1
|
Verhoeff K, Cuesta-Gomez N, Jasra I, Marfil-Garza B, Dadheech N, Shapiro AMJ. Optimizing Generation of Stem Cell-Derived Islet Cells. Stem Cell Rev Rep 2022; 18:2683-2698. [PMID: 35639237 DOI: 10.1007/s12015-022-10391-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 02/06/2023]
Abstract
Islet transplantation is a highly effective treatment for select patients with type 1 diabetes. Unfortunately, current use is limited to those with brittle disease due to donor limitations and immunosuppression requirements. Discovery of factors for induction of pluripotent stem cells from adult somatic cells into a malleable state has reinvigorated the possibility of autologous-based regenerative cell therapies. Similarly, recent progress in allogeneic human embryonic stem cell islet products is showing early success in clinical trials. Describing safe and standardized differentiation protocols with clear pathways to optimize yield and minimize off-target growth is needed to efficiently move the field forward. This review discusses current islet differentiation protocols with a detailed break-down of differentiation stages to guide step-wise controlled generation of functional islet products.
Collapse
Affiliation(s)
- Kevin Verhoeff
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nerea Cuesta-Gomez
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ila Jasra
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Braulio Marfil-Garza
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, and CHRISTUS-LatAm Hub - Excellence and Innovation Center, Monterrey, Mexico
| | - Nidheesh Dadheech
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.
- 1-002 Li Ka Shing Centre for Health Research Innovation, 112 St. NW & 87 Ave NW, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
2
|
Geist D, Hönes GS, Gassen J, Kerp H, Kleinbongard P, Heusch G, Führer D, Moeller LC. Noncanonical Thyroid Hormone Receptor α Action Mediates Arterial Vasodilation. Endocrinology 2021; 162:6276892. [PMID: 33999131 DOI: 10.1210/endocr/bqab099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Hypothyroidism impairs cardiovascular health and contributes to endothelial dysfunction with reduced vasodilation. How 3,5,3'-triiodothyronine (T3) and its receptors are involved in the regulation of vasomotion is not yet fully understood. In general, thyroid hormone receptors (TRs) either influence gene expression (canonical action) or rapidly activate intracellular signaling pathways (noncanonical action). OBJECTIVE Here we aimed to characterize the T3 action underlying the mechanism of arterial vasodilation and blood pressure (BP) regulation. METHODS Mesenteric arteries were isolated from male rats, wild-type (WT) mice, TRα knockout (TRα 0) mice, and from knockin mice with a mutation in the DNA-binding domain (TRα GS). In this mutant, DNA binding and thus canonical action is abrogated while noncanonical signaling is preserved. In a wire myograph system, the isolated vessels were preconstricted with norepinephrine. The response to T3 was measured, and the resulting vasodilation (Δ force [mN]) was normalized to maximum contraction with norepinephrine and expressed as percentage vasodilation after maximal preconstriction with norepinephrine (%NE). Isolated vessels were treated with T3 (1 × 10-15 to 1 × 10-5 mol/L) alone and in combination with the endothelial nitric oxide-synthase (eNOS) inhibitor L-NG-nitroarginine methyl ester (L-NAME) or the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin. The endothelium was removed to determine the contribution of T3 to endothelium-dependent vasodilation. The physiological relevance of T3-induced vasodilation was determined by in vivo arterial BP measurements in male and female mice. RESULTS T3 treatment induced vasodilation of mesenteric arteries from WT mice within 2 minutes (by 21.5 ± 1.7%NE). This effect was absent in arteries from TRα 0 mice (by 5.3 ± 0.6%NE, P < .001 vs WT) but preserved in TRα GS arteries (by 17.2 ± 1.1%NE, not significant vs WT). Inhibition of either eNOS or PI3K reduced T3-mediated vasodilation from 52.7 ± 4.5%NE to 28.5 ± 4.1%NE and 22.7 ± 2.9%NE, respectively. Removal of the endothelium abolished the T3-mediated vasodilation in rat mesenteric arteries (by 36.7 ± 5.4%NE vs 3.5 ± 6.2%NE). In vivo, T3 injection led to a rapid decrease of arterial BP in WT (by 13.9 ± 1.9 mm Hg) and TRα GS mice (by 12.4 ± 1.9 mm Hg), but not in TRα 0 mice (by 4.1 ± 1.9 mm Hg). CONCLUSION These results demonstrate that T3 acting through noncanonical TRα action affects cardiovascular physiology by inducing endothelium-dependent vasodilation within minutes via PI3K and eNOS activation.
Collapse
Affiliation(s)
- Daniela Geist
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - G Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Janina Gassen
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Helena Kerp
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Petra Kleinbongard
- Institute of Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Gerd Heusch
- Institute of Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lars C Moeller
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
3
|
Rathwa N, Patel R, Palit SP, Parmar N, Rana S, Ansari MI, Ramachandran AV, Begum R. β-cell replenishment: Possible curative approaches for diabetes mellitus. Nutr Metab Cardiovasc Dis 2020; 30:1870-1881. [PMID: 32994121 DOI: 10.1016/j.numecd.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
AIMS Diabetes mellitus (DM) is a disorder of heterogeneous etiology marked by persistent hyperglycemia. Exogenous insulin is the only treatment for type 1 diabetes (T1D). Islet transplantation is a potential long cure for T1D but is disapproved due to the possibility of immune rejection in the later stage. The approaches used for treating type 2 diabetes (T2D) include diet restrictions, weight management and pharmacological interventions. These procedures have not been able to boost the quality of life for diabetic patients owing to the complexity of the disorder. DATA SYNTHESIS Hence, research has embarked on permanent ways of managing, or even curing the disease. One of the possible approaches to restore the pancreas with new glucose-responsive β-cells is by their regeneration. Regeneration of β-cells include islet neogenesis, dedifferentiation, and trans-differentiation of the already differentiated cells. CONCLUSIONS This review briefly describes the islet development, functions of β-cells, mechanism and factors involved in β-cell death. It further elaborates on the potential of the existing and possible therapeutic modalities involved in the in-vivo replenishment of β-cells with a focus on exercise, diet, hormones, small molecules, and phytochemicals.
