1
|
Carr ER, Higgins PB, McClenaghan NH, Flatt PR, McCloskey AG. MicroRNA regulation of islet and enteroendocrine peptides: Physiology and therapeutic implications for type 2 diabetes. Peptides 2024; 176:171196. [PMID: 38492669 DOI: 10.1016/j.peptides.2024.171196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The pathogenesis of type 2 diabetes (T2D) is associated with dysregulation of glucoregulatory hormones, including both islet and enteroendocrine peptides. Microribonucleic acids (miRNAs) are short noncoding RNA sequences which post transcriptionally inhibit protein synthesis by binding to complementary messenger RNA (mRNA). Essential for normal cell activities, including proliferation and apoptosis, dysregulation of these noncoding RNA molecules have been linked to several diseases, including diabetes, where alterations in miRNA expression within pancreatic islets have been observed. This may occur as a compensatory mechanism to maintain beta-cell mass/function (e.g., downregulation of miR-7), or conversely, lead to further beta-cell demise and disease progression (e.g., upregulation of miR-187). Thus, targeting miRNAs has potential for novel diagnostic and therapeutic applications in T2D. This is reinforced by the success seen to date with miRNA-based therapeutics for other conditions currently in clinical trials. In this review, differential expression of miRNAs in human islets associated with T2D will be discussed along with further consideration of their effects on the production and secretion of islet and incretin hormones. This analysis further unravels the therapeutic potential of miRNAs and offers insights into novel strategies for T2D management.
Collapse
Affiliation(s)
- E R Carr
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland; Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | - P B Higgins
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland
| | - N H McClenaghan
- Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | - P R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - A G McCloskey
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland.
| |
Collapse
|
2
|
Pozovnikova MV, Leibova VB, Tulinova OV, Romanova EA, Dysin AP, Dementieva NV, Azovtseva AI, Sedykh SE. Comparison of miR-106b, miR-191, and miR-30d expression dynamics in milk with regard to its composition in Holstein and Ayrshire cows. Anim Biosci 2024; 37:965-981. [PMID: 38419530 PMCID: PMC11065953 DOI: 10.5713/ab.23.0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/25/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Milk composition varies considerably and depends on paratypical, genetic, and epigenetic factors. MiRNAs belong to the class of small non-coding RNAs; they are one of the key tools of epigenetic control because of their ability to regulate gene expression at the post-transcriptional level. We compared the relative expression levels of miR-106b, miR-191, and miR-30d in milk to demonstrate the relationship between the content of these miRNAs with protein and fat components of milk in Holstein and Ayrshire cattle. METHODS Milk fat, protein, and casein contents were determined in the obtained samples, as well as the content of the main fatty acids (g/100 g milk), including: saturated acids, such as myristic (C14:0), palmitic (C16:0), and stearic (C18:0) acids; monounsaturated acids, including oleic (C18:1) acid; as well as long-, medium- and short-chain, polyunsaturated, and trans fatty acids. Real-time stem-loop one-tube reverse transcription polymerase chain reaction with TaqMan probes was used to measure the miRNA expression levels. RESULTS The miRNA expression levels in milk samples were found to be decreased in the first two months in Holstein breed, and in the first four months in Ayrshire breed. Correlation analysis did not reveal any dependence between changes in the expression level of miRNA and milk fat content, but showed a multidirectional relationship with individual milk fatty acids. Positive associations between the expression levels of miR-106b and miR-30d and protein and casein content were found in the Ayrshire breed. Receiver operating characteristic curve analysis showed that miR-106b and miR-30d expression levels can cause changes in fatty acid and protein composition of milk in Ayrshire cows, whereas miR-106b expression level determines the fatty acid composition in Holsteins. CONCLUSION The data obtained in this study showed that miR-106b, miR-191, and miR-30d expression levels in milk samples have peculiarities associated with breed affiliation and the lactation period.
Collapse
Affiliation(s)
- Marina V. Pozovnikova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, St. Petersburg, 196625,
Russia
| | - Viktoria B. Leibova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, St. Petersburg, 196625,
Russia
| | - Olga V. Tulinova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, St. Petersburg, 196625,
Russia
| | - Elena A. Romanova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, St. Petersburg, 196625,
Russia
| | - Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, St. Petersburg, 196625,
Russia
| | - Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, St. Petersburg, 196625,
Russia
| | - Anastasiia I. Azovtseva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, St. Petersburg, 196625,
Russia
| | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090,
Russia
| |
Collapse
|
3
|
Wang SH, Zhao Y, Wang CC, Chu F, Miao LY, Zhang L, Zhuo L, Chen X. RFEM: A framework for essential microRNA identification in mice based on rotation forest and multiple feature fusion. Comput Biol Med 2024; 171:108177. [PMID: 38422957 DOI: 10.1016/j.compbiomed.2024.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
With the increasing number of microRNAs (miRNAs), identifying essential miRNAs has become an important task that needs to be solved urgently. However, there are few computational methods for essential miRNA identification. Here, we proposed a novel framework called Rotation Forest for Essential MicroRNA identification (RFEM) to predict the essentiality of miRNAs in mice. We first constructed 1,264 miRNA features of all miRNA samples by fusing 38 miRNA features obtained from the PESM paper and 1,226 miRNA functional features calculated based on miRNA-target gene interactions. Then, we employed 182 training samples with 1,264 features to train the rotation forest model, which was applied to compute the essentiality scores of the candidate samples. The main innovations of RFEM were as follows: 1) miRNA functional features were introduced to enrich the diversity of miRNA features; 2) the rotation forest model used decision tree as the base classifier and could increase the difference among base classifiers through feature transformation to achieve better ensemble results. Experimental results show that RFEM significantly outperformed two previous models with the AUC (AUPR) of 0.942 (0.944) in three comparison experiments under 5-fold cross validation, which proved the model's reliable performance. Moreover, ablation study was further conducted to demonstrate the effectiveness of the novel miRNA functional features. Additionally, in the case studies of assessing the essentiality of unlabeled miRNAs, experimental literature confirmed that 7 of the top 10 predicted miRNAs have crucial biological functions in mice. Therefore, RFEM would be a reliable tool for identifying essential miRNAs.
Collapse
Affiliation(s)
- Shu-Hao Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China; Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Chun-Chun Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Fei Chu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China; Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| | - Lian-Ying Miao
- School of Mathematics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Linlin Zhuo
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, 325000, China.
| | - Xing Chen
- School of Science, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Gomez-Muñoz L, Dominguez-Bendala J, Pastori RL, Vives-Pi M. Immunometabolic biomarkers for partial remission in type 1 diabetes mellitus. Trends Endocrinol Metab 2024; 35:151-163. [PMID: 37949732 DOI: 10.1016/j.tem.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Shortly after diagnosis of type 1 diabetes mellitus (T1DM) and initiation of insulin therapy, many patients experience a transient partial remission (PR) phase, also known as the honeymoon phase. This phase presents a potential therapeutic opportunity due to its association with immunoregulatory and β cell-protective mechanisms. However, the lack of biomarkers makes its characterization difficult. In this review, we cover the current literature addressing the discovery of new predictive and monitoring biomarkers that contribute to the understanding of the metabolic, epigenetic, and immunological mechanisms underlying PR. We further discuss how these peripheral biomarkers reflect attempts to arrest β cell autoimmunity and how these can be applied in clinical practice.
Collapse
Affiliation(s)
- Laia Gomez-Muñoz
- Immunology Section, Germans Trias i Pujol Research Institute, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ricardo L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; Ahead Therapeutics SL, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
5
|
Engin AB, Engin A. MicroRNAs as Epigenetic Regulators of Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:595-627. [PMID: 39287866 DOI: 10.1007/978-3-031-63657-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
6
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Macvanin MT, Gluvic Z, Bajic V, Isenovic ER. Novel insights regarding the role of noncoding RNAs in diabetes. World J Diabetes 2023; 14:958-976. [PMID: 37547582 PMCID: PMC10401459 DOI: 10.4239/wjd.v14.i7.958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders defined by hyperglycemia induced by insulin resistance, inadequate insulin secretion, or excessive glucagon secretion. In 2021, the global prevalence of diabetes is anticipated to be 10.7% (537 million people). Noncoding RNAs (ncRNAs) appear to have an important role in the initiation and progression of DM, according to a growing body of research. The two major groups of ncRNAs implicated in diabetic disorders are miRNAs and long noncoding RNAs. miRNAs are single-stranded, short (17–25 nucleotides), ncRNAs that influence gene expression at the post-transcriptional level. Because DM has reached epidemic proportions worldwide, it appears that novel diagnostic and therapeutic strategies are required to identify and treat complications associated with these diseases efficiently. miRNAs are gaining attention as biomarkers for DM diagnosis and potential treatment due to their function in maintaining physiological homeostasis via gene expression regulation. In this review, we address the issue of the gradually expanding global prevalence of DM by presenting a complete and up-to-date synopsis of various regulatory miRNAs involved in these disorders. We hope this review will spark discussion about ncRNAs as prognostic biomarkers and therapeutic tools for DM. We examine and synthesize recent research that used novel, high-throughput technologies to uncover ncRNAs involved in DM, necessitating a systematic approach to examining and summarizing their roles and possible diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladan Bajic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
8
|
Patterson V, Ullah F, Bryant L, Griffin JN, Sidhu A, Saliganan S, Blaile M, Saenz MS, Smith R, Ellingwood S, Grange DK, Hu X, Mireguli M, Luo Y, Shen Y, Mulhern M, Zackai E, Ritter A, Izumi K, Hoefele J, Wagner M, Riedhammer KM, Seitz B, Robin NH, Goodloe D, Mignot C, Keren B, Cox H, Jarvis J, Hempel M, Gibson CF, Tran Mau-Them F, Vitobello A, Bruel AL, Sorlin A, Mehta S, Raymond FL, Gilmore K, Powell BC, Weck K, Li C, Vulto-van Silfhout AT, Giacomini T, Mancardi MM, Accogli A, Salpietro V, Zara F, Vora NL, Davis EE, Burdine R, Bhoj E. Abrogation of MAP4K4 protein function causes congenital anomalies in humans and zebrafish. SCIENCE ADVANCES 2023; 9:eade0631. [PMID: 37126546 PMCID: PMC10132768 DOI: 10.1126/sciadv.ade0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
We report 21 families displaying neurodevelopmental differences and multiple congenital anomalies while bearing a series of rare variants in mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4). MAP4K4 has been implicated in many signaling pathways including c-Jun N-terminal and RAS kinases and is currently under investigation as a druggable target for multiple disorders. Using several zebrafish models, we demonstrate that these human variants are either loss-of-function or dominant-negative alleles and show that decreasing Map4k4 activity causes developmental defects. Furthermore, MAP4K4 can restrain hyperactive RAS signaling in early embryonic stages. Together, our data demonstrate that MAP4K4 negatively regulates RAS signaling in the early embryo and that variants identified in affected humans abrogate its function, establishing MAP4K4 as a causal locus for individuals with syndromic neurodevelopmental differences.
