1
|
Balanyà-Segura M, Polishchuk A, Just-Borràs L, Cilleros-Mañé V, Silvera C, Ardévol A, Tomàs M, Lanuza MA, Hurtado E, Tomàs J. Molecular Adaptations of BDNF/NT-4 Neurotrophic and Muscarinic Pathways in Ageing Neuromuscular Synapses. Int J Mol Sci 2024; 25:8018. [PMID: 39125587 PMCID: PMC11311581 DOI: 10.3390/ijms25158018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
Age-related conditions, such as sarcopenia, cause physical disabilities for an increasing section of society. At the neuromuscular junction, the postsynaptic-derived neurotrophic factors brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NT-4) have neuroprotective functions and contribute to the correct regulation of the exocytotic machinery. Similarly, presynaptic muscarinic signalling plays a fundamental modulatory function in this synapse. However, whether or not these signalling pathways are compromised in ageing neuromuscular system has not yet been analysed. The present study analyses, through Western blotting, the differences in expression and activation of the main key proteins of the BDNF/NT-4 and muscarinic pathways related to neurotransmission in young versus ageing Extensor digitorum longus (EDL) rat muscles. The main results show an imbalance in several sections of these pathways: (i) a change in the stoichiometry of BDNF/NT-4, (ii) an imbalance of Tropomyosin-related kinase B receptor (TrkB)-FL/TrkB-T1 and neurotrophic receptor p 75 (p75NTR), (iii) no changes in the cytosol/membrane distribution of phosphorylated downstream protein kinase C (PKC)βI and PKCε, (iv) a reduction in the M2-subtype muscarinic receptor and P/Q-subtype voltage-gated calcium channel, (v) an imbalance of phosphorylated mammalian uncoordinated-18-1 (Munc18-1) (S313) and synaptosomal-associated protein 25 (SNAP-25) (S187), and (vi) normal levels of molecules related to the management of acetylcholine (Ach). Based on this descriptive analysis, we hypothesise that these pathways can be adjusted to ensure neurotransmission rather than undergoing negative alterations caused by ageing. However, further studies are needed to assess this hypothetical suggestion. Our results contribute to the understanding of some previously described neuromuscular functional age-related impairments. Strategies to promote these signalling pathways could improve the neuromuscular physiology and quality of life of older people.
Collapse
Affiliation(s)
- Marta Balanyà-Segura
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Aleksandra Polishchuk
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Laia Just-Borràs
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Víctor Cilleros-Mañé
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Carolina Silvera
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Anna Ardévol
- MoBioFood Research Group, Campus Sescelades, Universitat Rovira i Virgili, Marcel.lí Domingo 1, 43007 Tarragona, Spain;
| | - Marta Tomàs
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Maria A. Lanuza
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Erica Hurtado
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Josep Tomàs
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| |
Collapse
|
2
|
Hamed O, Joshi R, Mostafa MM, Giembycz MA. α and β Catalytic Subunits of cAMP-dependent Protein Kinase Regulate Formoterol-induced Inflammatory Gene Expression Changes in Human Bronchial Epithelial Cells. Br J Pharmacol 2022; 179:4593-4614. [PMID: 35735057 DOI: 10.1111/bph.15901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND & PURPOSE It has been proposed that genomic mechanisms contribute to the adverse-effects that are often experienced by asthmatic subjects who take regular, inhaled β2 -adrenoceptor agonists as a monotherapy. Moreover, data from preclinical models of asthma suggest that these gene expression changes are mediated by β-arrestin-2 rather than PKA. Herein, we tested this hypothesis by comparing the genomic effects of formoterol, a β2 -adrenoceptor agonist, with forskolin in human primary bronchial epithelial cells (HBEC). EXPERIMENTAL APPROACH Gene expression changes were determined by RNA-sequencing. Gene silencing and genome editing were employed to explore the roles of β-arrestin-2 and PKA. KEY RESULTS The formoterol-regulated transcriptome in HBEC treated concurrently with TNFα, was defined by 1480 unique gene expression changes. TNFα-induced transcripts modulated by formoterol were annotated with enriched gene ontology terms related to inflammation and proliferation, notably "GO:0070374~positive regulation of ERK1 and ERK2 cascade", which is an established β-arrestin-2 target. However, expression of the formoterol- and forskolin-regulated transcriptomes were highly rank-order correlated and the effects of formoterol on TNFα-induced inflammatory genes were abolished by an inhibitor of PKA. Furthermore, formoterol-induced gene expression changes in BEAS-2B bronchial epithelial cell clones deficient in β-arrestin-2 were comparable to those expressed by their parental counterparts. Contrariwise, gene expression was partially inhibited in clones lacking the α-catalytic subunit (Cα) of PKA and abolished following the additional knockdown of the β-catalytic subunit (Cβ) paralogue. CONCLUSIONS The effects of formoterol on inflammatory gene expression in airway epithelia are mediated by PKA and involve the cooperation of PKA-Cα and PKA-Cβ.