Collapse
Affiliation(s)
- Nirali Rathwa
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Roma Patel
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Sayantani Pramanik Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Nishant Parmar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Sneha Rana
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Mohammad Ismail Ansari
- Department of Zoology, J.A.T. Arts, Science and Commerce College, Savitribai Phule- Pune University, 411 007, Maharashtra, India
| | - A V Ramachandran
- Division of Life Science, School of Sciences, Navrachana University, Vadodara, 391 410, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India.
| |
Collapse
|
4
|
Li Q, Lu M, Wang NJ, Chen Y, Chen YC, Han B, Li Q, Xia FZ, Jiang BR, Zhai HL, Lin DP, Lu YL. Relationship between Free Thyroxine and Islet Beta-cell Function in Euthyroid Subjects. Curr Med Sci 2020; 40:69-77. [PMID: 32166667 DOI: 10.1007/s11596-020-2148-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 12/01/2019] [Indexed: 12/29/2022]
Abstract
Thyroid hormones have a specific effect on glucose-induced insulin secretion from the pancreas. We aimed to investigate the association between euthyroid hormones and islet beta-cell function in general population and non-treated type 2 diabetes mellitus (T2DM) patients. A total of 5089 euthyroid participants (including 4601 general population and 488 non-treated T2DM patients) were identified from a cross-sectional survey on the prevalence of metabolic diseases and risk factors in East China from February 2014 to June 2016. Anthropometric indices, biochemical parameters, and thyroid hormones were measured. Compared with general population, non-treated T2DM patients exhibited higher total thyroxine (TT4) and free thyroxine (FT4) levels but lower ratio of free triiodothyronine (T3):T4 (P<0.01). HOMA-β had prominently negative correlation with FT4 and positive relationship with free T3:T4 in both groups even after adjusting for age, body mass index (BMI) and smoking. When analyzed by quartiles of FT4 or free T3:T4, there were significantly decreased trend of HOMA-β going with the higher FT4 and lower free T3:T4 in both groups. Linear regression analysis showed that FT4 but not FT3 and free T3:T4 was negatively associated with HOMA-β no matter in general population or T2DM patients, which was independent of age, BMI, smoking, hypertension and lipid profiles. FT4 is independently and negatively associated with islet beta-cell function in euthyroid subjects. Thyroid hormone even in reference range could play an important role in the function of pancreatic islets.
Collapse
Affiliation(s)
- Qing Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Meng Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Ning-Jian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Ying-Chao Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Bing Han
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Qin Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Fang-Zhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Bo-Ren Jiang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Hua-Ling Zhai
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Dong-Ping Lin
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Ying-Li Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
5
|
Abstract
The fovea centralis, an anatomically concave pit located at the center of the macula, is avascular, hypoxic, and characteristic of stem-cell niches of other tissues. We hypothesized that in the fovea, undifferentiated retinal-stem-cell-like cells may exist, and that neurogenesis may occur. Hence, we performed an immunohistological study using cynomolgus monkey retinas. After preparing frozen tissue sections of the retina including the foveal pit, immunostaining was performed for glial fibrillary acidic protein (GFAP), nestin, vimentin, neuron-specific class III β-tubulin (Tuj-1), arrestin 4, neurofilament, CD117, CD44, Ki67, and cellular retinaldehyde-binding protein (CRALBP), followed by fluorescence and/or confocal microscopy examinations. Immunostaining of the tissue sections enabled clear observation of strongly GFAP-positive cells that corresponded to the inner-half layer of the foveolar Müller cell cone. The surface layer of the foveal slope was partially costained with GFAP and vimentin. Tuj-1-positive cells were observed in the innermost layer of the foveolar retina, which spanned to the surrounding ganglion cell layer. Moreover, colocalization of Tuj-1 and GFAP was observed at the foveal pit. The coexpression of CD117 and CD44 was found in the interphotoreceptor matrix of the fovea. The foveolar cone stained positive for both nestin and arrestin 4, however, the photoreceptor layer outside of the foveola displayed weak staining for nestin. Colocalization of nestin and vimentin was observed in the inner half of the Henle layer, while colocalization of nestin and neurofilament was observed in the outer half, predominantly. Scattered Ki67-positive cells were observed in the cellular processes of the outer plexiform layer and the ganglion cell layer around the foveola. Immunostaining for CRALBP was negative in most parts of the GFAP-positive area. The Müller cell cone was divided into GFAP-strongly positive cells, presumably astrocytes, in the inner layer and nestin-positive/GFAP-weakly positive radial glia-like cells in the outer layer. These findings indicated that groups of such undifferentiated cells in the foveola might be involved in maintaining morphology and regeneration.
