LC, Gómez-Bori A, Cuadrado-Payán E, Bea-Granell S, Devesa-Such R, Soldevila A, Sánchez-Pérez P, Hernández-Jaras J. The metabolomic differential plasma profile between dialysates. Pursuing to understand the mechanisms of citrate dialysate clinical benefits. Front Physiol 2022; 13:1013335. [PMID: 36467686 PMCID: PMC9709283 DOI: 10.3389/fphys.2022.1013335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/27/2022] [Indexed: 08/30/2023] Open
Abstract
Background: Currently, bicarbonate-based dialysate needs a buffer to prevent precipitation of bicarbonate salts with the bivalent cations, and acetate at 3-4 mmol/L is the most used. However, citrate is being postulated as a preferred option because of its association with better clinical results by poorly understood mechanisms. In that sense, this hypothesis-generating study aims to identify potential metabolites that could biologically explain these improvements found in patients using citrate dialysate. Methods: A unicentric, cross-over, prospective untargeted metabolomics study was designed to analyze the differences between two dialysates only differing in their buffer, one containing 4 mmol/L of acetate (AD) and the other 1 mmol/L of citrate (CD). Blood samples were collected in four moments (i.e., pre-, mid-, post-, and 30-min-post-dialysis) and analyzed in an untargeted metabolomics approach based on UPLC-Q-ToF mass spectrometry. Results: The 31 most discriminant metabolomic variables from the plasma samples of the 21 participants screened by their potential clinical implications show that, after dialysis with CD, some uremic toxins appear to be better cleared, the lysine degradation pathway is affected, and branched-chain amino acids post-dialysis levels are 9-10 times higher than with AD; and, on its part, dialysis with AD affects acylcarnitine clearance. Conclusion: Although most metabolic changes seen in this study could be attributable to the dialysis treatment itself, this study successfully identifies some metabolic variables that differ between CD and AD, which raise new hypotheses that may unveil the mechanisms involved in the clinical improvements observed with citrate in future research.
Collapse
Affiliation(s)
- José Jesús Broseta
- Department of Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marta Roca
- Analytcal Unit Platform, Medical Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
| | - Diana Rodríguez-Espinosa
- Department of Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Aina Gómez-Bori
- Department of Nephrology, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Elena Cuadrado-Payán
- Department of Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sergio Bea-Granell
- Department of Nephrology, Consorci Hospital General Universitari de València, Valencia, Spain
| | - Ramón Devesa-Such
- Department of Nephrology, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Amparo Soldevila
- Department of Nephrology, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Pilar Sánchez-Pérez
- Department of Nephrology, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | | |
Collapse
|
8
|
Park S, Oh S, Kim EK. Glucagon-like peptide-1 analog liraglutide leads to multiple metabolic alterations in diet-induced obese mice. J Biol Chem 2022; 298:102682. [PMID: 36356900 PMCID: PMC9730228 DOI: 10.1016/j.jbc.2022.102682] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Liraglutide, a glucagon-like peptide-1 analog, has beneficial metabolic effects in patients with type 2 diabetes and obesity. Although the high efficacy of liraglutide as an anti-diabetic and anti-obesity drug is well known, liraglutide-induced metabolic alterations in diverse tissues remain largely unexplored. Here, we report the changes in metabolic profiles induced by a 2-week subcutaneous injection of liraglutide in diet-induced obese mice fed a high-fat diet for 8 weeks. Our comprehensive metabolomic analyses of the hypothalamus, plasma, liver, and skeletal muscle showed that liraglutide intervention led to various metabolic alterations in comparison with diet-induced obese or nonobese mice. We found that liraglutide remarkably coordinated not only fatty acid metabolism in the hypothalamus and skeletal muscle but also amino acid and carbohydrate metabolism in plasma and liver. Comparative analyses of metabolite dynamics revealed that liraglutide rewired intertissue metabolic correlations. Our study points to a previously unappreciated metabolic alteration by liraglutide in several tissues, which may underlie its therapeutic effects within and across the tissues.
Collapse
Affiliation(s)
- Seokjae Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sungjoon Oh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea,For correspondence: Eun-Kyoung Kim
| |
Collapse
|
9
|
The Genetic Variability of Members of the SLC38 Family of Amino Acid Transporters ( SLC38A3, SLC38A7 and SLC38A9) Affects Susceptibility to Type 2 Diabetes and Vascular Complications. Nutrients 2022; 14:nu14214440. [PMID: 36364703 PMCID: PMC9654215 DOI: 10.3390/nu14214440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
Type 2 Diabetes (T2D) is a metabolic disease associated with long-term complications, with a multifactorial pathogenesis related to the interplay between genetic and modifiable risk factors, of which nutrition is the most relevant. In particular, the importance of proteins and constitutive amino acids (AAs) in disease susceptibility is emerging. The ability to sense and respond to changes in AA supplies is mediated by complex networks, of which AA transporters (AATs) are crucial components acting also as sensors of AA availability. This study explored the associations between polymorphisms in selected AATs genes and T2D and vascular complications in 433 patients and 506 healthy controls. Analyses revealed significant association of SLC38A3-rs1858828 with disease risk. Stratification of patients based on presence/absence of vascular complications highlighted significant associations of SLC7A8-rs3783436 and SLC38A7-rs9806843 with diabetic retinopathy. Additionally, the SLC38A9-rs4865615 resulted associated with chronic kidney disease. Notably, these genes function as AAs sensors, specifically glutamine, leucine, and arginine, linked to the main nutrient signaling pathway mammalian target of rapamycin complex 1 (mTORC1). Thus, their genetic variability may contribute to T2D by influencing the ability to properly transduce a signal activating mTORC1 in response to AA availability. In this scenario, the contribution of dietary AAs supply to disease risk may be relevant.
Collapse
|
10
|
Dietary Supplementation with Sea Buckthorn Berry Puree Alters Plasma Metabolomic Profile and Gut Microbiota Composition in Hypercholesterolemia Population. Foods 2022; 11:foods11162481. [PMID: 36010480 PMCID: PMC9407212 DOI: 10.3390/foods11162481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Sea buckthorn berries have been reported to have beneficial effects on plasma lipid profile and cardiovascular health. This study aimed to investigate the impact of intervention with sea buckthorn berry puree on plasma metabolomics profile and gut microbiota in hypercholesterolemic subjects. A total of 56 subjects with hypercholesterolemia consumed 90 g of sea buckthorn berry puree daily for 90 days, and plasma metabolomic profile was studied at 0 (baseline), 45, and 90 days of intervention by using proton nuclear magnetic resonance spectroscopy (1H NMR). Gut microbiota composition was analyzed at the baseline and after 90 days of supplementation by using high-throughput sequencing. The plasma metabolic profile was significantly altered after 45 days of intervention as compared to the baseline (day 0). A clear trend of returning to the baseline metabolomic profile was observed in plasma when the intervention extended from 45 days to 90 days. Despite this, the levels of several key plasma metabolites such as glucose, lactate, and creatine were lowered at day 90 compared to the baseline levels, suggesting an improved energy metabolism in those patients. In addition, intervention with sea buckthorn puree enriched butyrate-producing bacteria and other gut microbes linked to lipid metabolisms such as Prevotella and Faecalibacterium while depleting Parasutterella associated with increased risks of cardiovascular disease. These findings indicate that sea buckthorn berries have potential in modulating energy metabolism and the gut microbiota composition in hypercholesterolemic patients.
Collapse
|
11
|
Metabolomic Analysis of Serum and Tear Samples from Patients with Obesity and Type 2 Diabetes Mellitus. Int J Mol Sci 2022; 23:ijms23094534. [PMID: 35562924 PMCID: PMC9105607 DOI: 10.3390/ijms23094534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolomics strategies are widely used to examine obesity and type 2 diabetes (T2D). Patients with obesity (n = 31) or T2D (n = 26) and sex- and age-matched controls (n = 28) were recruited, and serum and tear samples were collected. The concentration of 23 amino acids and 10 biogenic amines in serum and tear samples was analyzed. Statistical analysis and Pearson correlation analysis along with network analysis were carried out. Compared to controls, changes in the level of 6 analytes in the obese group and of 10 analytes in the T2D group were statistically significant. For obesity, the energy generation, while for T2D, the involvement of NO synthesis and its relation to insulin signaling and inflammation, were characteristic. We found that BCAA and glutamine metabolism, urea cycle, and beta-oxidation make up crucial parts of the metabolic changes in T2D. According to our data, the retromer-mediated retrograde transport, the ethanolamine metabolism, and, consequently, the endocannabinoid signaling and phospholipid metabolism were characteristic of both conditions and can be relevant pathways to understanding and treating insulin resistance. By providing potential therapeutic targets and new starting points for mechanistic studies, our results emphasize the importance of complex data analysis procedures to better understand the pathomechanism of obesity and diabetes.