Collapse
Affiliation(s)
- Omar Hamed
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Radhika Joshi
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Cilleros-Mañé V, Just-Borràs L, Tomàs M, Garcia N, Tomàs JM, Lanuza MA. The M 2 muscarinic receptor, in association to M 1 , regulates the neuromuscular PKA molecular dynamics. FASEB J 2020; 34:4934-4955. [PMID: 32052889 DOI: 10.1096/fj.201902113r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 01/13/2023]
Abstract
Muscarinic acetylcholine receptor 1 subtype (M1 ) and muscarinic acetylcholine receptor 2 subtype (M2 ) presynaptic muscarinic receptor subtypes increase and decrease, respectively, neurotransmitter release at neuromuscular junctions. M2 involves protein kinase A (PKA), although the muscarinic regulation to form and inactivate the PKA holoenzyme is unknown. Here, we show that M2 signaling inhibits PKA by downregulating Cβ subunit, upregulating RIIα/β and liberating RIβ and RIIα to the cytosol. This promotes PKA holoenzyme formation and reduces the phosphorylation of the transmitter release target synaptosome-associated protein 25 and the gene regulator cAMP response element binding. Instead, M1 signaling, which is downregulated by M2 , opposes to M2 by recruiting R subunits to the membrane. The M1 and M2 reciprocal actions are performed through the anchoring protein A kinase anchor protein 150 as a common node. Interestingly, M2 modulation on protein expression needs M1 signaling. Altogether, these results describe the dynamics of PKA subunits upon M2 muscarinic signaling in basal and under presynaptic nerve activity, uncover a specific involvement of the M1 receptor and reveal the M1 /M2 balance to activate PKA to regulate neurotransmission. This provides a molecular mechanism to the PKA holoenzyme formation and inactivation which could be general to other synapses and cellular models.
Collapse
Affiliation(s)
- Víctor Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Laia Just-Borràs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Maria Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Angel Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
4
|
Opposed Actions of PKA Isozymes (RI and RII) and PKC Isoforms (cPKCβI and nPKCε) in Neuromuscular Developmental Synapse Elimination. Cells 2019; 8:cells8111304. [PMID: 31652775 PMCID: PMC6912401 DOI: 10.3390/cells8111304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/10/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023] Open
Abstract
Background: During neuromuscular junction (NMJ) development, synapses are produced in excess. By sensing the activity-dependent release of ACh, adenosine, and neurotrophins, presynaptic receptors prompt axonal competition and loss of the unnecessary axons. The receptor action is mediated by synergistic and antagonistic relations when they couple to downstream kinases (mainly protein kinases A and C (PKA and PKC)), which phosphorylate targets involved in axonal disconnection. Here, we directly investigated the involvement of PKA subunits and PKC isoforms in synapse elimination. Methods: Selective PKA and PKC peptide modulators were applied daily to the Levator auris longus (LAL) muscle surface of P5–P8 transgenic B6.Cg-Tg (Thy1-YFP) 16 Jrs/J (and also C57BL/6J) mice, and the number of axons and the postsynaptic receptor cluster morphology were evaluated in P9 NMJ. Results: PKA (PKA-I and PKA-II isozymes) acts at the pre- and postsynaptic sites to delay both axonal elimination and nAChR cluster differentiation, PKC activity promotes both axonal loss (a cPKCβI and nPKCε isoform action), and postsynaptic nAChR cluster maturation (a possible role for PKCθ). Moreover, PKC-induced changes in axon number indirectly influence postsynaptic maturation. Conclusions: PKC and PKA have opposed actions, which suggests that changes in the balance of these kinases may play a major role in the mechanism of developmental synapse elimination.