Collapse
Affiliation(s)
- Victoria Patterson
- Princeton University, Princeton, NJ 08544, USA
- Department of Biology, University of York, York, UK
| | - Farid Ullah
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura Bryant
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John N. Griffin
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alpa Sidhu
- The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | | | - Mackenzie Blaile
- University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Margarita S. Saenz
- University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Rosemarie Smith
- Maine Medical Center, 22 Bramhall St, Portland, ME 04102, USA
| | - Sara Ellingwood
- Maine Medical Center, 22 Bramhall St, Portland, ME 04102, USA
| | - Dorothy K. Grange
- St. Louis Children’s Hospital, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Xuyun Hu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Maimaiti Mireguli
- First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China
| | - Yanfei Luo
- First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China
| | - Yiping Shen
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Maternal and Child Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi, Nanning, China
| | - Maureen Mulhern
- Columbia University Irving Medical Center, 630 W. 168th St, New York, NY 10032, USA
| | - Elaine Zackai
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alyssa Ritter
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kosaki Izumi
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Korbinian M. Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Nathaniel H. Robin
- University of Alabama at Birmingham, 1720 University Blvd, Birmingham, AL 35233, USA
| | - Dana Goodloe
- University of Alabama at Birmingham, 1720 University Blvd, Birmingham, AL 35233, USA
| | - Cyril Mignot
- APHP-Sorbonne Université, GH Pitié-Salpêtrière, Paris, France
| | - Boris Keren
- Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Helen Cox
- Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Joanna Jarvis
- Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Maja Hempel
- University Hospital Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | | | | | - Antonio Vitobello
- UMR1231 GAD, Inserm, Université Bourgogne-Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | | | | | | | | | - Kelly Gilmore
- Department of Ob/Gyn, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bradford C. Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen Weck
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chumei Li
- McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | | | - Thea Giacomini
- Unit of Child Neuropsychiatry, University of Genova, EpiCARE Network, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Andrea Accogli
- Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy
| | - Federico Zara
- Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy
| | - Neeta L. Vora
- Department of Ob/Gyn, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erica E. Davis
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Elizabeth Bhoj
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Ghaneh T, Zeinali F, Babini H, Astaraki S, Hassan-Zadeh V. An increase in the expression of circulating miR30d-5p and miR126-3p is associated with intermediate hyperglycaemia in Iranian population. Arch Physiol Biochem 2023; 129:489-496. [PMID: 33113334 DOI: 10.1080/13813455.2020.1839105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes is the most prevalent metabolic disease worldwide. The disease is characterised by high blood glucose levels and recently it has been shown that changes in the plasma levels of several miRNAs (miRNA) are associated with the disease. Interestingly, alterations in circulating miRNAs occur years before the onset of the disease and demonstrate predictive power. In this study, we carried out RT-qPCR to examine the plasma levels of two type 2 diabetes specific miRNAs, miR-30d-5p and miR-126-3p in an Iranian population of non-diabetic control individuals, subjects with intermediate hyperglycaemia and type 2 diabetic individuals with hyperglycaemia. We found that the plasma levels of miR-30d and miR-126 increase by 3.1 and 11.16 times, respectively, in individuals with intermediate hyperglycaemia compared to non-diabetic controls. However, no significant changes in the expression of these two miRNAs have been observed between type 2 diabetic individuals and non-diabetic subjects. Our results confirm that alterations in the plasma levels of miR-30d-5p and miR-126-3p could be used as diagnostic markers of type 2 diabetes in the Iranian population as well.
Collapse
Affiliation(s)
- Taravat Ghaneh
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Zeinali
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hosna Babini
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahideh Hassan-Zadeh
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Gomez-Muñoz L, Perna-Barrull D, Murillo M, Armengol MP, Alcalde M, Catala M, Rodriguez-Fernandez S, Sunye S, Valls A, Perez J, Corripio R, Vives-Pi M. Immunoregulatory Biomarkers of the Remission Phase in Type 1 Diabetes: miR-30d-5p Modulates PD-1 Expression and Regulatory T Cell Expansion. Noncoding RNA 2023; 9:ncrna9020017. [PMID: 36960962 PMCID: PMC10037622 DOI: 10.3390/ncrna9020017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
The partial remission (PR) phase of type 1 diabetes (T1D) is an underexplored period characterized by endogenous insulin production and downmodulated autoimmunity. To comprehend the mechanisms behind this transitory phase and develop precision medicine strategies, biomarker discovery and patient stratification are unmet needs. MicroRNAs (miRNAs) are small RNA molecules that negatively regulate gene expression and modulate several biological processes, functioning as biomarkers for many diseases. Here, we identify and validate a unique miRNA signature during PR in pediatric patients with T1D by employing small RNA sequencing and RT-qPCR. These miRNAs were mainly related to the immune system, metabolism, stress, and apoptosis pathways. The implication in autoimmunity of the most dysregulated miRNA, miR-30d-5p, was evaluated in vivo in the non-obese diabetic mouse. MiR-30d-5p inhibition resulted in increased regulatory T cell percentages in the pancreatic lymph nodes together with a higher expression of CD200. In the spleen, a decrease in PD-1+ T lymphocytes and reduced PDCD1 expression were observed. Moreover, miR-30d-5p inhibition led to an increased islet leukocytic infiltrate and changes in both effector and memory T lymphocytes. In conclusion, the miRNA signature found during PR shows new putative biomarkers and highlights the immunomodulatory role of miR-30d-5p, elucidating the processes driving this phase.
Collapse
Affiliation(s)
- Laia Gomez-Muñoz
- Immunology Department, Germans Trias i Pujol Research Institute (IGTP), Autonomous University of Barcelona, 08916 Badalona, Spain
| | - David Perna-Barrull
- Immunology Department, Germans Trias i Pujol Research Institute (IGTP), Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Marta Murillo
- Pediatrics Department, Germans Trias i Pujol University Hospital (HGTiP), Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Maria Pilar Armengol
- Translational Genomic Platform, Germans Trias i Pujol Research Institute (IGTP), Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Marta Alcalde
- Physics Department, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Marti Catala
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX1 2JD, UK
| | - Silvia Rodriguez-Fernandez
- Immunology Department, Germans Trias i Pujol Research Institute (IGTP), Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Sergi Sunye
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Aina Valls
- Pediatrics Department, Germans Trias i Pujol University Hospital (HGTiP), Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Jacobo Perez
- Pediatric Endocrinology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Autonomous University of Barcelona, 08208 Sabadell, Spain
| | - Raquel Corripio
- Pediatric Endocrinology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Autonomous University of Barcelona, 08208 Sabadell, Spain
| | - Marta Vives-Pi
- Immunology Department, Germans Trias i Pujol Research Institute (IGTP), Autonomous University of Barcelona, 08916 Badalona, Spain
| |
Collapse
|
11
|
Ngamjariyawat A, Cen J, Said R, Incedal C, Idevall-Hagren O, Welsh N. Metabolic stress-induced human beta-cell death is mediated by increased intracellular levels of adenosine. Front Endocrinol (Lausanne) 2023; 14:1060675. [PMID: 36761184 PMCID: PMC9905624 DOI: 10.3389/fendo.2023.1060675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION High intracellular concentrations of adenosine and 2'-deoxyadenosine have been suggested to be an important mediator of cell death. The aim of the present study was to characterize adenosine-induced death in insulin-producing beta-cells, at control and high glucose + palmitate-induced stress conditions. METHODS Human insulin-producing EndoC-betaH1 cells were treated with adenosine, 2'-deoxyadenosine, inosine and high glucose + sodium palmitate, and death rates using flow cytometry were studied. RESULTS We observed that adenosine and the non-receptor-activating analogue 2-deoxyadenosine, but not the adenosine deamination product inosine, promoted beta-cell apoptosis at concentrations exceeding maximal adenosine-receptor stimulating concentrations. Both adenosine and inosine were efficiently taken up by EndoC-betaH1 cells, and inosine counteracted the cell death promoting effect of adenosine by competing with adenosine for uptake. Both adenosine and 2'-deoxyadenosine promptly reduced insulin-stimulated production of plasma membrane PI(3,4,5)P3, an effect that was reversed upon wash out of adenosine. In line with this, adenosine, but not inosine, rapidly diminished Akt phosphorylation. Both pharmacological Bax inhibition and Akt activation blocked adenosine-induced beta-cell apoptosis, indicating that adenosine/2'-deoxyadenosine inhibits the PI3K/Akt/BAD anti-apoptotic pathway. High glucose + palmitate-induced cell death was paralleled by increased intracellular adenosine and inosine levels. Overexpression of adenosine deaminase-1 (ADA1) in EndoC-betaH1 cells, which increased Akt phosphorylation, prevented both adenosine-induced apoptosis and high glucose + palmitate-induced necrosis. ADA2 overexpression not only failed to protect against adenosine and high glucose + palmitate-activated cell death, but instead potentiated the apoptosis-stimulating effect of adenosine. In line with this, ADA1 overexpression increased inosine production from adenosine-exposed cells, whereas ADA2 did not. Knockdown of ADA1 resulted in increased cell death rates in response to both adenosine and high glucose + palmitate. Inhibition of miR-30e-3p binding to the ADA1 mRNA 3'-UTR promoted the opposite effects on cell death rates and reduced intracellular adenosine contents. DISCUSSION It is concluded that intracellular adenosine/2'-deoxyadenosine regulates negatively the PI3K pathway and is therefore an important mediator of beta-cell apoptosis. Adenosine levels are controlled, at least in part, by ADA1, and strategies to upregulate ADA1 activity, during conditions of metabolic stress, could be useful in attempts to preserve beta-cell mass in diabetes.
Collapse
Affiliation(s)
- Anongnad Ngamjariyawat
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Division of Anatomy, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Khlong Luang, Pathumthani, Thailand
| | - Jing Cen
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Romain Said
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Ceren Incedal
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Olof Idevall-Hagren
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- *Correspondence: Nils Welsh,
| |
Collapse
|
12
|
Angelescu MA, Andronic O, Dima SO, Popescu I, Meivar-Levy I, Ferber S, Lixandru D. miRNAs as Biomarkers in Diabetes: Moving towards Precision Medicine. Int J Mol Sci 2022; 23:12843. [PMID: 36361633 PMCID: PMC9655971 DOI: 10.3390/ijms232112843] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 09/08/2023] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease with many specifically related complications. Early diagnosis of this disease could prevent the progression to overt disease and its related complications. There are several limitations to using existing biomarkers, and between 24% and 62% of people with diabetes remain undiagnosed and untreated, suggesting a large gap in current diagnostic practices. Early detection of the percentage of insulin-producing cells preceding loss of function would allow for effective therapeutic interventions that could delay or slow down the onset of diabetes. MicroRNAs (miRNAs) could be used for early diagnosis, as well as for following the progression and the severity of the disease, due to the fact of their pancreatic specific expression and stability in various body fluids. Thus, many studies have focused on the identification and validation of such groups or "signatures of miRNAs" that may prove useful in diagnosing or treating patients. Here, we summarize the findings on miRNAs as biomarkers in diabetes and those associated with direct cellular reprogramming strategies, as well as the relevance of miRNAs that act as a bidirectional switch for cell therapy of damaged pancreatic tissue and the studies that have measured and tracked miRNAs as biomarkers in insulin resistance are addressed.
Collapse
Affiliation(s)
| | - Octavian Andronic
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irinel Popescu
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irit Meivar-Levy
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
| | - Sarah Ferber
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniela Lixandru
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Biochemistry, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
13
|
Mao Y, Schoenborn J, Wang Z, Chen X, Matson K, Mohan R, Zhang S, Tang X, Arunagiri A, Arvan P, Tang X. Transgenic overexpression of microRNA-30d in pancreatic beta-cells progressively regulates beta-cell function and identity. Sci Rep 2022; 12:11969. [PMID: 35831364 PMCID: PMC9279310 DOI: 10.1038/s41598-022-16174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/06/2022] [Indexed: 11/15/2022] Open
Abstract
Abnormal microRNA functions are closely associated with pancreatic β-cell loss and dysfunction in type 2 diabetes. Dysregulation of miR-30d has been reported in the individuals with diabetes. To study how miR-30d affects pancreatic β-cell functions, we generated two transgenic mouse lines that specifically overexpressed miR-30d in β-cells at distinct low and high levels. Transgenic overexpressed miR-30d systemically affected β-cell function. Elevated miR-30d at low-level (TgL, 2-fold) had mild effects on signaling pathways and displayed no significant changes to metabolic homeostasis. In contrast, transgenic mice with high-level of miR-30d expression (TgH, 12-fold) exhibited significant diet-induced hyperglycemia and β-cell dysfunction. In addition, loss of β-cell identity was invariably accompanied with increased insulin/glucagon-double positive bihormonal cells and excess plasma glucagon levels. The transcriptomic analysis revealed that miR-30d overexpression inhibited β-cell-enriched gene expression and induced α-cell-enriched gene expression. These findings implicate that an appropriate miR-30d level is essential in maintaining normal β-cell identity and function.