Collapse
|
12
|
Abachi S, Pilon G, Marette A, Bazinet L, Beaulieu L. Beneficial effects of fish and fish peptides on main metabolic syndrome associated risk factors: Diabetes, obesity and lipemia. Crit Rev Food Sci Nutr 2022; 63:7896-7944. [PMID: 35297701 DOI: 10.1080/10408398.2022.2052261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The definition of metabolic syndrome (MetS) fairly varies from one to another guideline and health organization. Per description of world health organization, occurrence of hyperinsulinemia or hyperglycemia in addition to two or more factors of dyslipidemia, hypoalphalipoproteinemia, hypertension and or large waist circumference factors would be defined as MetS. Conventional therapies and drugs, commonly with adverse effects, are used to treat these conditions and diseases. Nonetheless, in the recent decades scientific community has focused on the discovery of natural compounds to diminish the side effects of these medications. Among many available bioactives, biologically active peptides have notable beneficial effects on the management of diabetes, obesity, hypercholesterolemia, and hypertension. Marine inclusive of fish peptides have exerted significant bioactivities in different experimental in-vitro, in-vivo and clinical settings. This review exclusively focuses on studies from the recent decade investigating hypoglycemic, hypolipidemic, hypercholesterolemic and anti-obesogenic fish and fish peptides. Related extraction, isolation, and purification methodologies of anti-MetS fish biopeptides are reviewed herein for comparison purposes only. Moreover, performance of biopeptides in simulated gastrointestinal environment and structure-activity relationship along with absorption, distribution, metabolism, and excretion properties of selected oligopeptides have been discussed, in brief, to broaden the knowledge of readers on the design and discovery trends of anti-MetS compounds.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2052261 .
Collapse
Affiliation(s)
- Soheila Abachi
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Université Laval, Quebec, Quebec, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
13
|
Reiners JN, Steele MA, Vonnahme KA, Maddock Carlin KR, Swanson KC. Effects of Supplemental Leucine on Growth, Nutrient Use, and Muscle and Visceral Tissue Mass in Holstein Bull Calves Fed Milk Replacer. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.817173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To determine the effects of leucine supplementation on body weight (BW), tissue mass, nutrient digestibility, the concentration of serum amino acids (AAs) and metabolites, and protein abundance of elongation initiation factor 4E (eIF4E) in skeletal muscle, 23 Holstein bull calves (43. 3 ± 1.16 kg; 11.3 ± 0.57 days of age) fed milk replacer at 2.5% of body weight (BW; dry matter basis) were used in a randomized complete block design. Leucine was supplemented at 0, 0.4, 0.6, or 0.8 g Leu/kg BW per day for 28 d. Data were analyzed using the MIXED procedure of SAS. Leucine supplementation did not affect calf BW (P = 0.73), and digestibility of nitrogen (P = 0.21), organic matter (P = 0.28), and dry matter (P = 0.28). Masses proportional to BW of the pancreas (P = 0.04), omasum (P < 0.01), and spleen (P = 0.01) were quadratically affected by treatment where tissue mass decreased at 0.4 g Leu/kg BW and increased at 0.6 and 0.8 g Leu/kg BW. Semitendinosus mass proportional to BW tended (P = 0.07) to be quadratically affected, as tissue mass increased at 0.4 g Leu/kg BW, and decreased at 0.6 and 0.8 g Leu/kg BW. Serum Leu concentration increased linearly (P = 0.002; day × time × treatment) across days and after feedings with increased supplemental Leu. Increasing supplemental Leu linearly decreased serum Ala (P < 0.01), Arg (P = 0.04), Ile (P = 0.02), Met (P < 0.01), and Pro (P = 0.05) concentrations, and quadratically affected serum Glu (P = 0.04) and Lys (P = 0.03) concentrations where serum Glu and Lys concentrations were decreased at 0.4 g Leu/kg BW and increased at 0.6 and 0.8 g Leu/kg BW. There was no effect of treatment on protein abundance of eIF4E in semitendinosus or longissimus dorsi. These data indicate that supplemental Leu did not influence ADG and nitrogen retention in calves fed milk replacer. However, changes in serum AA concentrations and tissue masses proportional to BW suggest that supplementation of Leu at lower levels could increase the use of AA for non-visceral tissue growth.
Collapse
|
14
|
Ma KG, Hu HB, Zhou JS, Ji C, Yan QS, Peng SM, Ren LD, Yang BN, Xiao XL, Ma YB, Wu F, Si KW, Wu XL, Liu JX. Neuronal Glypican4 promotes mossy fiber sprouting through the mTOR pathway after pilocarpine-induced status epilepticus in mice. Exp Neurol 2021; 347:113918. [PMID: 34748756 DOI: 10.1016/j.expneurol.2021.113918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
In temporal lobe epilepsy (TLE), abnormal axon guidance and synapse formation lead to sprouting of mossy fibers in the hippocampus, which is one of the most consistent pathological findings in patients and animal models with TLE. Glypican 4 (Gpc4) belongs to the heparan sulfate proteoglycan family, which play an important role in axon guidance and excitatory synapse formation. However, the role of Gpc4 in the development of mossy fibers sprouting (MFS) and its underlying mechanism remain unknown. Using a pilocarpine-induced mice model of epilepsy, we showed that Gpc4 expression was significantly increased in the stratum granulosum of the dentate gyrus at 1 week after status epilepticus (SE). Using Gpc4 overexpression or Gpc4 shRNA lentivirus to regulate the Gpc4 level in the dentate gyrus, increased or decreased levels of netrin-1, SynI, PSD-95, and Timm score were observed in the dentate gyrus, indicating a crucial role of Gpc4 in modulating the development of functional MFS. The observed effects of Gpc4 on MFS were significantly antagonized when mice were treated with L-leucine or rapamycin, an agonist or antagonist of the mammalian target of rapamycin (mTOR) signal, respectively, demonstrating that mTOR pathway is an essential requirement for Gpc4-regulated MFS. Additionally, the attenuated spontaneous recurrent seizures (SRSs) were observed during chronic stage of the disease by suppressing the Gpc4 expression after SE. Altogether, our findings demonstrate a novel control of neuronal Gpc4 on the development of MFS through the mTOR pathway after pilocarpine-induced SE. Our results also strongly suggest that Gpc4 may serve as a promising target for antiepileptic studies.
Collapse
Affiliation(s)
- Kai-Ge Ma
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Hai-Bo Hu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Jin-Song Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Chao Ji
- Qide College, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Qi-Sheng Yan
- Qide College, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Si-Ming Peng
- Zonglian College, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Lan-Dong Ren
- Zonglian College, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Bing-Nan Yang
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Xin-Li Xiao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Yan-Bing Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Feng Wu
- Center of Teaching and Experiment for Medical Post Graduates, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Kai-Wei Si
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China
| | - Xiao-Lin Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China.
| | - Jian-Xin Liu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, China.
| |
Collapse
|
15
|
Pena MJ, Costa R, Rodrigues I, Martins S, Guimarães JT, Faria A, Calhau C, Rocha JC, Borges N. Unveiling the Metabolic Effects of Glycomacropeptide. Int J Mol Sci 2021; 22:ijms22189731. [PMID: 34575895 PMCID: PMC8470927 DOI: 10.3390/ijms22189731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
For many years, the main nitrogen source for patients with phenylketonuria (PKU) was phenylalanine-free amino acid supplements. Recently, casein glycomacropeptide (GMP) supplements have been prescribed due to its functional and sensorial properties. Nevertheless, many doubts still persist about the metabolic effects of GMP compared to free amino acids (fAA) and intact proteins such as casein (CAS). We endeavour to compare, in rats, the metabolic effects of different nitrogen sources. Twenty-four male Wistar rats were fed equal energy density diets plus CAS (control, n = 8), fAA (n = 8) or GMP (n = 8) for 8 weeks. Food, liquid intake and body weight were measured weekly. Blood biochemical parameters and markers of glycidic metabolism were assessed. Glucagon-like peptide-1 (GLP-1) was analysed by ELISA and immunohistochemistry. Food intake was higher in rats fed CAS compared to fAA or GMP throughout the treatment period. Fluid intake was similar between rats fed fAA and GMP. Body weight was systematically lower in rats fed fAA and GMP compared to those fed CAS, and still, from week 4 onwards, there were differences between fAA and GMP. None of the treatments appeared to induce consistent changes in glycaemia, while insulin levels were significantly higher in GMP. Likewise, the production of GLP-1 was higher in rats fed GMP when compared to fAA. Decreased urea, total protein and triglycerides were seen both in fAA and GMP related to CAS. GMP also reduced albumin and triglycerides in comparison to CAS and fAA, respectively. The chronic consumption of the diets triggers different metabolic responses which may provide clues to further study potential underlying mechanisms.
Collapse
Affiliation(s)
- Maria João Pena
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (M.J.P.); (R.C.); (I.R.); (J.T.G.)
| | - Raquel Costa
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (M.J.P.); (R.C.); (I.R.); (J.T.G.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ilda Rodrigues
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (M.J.P.); (R.C.); (I.R.); (J.T.G.)
| | - Sandra Martins
- Department of Clinical Pathology, São João Hospital Centre, 4200-319 Porto, Portugal;
- Instituto de Saúde Pública, Universidade do Porto, 4050-091 Porto, Portugal
| | - João Tiago Guimarães
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (M.J.P.); (R.C.); (I.R.); (J.T.G.)
- Department of Clinical Pathology, São João Hospital Centre, 4200-319 Porto, Portugal;
- Instituto de Saúde Pública, Universidade do Porto, 4050-091 Porto, Portugal
| | - Ana Faria
- Nutrition & Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (A.F.); (C.C.); (J.C.R.)
- CINTESIS—Centre for Health Technology and Services Research, 4200-450 Porto, Portugal
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Conceição Calhau
- Nutrition & Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (A.F.); (C.C.); (J.C.R.)
- CINTESIS—Centre for Health Technology and Services Research, 4200-450 Porto, Portugal
- Unidade Universitária Lifestyle Medicine da José de Mello Saúde by NOVA Medical School, 1169-056 Lisboa, Portugal
| | - Júlio César Rocha
- Nutrition & Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (A.F.); (C.C.); (J.C.R.)