Collapse
|
5
|
Wen RT, Zhang FF, Zhang HT. Cyclic nucleotide phosphodiesterases: potential therapeutic targets for alcohol use disorder. Psychopharmacology (Berl) 2018; 235:1793-1805. [PMID: 29663017 PMCID: PMC5949271 DOI: 10.1007/s00213-018-4895-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD), which combines the criteria of both alcohol abuse and dependence, contributes as an important causal factor to multiple health and social problems. Given the limitation of current treatments, novel medications for AUD are needed to better control alcohol consumption and maintain abstinence. It has been well established that the intracellular signal transduction mediated by the second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) crucially underlies the genetic predisposition, rewarding properties, relapsing features, and systemic toxicity of compulsive alcohol consumption. On this basis, the upstream modulators phosphodiesterases (PDEs), which critically control intracellular levels of cyclic nucleotides by catalyzing their degradation, are proposed to play a role in modulating alcohol abuse and dependent process. Here, we highlight existing evidence that correlates cAMP and cGMP signal cascades with the regulation of alcohol-drinking behavior and discuss the possibility that PDEs may become a novel class of therapeutic targets for AUD.
Collapse
Affiliation(s)
- Rui-Ting Wen
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Fang-Fang Zhang
- Institute of Pharmacology, Qilu Medical University, Taian, 271016, Shandong, China
| | - Han-Ting Zhang
- Institute of Pharmacology, Qilu Medical University, Taian, 271016, Shandong, China.
- Departments of Behavioral Medicine and Psychiatry and Physiology, Pharmacology and Neuroscience, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| |
Collapse
|
6
|
Wen RT, Liang JH, Zhang HT. Targeting Phosphodiesterases in Pharmacotherapy for Substance Dependence. ADVANCES IN NEUROBIOLOGY 2018; 17:413-444. [PMID: 28956341 DOI: 10.1007/978-3-319-58811-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Substance dependence is a chronic relapsing brain disorder associated with adaptational changes in synaptic plasticity and neuronal functions. The high levels of substance consumption and relapse rate suggest more reliable medications are in need to better address the underlying causes of this disease. It has been well established that the intracellular second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) and their signaling systems play an important role in the molecular mechanisms of substance taking behaviors. On this basis, the phosphodiesterase (PDE) superfamily, which crucially controls cyclic nucleotide levels by catalyzing their hydrolysis, has been proposed as a novel class of therapeutic targets for substance use disorders. This chapter reviews the expression patterns of PDEs in the brain with regard to neural structures underlying the dependent process and highlights available evidence for a modulatory role of PDEs in substance dependence.
Collapse
Affiliation(s)
- Rui-Ting Wen
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Jian-Hui Liang
- Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, China.
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China.
| |
Collapse
|
7
|
Gigante ED, Santerre JL, Carter JM, Werner DF. Adolescent and adult rat cortical protein kinase A display divergent responses to acute ethanol exposure. Alcohol 2014; 48:463-70. [PMID: 24874150 DOI: 10.1016/j.alcohol.2014.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/18/2013] [Accepted: 01/04/2014] [Indexed: 11/28/2022]
Abstract
Adolescent rats display reduced sensitivity to many dysphoria-related effects of alcohol (ethanol) including motor ataxia and sedative hypnosis, but the underlying neurobiological factors that contribute to these differences remain unknown. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway, particularly the type II regulatory subunit (RII), has been implicated in ethanol-induced molecular and behavioral responses in adults. Therefore, the current study examined cerebral cortical PKA in adolescent and adult ethanol responses. With the exception of early adolescence, PKA RIIα and RIIβ subunit levels largely did not differ from adult levels in either whole cell lysate or P2 synaptosomal expression. However, following acute ethanol exposure, PKA RIIβ P2 synaptosomal expression and activity were increased in adults, but not in adolescents. Behaviorally, intracerebroventricular administration of the PKA activator Sp-cAMP and inhibitor Rp-cAMP prior to ethanol administration increased adolescent sensitivity to the sedative-hypnotic effects of ethanol compared to controls. Sp-cAMP was ineffective in adults whereas Rp-cAMP suggestively reduced loss of righting reflex (LORR) with paralleled increases in blood ethanol concentrations. Overall, these data suggest that PKA activity modulates the sedative/hypnotic effects of ethanol and may potentially play a wider role in the differential ethanol responses observed between adolescents and adults.