Collapse
Affiliation(s)
- Yiping Mao
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Jacob Schoenborn
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Zhihong Wang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Xinqian Chen
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Katy Matson
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Ramkumar Mohan
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Shungang Zhang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Xiaohu Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Anoop Arunagiri
- Department of Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter Arvan
- Department of Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoqing Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA.
| |
Collapse
|
14
|
Li J, Sha Z, Zhu X, Xu W, Yuan W, Yang T, Jin B, Yan Y, Chen R, Wang S, Yao J, Xu J, Wang Z, Li G, Das S, Yang L, Xiao J. Targeting miR-30d reverses pathological cardiac hypertrophy. EBioMedicine 2022; 81:104108. [PMID: 35752105 PMCID: PMC9240797 DOI: 10.1016/j.ebiom.2022.104108] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/15/2022] Open
Abstract
Background Pathological cardiac hypertrophy occurs in response to numerous stimuli and precedes heart failure (HF). Therapies that ameliorate pathological cardiac hypertrophy are highly needed. Methods The expression level of miR-30d was analyzed in hypertrophy models and serum of patients with chronic heart failure by qRT-PCR. Gain and loss-of-function experiments of miR-30d were performed in vitro. miR-30d gain of function were performed in vivo. Bioinformatics, western blot, luciferase assay, qRT-PCR, and immunofluorescence were performed to examine the molecular mechanisms of miR-30d. Findings miR-30d was decreased in both murine and neonatal rat cardiomyocytes (NRCMs) models of hypertrophy. miR-30d overexpression ameliorated phenylephrine (PE) and angiotensin II (Ang II) induced hypertrophy in NRCMs, whereas the opposite phenotype was observed when miR-30d was downregulated. Consistently, the miR-30d transgenic rat was found to protect against isoproterenol (ISO)-induced pathological hypertrophy. Mechanistically, methyltransferase EZH2 could promote H3K27me3 methylation in the promotor region of miR-30d and suppress its expression during the pathological cardiac hypertrophy. miR-30d prevented pathological cardiac hypertrophy via negatively regulating its target genes MAP4K4 and GRP78 and inhibiting pro-hypertrophic nuclear factor of activated T cells (NFAT). Adeno-associated virus (AAV) serotype 9 mediated-miR-30d overexpression exhibited beneficial effects in murine hypertrophic model. Notably, miR-30d was reduced in serum of patients with chronic heart failure and miR-30d overexpression could significantly ameliorate pathological hypertrophy in human embryonic stem cell-derived cardiomyocytes. Interpretation Overexpression of miR-30d may be a potential approach to treat pathological cardiac hypertrophy. Funding This work was supported by the grants from National Key Research and Development Project (2018YFE0113500 to J Xiao), National Natural Science Foundation of China (82020108002 to J Xiao, 81900359 to J Li), the grant from Science and Technology Commission of Shanghai Municipality (20DZ2255400 and 21XD1421300 to J Xiao, 22010500200 to J Li), Shanghai Sailing Program (19YF1416400 to J Li), the “Dawn” Program of Shanghai Education Commission (19SG34 to J Xiao), the “Chen Guang” project supported by the Shanghai Municipal Education Commission and Shanghai Education Development Foundation (19CG45 to J Li).
Collapse
Affiliation(s)
- Jin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Zhao Sha
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xiaolan Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Wanru Xu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Weilin Yuan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Tingting Yang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Bing Jin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yuwei Yan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Rui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Siqi Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jianhua Yao
- Department of Cardiology, Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Jiahong Xu
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zitong Wang
- Department of Pathophysiology, Basic Medical Science, Harbin Medical University, Harbin 150081, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Saumya Das
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, 163319, China.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
15
|
王 茹, 尹 讯, 张 涛, 孙 雪, 张 春. [Establishment and Preliminary Analysis of Lung Cancer Cell Line A549 with Stable MAP4 K4 Knockdown]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:611-618. [PMID: 35871731 PMCID: PMC10409466 DOI: 10.12182/20220760503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Objective To analyze the effect of knocking down MAP4 K4 expression on the proliferation and migration of cancer cells, and to explore its underlining molecular mechanisms. Methods A stable knockdown MAP4 K4 cell line was constructed and the subcellular localization of the cells was determined with immunofluorescence, cell proliferation assay and cell migration assay. In addition, the effects of down-regulated MAP4 K4 expression were analyzed by examining the difference between the proliferation and migration of cancer cells in the knockdown group and those of the control group. Results MAP4 K4 was localized in focal adhesion and cell edges in A549 cells. Stable knockdown of MAP4 K4 expression induced cancer cells to grow in clusters and arrested the progression of the cell cycle and cell migration. Further analysis found that knocking down MAP4 K4 expression in A549 cells induced the accumulation of epithelial cell marker E-cadherin, and subsequently, the down-regulation of N-cadherin, a mesenchymal cell marker, thereby disrupting the "cadherin switch" and the epithelial-mesenchymal conversion. Then, the control group and the knockdown group both received the combined treatment of cisplatin at a final concentration of 5 μmol/L and paclitaxel at a final concentration of 20 nmol/L. The stably knocked down MAP4 K4 expressing cells showed significantly enhanced toxicity of chemotherapeutic drugs to cancer cells. Conclusion The study shows that MAP4 K4 regulates the malignant phenotypes of cancer cells and chemoresistance by regulating "cadherin switch" to promote epithelial-mesenchymal transition in A549 cells.
Collapse
Affiliation(s)
- 茹 王
- 重庆医科大学 生物化学与分子生物学教研室 (重庆 400016)Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- 重庆医科大学 分子医学与肿瘤研究中心 (重庆 400016)Molecular Medicine and Cancer Research Centre, Chongqing Medical University, Chongqing 400016, China
| | - 讯 尹
- 重庆医科大学 生物化学与分子生物学教研室 (重庆 400016)Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- 重庆医科大学 分子医学与肿瘤研究中心 (重庆 400016)Molecular Medicine and Cancer Research Centre, Chongqing Medical University, Chongqing 400016, China
| | - 涛 张
- 重庆医科大学 生物化学与分子生物学教研室 (重庆 400016)Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- 重庆医科大学 分子医学与肿瘤研究中心 (重庆 400016)Molecular Medicine and Cancer Research Centre, Chongqing Medical University, Chongqing 400016, China
| | - 雪花 孙
- 重庆医科大学 生物化学与分子生物学教研室 (重庆 400016)Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- 重庆医科大学 分子医学与肿瘤研究中心 (重庆 400016)Molecular Medicine and Cancer Research Centre, Chongqing Medical University, Chongqing 400016, China
| | - 春冬 张
- 重庆医科大学 生物化学与分子生物学教研室 (重庆 400016)Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- 重庆医科大学 分子医学与肿瘤研究中心 (重庆 400016)Molecular Medicine and Cancer Research Centre, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
16
|
Liang J, Chirikjian M, Pajvani UB, Bartolomé A. MafA Regulation in β-Cells: From Transcriptional to Post-Translational Mechanisms. Biomolecules 2022; 12:535. [PMID: 35454124 PMCID: PMC9033020 DOI: 10.3390/biom12040535] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
β-cells are insulin-producing cells in the pancreas that maintain euglycemic conditions. Pancreatic β-cell maturity and function are regulated by a variety of transcription factors that enable the adequate expression of the cellular machinery involved in nutrient sensing and commensurate insulin secretion. One of the key factors in this regulation is MAF bZIP transcription factor A (MafA). MafA expression is decreased in type 2 diabetes, contributing to β-cell dysfunction and disease progression. The molecular biology underlying MafA is complex, with numerous transcriptional and post-translational regulatory nodes. Understanding these complexities may uncover potential therapeutic targets to ameliorate β-cell dysfunction. This article will summarize the role of MafA in normal β-cell function and disease, with a special focus on known transcriptional and post-translational regulators of MafA expression.
Collapse
Affiliation(s)
- Jiani Liang
- Department of Medicine, Columbia University, New York, NY 10032, USA; (J.L.); (M.C.); (U.B.P.)
| | - Margot Chirikjian
- Department of Medicine, Columbia University, New York, NY 10032, USA; (J.L.); (M.C.); (U.B.P.)
| | - Utpal B. Pajvani
- Department of Medicine, Columbia University, New York, NY 10032, USA; (J.L.); (M.C.); (U.B.P.)
| | - Alberto Bartolomé
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
17
|
Zeve D, Stas E, de Sousa Casal J, Mannam P, Qi W, Yin X, Dubois S, Shah MS, Syverson EP, Hafner S, Karp JM, Carlone DL, Ordovas-Montanes J, Breault DT. Robust differentiation of human enteroendocrine cells from intestinal stem cells. Nat Commun 2022; 13:261. [PMID: 35017529 PMCID: PMC8752608 DOI: 10.1038/s41467-021-27901-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/16/2021] [Indexed: 02/02/2023] Open
Abstract
Enteroendocrine (EE) cells are the most abundant hormone-producing cells in humans and are critical regulators of energy homeostasis and gastrointestinal function. Challenges in converting human intestinal stem cells (ISCs) into functional EE cells, ex vivo, have limited progress in elucidating their role in disease pathogenesis and in harnessing their therapeutic potential. To address this, we employed small molecule targeting of the endocannabinoid receptor signaling pathway, JNK, and FOXO1, known to mediate endodermal development and/or hormone production, together with directed differentiation of human ISCs from the duodenum and rectum. We observed marked induction of EE cell differentiation and gut-derived expression and secretion of SST, 5HT, GIP, CCK, GLP-1 and PYY upon treatment with various combinations of three small molecules: rimonabant, SP600125 and AS1842856. Robust differentiation strategies capable of driving human EE cell differentiation is a critical step towards understanding these essential cells and the development of cell-based therapeutics.
Collapse
Affiliation(s)
- Daniel Zeve
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Eric Stas
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Joshua de Sousa Casal
- grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Immunology, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Prabhath Mannam
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Wanshu Qi
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Xiaolei Yin
- grid.116068.80000 0001 2341 2786David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.38142.3c000000041936754XCenter for Nanomedicine and Division of Engineering in Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115 USA ,grid.24516.340000000123704535Present Address: Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Sarah Dubois
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.416498.60000 0001 0021 3995School of Arts and Sciences, MCPHS University, Boston, MA 02115 USA
| | - Manasvi S. Shah
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Erin P. Syverson
- grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Sophie Hafner
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Jeffrey M. Karp
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XCenter for Nanomedicine and Division of Engineering in Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - Diana L. Carlone
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - Jose Ordovas-Montanes
- grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Immunology, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - David T. Breault
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| |
Collapse
|
18
|
You S, Zheng J, Chen Y, Huang H. Research progress on the mechanism of beta-cell apoptosis in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:976465. [PMID: 36060972 PMCID: PMC9434279 DOI: 10.3389/fendo.2022.976465] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes mellitus(T2DM) is regarded as one of the most severe chronic metabolic diseases worldwide, which poses a great threat to human safety and health. The main feature of T2DM is the deterioration of pancreatic beta-cell function. More and more studies have shown that the decline of pancreatic beta-cell function in T2DM can be attributable to beta-cell apoptosis, but the exact mechanisms of beta-cell apoptosis in T2DM are not yet fully clarified. Therefore, in this review, we will focus on the current status and progress of research on the mechanism of pancreatic beta-cell apoptosis in T2DM, to provide new ideas for T2DM treatment strategies.