- CINTESIS—Centre for Health Technology and Services Research, 4200-450 Porto, Portugal
- Reference Centre of Inherited Metabolic Diseases, Centro Hospitalar Universitário de Lisboa Central, 1169-045 Lisboa, Portugal
| | - Nuno Borges
- CINTESIS—Centre for Health Technology and Services Research, 4200-450 Porto, Portugal
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, 4150-180 Porto, Portugal
- Correspondence:
| |
Collapse
|
16
|
Losada-Barragán M. Physiological effects of nutrients on insulin release by pancreatic beta cells. Mol Cell Biochem 2021; 476:3127-3139. [PMID: 33844157 DOI: 10.1007/s11010-021-04146-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Obesity and type 2 diabetes (T2D) are growing health problems associated with a loss of insulin sensitivity. Both conditions arise from a long-term energy imbalance, and frequently, lifestyle measures can be useful in its prevention, including physical activity and a healthy diet. Pancreatic β-cells are determinant nutrient sensors that participate in energetic homeostasis needs. However, when pancreatic β-cells are incapable of secreting enough insulin to counteract the reduced sensitivity, the pathology evolves to an insulin resistance condition. The primary nutrient that stimulates insulin secretion is glucose, but also, there are multiple dietary and hormonal factors influencing that response. Many studies of the physiology of β-cells have highlighted the importance of glucose, fructose, amino acids, and free fatty acids on insulin secretion. The present review summarizes recent research on how β-cells respond to the most abundant nutrients that influence insulin secretion. Taken together, understand the subjacent mechanisms of each nutrient on β-cells can help to unravel the effects of mixed variables and complexity in the context of β-cell pathology.
Collapse
Affiliation(s)
- Monica Losada-Barragán
- Grupo de investigación en Biología celular y funcional e ingeniería de biomoléculas, Universidad Antonio Nariño-Sede Circunvalar. Cra, 3 Este # 47A - 15, Bl 5, Bogotá, Colombia.
| |
Collapse
|
17
|
Bell DSH, Goncalves E. Diabetogenic effects of cardioprotective drugs. Diabetes Obes Metab 2021; 23:877-885. [PMID: 33319474 DOI: 10.1111/dom.14295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 01/11/2023]
Abstract
Drugs that protect against cardiovascular events in the patient with diabetes may also positively or negatively affect glycaemic control in the patient with established diabetes and may induce the development of diabetes in the predisposed patient. Mainly through increasing insulin resistance, beta-blockers, statins and high-dose diuretics have the potential to worsen glycaemic control. Dihydropyridine calcium channel blockers, low-dose diuretics, vasodilating beta-blockers, alpha-blockers and pitavastatin have little or no effect on glycaemic control. Blockers of the renin-angiotensin-aldosterone system, colesevelam, ranolazine and verapamil, through slowing breakdown of bradykinin, vasodilation, increasing cholecystokinin levels, blocking sodium channels and decreasing beta cell apoptosis, may improve glycaemic control and avoid the development of diabetes.
Collapse
|
18
|
Hey P, Gow P, Testro AG, Apostolov R, Chapman B, Sinclair M. Nutraceuticals for the treatment of sarcopenia in chronic liver disease. Clin Nutr ESPEN 2021; 41:13-22. [PMID: 33487256 DOI: 10.1016/j.clnesp.2020.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Sarcopenia, defined as loss of muscle mass, strength and function, is associated with adverse clinical outcomes in patients with cirrhosis. Despite improved understanding of the multifaceted pathogenesis, there are few established therapies to treat or prevent muscle loss in this population. This narrative review examines the available literature investigating the role of nutraceuticals for the prevention or treatment of muscle wasting in chronic liver disease. METHODS A comprehensive search or Medline and PubMED databases was conducted. Reference lists were screened to identify additional articles. RESULTS A number of nutritional supplements and vitamins target the specific metabolic derangements that contribute to sarcopenia in cirrhosis including altered amino acid metabolism, hyperammonaemia and inflammation. Branched chain amino acid (BCAA) supplementation has proposed anabolic effects through dual pathways of enhanced ammonia clearance and stimulation of muscle protein synthesis. l-carnitine also has multimodal effects on muscle and shows promise as a therapy for muscle loss through anti-inflammatory, antioxidant and ammonia lowering properties. Other nutraceuticals including l-ornithine l-aspartate, omega-3 polyunsaturated fatty acids and zinc and vitamin D supplementation, may similarly have positive effects on muscle homeostasis, however further evidence to support their use in cirrhotic populations is required. CONCLUSION Nutraceuticals offer a promising and likely safe adjunct to standard care for sarcopenia in cirrhosis. While there is most evidence to support the use of BCAA and l-carnitine supplementation, further well-designed clinical trials are needed to elucidate their efficacy as a therapy for muscle loss in this population.
Collapse
Affiliation(s)
- Penelope Hey
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Paul Gow
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Adam G Testro
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Ross Apostolov
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Brooke Chapman
- The University of Melbourne, Parkville, Victoria, Australia; Department of Nutrition and Dietetics, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia.
| | - Marie Sinclair
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
19
|
Amino Acids in Cell Signaling: Regulation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:17-33. [PMID: 34251636 DOI: 10.1007/978-3-030-74180-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids are the main building blocks for life. Aside from their roles in composing proteins, functional amino acids and their metabolites play regulatory roles in key metabolic cascades, gene expressions, and cell-to-cell communication via a variety of cell signaling pathways. These metabolic networks are necessary for maintenance, growth, reproduction, and immunity in humans and animals. These amino acids include, but are not limited to, arginine, glutamine, glutamate, glycine, leucine, proline, and tryptophan. We will discuss these functional amino acids in cell signaling pathways in mammals with a particular emphasis on mTORC1, AMPK, and MAPK pathways for protein synthesis, nutrient sensing, and anti-inflammatory responses, as well as cell survival, growth, and development.
Collapse
|
20
|
Chevallier E, Jouve T, Rostaing L, Malvezzi P, Noble J. pre-existing diabetes and PTDM in kidney transplant recipients: how to handle immunosuppression. Expert Rev Clin Pharmacol 2020; 14:55-66. [PMID: 33196346 DOI: 10.1080/17512433.2021.1851596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Preexisting diabetes (PD) and post-transplant diabetes mellitus (PTDM) are common and severe comorbidities posttransplantation. The immunosuppressive regimens are modifiable risk factors. AREAS COVERED We reviewed Pubmed and Cochrane database and we summarize the mechanisms and impacts of available immunosuppressive treatments on the risk of PD and PTDM. We also assess the possible management of these drugs to improve glycemic parameters while considering risks inherent in transplantation. EXPERT OPINION PD i) increases the risk of sepsis, ii) is an independent risk factor for infection-related mortality, and iii) increases acute rejection risk. Regarding PTDM development i) immunosuppressive strategies without corticosteroids significantly reduce the risk but the price may be a higher incidence of rejection; ii) minimization or rapid withdrawal of steroids are two valuable approaches; iii) the diabetogenic role of calcineurin inhibitors(CNIs) is also well-described and is more important for tacrolimus than for cyclosporine. Reducing tacrolimus-exposure may improve glycemic parameters but also has a higher risk of rejection. PTDM risk is higher in patients that receive sirolimus compared to mycophenolate mofetil. Finally, conversion from CNIs to belatacept may offer the best benefits to PTDM-recipients in terms of glycemic parameters, graft and patient-outcomes.
Collapse
Affiliation(s)
- Eloi Chevallier
- Service De Néphrologie, Hémodialyse, Aphérèses Et Transplantation Rénale, CHU Grenoble-Alpes , Grenoble, France
| | - Thomas Jouve
- Service De Néphrologie, Hémodialyse, Aphérèses Et Transplantation Rénale, CHU Grenoble-Alpes , Grenoble, France.,Université Grenoble Alpes , Grenoble, France
| | - Lionel Rostaing
- Service De Néphrologie, Hémodialyse, Aphérèses Et Transplantation Rénale, CHU Grenoble-Alpes , Grenoble, France.,Université Grenoble Alpes , Grenoble, France
| | - Paolo Malvezzi
- Service De Néphrologie, Hémodialyse, Aphérèses Et Transplantation Rénale, CHU Grenoble-Alpes , Grenoble, France
| | - Johan Noble
- Service De Néphrologie, Hémodialyse, Aphérèses Et Transplantation Rénale, CHU Grenoble-Alpes , Grenoble, France
| |
Collapse
|
21
|
Le Couteur DG, Solon-Biet SM, Cogger VC, Ribeiro R, de Cabo R, Raubenheimer D, Cooney GJ, Simpson SJ. Branched chain amino acids, aging and age-related health. Ageing Res Rev 2020; 64:101198. [PMID: 33132154 DOI: 10.1016/j.arr.2020.101198] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023]
Abstract
Branched chain amino acids (BCAA: leucine, valine, isoleucine) have key physiological roles in the regulation of protein synthesis, metabolism, food intake and aging. Many studies report apparently inconsistent conclusions about the relationships between blood levels of BCAAs or dietary manipulation of BCAAs with age-related changes in body composition, sarcopenia, obesity, insulin and glucose metabolism, and aging biology itself. These divergent results can be resolved by consideration of the role of BCAAs as signalling molecules and the bidirectional mechanistic relationship between BCAAs and some aging phenotypes. The effects of BCAAs are also influenced by the background nutritional composition such as macronutrient ratios and imbalance with other amino acids. Understanding the interaction between BCAAs and other components of the diet may provide new opportunities for influencing age-related outcomes through manipulation of dietary BCAAs together with titration of macronutrient ratios and other amino acids.