Collapse
|
6
|
Chen C, Xie Z, Shen Y, Xia SF. The Roles of Thyroid and Thyroid Hormone in Pancreas: Physiology and Pathology. Int J Endocrinol 2018; 2018:2861034. [PMID: 30013597 PMCID: PMC6022313 DOI: 10.1155/2018/2861034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/18/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022] Open
Abstract
It is widely accepted that thyroid hormones (THs), secreted from the thyroid, play important roles in energy metabolism. It is also known that THs also alter the functioning of other endocrine glands; however, their effects on pancreatic function have not yet been reviewed. One of the main functions of the pancreas is insulin secretion, which is altered in diabetes. Diabetes, therefore, could be related to thyroid dysfunction. Earlier research on this subject focused on TH regulation of pancreas function (such as insulin secretion) or on insulin function through TH-mediated increase of energy metabolism. Afterwards, epidemiological investigations and animal test research found a link between autoimmune diseases, thyroid dysfunction, and pancreas pathology; however, the underlying mechanisms remain unknown. Furthermore, recent studies have shown that THs also play important roles in pancreas development and on islet pathology, both in diabetes and in pancreatic cancer. Therefore, an overview of the effects of thyroid and THs on pancreas physiology and pathology is presented. The topics contained in this review include a summary of the relationship between autoimmune thyroid dysfunction and autoimmune pancreas lesions and the effects of THs on pancreas development and pancreas pathology (diabetes and pancreatic cancer).
Collapse
Affiliation(s)
- Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, China
| | - Zhenxing Xie
- School of Basic Medicine, Henan University, Jinming Avenue 475004, Henan, Kaifeng, China
| | - Yingbin Shen
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Shu Fang Xia
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Noncanonical thyroid hormone signaling mediates cardiometabolic effects in vivo. Proc Natl Acad Sci U S A 2017; 114:E11323-E11332. [PMID: 29229863 DOI: 10.1073/pnas.1706801115] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Thyroid hormone (TH) and TH receptors (TRs) α and β act by binding to TH response elements (TREs) in regulatory regions of target genes. This nuclear signaling is established as the canonical or type 1 pathway for TH action. Nevertheless, TRs also rapidly activate intracellular second-messenger signaling pathways independently of gene expression (noncanonical or type 3 TR signaling). To test the physiological relevance of noncanonical TR signaling, we generated knockin mice with a mutation in the TR DNA-binding domain that abrogates binding to DNA and leads to complete loss of canonical TH action. We show that several important physiological TH effects are preserved despite the disruption of DNA binding of TRα and TRβ, most notably heart rate, body temperature, blood glucose, and triglyceride concentration, all of which were regulated by noncanonical TR signaling. Additionally, we confirm that TRE-binding-defective TRβ leads to disruption of the hypothalamic-pituitary-thyroid axis with resistance to TH, while mutation of TRα causes a severe delay in skeletal development, thus demonstrating tissue- and TR isoform-specific canonical signaling. These findings provide in vivo evidence that noncanonical TR signaling exerts physiologically important cardiometabolic effects that are distinct from canonical actions. These data challenge the current paradigm that in vivo physiological TH action is mediated exclusively via regulation of gene transcription at the nuclear level.
Collapse
|
8
|
Chen L, Aleshin AE, Alitongbieke G, Zhou Y, Zhang X, Ye X, Hu M, Ren G, Chen Z, Ma Y, Zhang D, Liu S, Gao W, Cai L, Wu L, Zeng Z, Jiang F, Liu J, Zhou H, Cadwell G, Liddington RC, Su Y, Zhang XK. Modulation of nongenomic activation of PI3K signalling by tetramerization of N-terminally-cleaved RXRα. Nat Commun 2017; 8:16066. [PMID: 28714476 PMCID: PMC5520057 DOI: 10.1038/ncomms16066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/24/2017] [Indexed: 12/14/2022] Open
Abstract
Retinoid X receptor-alpha (RXRα) binds to DNA either as homodimers or heterodimers, but it also forms homotetramers whose function is poorly defined. We previously discovered that an N-terminally-cleaved form of RXRα (tRXRα), produced in tumour cells, activates phosphoinositide 3-kinase (PI3K) signalling by binding to the p85α subunit of PI3K and that K-80003, an anti-cancer agent, inhibits this process. Here, we report through crystallographic and biochemical studies that K-80003 binds to and stabilizes tRXRα tetramers via a ‘three-pronged’ combination of canonical and non-canonical mechanisms. K-80003 binding has no effect on tetramerization of RXRα, owing to the head–tail interaction that is absent in tRXRα. We also identify an LxxLL motif in p85α, which binds to the coactivator-binding groove on tRXRα and dissociates from tRXRα upon tRXRα tetramerization. These results identify conformational selection as the mechanism for inhibiting the nongenomic action of tRXRα and provide molecular insights into the development of RXRα cancer therapeutics. The transcription factor retinoid X receptor-alpha (RXRα) can also form homotetramers. Here the authors show that the anti-cancer agent K-80003 selectively inhibits the nongenomic action of N-terminally-cleaved RXRα in tumour cells by stabilizing its tetramerization but not that of full-length RXRα.