Collapse
Affiliation(s)
- SuFang You
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - JingYi Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - YuPing Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - HuiBin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: HuiBin Huang,
| |
Collapse
|
19
|
Cione E, Cannataro R, Gallelli L, De Sarro G, Caroleo MC. Exosome microRNAs in Metabolic Syndrome as Tools for the Early Monitoring of Diabetes and Possible Therapeutic Options. Pharmaceuticals (Basel) 2021; 14:ph14121257. [PMID: 34959658 PMCID: PMC8706321 DOI: 10.3390/ph14121257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are nano-sized extracellular vesicles produced and released by almost all cell types. They play an essential role in cell-cell communications by delivering cellular bioactive compounds such as functional proteins, metabolites, and nucleic acids, including microRNA, to recipient cells. Thus, they are involved in various physio-pathological conditions. Exosome-miRNAs are associated with numerous diseases, including type 2 diabetes, a complex multifactorial metabolic disorder linked to obesity. In addition, exosome-miRNAs are emerging as essential regulators in the progression of diabetes, principally for pancreatic β-cell injury and insulin resistance. Here, we have clustered the recent findings concerning exosome-miRNAs associated with β-cell dysfunction to provide a novel approach for the early diagnosis and therapy of diabetes.
Collapse
Affiliation(s)
- Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, CS, Italy;
- GalaScreen Laboratories, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, CS, Italy;
- Correspondence:
| | - Roberto Cannataro
- GalaScreen Laboratories, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, CS, Italy;
| | - Luca Gallelli
- Department of Health Science, University of Catanzaro and Operative Unit of Clinical Pharmacology and Pharmacovigilance, Mater Domini Hospital, 88100 Catanzaro, CZ, Italy; (L.G.); (G.D.S.)
| | - Giovambattista De Sarro
- Department of Health Science, University of Catanzaro and Operative Unit of Clinical Pharmacology and Pharmacovigilance, Mater Domini Hospital, 88100 Catanzaro, CZ, Italy; (L.G.); (G.D.S.)
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, CS, Italy;
- GalaScreen Laboratories, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, CS, Italy;
| |
Collapse
|
20
|
Sałówka A, Martinez-Sanchez A. Molecular Mechanisms of Nutrient-Mediated Regulation of MicroRNAs in Pancreatic β-cells. Front Endocrinol (Lausanne) 2021; 12:704824. [PMID: 34803905 PMCID: PMC8600252 DOI: 10.3389/fendo.2021.704824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cells within the islets of Langerhans respond to rising blood glucose levels by secreting insulin that stimulates glucose uptake by peripheral tissues to maintain whole body energy homeostasis. To different extents, failure of β-cell function and/or β-cell loss contribute to the development of Type 1 and Type 2 diabetes. Chronically elevated glycaemia and high circulating free fatty acids, as often seen in obese diabetics, accelerate β-cell failure and the development of the disease. MiRNAs are essential for endocrine development and for mature pancreatic β-cell function and are dysregulated in diabetes. In this review, we summarize the different molecular mechanisms that control miRNA expression and function, including transcription, stability, posttranscriptional modifications, and interaction with RNA binding proteins and other non-coding RNAs. We also discuss which of these mechanisms are responsible for the nutrient-mediated regulation of the activity of β-cell miRNAs and identify some of the more important knowledge gaps in the field.
Collapse
Affiliation(s)
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Sun X, Wang L, Obayomi SMB, Wei Z. Epigenetic Regulation of β Cell Identity and Dysfunction. Front Endocrinol (Lausanne) 2021; 12:725131. [PMID: 34630329 PMCID: PMC8498190 DOI: 10.3389/fendo.2021.725131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/08/2021] [Indexed: 01/07/2023] Open
Abstract
β cell dysfunction and failure are driving forces of type 2 diabetes mellitus (T2DM) pathogenesis. Investigating the underlying mechanisms of β cell dysfunction may provide novel targets for the development of next generation therapy for T2DM. Epigenetics is the study of gene expression changes that do not involve DNA sequence changes, including DNA methylation, histone modification, and non-coding RNAs. Specific epigenetic signatures at all levels, including DNA methylation, chromatin accessibility, histone modification, and non-coding RNA, define β cell identity during embryonic development, postnatal maturation, and maintain β cell function at homeostatic states. During progression of T2DM, overnutrition, inflammation, and other types of stress collaboratively disrupt the homeostatic epigenetic signatures in β cells. Dysregulated epigenetic signatures, and the associating transcriptional outputs, lead to the dysfunction and eventual loss of β cells. In this review, we will summarize recent discoveries of the establishment and disruption of β cell-specific epigenetic signatures, and discuss the potential implication in therapeutic development.
Collapse
Affiliation(s)
- Xiaoqiang Sun
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
- Tianjin Fourth Central Hospital, Tianjin, China
- The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
- The Fourth Central Hospital Clinical College, Tianjin Medical University, Tianjin, China
| | - Liu Wang
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - S M Bukola Obayomi
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Zong Wei
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
| |
Collapse
|
22
|
Pérez-Cremades D, Paes AB, Vidal-Gómez X, Mompeón A, Hermenegildo C, Novella S. Regulatory Network Analysis in Estradiol-Treated Human Endothelial Cells. Int J Mol Sci 2021; 22:ijms22158193. [PMID: 34360960 PMCID: PMC8348965 DOI: 10.3390/ijms22158193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Background/Aims: Estrogen has been reported to have beneficial effects on vascular biology through direct actions on endothelium. Together with transcription factors, miRNAs are the major drivers of gene expression and signaling networks. The objective of this study was to identify a comprehensive regulatory network (miRNA–transcription factor–downstream genes) that controls the transcriptomic changes observed in endothelial cells exposed to estradiol. Methods: miRNA/mRNA interactions were assembled using our previous microarray data of human umbilical vein endothelial cells (HUVEC) treated with 17β-estradiol (E2) (1 nmol/L, 24 h). miRNA–mRNA pairings and their associated canonical pathways were determined using Ingenuity Pathway Analysis software. Transcription factors were identified among the miRNA-regulated genes. Transcription factor downstream target genes were predicted by consensus transcription factor binding sites in the promoter region of E2-regulated genes by using JASPAR and TRANSFAC tools in Enrichr software. Results: miRNA–target pairings were filtered by using differentially expressed miRNAs and mRNAs characterized by a regulatory relationship according to miRNA target prediction databases. The analysis identified 588 miRNA–target interactions between 102 miRNAs and 588 targets. Specifically, 63 upregulated miRNAs interacted with 295 downregulated targets, while 39 downregulated miRNAs were paired with 293 upregulated mRNA targets. Functional characterization of miRNA/mRNA association analysis highlighted hypoxia signaling, integrin, ephrin receptor signaling and regulation of actin-based motility by Rho among the canonical pathways regulated by E2 in HUVEC. Transcription factors and downstream genes analysis revealed eight networks, including those mediated by JUN and REPIN1, which are associated with cadherin binding and cell adhesion molecule binding pathways. Conclusion: This study identifies regulatory networks obtained by integrative microarray analysis and provides additional insights into the way estradiol could regulate endothelial function in human endothelial cells.
Collapse
|
23
|
Arenas-Padilla M, González-Rascón A, Hernández-Mendoza A, Calderón de la Barca AM, Hernández J, Mata-Haro V. Immunomodulation by Bifidobacterium animalis subsp. lactis Bb12: Integrative Analysis of miRNA Expression and TLR2 Pathway-Related Target Proteins in Swine Monocytes. Probiotics Antimicrob Proteins 2021; 14:510-522. [PMID: 34283392 PMCID: PMC8289881 DOI: 10.1007/s12602-021-09816-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Bifidobacterium animalis subsp. lactis Bb12 is a widely used probiotic that provides numerous health benefits to its host, many due to its immunomodulatory properties. Although the precise mechanism of modulation is still under investigation, several reports associate the interaction of TLR2 with components of the bacterial cell wall inducing a signaling cascade that culminates with the production of cytokines and co-stimulatory molecules. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of immune responses, including those toward probiotics. In this study, we analyzed the miRNA expression profile in swine monocytes exposed to Bb12 by using an anti-TLR2 blocking strategy and Bb12 involvement in the regulation of the TLR2 pathway. As a result, the expression of 40 miRNAs was influenced by the treatments (p < 0.01), and 15 differentially expressed miRNAs with validated miRNA–mRNA interactions with around 26 proteins related to the TLR2 pathway were identified. The miRNAs upregulated in response to Bb12 included miR-15a-5p, miR-16-5p, miR-26a-5p, miR-29b-3p, and miR-30d-5p, and the following showed downregulation: miR-181a-5p, miR-19b-3p, miR-21-5p, miR-23a-5p, and miR-221-3p. The expression of let-7c-5p, let-7f-5p, miR-146b-5p, miR-150-5p, and miR-155-5p was increased by Bb12 only when TLR2 was blocked. The identified miRNA common targets were downstream proteins from bacterial recognition via TLR2, such as MyD88, TRAF6, and MAPK members; transcription factors such as NF-κB and AP-1; and cytokines such as IL-6, IL-10, and TNF-α. TLR2 participation was abrogated by anti-TLR2 antibody and suggests that bacterial recognition is complemented by other receptors since there were still changes in the microtranscriptome.
Collapse
Affiliation(s)
- Marina Arenas-Padilla
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo E. Astiazarán 46, 83304, Hermosillo, Sonora, Mexico
| | - Anna González-Rascón
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo E. Astiazarán 46, 83304, Hermosillo, Sonora, Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo E. Astiazarán 46, 83304, Hermosillo, Sonora, Mexico
| | - Ana María Calderón de la Barca
- Departamento de Nutrición y Metabolismo, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo E. Astiazarán 46, 83304, Hermosillo, Sonora, Mexico
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo E. Astiazarán 46, 83304, Hermosillo, Sonora, Mexico
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo E. Astiazarán 46, 83304, Hermosillo, Sonora, Mexico.
| |
Collapse
|
24
|
Han Z, Shi F, Chen Y, Dong X, Zhang B, Li M. Relationship between miRNA-433 and SPP1 in the presence of fracture and traumatic brain injury. Exp Ther Med 2021; 22:928. [PMID: 34306197 PMCID: PMC8281207 DOI: 10.3892/etm.2021.10360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Limb fracture combined with traumatic brain injury (TBI) is one of the most common multiple injuries and patients often suffer from severe craniocerebral injury combined with long bone fracture of the limbs. The present study examined the expression of osteopontin (SPP1) in the tibial fracture callus and heterotopic ossification tissues in craniocerebral injury and investigated its relationship with miR-433. A total of 26 patients with tibial fracture combined with brain injury were included in the TBI group, and 26 patients with simple tibial fracture were included in the control group. The patients received immobilization treatment and callus was collected during the operation. At the time of steel plate removal tissue ossification samples from patients with heterotopic ossification were collected. Peripheral blood was collected from all patients on the morning of the operation day. Expression of miR-433 and SPP1 mRNA was determined by reverse transcription-quantitative PCR and SPP1 protein expression was measured by western blotting. Dual luciferase reporter assay was used to identify the direct interaction between miR-433 and SPP1 mRNA. The human osteoblast line hFOB1.19 was transfected with agomiR-433 to overexpress miR-433 and expression of SPP1 was also examined. TBI enhanced the incidence of callus formation and heterotopic ossification in patients with fracture but did not alter fracture healing time. SPP1 mRNA and protein expression was elevated in patients who had tibial fracture in combination with craniocerebral injury in comparison with controls By contrast, expression of miR-433 was decreased in patients who had tibial fracture in combination with craniocerebral injury in comparison with controls. miR-433 regulated the expression of SPP1 mRNA and protein by directly binding to the 3'-untranslated region of SPP1 mRNA. The present study suggests that SPP1 mRNA and protein levels are increased in the callus, heterotopic ossification tissues and plasma from patients with tibial fracture combined with brain injury in comparison with controls. This elevation may be due to the reduced expression of miR-433.