Collapse
|
22
|
Sans MD, Crozier SJ, Vogel NL, D'Alecy LG, Williams JA. Dietary Protein and Amino Acid Deficiency Inhibit Pancreatic Digestive Enzyme mRNA Translation by Multiple Mechanisms. Cell Mol Gastroenterol Hepatol 2020; 11:99-115. [PMID: 32735995 PMCID: PMC7596297 DOI: 10.1016/j.jcmgh.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Chronic amino acid (AA) deficiency, as in kwashiorkor, reduces the size of the pancreas through an effect on mammalian target of rapamycin complex 1 (mTORC1). Because of the physiological importance of AAs and their role as a substrate, a stimulant of mTORC1, and protein synthesis, we studied the effect of acute protein and AA deficiency on the response to feeding. METHODS ICR/CD-1 mice were fasted overnight and refed for 2 hours with 4 different isocaloric diets: control (20% Prot); Protein-free (0% Prot); control (AA-based diet), and a leucine-free (No Leu). Protein synthesis, polysomal profiling, and the activation of several protein translation factors were analyzed in pancreas samples. RESULTS All diets stimulated the Protein Kinase-B (Akt)/mTORC1 pathway, increasing the phosphorylation of the kinase Akt, the ribosomal protein S6 (S6) and the formation of the eukaryotic initiation factor 4F (eIF4F) complex. Total protein synthesis and polysome formation were inhibited in the 0% Prot and No Leu groups to a similar extent, compared with the 20% Prot group. The 0% Prot diet partially reduced the Akt/mTORC1 pathway and the activity of the guanine nucleotide exchange factor eIF2B, without affecting eIF2α phosphorylation. The No Leu diet increased the phosphorylation of eIF2α and general control nonderepressible 2, and also inhibited eIF2B activity, without affecting mTORC1. Essential and nonessential AA levels in plasma and pancreas indicated a complex regulation of their cellular transport mechanisms and their specific effect on the synthesis of digestive enzymes. CONCLUSIONS These studies show that dietary AAs are important regulators of postprandial digestive enzyme synthesis, and their deficiency could induce pancreatic insufficiency and malnutrition.
Collapse
Affiliation(s)
- Maria Dolors Sans
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan.
| | - Stephen J Crozier
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Nancy L Vogel
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Louis G D'Alecy
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - John A Williams
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan; Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
23
|
Master PBZ, Macedo RCO. Effects of dietary supplementation in sport and exercise: a review of evidence on milk proteins and amino acids. Crit Rev Food Sci Nutr 2020; 61:1225-1239. [PMID: 32363897 DOI: 10.1080/10408398.2020.1756216] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dietary supplements, especially protein, are used by athletes to achieve the exercise and training daily demands, and have been receiving research focus on their role regarding recovery and performance. Protein supplements are preferred over traditional protein sources because of their ease of availability and use. In addition to consuming a complete protein supplement, such as whey protein, the ingestion of a supplement containing only amino acids has been of interest for promoting skeletal muscle anabolism and high-quality weight loss. The aim of this study was to review the existing evidence on the effects of protein and amino acid supplementation on exercise. The preponderance of evidence suggests that protein supplementation, especially milk proteins, potentiate muscle protein synthesis, lean mass and exercise recovery. Unlike proteins, amino acids supplementation (branched-chain amino acids, glutamine or leucine) results from research are equivocal and are not warranted.
Collapse
|
24
|
Zeitz JO, Käding SC, Niewalda IR, Most E, Dorigam JCDP, Eder K. The influence of dietary leucine above recommendations and fixed ratios to isoleucine and valine on muscle protein synthesis and degradation pathways in broilers. Poult Sci 2020; 98:6772-6786. [PMID: 31250025 PMCID: PMC8913973 DOI: 10.3382/ps/pez396] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/13/2019] [Indexed: 01/30/2023] Open
Abstract
This study investigated the hypothesis that dietary supplementation of leucine (Leu) above actual recommendations activates protein synthesis and inhibits protein degradation pathways on the molecular level and supports higher muscle growth in broilers. Day-old male Cobb-500 broilers (n = 180) were allotted to 3 groups and phase-fed 3 different corn-wheat-soybean meal-based basal diets during periods 1 to 10, 11 to 21, and 22 to 35 D. The control group (L0) received the basal diet which met the broiler's requirements of nutrients and amino acids for maintenance and growth. Groups L1 and L2 received basal diets supplemented with Leu to exceed recommendations by 35 and 60%, respectively, and isoleucine (Ile) and valine (Val) were supplemented to keep Leu: Ile and Leu: Val ratios fixed. Samples of liver and breast muscle and pancreas were collected on days 10, 21, and 35. The gene expression and abundance of total and phosphorylated proteins involved in the mammalian target of rapamycin pathway of protein synthesis, in the ubiquitin-proteasome pathway and autophagy-lysosomal pathway of protein degradation, in the general control nonderepressible 2/eukaryotic translation initiation factor 2A pathway involved in the inhibition of protein synthesis, and in the myostatin-Smad2/3 pathway involved in myogenesis were evaluated in the muscle, as well as expression of genes involved in the growth hormone axis. Growth performance, feed intake, the feed conversion ratio, and carcass weights did not differ between the 3 groups (P > 0.05). Plasma concentrations of Leu, Ile, and Val and of their keto acids, and the activity of the branched-chain α-keto acid dehydrogenase in the pancreas increased dose dependently with increasing dietary Leu concentrations. In the breast muscle, relative mRNA abundances of genes and phosphorylation of selected proteins involved in all investigated pathways were largely uninfluenced by dietary Leu supplementation (P > 0.05). In summary, these data indicate that excess dietary Leu concentrations do not influence protein synthesis or degradation pathways, and subsequently do not increase muscle growth in broilers at fixed ratios to Ile and Val.
Collapse
Affiliation(s)
- Johanna O Zeitz
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | - Stella-Christin Käding
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | - Ines R Niewalda
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | | | - Klaus Eder
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| |
Collapse
|
25
|
Sanchez‐Andres JV, Pomares R, Malaisse WJ. Adaptive short-term associative conditioning in the pancreatic β-cell. Physiol Rep 2020; 8:e14403. [PMID: 32232927 PMCID: PMC7105902 DOI: 10.14814/phy2.14403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/21/2023] Open
Abstract
This study associates cholinergic stimulation of the pancreatic β-cell electrical activity with a short-term memory phenomenon. Glucose pulses applied to a basal glucose concentration induce depolarizing waves which are used to estimate the evolution of the β-cell glucose sensitivity. Exposure to carbamoylcholine (carbachol) increases the size of the glucose-induced depolarizing waves. This change appears after carbachol withdrawal and implies a temporal potentiation of sensitivity (TPS) lasting up to one hour. TPS induction requires the simultaneous action of carbachol and glucose. The substitution of glucose with the secretagogues glyceraldehyde or 2-ketoisocaproate mimics glucose-induced TPS, while palmitate does not. TPS is not produced if the membrane is kept hyperpolarized by diazoxide. Glucose can be replaced by tolbutamide, suggesting a role of depolarization and a subsequent increase in intracellular calcium concentration. A role for kinases is suggested because staurosporine prevents TPS induction. Cycloheximide does not impair TPS induction, indicating that de novo protein synthesis is not required. The fact that the two inputs acting simultaneously produce an effect that lasts up to one hour without requiring de novo protein synthesis suggests that TPS constitutes a case of short-term associative conditioning in non-neural tissue. The convergence of basal glucose levels and muscarinic activation happens physiologically during the cephalic phase of digestion, in order to later absorb incoming fuels. Our data reveals that the role of the cephalic phase may be extended, increasing nutrient sensitivity during meals while remaining low between them.
Collapse
Affiliation(s)
| | - Raquel Pomares
- Department of PhysiologyUniversidad Miguel HernandezAlicanteSpain
| | - Willy J. Malaisse
- Department of BiochemistryUniversité Libre de BruxellesBrusselsBelgium
| |
Collapse
|
26
|
Ceglarek VM, Coelho ML, Coelho RL, Almeida DL, de Souza Rodrigues WDN, Camargo RL, Barella LF, de Freitas Mathias PC, Grassiolli S. Chronic leucine supplementation does not prevent the obesity and metabolic abnormalities induced by monosodium glutamate. CLINICAL NUTRITION EXPERIMENTAL 2020. [DOI: 10.1016/j.yclnex.2019.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Gao X, Hou R, Li X, Qiu XH, Luo HH, Liu SL, Fang ZZ. The Association Between Leucine and Diabetic Nephropathy in Different Gender: A Cross-Sectional Study in Chinese Patients With Type 2 Diabetes. Front Endocrinol (Lausanne) 2020; 11:619422. [PMID: 33633688 PMCID: PMC7900620 DOI: 10.3389/fendo.2020.619422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate how leucine are associated with diabetic nephropathy (DN) in type 2 diabetes (T2D) patients and the gender difference of this association. METHODS We retrieved 1,031 consecutive patients with T2D who meet the inclusion and exclusion criteria from the same tertiary care center and extracted clinical information from electronic medical record. Plasma leucine was measured by liquid chromatography-mass spectrometer. Restricted cubic spline (RCS) was conducted to examine potential non-linear relationship between leucine and the risk of DN. Logistic regression was used to obtain odds ratio (OR) and confidence interval (CI). Additive interaction was used to estimate the interaction effect between leucine and gender for DN. RESULTS We found there was a negative correlation between leucine and the risk of DN. After stratifying all patients by gender, this relationship only remained significant in women (OR:0.57, CI:0.41-0.79). CONCLUSIONS In conclusion, T2D patients with high levels of leucine have a lower risk of developing DN in female.