Collapse
Affiliation(s)
- Liqun Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.,Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Alexander E Aleshin
- Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Gulimiran Alitongbieke
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Yuqi Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Xindao Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Mengjie Hu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Gaoang Ren
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Ziwen Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Yue Ma
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Duo Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Shuai Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Weiwei Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Lijun Cai
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Lingjuan Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Fuquan Jiang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Gregory Cadwell
- Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Robert C Liddington
- Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ying Su
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China.,Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China.,Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
9
|
Furuya F, Ishii T, Tamura S, Takahashi K, Kobayashi H, Ichijo M, Takizawa S, Kaneshige M, Suzuki-Inoue K, Kitamura K. The ligand-bound thyroid hormone receptor in macrophages ameliorates kidney injury via inhibition of nuclear factor-κB activities. Sci Rep 2017; 7:43960. [PMID: 28272516 PMCID: PMC5341020 DOI: 10.1038/srep43960] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
In chronic kidney disease (CKD) patients, inflammation plays a pivotal role in the progression of renal fibrosis. Hypothyroidism is associated with an increased occurrence of atherosclerosis and inflammation, suggesting protective roles of thyroid hormones and their receptors against inflammatory processes. The contribution of thyroid hormone receptors to macrophage differentiation has not been well documented. Here, we focused on the endogenous thyroid hormone receptor α (TRα) in macrophages and examined the role of ligand-bound TRα in macrophage polarization-mediated anti-inflammatory effects. TRα-deficient irradiated chimeric mice showed exacerbated tubulointerstitial injury in a unilateral ureteral obstruction model. Compared with wild-type macrophages, macrophages isolated from the obstructed kidneys of mice lacking TRα displayed increased expression of proinflammatory cytokines that was accompanied by enhanced nuclear translocation of p65. Comparison of TRα-deficient bone marrow-derived macrophages with wild-type macrophages confirmed the propensity of the former cells to produce excessive IL-1β levels. Co-culture of these macrophages with renal epithelial cells induced more severe damage to the epithelial cells via the IL-1 receptor. Our findings indicate that ligand-bound TRα on macrophages plays a protective role in kidney inflammation through the inhibition of NF-κB pathways, possibly by affecting the pro- and anti-inflammatory balance that controls the development of CKD.
Collapse
Affiliation(s)
- Fumihiko Furuya
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Toshihisa Ishii
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Shogo Tamura
- Department of Laboratory and Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Kazuya Takahashi
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Hidetoshi Kobayashi
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Masashi Ichijo
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Soichi Takizawa
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Masahiro Kaneshige
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Katsue Suzuki-Inoue
- Department of Laboratory and Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Kenichiro Kitamura
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| |
Collapse
|
10
|
Yang Y, Bush SP, Wen X, Cao W, Chan L. Differential Gene Dosage Effects of Diabetes-Associated Gene GLIS3 in Pancreatic β Cell Differentiation and Function. Endocrinology 2017; 158:9-20. [PMID: 27813676 PMCID: PMC5412984 DOI: 10.1210/en.2016-1541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/28/2016] [Indexed: 01/15/2023]
Abstract
Mutations of GLI-similar 3 (GLIS3) underlie a neonatal diabetes syndrome. Genome-wide association studies revealed that GLIS3 variants are associated with both common type 1 and type 2 diabetes. Global Glis3-deficient (Glis3-/-) mice die of severe diabetes shortly after birth. GLIS3 controls islet differentiation by transactivating neurogenin 3 (Ngn3). To unravel the function of Glis3 in adults, we generated inducible global Glis3-deficient mice (Glis3fl/fl/RosaCreERT2). Tamoxifen (TAM)-treated Glis3fl/fl/RosaCreERT2 mice developed severe diabetes, which was reproduced in TAM-treated β cell-specific Glis3fl/fl/Pdx1CreERT mice, but not in TAM-treated Glis3fl/fl/MipCreERT mice. Furthermore, we generated constitutive β cell- or pancreas-specific Glis3-deficient mice using either RipCre (Glis3fl/fl/RipCre) or Pdx1Cre (Glis3fl/fl/Pdx1Cre) coexpressing mice. We observed that, remarkably, neither type of β cell- or pancreas-specific Glis3-deficient mice phenocopied the lethal neonatal diabetes observed in Glis3-/- mice. All Glis3fl/fl/RipCre mice survived to adulthood with normal glucose tolerance. Thirty percent of Glis3fl/fl/Pdx1Cre mice developed severe diabetes at 3 to 4 weeks of age, whereas 55% of them developed mild diabetes with age. In contrast to the >90% reduction of Ngn3 and near-total absence of insulin (Ins) in the embryonic pancreas of Glis3-/- mice, we found only 75%-80% reduction of Ngn3 and Ins messenger RNA or protein expression in the fetal pancreas of Glis3fl/fl/Pdx1Cre mice. The expression levels of Ngn3 and Ins correlated negatively with the extent of Cre-mediated Glis3 deletion. These mouse models are powerful tools to decipher Glis3 gene dosage effects and the role of GLIS3 mutations/variants in a spectrum of β cell dysfunction in people.