Collapse
Affiliation(s)
- Zhen Han
- First Aid Center, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Feng Shi
- First Aid Center, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Ya Chen
- Department of Pharmacy, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Xiaoqing Dong
- First Aid Center, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Bo Zhang
- First Aid Center, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Meng Li
- First Aid Center, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| |
Collapse
|
25
|
He X, Kuang G, Wu Y, Ou C. Emerging roles of exosomal miRNAs in diabetes mellitus. Clin Transl Med 2021; 11:e468. [PMID: 34185424 PMCID: PMC8236118 DOI: 10.1002/ctm2.468] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes are small extracellular vesicles 40-160 nm in diameter that are secreted by almost all cell types. Exosomes can carry diverse cargo including RNA, DNA, lipids, proteins, and metabolites. Exosomes transfer substances and information between cells by circulating in body fluids and are thus involved in diverse physiological and pathological processes in the human body. Recent studies have closely associated exosomal microRNAs (miRNAs) with various human diseases, including diabetes mellitus (DM), which is a complex multifactorial metabolic disorder disease. Exosomal miRNAs are emerging as pivotal regulators in the progression of DM, mainly in terms of pancreatic β-cell injury and insulin resistance. Exosomal miRNAs are closely associated with DM-associated complications, such as diabetic retinopathy (DR), diabetic nephropathy (DN), and diabetic cardiomyopathy (DCM), etc. Further investigations of the mechanisms of action of exosomal miRNAs and their role in DM will be valuable for the thorough understanding of the physiopathological process of DM. Here, we have summarized recent findings regarding exosomal miRNAs associated with DM to provide a new strategy for identifying potential diagnostic biomarkers and drug targets for the early diagnosis and treatment, respectively, of DM.
Collapse
Affiliation(s)
- Xiaoyun He
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Departments of Ultrasound Imaging, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Gaoyan Kuang
- Department of OrthopedicsThe First Affiliated Hospital of Hunan University of Chinese MedicineChangshaHunan410007China
- Postdoctoral Research WorkstationHinye Pharmaceutical Co. LtdChangshaHunan410331China
| | - Yongrong Wu
- Hunan university of Chinese MedicineChangshaHunan410208China
| | - Chunlin Ou
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
26
|
MicroRNAs and Oxidative Stress: An Intriguing Crosstalk to Be Exploited in the Management of Type 2 Diabetes. Antioxidants (Basel) 2021; 10:antiox10050802. [PMID: 34069422 PMCID: PMC8159096 DOI: 10.3390/antiox10050802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes is a chronic disease widespread throughout the world, with significant human, social, and economic costs. Its multifactorial etiology leads to persistent hyperglycemia, impaired carbohydrate and fat metabolism, chronic inflammation, and defects in insulin secretion or insulin action, or both. Emerging evidence reveals that oxidative stress has a critical role in the development of type 2 diabetes. Overproduction of reactive oxygen species can promote an imbalance between the production and neutralization of antioxidant defence systems, thus favoring lipid accumulation, cellular stress, and the activation of cytosolic signaling pathways, and inducing β-cell dysfunction, insulin resistance, and tissue inflammation. Over the last few years, microRNAs (miRNAs) have attracted growing attention as important mediators of diverse aspects of oxidative stress. These small endogenous non-coding RNAs of 19-24 nucleotides act as negative regulators of gene expression, including the modulation of redox signaling pathways. The present review aims to provide an overview of the current knowledge concerning the molecular crosstalk that takes place between oxidative stress and microRNAs in the physiopathology of type 2 diabetes, with a special emphasis on its potential as a therapeutic target.
Collapse
|
27
|
A Brief Review of the Mechanisms of β-Cell Dedifferentiation in Type 2 Diabetes. Nutrients 2021; 13:nu13051593. [PMID: 34068827 PMCID: PMC8151793 DOI: 10.3390/nu13051593] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes is a metabolic disease characterized by hyperglycemia. Over 90% of patients with diabetes have type 2 diabetes. Pancreatic β-cells are endocrine cells that produce and secrete insulin, an essential endocrine hormone that regulates blood glucose levels. Deficits in β-cell function and mass play key roles in the onset and progression of type 2 diabetes. Apoptosis has been considered as the main contributor of β-cell dysfunction and decrease in β-cell mass for a long time. However, recent studies suggest that β-cell failure occurs mainly due to increased β-cell dedifferentiation rather than limited β-cell proliferation or increased β-cell death. In this review, we summarize the current advances in the understanding of the pancreatic β-cell dedifferentiation process including potential mechanisms. A better understanding of β-cell dedifferentiation process will help to identify novel therapeutic targets to prevent and/or reverse β-cell loss in type 2 diabetes.
Collapse
|
28
|
Wang M, Wei J, Ji T, Zang K. miRNA-770-5p expression is upregulated in patients with type 2 diabetes and miRNA-770-5p knockdown protects pancreatic β-cell function via targeting BAG5 expression. Exp Ther Med 2021; 22:664. [PMID: 33986829 PMCID: PMC8112148 DOI: 10.3892/etm.2021.10096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/26/2020] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miR)-770-5p expression is increased in patients with type 2 diabetes mellitus (T2DM) compared with healthy controls; however, the roles and molecular mechanism underlying miR-770-5p in T2DM are not completely understood. In the present study, the reverse transcription-quantitative PCR (RT-qPCR) results indicated that miR-770-5p expression was significantly increased and Bcl-2 associated athanogene 5 (BAG5) expression was significantly decreased in the serum of patients with T2DM compared with healthy volunteers. TargetScan and a dual luciferase reporter gene system were used to predict and verify BAG5 as a target gene of miR-770-5p. Additionally, the RT-qPCR results demonstrated that miR-770-5p expression was significantly increased and BAG5 expression was significantly decreased in uric acid (UA)-treated Min6 cells compared with control cells. Min6 cells were transfected with miR-770-5p inhibitor and BAG5-small interfering (si)RNA to alter expression levels. The results indicated that miR-770-5p negatively regulated BAG5. The effect of miR-770-5p knockdown on UA-induced pancreatic β-cell damage and dysfunction was subsequently assessed. Min6 cells were transfected with miR-770-5p inhibitor or miR-770-5p inhibitor + BAG5-siRNA for 48 h, followed by treatment with or without 5 mg/dl UA for 24 h. Cell viability, apoptosis, apoptosis-related factor expression levels and insulin secretion were assessed. The results demonstrated that UA treatment significantly reduced cell viability, increased cell apoptosis and reduced insulin secretion in Min6 cells compared with the control group. miR-770-5p inhibitor significantly attenuated UA-induced injury and dysfunction of Min6 cells, whereas BAG5 knockdown abolished the protective effects of miR-770-5p inhibitor on UA-damaged Min6 cells. In conclusion, miR-770-5p was highly expressed in the serum of patients with T2DM compared with healthy volunteers. In UA-treated pancreatic β-cells, compared with the inhibitor control group, miR-770-5p knockdown regulated the expression of apoptosis-related genes, increased cell viability, inhibited cell apoptosis and increased insulin secretion by targeting BAG5. Therefore, the present study suggested that miR-770-5p inhibitor may serve a protective role in T2DM.
Collapse
Affiliation(s)
- Min Wang
- Department of Critical Care Medicine, The First Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jilou Wei
- Department of Critical Care Medicine, The First Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Ting Ji
- Department of Critical Care Medicine, The First Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Kui Zang
- Department of Critical Care Medicine, The First Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
29
|
López-Jiménez E, Andrés-León E. The Implications of ncRNAs in the Development of Human Diseases. Noncoding RNA 2021; 7:17. [PMID: 33668203 PMCID: PMC8006041 DOI: 10.3390/ncrna7010017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
The mammalian genome comprehends a small minority of genes that encode for proteins (barely 2% of the total genome in humans) and an immense majority of genes that are transcribed into RNA but not encoded for proteins (ncRNAs). These non-coding genes are intimately related to the expression regulation of protein-coding genes. The ncRNAs subtypes differ in their size, so there are long non-coding genes (lncRNAs) and other smaller ones, like microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs). Due to their important role in the maintenance of cellular functioning, any deregulation of the expression profiles of these ncRNAs can dissemble in the development of different types of diseases. Among them, we can highlight some of high incidence in the population, such as cancer, neurodegenerative, or cardiovascular disorders. In addition, thanks to the enormous advances in the field of medical genomics, these same ncRNAs are starting to be used as possible drugs, approved by the FDA, as an effective treatment for diseases.
Collapse
Affiliation(s)
- Elena López-Jiménez
- Centre for Haematology, Immunology and Inflammation Department, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Eduardo Andrés-León
- Unidad de Bioinformática, Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| |
Collapse
|
30
|
Soltani A, Jafarian A, Allameh A. The Predominant microRNAs in β-cell Clusters for Insulin Regulation and Diabetic Control. Curr Drug Targets 2021; 21:722-734. [PMID: 31886749 DOI: 10.2174/1389450121666191230145848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022]
Abstract
micro (mi)-RNAs are vital regulators of multiple processes including insulin signaling pathways and glucose metabolism. Pancreatic β-cells function is dependent on some miRNAs and their target mRNA, which together form a complex regulative network. Several miRNAs are known to be directly involved in β-cells functions such as insulin expression and secretion. These small RNAs may also play significant roles in the fate of β-cells such as proliferation, differentiation, survival and apoptosis. Among the miRNAs, miR-7, miR-9, miR-375, miR-130 and miR-124 are of particular interest due to being highly expressed in these cells. Under diabetic conditions, although no specific miRNA profile has been noticed, the expression of some miRNAs and their target mRNAs are altered by posttranscriptional mechanisms, exerting diverse signs in the pathobiology of various diabetic complications. The aim of this review article is to discuss miRNAs involved in the process of stem cells differentiation into β-cells, resulting in enhanced β-cell functions with respect to diabetic disorders. This paper will also look into the impact of miRNA expression patterns on in vitro proliferation and differentiation of β-cells. The efficacy of the computational genomics and biochemical analysis to link the changes in miRNA expression profiles of stem cell-derived β-cells to therapeutically relevant outputs will be discussed as well.
Collapse
Affiliation(s)
- Adele Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arefeh Jafarian
- Immunology, Asthma, and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
31
|
Li J, Salvador AM, Li G, Valkov N, Ziegler O, Yeri A, Xiao CY, Meechoovet B, Alsop E, Rodosthenous RS, Kundu P, Huan T, Levy D, Tigges J, Pico AR, Ghiran I, Silverman MG, Meng X, Kitchen R, Xu J, Keuren-Jensen KV, Shah R, Xiao J, Das S. Mir-30d Regulates Cardiac Remodeling by Intracellular and Paracrine Signaling. Circ Res 2021; 128:e1-e23. [PMID: 33092465 PMCID: PMC7790887 DOI: 10.1161/circresaha.120.317244] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/21/2020] [Indexed: 01/05/2023]
Abstract
RATIONALE Previous translational studies implicate plasma extracellular microRNA-30d (miR-30d) as a biomarker in left ventricular remodeling and clinical outcome in heart failure (HF) patients, although precise mechanisms remain obscure. OBJECTIVE To investigate the mechanism of miR-30d-mediated cardioprotection in HF. METHODS AND RESULTS In rat and mouse models of ischemic HF, we show that miR-30d gain of function (genetic, lentivirus, or agomiR-mediated) improves cardiac function, decreases myocardial fibrosis, and attenuates cardiomyocyte (CM) apoptosis. Genetic or locked nucleic acid-based knock-down of miR-30d expression potentiates pathological left ventricular remodeling, with increased dysfunction, fibrosis, and cardiomyocyte death. RNA sequencing of in vitro miR-30d gain and loss of function, together with bioinformatic prediction and experimental validation in cardiac myocytes and fibroblasts, were used to identify and validate direct targets of miR-30d. miR-30d expression is selectively enriched in cardiomyocytes, induced by hypoxic stress and is acutely protective, targeting MAP4K4 (mitogen-associate protein kinase 4) to ameliorate apoptosis. Moreover, miR-30d is secreted primarily in extracellular vesicles by cardiomyocytes and inhibits fibroblast proliferation and activation by directly targeting integrin α5 in the acute phase via paracrine signaling to cardiac fibroblasts. In the chronic phase of ischemic remodeling, lower expression of miR-30d in the heart and plasma extracellular vesicles is associated with adverse remodeling in rodent models and human subjects and is linked to whole-blood expression of genes implicated in fibrosis and inflammation, consistent with observations in model systems. CONCLUSIONS These findings provide the mechanistic underpinning for the cardioprotective association of miR-30d in human HF. More broadly, our findings support an emerging paradigm involving intercellular communication of extracellular vesicle-contained miRNAs (microRNAs) to transregulate distinct signaling pathways across cell types. Functionally validated RNA biomarkers and their signaling networks may warrant further investigation as novel therapeutic targets in HF.