Collapse
Affiliation(s)
- Xiaoqian Gao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ruiqin Hou
- Department of Blood Transfusion, Peking University People’s Hospital, Beijing, China
| | - Xin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xing-Hua Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Hui-Huan Luo
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Sheng-Lin Liu
- Department of Laboratory Center of Tianjin Xiqing Hospital, Tianjin, China
- *Correspondence: Sheng-Lin Liu, ; Zhong-Ze Fang,
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- *Correspondence: Sheng-Lin Liu, ; Zhong-Ze Fang,
| |
Collapse
|
28
|
Tomé D. 90th Anniversary Commentary: The mTORC1 Complex-A Central Player in the Control and Regulation of Amino Acid Sufficiency. J Nutr 2018; 148:1678-1682. [PMID: 30281113 DOI: 10.1093/jn/nxy172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Daniel Tomé
- UMR PNCA, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| |
Collapse
|
29
|
Huhmann MB, Yamamoto S, Neutel JM, Cohen SS, Ochoa Gautier JB. Very high-protein and low-carbohydrate enteral nutrition formula and plasma glucose control in adults with type 2 diabetes mellitus: a randomized crossover trial. Nutr Diabetes 2018; 8:45. [PMID: 30158516 PMCID: PMC6115411 DOI: 10.1038/s41387-018-0053-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/23/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Standard enteral nutrition (EN) formulas can worsen hyperglycemia in diabetic patients. We hypothesized that altering the proportion of macronutrients in a formula; increasing protein while decreasing carbohydrate concentrations would improve glycemic response. The objective of this study was to demonstrate that an EN formula containing a very high concentration of protein (in the form of whey peptides) and low concentration of carbohydrate provide better control of postprandial blood glucose relative to a very high-protein/higher-carbohydrate formula. SUBJECTS AND METHODS This was a randomized crossover clinical trial of 12 ambulatory adult subjects with type 2 diabetes. The primary outcome was glycemic response following a bolus of isocaloric amounts of two EN formulas; the secondary outcome was insulin response. Subjects were randomized to the experimental or the control formula, on two separate days, 5-7 days apart. RESULTS Mean blood glucose concentrations at 10-180 min post-infusion and mean area under the curve for glucose over 240 min post-infusion were significantly lower with the experimental formula than with the control formula (71.99 ± 595.18 and 452.62 ± 351.38, respectively; p = 0.025). There were no significant differences in the mean insulin concentrations over time, insulinogenic indices, and first-phase insulin measurements. CONCLUSIONS An EN formula containing high-protein and low-carbohydrate loads can significantly improve glucose control in subjects with type 2 diabetes in ambulatory settings as evidenced by observed improved glucose control without significant difference in insulin response.
Collapse
Affiliation(s)
- Maureen B Huhmann
- Clinical Sciences, Nestlé Health Science, 1007 US Highway 202/206, Building JR2, Bridgewater, NJ, 08807, USA.
| | - Shinobu Yamamoto
- Clinical Sciences, Nestlé Health Science, 1007 US Highway 202/206, Building JR2, Bridgewater, NJ, 08807, USA
| | - Joel M Neutel
- Orange County Research Center, 14351 Myford Road, Suite B, Tustin, CA, 92780, USA
| | - Sarah S Cohen
- EpidStat Institute, 2100 Commonwealth Blvd, Suite 203, Ann Arbor, MI, 48105, USA
| | - Juan B Ochoa Gautier
- Clinical Sciences, Nestlé Health Science, 1007 US Highway 202/206, Building JR2, Bridgewater, NJ, 08807, USA.,Department of Critical Care Medicine, Geisinger Medical Center, Danville, PA, 17822, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
30
|
Gao K, Yang R, Zhang J, Wang Z, Jia C, Zhang F, Li S, Wang J, Murtaza G, Xie H, Zhao H, Wang W, Chen J. Effects of Qijian mixture on type 2 diabetes assessed by metabonomics, gut microbiota and network pharmacology. Pharmacol Res 2018; 130:93-109. [PMID: 29391233 DOI: 10.1016/j.phrs.2018.01.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/22/2022]
Abstract
Qijian mixture, a new traditional Chinese medicine (TCM) formula comprising of Astragalus membranaceus, Ramulus euonymi, Coptis chinensis and Pueraria lobata, was designed to ameliorate the type 2 diabetes (T2D), and its safety and efficacy were evaluated in the research by metabonomics, gut microbiota and system pharmacology. To study the hypoglycemic effect of Qijian mixture, male KKay mice (28-30 g, 8-9 week) and C57/BL6 mice (18-19 g, 8-9 week) were used. Thirty KKay diabetic mice were randomly distributed into 5 groups, abbreviated as Model group (Model), Low Qijian Mixture group (QJM(L)), High Qijian Mixture group (QJM(H)), Chinese Medicine (Gegen Qinlian Decoction) Positive group (GGQL), and Western Medicine (Metformin hydrochloride) Positive group (Metformin). C57/BL6 was considered as the healthy control group (Control). Moreover, a system pharmacology approach was utilized to assess the physiological targets involved in the action of Qijian mixture. There was no adverse drug reaction of Qijian mixture in the acute toxicity study and HE result, and, compared with Model group, Qijian mixture could modulate blood glycemic level safely and effectively. Qijian Mixture was lesser effective than metformin hydrochloride; however, both showed similar hypoglycemic trend. Based on 1H NMR based metabonomics study, the profoundly altered metabolites in Qijian mixture treatment group were identified. Qijian mixture-related 55 proteins and 4 signaling pathways, including galactose metabolism, valine, leucine and isoleucine degradation metabolism, aminoacyl-tRNA biosynthesis metabolism and alanine, aspartate and glutamate metabolism pathways, were explored. The PCoA analysis of gut microbiota revealed that Qijian mixture treatment profoundly enriched bacteroidetes. In addition, the system pharmacology paradigm revealed that Qijian mixture acted through TP53, AKT1 and PPARA proteins. It was concluded that Qijian mixture effectively alleviated T2D, and this effect was linked with the altered features of the metabolite profiles and the gut microbiota.
Collapse
Affiliation(s)
- Kuo Gao
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Ran Yang
- China Academy of Chinese Medical Sciences, Guanganmen Hospital, Beijing 100053, China.
| | - Jian Zhang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Zhiyong Wang
- FengNing Chinese Medicine Hospital, Xin Feng North Road, FengNing, 068350, China.
| | - Caixia Jia
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Feilong Zhang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Shaojing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jinping Wang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Ghulam Murtaza
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China; Institute of Automation, Chinese Academy of Sciences, Beijing 100029, China.
| | - Hua Xie
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Huihui Zhao
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Wei Wang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| |
Collapse
|
31
|
Kato H, Miura K, Suzuki K, Bannai M. Leucine-Enriched Essential Amino Acids Augment Muscle Glycogen Content in Rats Seven Days after Eccentric Contraction. Nutrients 2017; 9:nu9101159. [PMID: 29065533 PMCID: PMC5691775 DOI: 10.3390/nu9101159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
Eccentric contractions induce muscle damage, which impairs recovery of glycogen and adenosine tri-phosphate (ATP) content over several days. Leucine-enriched essential amino acids (LEAAs) enhance the recovery in muscles that are damaged after eccentric contractions. However, the role of LEAAs in this process remains unclear. We evaluated the content in glycogen and high energy phosphates molecules (phosphocreatine (PCr), adenosine di-phosphate (ADP) and ATP) in rats that were following electrically stimulated eccentric contractions. Muscle glycogen content decreased immediately after the contraction and remained low for the first three days after the stimulation, but increased seven days after the eccentric contraction. LEAAs administration did not change muscle glycogen content during the first three days after the contraction. Interestingly, however, it induced a further increase in muscle glycogen seven days after the stimulation. Contrarily, ATP content decreased immediately after the eccentric contraction, and remained lower for up to seven days after. Additionally, LEAAs administration did not affect the ATP content over the experimental period. Finally, ADP and PCr levels did not significantly change after the contractions or LEAA administration. LEAAs modulate the recovery of glycogen content in muscle after damage-inducing exercise.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| | - Kyoko Miura
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| | - Katsuya Suzuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| | - Makoto Bannai
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| |
Collapse
|
32
|
Lu M, Li C. Nutrient sensing in pancreatic islets: lessons from congenital hyperinsulinism and monogenic diabetes. Ann N Y Acad Sci 2017; 1411:65-82. [PMID: 29044608 DOI: 10.1111/nyas.13448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022]
Abstract
Pancreatic beta cells sense changes in nutrients during the cycles of fasting and feeding and release insulin accordingly to maintain glucose homeostasis. Abnormal beta cell nutrient sensing resulting from gene mutations leads to hypoglycemia or diabetes. Glucokinase (GCK) plays a key role in beta cell glucose sensing. As one form of congenital hyperinsulinism (CHI), activating mutations of GCK result in a decreased threshold for glucose-stimulated insulin secretion and hypoglycemia. In contrast, inactivating mutations of GCK result in diabetes, including a mild form (MODY2) and a severe form (permanent neonatal diabetes mellitus (PNDM)). Mutations of beta cell ion channels involved in insulin secretion regulation also alter glucose sensing. Activating or inactivating mutations of ATP-dependent potassium (KATP ) channel genes result in severe but completely opposite clinical phenotypes, including PNDM and CHI. Mutations of the other ion channels, including voltage-gated potassium channels (Kv 7.1) and voltage-gated calcium channels, also lead to abnormal glucose sensing and CHI. Furthermore, amino acids can stimulate insulin secretion in a glucose-independent manner in some forms of CHI, including activating mutations of the glutamate dehydrogenase gene, HDAH deficiency, and inactivating mutations of KATP channel genes. These genetic defects have provided insight into a better understanding of the complicated nature of beta cell fuel-sensing mechanisms.