Collapse
Affiliation(s)
- Eduardo D Gigante
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA; Department of Health and Human Services, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jessica L Santerre
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - Jenna M Carter
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - David F Werner
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
8
|
Boyadjieva NI, Sarkar DK. Cyclic adenosine monophosphate and brain-derived neurotrophic factor decreased oxidative stress and apoptosis in developing hypothalamic neuronal cells: role of microglia. Alcohol Clin Exp Res 2013; 37:1370-9. [PMID: 23550806 DOI: 10.1111/acer.12104] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 01/12/2013] [Indexed: 01/25/2023]
Abstract
BACKGROUND We have previously shown that ethanol (EtOH) increases cellular apoptosis to developing neurons via the effects on oxidative stress of neurons directly and via increasing production of microglia-derived factors. To study further the mechanism of EtOH action on neuronal apoptosis, we determined the effects of 2 well-known PKA activators, dibutyryl cAMP (dbcAMP) and brain-derived neurotrophic factor (BDNF), on EtOH-activated oxidative stress and apoptotic processes in the hypothalamic neurons in the presence and absence of microglial cells' influence. METHODS In enriched neuronal cells from fetal rat hypothalami treated with EtOH or with conditioned medium from EtOH-treated microglia, we measured cellular apoptosis by the free nucleosome assay and the levels of cAMP, BDNF, O²⁻, reactive oxygen species (ROS), nitrite, glutathione (GSH), and catalase following treatment with EtOH or EtOH-treated microglial culture conditioned medium. Additionally, we tested the effectiveness of dbcAMP and BDNF in preventing EtOH or EtOH-treated microglial conditioned medium on cellular apoptosis and oxidative stress in enriched hypothalamic neuronal cell in primary cultures. RESULTS Neuronal cell cultures following treatment with EtOH or EtOH-activated microglial conditioned medium showed decreased production levels of cAMP and BDNF. EtOH also increased apoptotic death as well as oxidative status, as demonstrated by higher cellular levels of oxidants but lower levels of antioxidants, in neuronal cells. These effects of EtOH on oxidative stress and cell death were enhanced by the presence of microglia. Treatment with BDNF or dbcAMP decreased EtOH or EtOH-activated microglial conditioned medium-induced changes in the levels of intracellular free radicals, ROS and O²⁻, nitrite, GSH, and catalase. CONCLUSIONS These data support the possibility that EtOH by acting directly and via increasing the production of microglial-derived factors reduces cellular levels of cAMP and BDNF to increase cellular oxidative status and apoptosis in hypothalamic neuronal cells in primary cultures.