Collapse
Affiliation(s)
- Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Ane M. Salvador
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Nedyalka Valkov
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Olivia Ziegler
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ashish Yeri
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chun Yang Xiao
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Eric Alsop
- Neurogenomics Division, TGen, Phoenix, AZ 85004, USA
| | - Rodosthenis S. Rodosthenous
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Piyusha Kundu
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tianxiao Huan
- The Framingham Heart Study and The Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Daniel Levy
- The Framingham Heart Study and The Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - John Tigges
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | - Ionita Ghiran
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Michael G. Silverman
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xiangmin Meng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Robert Kitchen
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jiahong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | | | - Ravi Shah
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
32
|
Therapeutic Potentials of MicroRNAs for Curing Diabetes Through Pancreatic β-Cell Regeneration or Replacement. Pancreas 2020; 49:1131-1140. [PMID: 32852323 DOI: 10.1097/mpa.0000000000001655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
MicroRNAs are a type of noncoding RNAs that regulates the expression of target genes at posttranscriptional level. MicroRNAs play essential roles in regulating the expression of different genes involved in pancreatic development, β-cell mass maintenance, and β-cell function. Alteration in the level of miRNAs involved in β-cell function leads to the diabetes. Being an epidemic, diabetes threatens the life of millions of patients posing a pressing demand for its urgent resolve. However, the currently available therapies are not substantial to cure the diabetic epidemic. Thus, researchers are trying to find new ways to replenish the β-cell mass in patients with diabetes. One promising approach is the in vivo regeneration of β-cell mass or increasing the efficiency of β-cell function. Another clinical strategy is the transplantation of in vitro developed β-like cells. Owing to their role in pancreatic β-cell development, maintenance, functioning and their involvement in diabetes, overexpression or attenuation of different miRNAs can cause β-cell regeneration in vivo or can direct the differentiation of various kinds of stem/progenitor cells to β-like cells in vitro. Here, we will summarize different strategies used by researchers to investigate the therapeutic potentials of miRNAs, with focus on miR-375, for curing diabetes through β-cell regeneration or replacement.
Collapse
|
33
|
Islam ABMMK, Mohammad E, Khan MAAK. Aberration of the modulatory functions of intronic microRNA hsa-miR-933 on its host gene ATF2 results in type II diabetes mellitus and neurodegenerative disease development. Hum Genomics 2020; 14:34. [PMID: 32993798 PMCID: PMC7526404 DOI: 10.1186/s40246-020-00285-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MicroRNAs are ~ 22-nucleotide-long biological modifiers that act as the post-transcriptional modulator of gene expression. Some of them are identified to be embedded within the introns of protein-coding genes, these miRNAs are called the intronic miRNAs. Previous findings state that these intronic miRNAs are co-expressed with their host genes. This co-expression is necessary to maintain the robustness of the biological system. Till to date, only a few experiments are performed discretely to elucidate the functional relationship between few co-expressed intronic miRNAs and their associated host genes. RESULTS In this study, we have interpreted the underlying modulatory mechanisms of intronic miRNA hsa-miR-933 on its target host gene ATF2 and found that aberration can lead to several disease conditions. A protein-protein interaction network-based approach was adopted, and functional enrichment analysis was performed to elucidate the significantly over-represented biological functions and pathways of the common targets. Our approach delineated that hsa-miR-933 might control the hyperglycemic condition and hyperinsulinism by regulating ATF2 target genes MAP4K4, PRKCE, PEA15, BDNF, PRKACB, and GNAS which can otherwise lead to the development of type II diabetes mellitus. Moreover, we showed that hsa-miR-933 can regulate a target of ATF2, brain-derived neurotrophic factor (BDNF), to modulate the optimal expression of ATF2 in neuron cells to render neuroprotection for the inhibition of neurodegenerative diseases. CONCLUSIONS Our in silico model provides interesting resources for experimentations in a model organism or cell line for further validation. These findings may extend the common perception of gene expression analysis with new regulatory functionality.
Collapse
Affiliation(s)
| | - Eusra Mohammad
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
- Current Affiliation: Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Md. Abdullah-Al-Kamran Khan
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
- Current Affiliation: Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| |
Collapse
|
34
|
Yuan W, Li F. Roles of microRNA-186 and vascular endothelial growth factor in hepatocellular carcinoma complicated with portal vein tumor thrombus. Exp Ther Med 2020; 20:3860-3867. [PMID: 32855736 DOI: 10.3892/etm.2020.9092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/26/2018] [Indexed: 12/21/2022] Open
Abstract
The present study aims to investigate the role and underlying mechanism of microRNA (miR)-186 in patients with hepatocellular carcinoma (HCC) complicated with portal vein tumor thrombus. Blood samples from 29 HCC patients with portal vein tumor thrombus were collected between January 2014 and September 2015 in Huai'an First People's Hospital, while blood from 36 HCC patients without vein tumor thrombus was also collected in the same period. In addition, tumor thrombus specimens were collected from the HCC patients with portal vein tumor thrombus, and peritumoral tissues of the tumor thrombus were used as the control. Reverse transcription-quantitative polymerase chain reaction, ELISA and western blot analyses were applied to detect vascular endothelial growth factor (VEGF) expression at the mRNA and protein levels. Bioinformatics prediction was used to predict the target of miR-186, and then miR-186 expression was detected. Furthermore, dual-luciferase reporter assay was used to validate whether miR-186 directly targeted VEGF. Following transfection with agomiR-186, the expression levels of miR-186 and VEGF were detected, while MTT assay was used to detect EA.hy926 cell proliferation subsequent to small interfering RNA (siRNA) silencing. The results identified that VEGF was significantly increased in the tumor thrombus and blood samples of HCC patients with vein tumor thrombus at the mRNA and protein levels, while miR-186 expression was significantly decreased (P<0.05). Following silencing VEGF by siRNA transfection, the proliferation of EA.hy926 cells was inhibited. In addition, VEGF expression was significantly decreased and cell proliferation was reduced when upregulating miR-186. Dual-luciferase reporter assay demonstrated that miR-186 regulated VEGF expression through complementary binding to 3'-untranslated region. In conclusion, VEGF was significantly increased in tumor thrombus and blood samples from HCC patients with vein tumor thrombus, which may be associated with the downregulation of miR-186. Thus, miR-186 may promote the development and progression of vein tumor thrombus in HCC.
Collapse
Affiliation(s)
- Weidong Yuan
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Fuguang Li
- The Second Ward of General Surgery Department, Ankang City Central Hospital, Ankang, Shaanxi 725000, P.R. China
| |
Collapse
|
35
|
Xu F, Liu J, Na L, Chen L. Roles of Epigenetic Modifications in the Differentiation and Function of Pancreatic β-Cells. Front Cell Dev Biol 2020; 8:748. [PMID: 32984307 PMCID: PMC7484512 DOI: 10.3389/fcell.2020.00748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes, a metabolic disease with multiple causes characterized by high blood sugar, has become a public health problem. Hyperglycaemia is caused by deficiencies in insulin secretion, impairment of insulin function, or both. The insulin secreted by pancreatic β cells is the only hormone in the body that lowers blood glucose levels and plays vital roles in maintaining glucose homeostasis. Therefore, investigation of the molecular mechanisms of pancreatic β cell differentiation and function is necessary to elucidate the processes involved in the onset of diabetes. Although numerous studies have shown that transcriptional regulation is essential for the differentiation and function of pancreatic β cells, increasing evidence indicates that epigenetic mechanisms participate in controlling the fate and regulation of these cells. Epigenetics involves heritable alterations in gene expression caused by DNA methylation, histone modification and non-coding RNA activity that does not result in DNA nucleotide sequence alterations. Recent research has revealed that a variety of epigenetic modifications play an important role in the development of diabetes. Here, we review the mechanisms by which epigenetic regulation affects β cell differentiation and function.
Collapse
Affiliation(s)
- Fei Xu
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, Shanghai, China.,Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jing Liu
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lixin Na
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, China.,Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Linjun Chen
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
36
|
Kaur P, Kotru S, Singh S, Behera BS, Munshi A. Role of miRNAs in the pathogenesis of T2DM, insulin secretion, insulin resistance, and β cell dysfunction: the story so far. J Physiol Biochem 2020; 76:485-502. [PMID: 32749641 DOI: 10.1007/s13105-020-00760-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/29/2020] [Indexed: 01/24/2023]
Abstract
Diabetes, the most common endocrine disorder, also known as a silent killer disease, is characterized by uncontrolled hyperglycemia. According to the International Diabetes Federation, there were 451 million people with diabetes mellitus worldwide in 2017. It is a multifactorial syndrome caused by genetic as well as environmental factors. Noncoding RNAs, especially the miRNAs, play a significant role in the development as well as the progression of the disease. This is on account of insulin resistance or defects in β cell function. Various miRNAs including miR-7, miR-9, miR-16, miR-27, miR-24, miR-29, miR-124a, miR-135, miR-130a, miR-144, miR-181a, and miR-375 and many more have been associated with insulin resistance and other pathogenic conditions leading to the development of the disease. These miRNAs play significant roles in various pathways underlying insulin resistance such as PI3K, AKT/GSK, and mTOR. The main target genes of these miRNAs are FOXO1, FOXA2, STAT3, and PTEN. The miRNAs carry out important functions in insulin target tissues like the adipose tissue, liver, and muscle. MiRNAs miR-9, miR-375, and miR-124a, are also associated with the secretion of insulin from pancreatic cells. There is an interplay between the miRNAs and pancreatic cell growth, especially the miRNAs affecting development and proliferation of these cells. Most of the miRNAs target more than one gene which not only justifies their use as biomarkers but also their therapeutic potential. The current review has been compiled with an aim to discuss the role of various miRNAs involved in various pathogenic mechanisms including insulin resistance, insulin secretion, and the β cell dysfunction.
Collapse
Affiliation(s)
- Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Sushil Kotru
- Max Endocrinology, Diabetes and Obesity Care Centre, Max Superspeciality Hospital, Bathinda, 151001, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Bidwan Sekhar Behera
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
37
|
β-Cell specific transcription factors in the context of diabetes mellitus and β-cell regeneration. Mech Dev 2020; 163:103634. [PMID: 32711047 DOI: 10.1016/j.mod.2020.103634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
All pancreatic cell populations arise from the standard gut endoderm layer in developing embryos, requiring a regulatory gene network to originate and maintain endocrine lineages and endocrine function. The pancreatic organogenesis is regulated by the temporal expression of transcription factors and plays a diverse role in the specification, development, differentiation, maturation, and functional maintenance. Altered expression and activity of these transcription factors are often associated with diabetes mellitus. Recent advancements in the stem cells and invitro derived islets to treat diabetes mellitus has attracted a great deal of interest in the understanding of factors regulating the development, differentiation, and functions of islets including transcription factors. This review discusses the myriad of transcription factors regulating the development of the pancreas, differentiation of β-islets, and how these factors regulated in normal and disease states. Exploring these factors in such critical context and exogenous or endogenous expression of development and differentiation-specific transcription factors with improved epigenetic plasticity/signaling axis in diabetic milieu would useful for the development of β-cells from other cell sources.