Collapse
Affiliation(s)
- Ming Lu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Kimball SR. Leucine-Induced Upregulation of Terminal Oligopyrimidine mRNA Translation in Skeletal Muscle: Just the Tip of the Iceberg? J Nutr 2017; 147:1603-1604. [PMID: 28768833 PMCID: PMC5572500 DOI: 10.3945/jn.117.256289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Scot R Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
34
|
Leucine reduces reactive oxygen species levels via an energy metabolism switch by activation of the mTOR-HIF-1α pathway in porcine intestinal epithelial cells. Int J Biochem Cell Biol 2017; 89:42-56. [DOI: 10.1016/j.biocel.2017.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022]
|
35
|
Hou J, Li Z, Zhong W, Hao Q, Lei L, Wang L, Zhao D, Xu P, Zhou Y, Wang Y, Xu T. Temporal Transcriptomic and Proteomic Landscapes of Deteriorating Pancreatic Islets in Type 2 Diabetic Rats. Diabetes 2017; 66:2188-2200. [PMID: 28559245 DOI: 10.2337/db16-1305] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/17/2017] [Indexed: 11/13/2022]
Abstract
Progressive reduction in β-cell mass and function comprise the core of the pathogenesis mechanism of type 2 diabetes. The process of deteriorating pancreatic islets, in which a complex network of molecular events is involved, is not yet fully characterized. We used RNA sequencing and tandem mass tag-based quantitative proteomics technology to measure the temporal mRNA and protein expression changes of pancreatic islets in Goto-Kakizaki (GK) rats from 4 to 24 weeks of age. Our omics data set outlines the dynamics of the molecular network during the deterioration of GK islets as two stages: The early stage (4-6 weeks) is characterized by anaerobic glycolysis, inflammation priming, and compensation for insulin synthesis, and the late stage (8-24 weeks) is characterized by inflammation amplification and compensation failure. Further time course analysis allowed us to reveal 5,551 differentially expressed genes, a large portion of which have not been reported before. Our comprehensive and temporal transcriptome and proteome data offer a valuable resource for the diabetes research community and for quantitative biology.
Collapse
Affiliation(s)
- Junjie Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zonghong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Wen Zhong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Science and Technology, HuaZhong University of Science and Technology, Wuhan, China
| | - Qiang Hao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lei Lei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Linlin Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dongyu Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingyong Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - You Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Science and Technology, HuaZhong University of Science and Technology, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Sadri H, von Soosten D, Meyer U, Kluess J, Dänicke S, Saremi B, Sauerwein H. Plasma amino acids and metabolic profiling of dairy cows in response to a bolus duodenal infusion of leucine. PLoS One 2017; 12:e0176647. [PMID: 28453535 PMCID: PMC5409510 DOI: 10.1371/journal.pone.0176647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/13/2017] [Indexed: 11/18/2022] Open
Abstract
Leucine (Leu), one of the three branch chain amino acids, acts as a signaling molecule in the regulation of overall amino acid (AA) and protein metabolism. Leucine is also considered to be a potent stimulus for the secretion of insulin from pancreatice β-cells. Our objective was to study the effects of a duodenal bolus infusion of Leu on insulin and glucagon secretion, on plasma AA concentrations, and to do a metabolomic profiling of dairy cows as compared to infusions with either glucose or saline. Six duodenum-fistulated Holstein cows were studied in a replicated 3 × 3 Latin square design with 3 periods of 7 days, in which the treatments were applied at the end of each period. The treatments were duodenal bolus infusions of Leu (DIL; 0.15 g/kg body weight), glucose (DIG; at Leu equimolar dosage) or saline (SAL). On the day of infusion, the treatments were duodenally infused after 5 h of fasting. Blood samples were collected at -15, 0, 10, 20, 30, 40, 50, 60, 75, 90, 120, 180, 210, 240 and 300 min relative to the start of infusion. Blood plasma was assayed for concentrations of insulin, glucagon, glucose and AA. The metabolome was also characterized in selected plasma samples (i.e. from 0, 50, and 120 min relative to the infusion). Body weight, feed intake, milk yield and milk composition were recorded throughout the experiment. The Leu infusion resulted in significant increases of Leu in plasma reaching 20 and 15-fold greater values than that in DIG and SAL, respectively. The elevation of plasma Leu concentrations after the infusion led to a significant decrease (P<0.05) in the plasma concentrations of isoleucine, valine, glycine, and alanine. In addition, the mean concentrations of lysine, methionine, phenylalanine, proline, serine, taurine, threonine, and asparagine across all time-points in plasma of DIL cows were reduced (P<0.05) compared with the other groups. In contrast to the working hypothesis about an insulinotropic effect of Leu, the circulating concentrations of insulin were not affected by Leu. In DIG, insulin and glucose concentrations peaked at 30-40 and 40-50 min after the infusion, respectively. Insulin concentrations were greater (P<0.05) from 30-40 min in DIG than DIL and SAL, and glucose was elevated in DIG over DIL and SAL from 30-75 min and 40-50 min, respectively. Multivariate metabolomics data analysis (principal component analysis and partial least squares discriminant analysis) revealed a clear separation when the DIL cows were compared with the DIG and SAL cows at 50 and 120 min after the infusion. By using this analysis, several metabolites, mainly acylcarnitines, methionine sulfoxide and components from the kynurenine pathway were identified as the most relevant for separating the treatment groups. These results suggest that Leu regulates the plasma concentrations of branched-chain AA, and other AA, apparently by stimulating their influx into the cells from the circulation. A single-dose duodenal infusion of Leu did not elicit an apparent insulin response, but affected multiple intermediary metabolic pathways including AA and energy metabolism by mechanisms yet to be elucidated.
Collapse
Affiliation(s)
- Hassan Sadri
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, Bonn, Germany
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Dirk von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Braunschweig, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Braunschweig, Germany
| | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Braunschweig, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Braunschweig, Germany
| | - Behnam Saremi
- Evonik Nutrition & Care GmbH, Rodenbacher Chaussee 4, Hanau, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
37
|
Chen X, Kelly AC, Yates DT, Macko AR, Lynch RM, Limesand SW. Islet adaptations in fetal sheep persist following chronic exposure to high norepinephrine. J Endocrinol 2017; 232:285-295. [PMID: 27888197 PMCID: PMC5173394 DOI: 10.1530/joe-16-0445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 11/08/2022]
Abstract
Complications in pregnancy elevate fetal norepinephrine (NE) concentrations. Previous studies in NE-infused sheep fetuses revealed that sustained exposure to high NE resulted in lower expression of α2-adrenergic receptors in islets and increased insulin secretion responsiveness after acutely terminating the NE infusion. In this study, we determined if the compensatory increase in insulin secretion after chronic elevation of NE is independent of hyperglycemia in sheep fetuses and whether it is persistent in conjunction with islet desensitization to NE. After an initial assessment of glucose-stimulated insulin secretion (GSIS) at 129 ± 1 days of gestation, fetuses were continuously infused for seven days with NE and maintained at euglycemia with a maternal insulin infusion. Fetal GSIS studies were performed again on days 8 and 12. Adrenergic sensitivity was determined in pancreatic islets collected at day 12. NE infusion increased (P < 0.01) fetal plasma NE concentrations and lowered (P < 0.01) basal insulin concentrations compared to vehicle-infused controls. GSIS was 1.8-fold greater (P < 0.05) in NE-infused fetuses compared to controls at both one and five days after discontinuing the infusion. Glucose-potentiated arginine-induced insulin secretion was also enhanced (P < 0.01) in NE-infused fetuses. Maximum GSIS in islets isolated from NE-infused fetuses was 1.6-fold greater (P < 0.05) than controls, but islet insulin content and intracellular calcium signaling were not different between treatments. The half-maximal inhibitory concentration for NE was 2.6-fold greater (P < 0.05) in NE-infused islets compared to controls. These findings show that chronic NE exposure and not hyperglycemia produce persistent adaptations in pancreatic islets that augment β-cell responsiveness in part through decreased adrenergic sensitivity.
Collapse
Affiliation(s)
- Xiaochuan Chen
- Chongqing Key Laboratory of Forage & HerbivoreCollege of Animal Science and Technology, Southwest University, Chongqing, China
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Amy C Kelly
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Dustin T Yates
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Antoni R Macko
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Ronald M Lynch
- Department of PhysiologyUniversity of Arizona, Tucson, Arizona, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| |
Collapse
|
38
|
Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women. Sci Rep 2016; 6:24540. [PMID: 27080554 PMCID: PMC4832240 DOI: 10.1038/srep24540] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance is associated adiposity, but the mechanisms are not fully understood. In this study, we aimed to identify early metabolic alterations associated with insulin resistance in normoglycemic women with varying degree of adiposity. One-hundred and ten young and middle-aged women were divided into low and high IR groups based on their median HOMA-IR (0.9 ± 0.4 vs. 2.8 ± 1.2). Body composition was assessed using DXA, skeletal muscle and liver fat by proton magnetic resonance spectroscopy, serum metabolites by nuclear magnetic resonance spectroscopy and adipose tissue and skeletal muscle gene expression by microarrays. High HOMA-IR subjects had higher serum branched-chain amino acid concentrations (BCAA) (p < 0.05 for both). Gene expression analysis of subcutaneous adipose tissue revealed significant down-regulation of genes related to BCAA catabolism and mitochondrial energy metabolism and up-regulation of several inflammation-related pathways in high HOMA-IR subjects (p < 0.05 for all), but no differentially expressed genes in skeletal muscle were found. In conclusion, in normoglycemic women insulin resistance was associated with increased serum BCAA concentrations, down-regulation of mitochondrial energy metabolism and increased expression of inflammation-related genes in the adipose tissue.