Collapse
Affiliation(s)
- Yisheng Yang
- Division of Endocrinology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109
| | - Sean P. Bush
- Division of Endocrinology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109
| | - Xianjie Wen
- Division of Endocrinology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109
- 2Department of Anesthesiology, First People’s Hospital of Foshan and Foshan Hospital of Sun Yat-sen University, Guangdong, China 528300; and
| | - Wei Cao
- Division of Endocrinology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109
| | - Lawrence Chan
- 3Diabetes and Endocrinology Research Center, Division of Diabetes, Endocrinology, and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
11
|
Lima MJ, Muir KR, Docherty HM, McGowan NWA, Forbes S, Heremans Y, Heimberg H, Casey J, Docherty K. Generation of Functional Beta-Like Cells from Human Exocrine Pancreas. PLoS One 2016; 11:e0156204. [PMID: 27243814 PMCID: PMC4887015 DOI: 10.1371/journal.pone.0156204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/10/2016] [Indexed: 12/24/2022] Open
Abstract
Transcription factor mediated lineage reprogramming of human pancreatic exocrine tissue could conceivably provide an unlimited supply of islets for transplantation in the treatment of diabetes. Exocrine tissue can be efficiently reprogrammed to islet-like cells using a cocktail of transcription factors: Pdx1, Ngn3, MafA and Pax4 in combination with growth factors. We show here that overexpression of exogenous Pax4 in combination with suppression of the endogenous transcription factor ARX considerably enhances the production of functional insulin-secreting β-like cells with concomitant suppression of α-cells. The efficiency was further increased by culture on laminin-coated plates in media containing low glucose concentrations. Immunocytochemistry revealed that reprogrammed cultures were composed of ~45% islet-like clusters comprising >80% monohormonal insulin+ cells. The resultant β-like cells expressed insulin protein levels at ~15–30% of that in adult human islets, efficiently processed proinsulin and packaged insulin into secretory granules, exhibited glucose responsive insulin secretion, and had an immediate and prolonged effect in normalising blood glucose levels upon transplantation into diabetic mice. We estimate that approximately 3 billion of these cells would have an immediate therapeutic effect following engraftment in type 1 diabetes patients and that one pancreas would provide sufficient tissue for numerous transplants.
Collapse
Affiliation(s)
- Maria J. Lima
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
- * E-mail:
| | - Kenneth R. Muir
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Hilary M. Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Neil W. A. McGowan
- Department of Surgery, University of Edinburgh, Edinburgh Royal Infirmary, Edinburgh, EH16 4SU, United Kingdom
| | - Shareen Forbes
- Endocrinology Unit, University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Yves Heremans
- Diabetes Research Centre, Vrije Universiteit Brussel, B1090 Brussels, Belgium
| | - Harry Heimberg
- Diabetes Research Centre, Vrije Universiteit Brussel, B1090 Brussels, Belgium
| | - John Casey
- Department of Surgery, University of Edinburgh, Edinburgh Royal Infirmary, Edinburgh, EH16 4SU, United Kingdom
| | - Kevin Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| |
Collapse
|
12
|
Acinar phenotype is preserved in human exocrine pancreas cells cultured at low temperature: implications for lineage-tracing of β-cell neogenesis. Biosci Rep 2016; 36:BSR20150259. [PMID: 26987985 PMCID: PMC4859086 DOI: 10.1042/bsr20150259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/22/2016] [Indexed: 01/22/2023] Open
Abstract
In vitro cultured pancreatic acinar cells rapidly differentiate. Low temperature exposure prevents this process and improves the efficiency of acinar cell labelling with adenovirus vectors. This may help in tracing β-cell neogenesis from human pancreatic acinar cells. The regenerative medicine field is expanding with great successes in laboratory and preclinical settings. Pancreatic acinar cells in diabetic mice were recently converted into β-cells by treatment with ciliary neurotrophic factor (CNTF) and epidermal growth factor (EGF). This suggests that human acinar cells might become a cornerstone for diabetes cell therapy in the future, if they can also be converted into glucose-responsive insulin-producing cells. Presently, studying pancreatic acinar cell biology in vitro is limited by their high plasticity, as they rapidly lose their phenotype and spontaneously transdifferentiate to a duct-like phenotype in culture. We questioned whether human pancreatic acinar cell phenotype could be preserved in vitro by physico-chemical manipulations and whether this could be valuable in the study of β-cell neogenesis. We found that culture at low temperature (4°C) resulted in the maintenance of morphological and molecular acinar cell characteristics. Specifically, chilled acinar cells did not form the spherical clusters observed in controls (culture at 37°C), and they maintained high levels of acinar-specific transcripts and proteins. Five-day chilled acinar cells still transdifferentiated into duct-like cells upon transfer to 37°C. Moreover, adenoviral-mediated gene transfer evidenced an active Amylase promoter in the 7-day chilled acinar cells, and transduction performed in chilled conditions improved acinar cell labelling. Together, our findings indicate the maintenance of human pancreatic acinar cell phenotype at low temperature and the possibility to efficiently label acinar cells, which opens new perspectives for the study of human acinar-to-β-cell transdifferentiation.
Collapse
|
13
|
Iacovacci V, Ricotti L, Menciassi A, Dario P. The bioartificial pancreas (BAP): Biological, chemical and engineering challenges. Biochem Pharmacol 2016; 100:12-27. [DOI: 10.1016/j.bcp.2015.08.107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/26/2015] [Indexed: 01/05/2023]
|
14
|
Abstract
One of the key promises of regenerative medicine is providing a cure for diabetes. Cell-based therapies are proving their safety and efficiency, but donor beta cell shortages and immunological issues remain major hurdles. Reprogramming of human pancreatic exocrine cells towards beta cells would offer a major advantage by providing an abundant and autologous source of beta cells. Over the past decade our understanding of transdifferentiation processes greatly increased allowing us to design reprogramming protocols that fairly aim for clinical trials.