Collapse
|
38
|
Sun Q, Yang Q, Xu H, Xue J, Chen C, Yang X, Gao X, Liu Q. miR-149 Negative Regulation of mafA Is Involved in the Arsenite-Induced Dysfunction of Insulin Synthesis and Secretion in Pancreatic Beta Cells. Toxicol Sci 2019; 167:116-125. [PMID: 29905828 DOI: 10.1093/toxsci/kfy150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic exposure to arsenic, a potent environmental oxidative stressor, is associated with the incidence of diabetes. However, the mechanisms for arsenite-induced reduction of insulin remain largely unclear. After CD1 mice were treated with 20 or 40 ppm arsenite in the drinking water for 12 months, the mice showed reduced fasting insulin levels, a depression in glucose clearance, and lower insulin content in the pancreas. The levels of glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells isolated from arsenite-exposed mice were low compared with those for control mice. Immunohistochemistry studies showed that arsenite exposure resulted a reduction of insulin content in the pancreas of mice. Exposure of Min6 cells, a pancreatic beta cell line, to low levels of arsenite led to lower GSIS in a dose- and time-dependent fashion. Since microRNAs (miRNAs) are involved in pancreatic β-cell function and the pathogenesis of diabetes, we hypothesized that arsenite exposure activates miR-149, decreases insulin transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (mafA), and induces an insulin synthesis and secretion disorder. In arsenite-exposed Min6 cells, mafA activity was lowered by the increase of its target miRNA, miR-149. Luciferase assays illustrated an interaction between miR-149 and the mafA 3' untranslated region. In Min6 cells transfected with an miR-149 inhibitor, arsenite did not regulate GSIS and mafA expression. In control cells, however, arsenite decreased GSIS or mafA expression. Our results suggest that low levels of arsenite affect β-cell function and regulate insulin synthesis and secretion by modulating mafA expression through miR-149.
Collapse
Affiliation(s)
- Qian Sun
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Qianlei Yang
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Hui Xu
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Junchao Xue
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Chao Chen
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Xingfen Yang
- School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Xiaohua Gao
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina.,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Qizhan Liu
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| |
Collapse
|
39
|
Chen D, Cao D, Sui P. Tetramethylpyrazine relieves LPS-induced pancreatic β-cell Min6 injury via regulation of miR-101/MKP-1. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2545-2552. [PMID: 31213095 DOI: 10.1080/21691401.2019.1628039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetramethylpyrazine (TMP) is a traditional Chinese medicine with anti-inflammation and immunomodulatory effects. In this context, our purpose was to investigate the associated regulatory mechanisms of TMP against lipopolysaccharide (LPS)-caused pancreatic β cell Min6 injury. The injury of Min6 cells was induced by 10 μg/mL of LPS. Viability of Min6 cells was detected through CCK-8 assay, apoptosis process through flow cytometry, and the proteins involved in apoptosis through western blot. Insulin secretion was valued through the glucose-stimulated insulin secretion (GSIS) assay. microRNA-101 (miR-101) was measured through qRT-PCR. Mitogen-activated protein kinase phosphatase 1 (MKP-1) and signaling regulators was measured through western blot. We found that, TMP treatment effectively attenuated LPS-induced injury in Min6 cells by suppressing cell apoptosis and promoting insulin secretion. Further investigation revealed that TMP exerted protective effect through down-regulating miR-101, and MKP-1 was demonstrated as a target of miR-101. Moreover, TMP attenuated LPS-triggered inflammation by inactivating the JNK1/2 and NF-κB through the down-regulation of miR-101. In conclusion, our present study revealed that TMP alleviated LPS-induced injury in pancreatic β-cell Min6 injury via regulation of miR-101/MKP-1 with the bluntness of JNK1/2 and NF-κB pathways.
Collapse
Affiliation(s)
- Dong Chen
- a Department of Nuclear Medicine, Qingdao Municipal Hospital , Qingdao , China
| | - Dong Cao
- b Department of Pharmacy, Qingdao Municipal Hospital , Qingdao , China
| | - Ping Sui
- c Jining Medical University , Jining , China
| |
Collapse
|
40
|
Kim M, Zhang X. The Profiling and Role of miRNAs in Diabetes Mellitus. JOURNAL OF DIABETES AND CLINICAL RESEARCH 2019; 1:5-23. [PMID: 32432227 PMCID: PMC7236805 DOI: 10.33696/diabetes.1.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM), a complex metabolic disease, has become a global threat to human health worldwide. Over the past decades, an enormous amount of effort has been devoted to understand how microRNAs (miRNAs), a class of small non-coding RNA regulators of gene expression at the post-transcriptional level, are implicated in DM pathology. Growing evidence suggests that the expression signature of a specific set of miRNAs has been altered in the progression of DM. In the present review, we summarize the recent investigations on the miRNA profiles as novel DM biomarkers in clinical studies and in animal models, and highlight recent discoveries on the complex regulatory effect and functional role of miRNAs in DM.
Collapse
Affiliation(s)
- Michael Kim
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| | - Xiaokan Zhang
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
41
|
Esguerra JLS, Nagao M, Ofori JK, Wendt A, Eliasson L. MicroRNAs in islet hormone secretion. Diabetes Obes Metab 2018; 20 Suppl 2:11-19. [PMID: 30230181 DOI: 10.1111/dom.13382] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/10/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Pancreatic islet hormone secretion is central in the maintenance of blood glucose homeostasis. During development of hyperglycaemia, the β-cell is under pressure to release more insulin to compensate for increased insulin resistance. Failure of the β-cells to secrete enough insulin results in type 2 diabetes (T2D). MicroRNAs (miRNAs) are short non-coding RNA molecules suitable for rapid regulation of the changes in target gene expression needed in β-cell adaptations. Moreover, miRNAs are involved in the maintenance of α-cell and β-cell phenotypic identities via cell-specific, or cell-enriched expression. Although many of the abundant miRNAs are highly expressed in both cell types, recent research has focused on the role of miRNAs in β-cells. It has been shown that highly abundant miRNAs, such as miR-375, are involved in several cellular functions indispensable in maintaining β-cell phenotypic identity, almost acting as "housekeeping genes" in the context of hormone secretion. Despite the abundance and importance of miR-375, it has not been shown to be differentially expressed in T2D islets. On the contrary, the less abundant miRNAs such as miR-212/miR-132, miR-335, miR-130a/b and miR-152 are deregulated in T2D islets, wherein the latter three miRNAs were shown to play key roles in regulating β-cell metabolism. In this review, we focus on β-cell function and describe miRNAs involved in insulin biosynthesis and processing, glucose uptake and metabolism, electrical activity and Ca2+ -influx and exocytosis of the insulin granules. We present current status on miRNA regulation in α-cells, and finally we discuss the involvement of miRNAs in β-cell dysfunction underlying T2D pathogenesis.
Collapse
Affiliation(s)
- Jonathan L S Esguerra
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Mototsugu Nagao
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Jones K Ofori
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| |
Collapse
|
42
|
Mafi A, Aghadavod E, Mirhosseini N, Mobini M, Asemi Z. The effects of expression of different microRNAs on insulin secretion and diabetic nephropathy progression. J Cell Physiol 2018; 234:42-50. [DOI: 10.1002/jcp.26895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Alireza Mafi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| | | | - Moein Mobini
- Kinesiology Department University of Calgary Calgary Alberta Canada
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| |
Collapse
|
43
|
Sun D, Liu J, Shi Q, Mu H, Zhou D. Regulatory role of microRNA-185 in the recovery process after ankle fracture. Exp Ther Med 2018; 16:3261-3267. [PMID: 30233673 DOI: 10.3892/etm.2018.6534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 07/10/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the expression of microRNA (miR)-185 in the bone and blood tissues following ankle fracture, and its regulatory mechanism in the ankle fracture recovery process. In total, 28 patients with ankle fractures were included, including 15 cases receiving surgical treatment within 1-7 days after fracture, and 13 cases receiving surgery within 8-14 days after fracture. Reverse transcription-quantitative polymerase chain reaction was performed to detect the mRNA expression levels. Western blot analysis and ELISA were used to determine the protein expression levels. Bioinformatics analysis and dual-luciferase reporter assay were applied to predict and confirm the upstream regulator of tumor growth factor (TGF)-β1. An MTT assay was performed to assess the cell proliferation. Compared with the 1-7-day surgery group, the mRNA and protein expression levels of TGF-β1 were significantly elevated, while the expression levels of miR-185 were significantly declined in the bone and blood tissues in the 8-14-day surgery group. Bioinformatics analysis and dual-luciferase reporter assay predicted and confirmed that TGF-β1 was the direct target gene of miR-185. Moreover, upregulated expression of miR-185 significantly decreased the protein expression levels of TGF-β1 and reduced the proliferating activity of hFOB1.19 cells. Within two weeks after ankle fracture, the expression levels of TGF-β1 are significantly upregulated in the bone and blood tissues, which may have been associated with the downregulated expression of miR-185. miR-185 may modulate TGF-β1 to regulate the recovery of ankle fracture. These findings may contribute to the understanding of the biological functions and effects of miRNA-185 and TGF-β1 in ankle fractures.
Collapse
Affiliation(s)
- Deping Sun
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Orthopedic Trauma, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Juntao Liu
- Department of Orthopedic Trauma, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Qingpeng Shi
- Department of Orthopedic Trauma, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Haibo Mu
- Department of Orthopedic Trauma, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Dongsheng Zhou
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
44
|
Hawkins LJ, Al-Attar R, Storey KB. Transcriptional regulation of metabolism in disease: From transcription factors to epigenetics. PeerJ 2018; 6:e5062. [PMID: 29922517 PMCID: PMC6005171 DOI: 10.7717/peerj.5062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
Every cell in an individual has largely the same genomic sequence and yet cells in different tissues can present widely different phenotypes. This variation arises because each cell expresses a specific subset of genomic instructions. Control over which instructions, or genes, are expressed is largely controlled by transcriptional regulatory pathways. Each cell must assimilate a huge amount of environmental input, and thus it is of no surprise that transcription is regulated by many intertwining mechanisms. This large regulatory landscape means there are ample possibilities for problems to arise, which in a medical context means the development of disease states. Metabolism within the cell, and more broadly, affects and is affected by transcriptional regulation. Metabolism can therefore contribute to improper transcriptional programming, or pathogenic metabolism can be the result of transcriptional dysregulation. Here, we discuss the established and emerging mechanisms for controling transcription and how they affect metabolism in the context of pathogenesis. Cis- and trans-regulatory elements, microRNA and epigenetic mechanisms such as DNA and histone methylation, all have input into what genes are transcribed. Each has also been implicated in diseases such as metabolic syndrome, various forms of diabetes, and cancer. In this review, we discuss the current understanding of these areas and highlight some natural models that may inspire future therapeutics.