Collapse
|
39
|
Qishen Yiqi Drop Pill improves cardiac function after myocardial ischemia. Sci Rep 2016; 6:24383. [PMID: 27075394 PMCID: PMC4830957 DOI: 10.1038/srep24383] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/22/2016] [Indexed: 12/31/2022] Open
Abstract
Myocardial ischemia (MI) is one of the leading causes of death, while Qishen Yiqi Drop Pill (QYDP) is a representative traditional Chinese medicine to treat this disease. Unveiling the pharmacological mechanism of QYDP will provide a great opportunity to promote the development of novel drugs to treat MI. 64 male Sprague-Dawley (SD) rats were divided into four groups: MI model group, sham operation group, QYDP treatment group and Fosinopril treatment group. Echocardiography results showed that QYDP exhibited significantly larger LV end-diastolic dimension (LVEDd) and LV end-systolic dimension (LVEDs), compared with the MI model group, indicating the improved cardiac function by QYDP. (1)H-NMR based metabonomics further identify 9 significantly changed metabolites in the QYDP treatment group, and the QYDP-related proteins based on the protein-metabolite interaction networks and the corresponding pathways were explored, involving the pyruvate metabolism pathway, the retinol metabolism pathway, the tyrosine metabolism pathway and the purine metabolism pathway, suggesting that QYDP was closely associated with blood circulation. ELISA tests were further employed to identify NO synthase (iNOS) and cathepsin K (CTSK) in the networks. For the first time, our work combined experimental and computational methods to study the mechanism of the formula of traditional Chinese medicine.
Collapse
|
40
|
Żurawicz E, Kałużna-Czaplińska J. Analysis of amino acids in autism spectrum disorders. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Xu G, Li Z, Ding L, Tang H, Guo S, Liang H, Wang H, Zhang W. Intestinal mTOR regulates GLP-1 production in mouse L cells. Diabetologia 2015; 58:1887-97. [PMID: 26037201 DOI: 10.1007/s00125-015-3632-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/20/2015] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide (GLP-1), an intestinal incretin produced in L cells through proglucagon processing, is released in response to meal intake. The intracellular mechanism by which L cells sense the organism energy level to coordinate the production of GLP-1 remains unclear. Mechanistic target of rapamycin (mTOR) is an intracellular fuel sensor critical for energy homeostasis. In this study, we investigated whether intestinal mTOR regulates GLP-1 production in L cells. METHODS The effects of mTOR on GLP-1 production were examined in lean- or high-fat diet (HFD) induced diabetic C57/BL6, db/db, Neurog3-Tsc1(-/-) mice, and STC-1 cells. GLP-1 expression was investigated by real-time PCR and western blotting. Plasma GLP-1 and insulin were detected by enzyme immunoassay and radioimmunoassay, respectively. RESULTS Fasting downregulated mTOR activity, which was associated with a decrement of intestinal proglucagon and circulating GLP-1. Upon re-feeding, these alterations returned to the levels of fed animals. In HFD induced diabetic mice, ileal mTOR signalling, proglucagon and circulating GLP-1 were significantly decreased. Inhibition of mTOR signalling by rapamycin decreased levels of intestinal and plasma GLP-1 in both normal and diabetic mice. Activation of the intestinal mTOR signalling by L-leucine or Tsc1 gene deletion increased levels of intestinal proglucagon and plasma GLP-1. Overexpression of mTOR stimulated proglucagon promoter activity and GLP-1 production, whereas inhibition of mTOR activity by overexpression of tuberous sclerosis 1 (TSC1) or TSC2 decreased proglucagon promoter activity and GLP-1 production in STC-1 cells. CONCLUSIONS/INTERPRETATION mTOR may link energy supply with the production of GLP-1 in L cells.
Collapse
Affiliation(s)
- Geyang Xu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Song Y, Li J, Shin HD, Du G, Liu L, Chen J. One-step biosynthesis of α-ketoisocaproate from L-leucine by an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase from Proteus vulgaris. Sci Rep 2015; 5:12614. [PMID: 26217895 PMCID: PMC4517468 DOI: 10.1038/srep12614] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/03/2015] [Indexed: 11/12/2022] Open
Abstract
This work aimed to develop a whole-cell biotransformation process for the production of α-ketoisocaproate from L-leucine. A recombinant Escherichia coli strain was constructed by expressing an L-amino acid deaminase from Proteus vulgaris. To enhance α-ketoisocaproate production, the reaction conditions were optimized as follows: whole-cell biocatalyst 0.8 g/L, leucine concentration 13.1 g/L, temperature 35 °C, pH 7.5, and reaction time 20 h. Under the above conditions, the α-ketoisocaproate titer reached 12.7 g/L with a leucine conversion rate of 97.8%. In addition, different leucine feeding strategies were examined to increase the α-ketoisocaproate titer. When 13.1 g/L leucine was added at 2-h intervals (from 0 to 22 h, 12 addition times), the α-ketoisocaproate titer reached 69.1 g/L, while the leucine conversion rate decreased to 50.3%. We have developed an effective process for the biotechnological production of α-ketoisocaproate that is more environmentally friendly than the traditional petrochemical synthesis approach.
Collapse
Affiliation(s)
- Yang Song
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineeirng, Georgia Institute of Technology, Atlanta 30332, USA
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| |
Collapse
|
43
|
Kolahian S, Sadri H, Shahbazfar AA, Amani M, Mazadeh A, Mirani M. The Effects of Leucine, Zinc, and Chromium Supplements on Inflammatory Events of the Respiratory System in Type 2 Diabetic Rats. PLoS One 2015; 10:e0133374. [PMID: 26185997 PMCID: PMC4506042 DOI: 10.1371/journal.pone.0133374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 06/26/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is a major cause of serious micro- and macrovascular diseases that affect nearly every system in the body, including the respiratory system. Non-enzymatic protein glycation due to hyperglycaemic stress has fundamental implications due to the large capillary network and amount of connective tissue in the lung. The current study was designed to determine whether leucine, zinc, and chromium supplementations influence the function and histological structure of the respiratory tract in a rat model of type 2 diabetes. Seventy-seven rats were divided into eleven groups, consisting of 7 animals each. One group served as negative control and insulin and glibenclamide were used as positive control drugs. Thus, eight groups received the nutritional supplements alone or in combination with each other. Nutritional supplements and glibenclamide were added to the drinking water and neutral protamine Hagedorn insulin was subcutaneously injected during the 4 weeks of treatment period. The induction of type 2 diabetes in the rats caused an infiltration of mononuclear cells and edema in the submucosa of the trachea and lung, severe fibrosis around the vessels and airways, and perivascular and peribronchial infiltration of inflammatory cells and fibrin. In the diabetic group, the total inflammation score and Reid index significantly increased. Diabetes induction significantly reduced the total antioxidant status and elevated the lipid peroxidation products in the serum, lung lavage and lung tissue of the diabetic animals. Treatment with nutritional supplements significantly decreased the histopathological changes and inflammatory indices in the diabetic animals. Supplementation of diabetic rats with leucine, zinc, and chromium, alone and in combination, significantly increased the total antioxidant status and lipid peroxidation level in the diabetic animals. The nutritional supplements improved the enzymatic antioxidant activity of catalase, glutathione peroxidase, myeloperoxidase, and superoxide dismutase in the diabetic rats. The present results demonstrate beneficial effects and amelioration of inflammation in the respiratory system of type 2 diabetic rats by leucine, zinc, and chromium supplements, probably due to their hypoglycaemic and antioxidant properties. Using safe and effective nutritional supplements, such as leucine, chromium and zinc, to replace proven conventional medical treatments may help to control diabetes and/or its complications.
Collapse
Affiliation(s)
- Saeed Kolahian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- * E-mail:
| | - Hassan Sadri
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Ali Shahbazfar
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Morvarid Amani
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Anis Mazadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mehdi Mirani
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
44
|
Chandran S, Yap F, Hussain K. Molecular mechanisms of protein induced hyperinsulinaemic hypoglycaemia. World J Diabetes 2014; 5:666-677. [PMID: 25317244 PMCID: PMC4138590 DOI: 10.4239/wjd.v5.i5.666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/23/2014] [Accepted: 05/29/2014] [Indexed: 02/05/2023] Open
Abstract
The interplay between glucose metabolism and that of the two other primary nutrient classes, amino acids and fatty acids is critical for regulated insulin secretion. Mitochondrial metabolism of glucose, amino acid and fatty acids generates metabolic coupling factors (such as ATP, NADPH, glutamate, long chain acyl-CoA and diacylglycerol) which trigger insulin secretion. The observation of protein induced hypoglycaemia in patients with mutations in GLUD1 gene, encoding the enzyme glutamate dehydrogenase (GDH) and HADH gene, encoding for the enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase has provided new mechanistic insights into the regulation of insulin secretion by amino acid and fatty acid metabolism. Metabolic signals arising from amino acid and fatty acid metabolism converge on the enzyme GDH which integrates both signals from both pathways and controls insulin secretion. Hence GDH seems to play a pivotal role in regulating both amino acid and fatty acid metabolism.