Collapse
Affiliation(s)
- Willem Staels
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University Hospital, and Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Yves Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| |
Collapse
|
15
|
Islet Neogenesis Associated Protein (INGAP) induces the differentiation of an adult human pancreatic ductal cell line into insulin-expressing cells through stepwise activation of key transcription factors for embryonic beta cell development. Differentiation 2015; 90:77-90. [DOI: 10.1016/j.diff.2015.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 01/13/2023]
|
16
|
Li H, Ji HS, Kang JH, Shin DH, Park HY, Choi MS, Lee CH, Lee IK, Yun BS, Jeong TS. Soy Leaf Extract Containing Kaempferol Glycosides and Pheophorbides Improves Glucose Homeostasis by Enhancing Pancreatic β-Cell Function and Suppressing Hepatic Lipid Accumulation in db/db Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7198-210. [PMID: 26211813 DOI: 10.1021/acs.jafc.5b01639] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
This study investigated the molecular mechanisms underlying the antidiabetic effect of an ethanol extract of soy leaves (ESL) in db/db mice. Control groups (db/+ and db/db) were fed a normal diet (ND), whereas the db/db-ESL group was fed ND with 1% ESL for 8 weeks. Dietary ESL improved glucose tolerance and lowered plasma glucose, glycated hemoglobin, HOMA-IR, and triglyceride levels. The pancreatic insulin content of the db/db-ESL group was significantly greater than that of the db/db group. ESL supplementation altered pancreatic IRS1, IRS2, Pdx1, Ngn3, Pax4, Ins1, Ins2, and FoxO1 expression. Furthermore, ESL suppressed lipid accumulation and increased glucokinase activity in the liver. ESL primarily contained kaempferol glycosides and pheophorbides. Kaempferol, an aglycone of kaempferol glycosides, improved β-cell proliferation through IRS2-related FoxO1 signaling, whereas pheophorbide a, a product of chlorophyll breakdown, improved insulin secretion and β-cell proliferation through IRS1-related signaling with protein kinase A in MIN6 cells. ESL effectively regulates glucose homeostasis by enhancing IRS-mediated β-cell insulin signaling and suppressing SREBP-1-mediated hepatic lipid accumulation in db/db mice.
Collapse
Affiliation(s)
- Hua Li
- †Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
- §Department of Biomolecular Science, Korea University of Science and Technology, KRIBB, Daejeon 305-806, Republic of Korea
| | - Hyeon-Seon Ji
- †Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
- ‡College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Ji-Hyun Kang
- †Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Dong-Ha Shin
- #Insect Biotech Company Ltd., Daejeon 305-811, Republic of Korea
| | - Ho-Yong Park
- †Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
- #Insect Biotech Company Ltd., Daejeon 305-811, Republic of Korea
| | - Myung-Sook Choi
- ΔCenter for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Chul-Ho Lee
- ⊗Laboratory Animal Resource Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - In-Kyung Lee
- ⊥Division of Biotechnology, Chonbuk National University, Iksan 570-752, Republic of Korea
| | - Bong-Sik Yun
- ⊥Division of Biotechnology, Chonbuk National University, Iksan 570-752, Republic of Korea
| | - Tae-Sook Jeong
- †Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
- §Department of Biomolecular Science, Korea University of Science and Technology, KRIBB, Daejeon 305-806, Republic of Korea
| |
Collapse
|
17
|
Mathiyalagan P, Keating ST, Al-Hasani K, El-Osta A. Epigenetic-mediated reprogramming of pancreatic endocrine cells. Antioxid Redox Signal 2015; 22:1483-95. [PMID: 25621632 DOI: 10.1089/ars.2014.6103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Type 1 diabetes (T1D) results from cell-mediated autoimmune destruction of insulin-secreting pancreatic beta cells (β-cells). In the context of T1D, the scarcity of organ donors has driven research to alternate sources of functionally competent, insulin-secreting β-cells as substitute for donor islets to meet the clinical need for transplantation therapy. RECENT ADVANCES Experimental evidence of an inherent plasticity of pancreatic cells has fuelled interest in in vivo regeneration of β-cells. Transcriptional modulation and direct reprogramming of noninsulin secreting pancreatic α-cells to functionally mimic insulin-secreting β-cells is one of the promising avenues to the treatment of diabetes. Recent studies now show that adult progenitor and glucagon(+) α-cells can be converted into β-like cells in vivo, as a result of specific activation of the Pax4 gene in α-cells and curing diabetes in preclinical models. CRITICAL ISSUES The challenge now is to understand the precise developmental transitions mediated by endocrine transcription factors and co-regulatory determinants responsible for pancreatic function and repair. FUTURE DIRECTIONS Epigenetic-mediated regulation of transcription factor binding in pancreatic α-cells by specific drugs to direct reprogramming into functional insulin producing cells could be of potential innovative therapy for the treatment of T1D.