Collapse
Affiliation(s)
- Liam J Hawkins
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Rasha Al-Attar
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
45
|
Wang J, Wu S, Huang T. Expression and role of VEGFA and miR-381 in portal vein tumor thrombi in patients with hepatocellular carcinoma. Exp Ther Med 2018; 15:5450-5456. [PMID: 29904424 PMCID: PMC5996705 DOI: 10.3892/etm.2018.6129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/17/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to examine the expression and role of vascular endothelial growth factor A (VEGFA) and microRNA (miRNA or miR)-381 in tumor thrombi from patients with hepatocellular carcinoma and portal vein tumor thrombus (PVTT). Tumor thrombi and adjacent paired tissues were collected from 39 patients with hepatocellular carcinoma with PVTT. VEGFA expression levels were assessed using reverse transcription-quantitative polymerase chain reaction and western blotting. miRNAs that may regulate VEGFA expression were predicted using bioinformatics analysis and confirmed via a dual luciferase reporter assay. The effects of VEGFA and its upstream miRNA on proliferation of the proliferation of EAhy926 human venous endothelial cells were analyzed using an MTT assay. Compared with the paired adjacent tissues, VEGFA was significantly upregulated at both the mRNA and protein level in tumor thrombi (P<0.05). VEGFA was predicted to be a target of miR-381 and this was confirmed experimentally. miR-381 expression was significantly downregulated in tumor thrombi from patients with PVTT compared with paired adjacent tissues (P<0.05). In addition, transfection with antagomirs against miR-381 or short interfering RNA against VEGFA significantly inhibited EAhy926 cell proliferation (P<0.05). In conclusion, the results of the present study indicate that VEGFA is upregulated in tumor thrombi whereas miR-381 is downregulated. VEGFA is regulated by miR-381 and both may be associated with the development of PVTT.
Collapse
Affiliation(s)
- Jing Wang
- Experimental Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shuzhi Wu
- Institute for Viral Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, P.R. China
| | - Tianren Huang
- Experimental Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
46
|
Wang S, Wen X, Han X, Wang Y, Shen M, Fan S, Zhuang J, Xu W, Zhang Z, Shan Q, Li M, Hu B, Sun C, Wu D, Lu J, Zheng Y. Retracted
: MicroRNA‐30d preserves pancreatic islet β‐cell function through negative regulation of the JNK signaling pathway via SOCS3 in mice with streptozotocin‐induced diabetes mellitus. J Cell Physiol 2018; 233:7343-7355. [DOI: 10.1002/jcp.26569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouP.R. China
- College of Health SciencesJiangsu Normal UniversityXuzhouP.R. China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouP.R. China
- College of Health SciencesJiangsu Normal UniversityXuzhouP.R. China
| | - Xin‐Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouP.R. China
- College of Health SciencesJiangsu Normal UniversityXuzhouP.R. China
| | - Yong‐Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouP.R. China
- College of Health SciencesJiangsu Normal UniversityXuzhouP.R. China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouP.R. China
- College of Health SciencesJiangsu Normal UniversityXuzhouP.R. China
| | - Shao‐Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouP.R. China
- College of Health SciencesJiangsu Normal UniversityXuzhouP.R. China
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouP.R. China
- School of Environment Science and Spatial InformaticsChina University of Mining and TechnologyXuzhouP.R. China
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake, School of Life SciencesHuaiyin Normal UniversityHuaianP.R. China
| | - Wei Xu
- Department of Endocrinology, Xuzhou Central HospitalThe Affiliated XuZhou Hospital of Medical College of Southeast UniversityXuzhouP.R. China
- Xuzhou Institute of Medical SciencesXuzhou Institute of DiabetesXuzhouP.R. China
| | - Zi‐Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouP.R. China
- College of Health SciencesJiangsu Normal UniversityXuzhouP.R. China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouP.R. China
- College of Health SciencesJiangsu Normal UniversityXuzhouP.R. China
| | - Meng‐Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouP.R. China
- College of Health SciencesJiangsu Normal UniversityXuzhouP.R. China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouP.R. China
- College of Health SciencesJiangsu Normal UniversityXuzhouP.R. China
| | - Chun‐Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouP.R. China
- College of Health SciencesJiangsu Normal UniversityXuzhouP.R. China
| | - Dong‐Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouP.R. China
- College of Health SciencesJiangsu Normal UniversityXuzhouP.R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouP.R. China
- College of Health SciencesJiangsu Normal UniversityXuzhouP.R. China
| | - Yuan‐Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouP.R. China
- College of Health SciencesJiangsu Normal UniversityXuzhouP.R. China
| |
Collapse
|
47
|
Bensellam M, Jonas JC, Laybutt DR. Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions. J Endocrinol 2018; 236:R109-R143. [PMID: 29203573 DOI: 10.1530/joe-17-0516] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Like all the cells of an organism, pancreatic β-cells originate from embryonic stem cells through a complex cellular process termed differentiation. Differentiation involves the coordinated and tightly controlled activation/repression of specific effectors and gene clusters in a time-dependent fashion thereby giving rise to particular morphological and functional cellular features. Interestingly, cellular differentiation is not a unidirectional process. Indeed, growing evidence suggests that under certain conditions, mature β-cells can lose, to various degrees, their differentiated phenotype and cellular identity and regress to a less differentiated or a precursor-like state. This concept is termed dedifferentiation and has been proposed, besides cell death, as a contributing factor to the loss of functional β-cell mass in diabetes. β-cell dedifferentiation involves: (1) the downregulation of β-cell-enriched genes, including key transcription factors, insulin, glucose metabolism genes, protein processing and secretory pathway genes; (2) the concomitant upregulation of genes suppressed or expressed at very low levels in normal β-cells, the β-cell forbidden genes; and (3) the likely upregulation of progenitor cell genes. These alterations lead to phenotypic reconfiguration of β-cells and ultimately defective insulin secretion. While the major role of glucotoxicity in β-cell dedifferentiation is well established, the precise mechanisms involved are still under investigation. This review highlights the identified molecular mechanisms implicated in β-cell dedifferentiation including oxidative stress, endoplasmic reticulum (ER) stress, inflammation and hypoxia. It discusses the role of Foxo1, Myc and inhibitor of differentiation proteins and underscores the emerging role of non-coding RNAs. Finally, it proposes a novel hypothesis of β-cell dedifferentiation as a potential adaptive mechanism to escape cell death under stress conditions.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - D Ross Laybutt
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- St Vincent's Clinical SchoolUNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
48
|
de Candia P, Spinetti G, Specchia C, Sangalli E, La Sala L, Uccellatore A, Lupini S, Genovese S, Matarese G, Ceriello A. A unique plasma microRNA profile defines type 2 diabetes progression. PLoS One 2017; 12:e0188980. [PMID: 29200427 PMCID: PMC5714331 DOI: 10.1371/journal.pone.0188980] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/16/2017] [Indexed: 01/21/2023] Open
Abstract
A major unmet medical need to better manage Type 2 Diabetes (T2D) is the accurate disease prediction in subjects who show glucose dysmetabolism, but are not yet diagnosed as diabetic. We investigated the possibility to predict/monitor the progression to T2D in these subjects by retrospectively quantifying blood circulating microRNAs in plasma of subjects with i) normal glucose tolerance (NGT, n = 9); ii) impaired glucose tolerance (IGT, n = 9), divided into non-progressors (NP, n = 5) and progressors (P, n = 4) based on subsequent diabetes occurrence, and iii) newly diagnosed T2D (n = 9). We found that impaired glucose tolerance associated with a global increase of plasma circulating microRNAs. While miR-148 and miR-222 were specifically modulated in diabetic subjects and correlated with parameters of glucose tolerance, the most accentuated microRNA dysregulation was found in NP IGT subjects, with increased level of miR-122, miR-99 and decreased level of let-7d, miR-18a, miR-18b, miR-23a, miR-27a, miR-28 and miR-30d in comparison with either NGT or T2D. Interestingly, several of these microRNAs significantly correlated with parameters of cholesterol metabolism. In conclusion, we observed the major perturbation of plasma circulating microRNA in NP pre-diabetic subjects and identified a unique microRNA profile that may become helpful in predicting diabetic development.
Collapse
Affiliation(s)
- Paola de Candia
- Department of Diabetology and Dysmetabolic Diseases, IRCCS MultiMedica, Milan, Italy
- * E-mail:
| | - Gaia Spinetti
- Department of Diabetology and Dysmetabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Claudia Specchia
- Department of Diabetology and Dysmetabolic Diseases, IRCCS MultiMedica, Milan, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia Italy
| | - Elena Sangalli
- Department of Diabetology and Dysmetabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Lucia La Sala
- Department of Diabetology and Dysmetabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | | | - Silvia Lupini
- Department of Diabetology and Dysmetabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Stefano Genovese
- Department of Diabetology and Dysmetabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Giuseppe Matarese
- Laboratory of Immunology, Institute of Endocrinology and Experimental Oncology, National Research Council (IEOS-CNR), Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Antonio Ceriello
- Department of Diabetology and Dysmetabolic Diseases, IRCCS MultiMedica, Milan, Italy
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Rosselló, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
49
|
Saliani N, Montazersaheb S, Montasser Kouhsari S. Micromanaging Glucose Tolerance and Diabetes. Adv Pharm Bull 2017; 7:547-556. [PMID: 29399544 PMCID: PMC5788209 DOI: 10.15171/apb.2017.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs that have significant roles in biological processes such as glucose homoeostasis. MiRNAs fine-tune target genes expression via sequence-specific binding of their seed sequence to the untranslated region of mRNAs and degrade target mRNAs. MicroRNAs in islet β-cells regulate β-cell differentiation, proliferation, insulin transcription and glucose-stimulated insulin secretion. Furthermore, miRNAs play key roles in the regulation of glucose and lipid metabolisms and modify insulin sensitivity by controlling metabolic functions in main target organs of insulin such as skeletal muscle, liver and adipose tissue. Moreover, since circulating miRNAs are detectable and stable in serum, levels of certain miRNAs seem to be novel biomarkers for prediction of diabetes mellitus. In this article, due to the prominent impact of miRNAs on diabetes, we overviewed the microRNAs regulatory functions in organs related to insulin resistance and diabetes and shed light on their potential as diagnostic and therapeutic markers for diabetes.
Collapse
Affiliation(s)
- Negar Saliani
- Department of Cellular and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | | | - Shideh Montasser Kouhsari
- Department of Cellular and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
50
|
Genome-wide Profiling of Urinary Extracellular Vesicle microRNAs Associated With Diabetic Nephropathy in Type 1 Diabetes. Kidney Int Rep 2017; 3:555-572. [PMID: 29854963 PMCID: PMC5976846 DOI: 10.1016/j.ekir.2017.11.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023] Open
Abstract
Introduction Diabetic nephropathy (DN) is a form of progressive kidney disease that often leads to end-stage renal disease (ESRD). It is initiated by microvascular complications due to diabetes. Although microalbuminuria (MA) is the earliest clinical indication of DN among patients with type 1 diabetes (T1D), it lacks the sensitivity and specificity to detect the early onset of DN. Recently, microRNAs (miRNAs) have emerged as critical regulators in diabetes as well as various forms of kidney disease, including renal fibrosis, acute kidney injury, and progressive kidney disease. Additionally, circulating extracellular miRNAs, especially miRNAs packaged in extracellular vesicles (EVs), have garnered significant attention as potential noninvasive biomarkers for various diseases and health conditions. Methods As part of the University of Pittsburgh Epidemiology of Diabetes Complications (EDC) study, urine was collected from individuals with T1D with various grades of DN or MA (normal, overt, intermittent, and persistent) over a decade at prespecified intervals. We isolated EVs from urine and analyzed the small-RNA using NextGen sequencing. Results We identified a set of miRNAs that are enriched in urinary EVs compared with EV-depleted samples, and identified a number of miRNAs showing concentration changes associated with DN occurrence, MA status, and other variables, such as hemoglobin A1c levels. Conclusion Many of the miRNAs associated with DN occurrence or MA status directly target pathways associated with renal fibrosis (including transforming growth factor-β and phosphatase and tensin homolog), which is one of the major contributors to the pathology of DN. These miRNAs are potential biomarkers for DN and MA.
Collapse
|