Collapse
|
45
|
Wang X, Niu C, Lu J, Li N, Li J. Hydrolyzed protein supplementation improves protein content and peroxidation of skeletal muscle by adjusting the plasma amino acid spectrums in rats after exhaustive swimming exercise: a pilot study. J Int Soc Sports Nutr 2014; 11:5. [PMID: 24565110 PMCID: PMC3945952 DOI: 10.1186/1550-2783-11-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 02/19/2014] [Indexed: 01/08/2023] Open
Abstract
Background This study was designed to evaluate the effects of hydrolyzed protein supplementation upon skeletal muscle total protein and peroxidation in rats following exhaustive swimming exercise. Methods Twenty-four rats were randomized to 4 experimental groups (n = 6 per group): control group fed standard diet without exercise (SD), exercise (EX), exercise plus standard diet for 72 hours (EX + SD), and exercise plus standard diet supplemented with hydrolyzed protein (2 g/kg/d) for 72 hours (EX + HP). Immediately following exercise, the EX group was euthanized for collecting plasma and skeletal muscle samples. The EX + SD and EX + HP groups were fed their respective diets for 72 hour still plasma and skeletal muscle collection. Skeletal muscle samples were used to measure levels of total protein (TP), malondialdehyde (MDA), and protein carbonyl (PC). Plasma samples were used to analyze the amino acids spectrum. Results Compared with the EX + SD, EX + HP presented the significantly increased TP (P = 0.02) and decreased MDA and PC levels (P = 0.035). MDA was negatively correlated with the methionine levels. Moreover, EX + HP maintained higher levels of plasmaleucine, isoleucine, and methionine than EX + SD, which may be associated with the increased skeletal muscle TP levels observed (P < 0.05). Conclusions These results collectively suggest that hydrolyzed protein supplementation can improve skeletal muscle TP and ameliorate peroxidation damage in rats subjected to exhaustive exercise stress, which may be, at least in part, related with the maintenance of plasma leucine, isoleucine, and methionine levels.
Collapse
Affiliation(s)
- Xinying Wang
- Research Institute of General Surgery, Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, People's Republic of China
| | - Chenglin Niu
- Department of ICU, Brain Hospital, Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Jun Lu
- Department of Orthopedics, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing 210009, Jiangsu Province, China
| | - Ning Li
- Research Institute of General Surgery, Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, People's Republic of China
| | - Jieshou Li
- Research Institute of General Surgery, Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, People's Republic of China
| |
Collapse
|
46
|
Chen X, Green AS, Macko AR, Yates DT, Kelly AC, Limesand SW. Enhanced insulin secretion responsiveness and islet adrenergic desensitization after chronic norepinephrine suppression is discontinued in fetal sheep. Am J Physiol Endocrinol Metab 2014; 306:E58-64. [PMID: 24253046 PMCID: PMC3920003 DOI: 10.1152/ajpendo.00517.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intrauterine growth-restricted (IUGR) fetuses experience prolonged hypoxemia, hypoglycemia, and elevated norepinephrine (NE) concentrations, resulting in hypoinsulinemia and β-cell dysfunction. Previously, we showed that acute adrenergic blockade revealed enhanced insulin secretion responsiveness in the IUGR fetus. To determine whether chronic exposure to NE alone enhances β-cell responsiveness afterward, we continuously infused NE into fetal sheep for 7 days and, after terminating the infusion, evaluated glucose-stimulated insulin secretion (GSIS) and glucose-potentiated arginine-induced insulin secretion (GPAIS). During treatment, NE-infused fetuses had greater (P < 0.05) plasma NE concentrations and exhibited hyperglycemia (P < 0.01) and hypoinsulinemia (P < 0.01) compared with controls. GSIS during the NE infusion was also reduced (P < 0.05) compared with pretreatment values. GSIS and GPAIS were approximately fourfold greater (P < 0.01) in NE fetuses 3 h after the 7 days that NE infusion was discontinued compared with age-matched controls or pretreatment GSIS and GPAIS values of NE fetuses. In isolated pancreatic islets from NE fetuses, mRNA concentrations of adrenergic receptor isoforms (α1D, α2A, α2C, and β1), G protein subunit-αi-2, and uncoupling protein 2 were lower (P < 0.05) compared with controls, but β-cell regulatory genes were not different. Our findings indicate that chronic exposure to elevated NE persistently suppresses insulin secretion. After removal, NE fetuses demonstrated a compensatory enhancement in insulin secretion that was associated with adrenergic desensitization and greater stimulus-secretion coupling in pancreatic islets.
Collapse
Affiliation(s)
- Xiaochuan Chen
- College of Animal Science and Technology, Southwest University, Chongqing, China; and
| | | | | | | | | | | |
Collapse
|
47
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 505] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
48
|
Atherton PJ. Is there an optimal time for warfighters to supplement with protein? J Nutr 2013; 143:1848S-1851S. [PMID: 24027179 DOI: 10.3945/jn.113.175984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although nutritional requirements for warfighters will inevitably vary in accordance with job role and active-inactive duty cycling, somewhat generic recommendations do still apply. In considering aspects of "optimal" nutrient timing, it is important to outline singular and combinatorial relationships between protein intake and physical activity (e.g., exercise) in the context of the following: 1) skeletal muscle protein turnover, 2) functional recovery, and 3) adaptation to exercise. The essential amino acid (EAA) components of dietary protein are key macronutrients regulating muscle proteostasis, because they provide substrate to replenish muscle proteins lost during fasted periods. This occurs through a substantial, albeit short-lived (∼2 h) EAA-induced stimulation of muscle protein synthesis (MPS) and via an insulin-mediated suppression of muscle protein breakdown (MPB) (via carbohydrate- and/or EAA-mediated insulin secretory effects). At rest, intake of protein (optimal range between 20 and 40 g of high-quality protein, equating to ∼10-20 g EAAs) every ∼4-5 h is advocated due to the refractoriness of MPS in response to continuous supply. Bouts of exercise also stimulate muscle protein turnover (increasing both MPS and MPB), but in the absence of protein intake net muscle protein balance remains negative such that exercise alone is catabolic. Intake of dietary protein redresses this balance through enhancing both the amplitude and duration of exercise-induced increases in MPS while concomitantly limiting MPB. These postexercise periods of positive net protein balance permit muscle adaptation and functional recovery. Finally, in relation to exercise, protein dosing (at a minimum of ∼20 g) both in close proximity to exercise and thereafter every 4-5 h during waking hours (including before bedtime) is likely optimal for adaptation/functional recovery.
Collapse
Affiliation(s)
- Philip James Atherton
- University of Nottingham, School of Medicine, Division of Clinical, Metabolic and Molecular Physiology, Postgraduate Entry Medical School, Royal Derby Hospital, Derby, UK
| |
Collapse
|
49
|
Xia X, Wang X, Li Q, Li N, Li J. Essential amino acid enriched high-protein enteral nutrition modulates insulin-like growth factor-1 system function in a rat model of trauma-hemorrhagic shock. PLoS One 2013; 8:e77823. [PMID: 24204984 PMCID: PMC3810136 DOI: 10.1371/journal.pone.0077823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/04/2013] [Indexed: 01/03/2023] Open
Abstract
Background Nutrition support for critically ill patients supplemented with additional modular protein may promote skeletal muscle protein anabolism in addition to counteracting acute nitrogen loss. The present study was designed to investigate whether the essential amino acid (EAA) enriched high-protein enteral nutrition (EN) modulates the insulin-like growth factor-1 (IGF-1) system and activates the mammalian target of rapamycin (mTOR) anabolic signaling pathway in a trauma-hemorrhagic shock (T-HS) rat model. Methodology/Principal Findings Male Sprague-Dawley rats (n = 90, 278.18±0.94 g) were randomly assigned to 5 groups: (1) normal control, (2) pair-fed, (3) T-HS, (4) T-HS and standard EN, and (5) T-HS and EAA enriched high-protein EN. Six animals from each group were harvested on days 2, 4, and 6 for serum, gastrocnemius, soleus, and extensor digitorum longus sample collection. T-HS significantly reduced muscle mass. Nutrition support maintained muscle mass, especially the EAA enriched high-protein EN. Meanwhile, a pronounced derangement in IGF-1-IGFBPs axis as well as impaired mTOR transduction was observed in the T-HS group. Compared with animals receiving standard EN, those receiving EAA enriched high-protein EN presented 18% higher serum free IGF-1 levels following 3 days of nutrition support and 22% higher after 5 days. These changes were consistent with the concomitant elevation in serum insulin and reduction in corticosterone levels. In addition, phosphorylations of downstream anabolic signaling effectors - including protein kinase B, mTOR, and ribosomal protein S6 kinase1 - increased significantly in rats receiving EAA enriched high-protein EN. Conclusion/Significance Our findings firstly demonstrate the beneficial effect of EAA enriched high-protein EN on the metabolic modulation of skeletal muscle protein anabolism by regulating the IGF-1 system and downstream anabolic signaling transduction.
Collapse
Affiliation(s)
- Xianfeng Xia
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Xinying Wang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
- * E-mail:
| | - Qiurong Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Ning Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Jieshou Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
50
|
Zhang T, Li C. Mechanisms of amino acid-stimulated insulin secretion in congenital hyperinsulinism. Acta Biochim Biophys Sin (Shanghai) 2013; 45:36-43. [PMID: 23212075 DOI: 10.1093/abbs/gms107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The role of amino acids in the regulation of insulin secretion in pancreatic beta-cells is highlighted in three forms of congenital hyperinsulinism (HI), namely gain-of-function mutations of glutamate dehydrogenase (GDH), loss-of-function mutations of ATP-dependent potassium channels, and a deficiency of short-chain 3-hydroxyacyl-CoA dehydrogenase. Studies on disease mouse models of HI suggest that amino acid oxidation and signaling effects are the major mechanisms of amino acid-stimulated insulin secretion. Amino acid oxidation via GDH produces ATP and triggers insulin secretion. The signaling effect of amino acids amplifies insulin release after beta-cell depolarization and elevation of cytosolic calcium.
Collapse
Affiliation(s)
- Tingting Zhang
- Division of Endocrinology, Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|