Collapse
Affiliation(s)
- Prabhu Mathiyalagan
- 1 Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct , Melbourne, Australia
| | | | | | | |
Collapse
|
18
|
Katuchova J, Harvanova D, Spakova T, Kalanin R, Farkas D, Durny P, Rosocha J, Radonak J, Petrovic D, Siniscalco D, Qi M, Novak M, Kruzliak P. Mesenchymal stem cells in the treatment of type 1 diabetes mellitus. Endocr Pathol 2015; 26:95-103. [PMID: 25762503 DOI: 10.1007/s12022-015-9362-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus type 1 is a form of diabetes mellitus that results from the autoimmune destruction of insulin-producing beta cells in the pancreas. The current gold standard therapy for pancreas transplantation has limitations because of the long list of waiting patients and the limited supply of donor pancreas. Mesenchymal stem cells (MSCs), a relatively new potential therapy in various fields, have already made their mark in the young field of regenerative medicine. Recent studies have shown that the implantation of MSCs decreases glucose levels through paracrine influences rather than through direct transdifferentiation into insulin-producing cells. Therefore, these cells may use pro-angiogenic and immunomodulatory effects to control diabetes following the cotransplantation with pancreatic islets. In this review, we present and discuss new approaches of using MSCs in the treatment of diabetes mellitus type 1.
Collapse
Affiliation(s)
- Jana Katuchova
- 1st Department of Surgery, Faculty of Medicine, Pavol Jozef Safarik University and University Hospital, Kosice, Slovak Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee HJ, Choi YJ, Park SY, Kim JY, Won KC, Son JK, Kim YW. Hexane Extract of Orthosiphon stamineus Induces Insulin Expression and Prevents Glucotoxicity in INS-1 Cells. Diabetes Metab J 2015; 39:51-8. [PMID: 25729713 PMCID: PMC4342537 DOI: 10.4093/dmj.2015.39.1.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/02/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hyperglycemia, a characteristic feature of diabetes, induces glucotoxicity in pancreatic β-cells, resulting in further impairment of insulin secretion and worsening glycemic control. Thus, preservation of insulin secretory capacity is essential for the management of type 2 diabetes. In this study, we evaluated the ability of an Orthosiphon stamineus (OS) extract to prevent glucotoxicity in insulin-producing cells. METHODS We measured insulin mRNA expression and glucose-stimulated insulin secretion (GSIS) in OS-treated INS-1 cells after exposure to a high glucose (HG; 30 mM) concentration. RESULTS The hexane extract of OS elevated mRNA expression of insulin as well as pancreatic and duodenal homeobox-1 of INS-1 cells in a dose-dependent manner. The hexane OS extract also increased the levels of phosphorylated phosphatidylinositol 3-kinase (PI3K) in a concentration-dependent manner. Additionally, Akt phosphorylation was elevated by treatment with 100 and 200 µmol of the hexane OS extract. Three days of HG exposure suppressed insulin mRNA expression and GSIS; these expressions were restored by treatment with the hexane OS extract. HG elevated peroxide levels in the INS-1 cells. These levels were unaffected by OS treatment under both normal and hyperglycemic conditions. CONCLUSION Our results suggested that the hexane extract of OS elevates insulin mRNA expression and prevents glucotoxicity induced by a 3-day treatment with HG. This was associated with the activation of PI-3K and Akt.
Collapse
Affiliation(s)
- Hae-Jung Lee
- Department of Pediatrics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Yoon-Jung Choi
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Korea
| | - So-Young Park
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Korea
| | - Jong-Yeon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyu-Chang Won
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Jong-Keun Son
- Yeungnam University College of Pharmacy, Gyeongsan, Korea
| | - Yong-Woon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
20
|
Li Q, Lai ZC. Recent progress in studies of factors that elicit pancreatic β-cell expansion. Protein Cell 2015; 6:81-7. [PMID: 25492376 PMCID: PMC4312764 DOI: 10.1007/s13238-014-0123-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/13/2014] [Indexed: 12/26/2022] Open
Abstract
The loss of or decreased functional pancreatic β-cell is a major cause of type 1 and type 2 diabetes. Previous studies have shown that adult β-cells can maintain their ability for a low level of turnover through replication and neogenesis. Thus, a strategy to prevent and treat diabetes would be to enhance the ability of β-cells to increase the mass of functional β-cells. Consequently, much effort has been devoted to identify factors that can effectively induce β-cell expansion. This review focuses on recent reports on small molecules and protein factors that have been shown to promote β-cell expansion.
Collapse
Affiliation(s)
- Qiu Li
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021 China
| | - Zhi-Chun Lai
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021 China
- Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
21
|
Rodríguez-Castelán J, Martínez-Gómez M, Castelán F, Cuevas E. Hypothyroidism Affects Vascularization and Promotes Immune Cells Infiltration into Pancreatic Islets of Female Rabbits. Int J Endocrinol 2015; 2015:917806. [PMID: 26175757 PMCID: PMC4484561 DOI: 10.1155/2015/917806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/07/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
Thyroidectomy induces pancreatic edema and immune cells infiltration similarly to that observed in pancreatitis. In spite of the controverted effects of hypothyroidism on serum glucose and insulin concentrations, the number and proliferation of Langerhans islet cells as well as the presence of extracellular matrix are affected depending on the islet size. In this study, we evaluated the effect of methimazole-induced hypothyroidism on the vascularization and immune cells infiltration into islets. A general observation of pancreas was also done. Twelve Chinchilla-breed female adult rabbits were divided into control (n = 6) and hypothyroid groups (n = 6, methimazole, 0.02% in drinking water for 30 days). After the treatment, rabbits were sacrificed and their pancreas was excised, histologically processed, and stained with Periodic Acid-Schiff (PAS) or Masson's Trichrome techniques. Islets were arbitrarily classified into large, medium, and small ones. The external and internal portions of each islet were also identified. Student-t-test and Mann-Whitney-U test or two-way ANOVAs were used to compare variables between groups. In comparison with control rabbits, hypothyroidism induced a strong infiltration of immune cells and a major presence of collagen and proteoglycans in the interlobular septa. Large islets showed a high vascularization and immune cells infiltration. The present results show that hypothyroidism induces pancreatitis and insulitis.
Collapse
Affiliation(s)
- Julia Rodríguez-Castelán
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, 90070 Tlaxcala, TLAX, Mexico
| | - Margarita Martínez-Gómez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, 90070 Tlaxcala, TLAX, Mexico
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Unidad Periférica, 90070 Tlaxcala, TLAX, Mexico
| | - Francisco Castelán
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, 90070 Tlaxcala, TLAX, Mexico
| | - Estela Cuevas
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, 90070 Tlaxcala, TLAX, Mexico
- *Estela Cuevas:
| |
Collapse
|
22
|
Aïello V, Moreno-Asso A, Servitja JM, Martín M. Thyroid hormones promote endocrine differentiation at expenses of exocrine tissue. Exp Cell Res 2014; 322:236-48. [DOI: 10.1016/j.yexcr.2014.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 01/17/2014] [Accepted: 01/27/2014] [Indexed: 12/12/2022]
|
23
|
Takahashi K, Furuya F, Shimura H, Kaneshige M, Kobayashi T. Impaired oxidative endoplasmic reticulum stress response caused by deficiency of thyroid hormone receptor α. J Biol Chem 2014; 289:12485-93. [PMID: 24644288 DOI: 10.1074/jbc.m113.544122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Thyroid hormone receptor α (TRα) is critical to postnatal pancreatic β-cell maintenance. To investigate the association between TRα and the survival of pancreatic β-cells under endoplasmic reticulum (ER) stress, the expression of endogenous TRα was inhibited by infection with an adenovirus expressing double-stranded short hairpin RNA against TRα (AdshTRα). In control adenovirus-infected pancreatic β-cells, palmitate enhanced the expression of activating transcription factor 4 (ATF4) and heme oxygenase 1, which facilitates adaptation to oxidative ER stress. However, in AdshTRα-infected pancreatic β-cells, palmitate did not induce ATF4-mediated integrated stress response, and oxidative stress-associated apoptotic cell death was significantly enhanced. TRα-deficient mice or wild-type mice (WT) were fed a high fat diet (HFD) for 30 weeks, and the effect of oxidative ER stress on pancreatic β-cells was analyzed. HFD-treated TRα-deficient mice had high blood glucose levels and low plasma insulin levels. In HFD-treated TRα-deficient mice, ATF4 was not induced, and apoptosis was enhanced compared with HFD-treated WT mice. Furthermore, the expression level of 8-hydroxydeoxyguanosine, an oxidative stress marker, was enhanced in the β-cells of HFD-treated TRα-deficient mice. These results indicate that endogenous TRα plays an important role for the expression of ATF4 and facilitates reduced apoptosis in pancreatic β-cells under ER stress.
Collapse
Affiliation(s)
- Kazuya Takahashi
- From the Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo-shi, Yamanashi 409-3898, Japan and
| | | | | | | | | |
Collapse
|
24
|
Mastracci TL, Evans-Molina C. Pancreatic and Islet Development and Function: The Role of Thyroid Hormone. JOURNAL OF ENDOCRINOLOGY, DIABETES & OBESITY 2014; 2:1044. [PMID: 25506600 PMCID: PMC4261639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A gradually expanding body of literature suggests that Thyroid Hormone (TH) and Thyroid Hormone Receptors (TRs) play a contributing role in pancreatic and islet cell development, maturation, and function. Studies using a variety of model systems capable of exploiting species-specific developmental paradigms have revealed the contribution of TH to cellular differentiation, lineage decisions, and endocrine cell specification. Moreover, in vitro and in vivo evidence suggests that TH is involved in islet β cell proliferation and maturation; however, the signaling pathway(s) connected with this function of TH/TR are not well understood. The purpose of this review is to discuss the current literature that has defined the effects of TH and TRs on pancreatic and islet cell development and function, describe the impact of hyper- and hypothyroidism on whole body metabolism, and highlight future and potential applications of TH in novel therapeutic strategies for diabetes.
Collapse
Affiliation(s)
- Teresa L Mastracci
- Department of Pediatrics, Indiana University School of Medicine, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, USA
| |
Collapse
|
25
|
Abstract
Cell therapy as a replacement for diseased or destroyed endogenous cells is a major component of regenerative medicine. Various types of stem cells are or will be used in clinical settings as autologous or allogeneic products. In this chapter, the progress that has been made to translate basic stem cell research into pharmaceutical manufacturing processes will be reviewed. Even if in public perception, embryonic stem (ES) cells and more recently induced pluripotent stem (iPS) cells dominate the field of regenerative medicine and will be discussed in great detail, it is the adult stem cells that are used for decades as therapeutics. Hence, these cells will be compared to ES and iPS cells. Finally, special emphasis will be placed on the scientific, technical, and economic challenges of developing stem cell-based in vitro model systems and cell therapies that can be commercialized.
Collapse
Affiliation(s)
- Insa S Schroeder
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Planckstr. 29, 64291, Darmstadt, Germany,
| |
Collapse
|