Collapse
Affiliation(s)
- Nadka I Boyadjieva
- Endocrine Program, Department of Animal Sciences, Graduate Program of Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | | |
Collapse
|
9
|
Li J, Mao G, Xia G. FSH modulates PKAI and GPR3 activities in mouse oocyte of COC in a gap junctional communication (GJC)-dependent manner to initiate meiotic resumption. PLoS One 2012; 7:e37835. [PMID: 23028418 PMCID: PMC3441574 DOI: 10.1371/journal.pone.0037835] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/24/2012] [Indexed: 11/19/2022] Open
Abstract
Many studies have shown that cyclic adenosine-5′-monophosphate (cAMP)-dependent protein kinase A (PKA) and G-protein-coupled receptor 3 (GPR3) are crucial for controlling meiotic arrest in oocytes. However, it is unclear how gonadotropins modulate these factors to regulate oocyte maturation, especially by gap junctional communication (GJC). Using an in vitro meiosis-arrested mouse cumulus-oocyte complex (COC) culture model, we showed that there is a close relationship between follicle-stimulating hormone (FSH) and the PKA type I (PKAI) and GPR3. The effect of FSH on oocyte maturation was biphasic, initially inhibitory and then stimulatory. During FSH-induced maturation, rapid cAMP surges were observed in both cumulus cells and oocyte. Most GJC between cumulus cells and oocyte ceased immediately after FSH stimulation and recommenced after the cAMP surge. FSH-induced maturation was blocked by PKAI activator 8-AHA-cAMP. Levels of PKAI regulatory subunits and GPR3 decreased and increased, respectively, after FSH stimulation. In the presence of the GJC inhibitor carbenoxolone (CBX), FSH failed to induce the meiotic resumption and the changes in PKAI, GPR3 and cAMP surge in oocyte were no longer detected. Furthermore, GPR3 was upregulated by high cAMP levels, but not by PKAI activation. When applied after FSH stimulation, the specific phosphodiesterase 3A (PDE3A) inhibitor cilostamide immediately blocked meiotic induction, regardless of when it was administered. PKAI activation inhibited mitogen-activated protein kinase (MAPK) phosphorylation in the oocytes of COCs, which participated in the initiation of FSH-induced meiotic maturation in vitro. Just before FSH-induced meiotic maturation, cAMP, PKAI, and GPR3 returned to basal levels, and PDE3A activity and MAPK phosphorylation increased markedly. These experiments show that FSH induces a transient increase in cAMP levels and regulates GJC to control PKAI and GPR3 activities, thereby creating an inhibitory phase. After PDE3A and MAPK activities increase, meiosis resumes.
Collapse
Affiliation(s)
| | | | - Guoliang Xia
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
10
|
Bahi A, Dreyer JL. Involvement of tissue plasminogen activator “tPA” in ethanol-induced locomotor sensitization and conditioned-place preference. Behav Brain Res 2012; 226:250-8. [DOI: 10.1016/j.bbr.2011.09.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/25/2011] [Accepted: 09/12/2011] [Indexed: 12/26/2022]
|
11
|
Dwivedi Y, Pandey GN. Elucidating biological risk factors in suicide: role of protein kinase A. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:831-41. [PMID: 20817068 PMCID: PMC3026860 DOI: 10.1016/j.pnpbp.2010.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/17/2010] [Accepted: 08/26/2010] [Indexed: 01/19/2023]
Abstract
Suicide is a major public health concern. Although there have been several studies of suicidal behavior that focused on the roles of psychosocial and sociocultural factors, these factors are of too little predictive value to be clinically useful. Therefore, research on the biological perspective of suicide has gained a stronghold and appears to provide a promising approach to identify biological risk factors associated with suicidal behavior. Recent studies demonstrate that an alteration in synaptic and structural plasticity is key to affective illnesses and suicide. Signal transduction molecules play an important role in such plastic events. Protein kinase A (PKA) is a crucial enzyme in the adenylyl cyclase signal transduction pathway and is involved in regulating gene transcription, cell survival, and plasticity. In this review, we critically and comprehensively discuss the role of PKA in suicidal behavior. Because stress is an important component of suicide, we also discuss whether stress affects PKA and how this may be associated with suicidal behavior. In addition, we also discuss the functional significance of the findings regarding PKA by describing the role of important PKA substrates (i.e., Rap1, cyclic adenosine monophosphate response element binding protein, and target gene brain-derived neurotrophic factor). These studies suggest the interesting possibility that PKA and related signaling molecules may serve as important neurobiological factors in suicide and may be relevant in target-specific therapeutic interventions for these disorders.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612, USA.
| | | |
Collapse
|
12
|
Sánchez-Serrano S, Cruz S, Lamas M. Repeated toluene exposure modifies the acetylation pattern of histones H3 and H4 in the rat brain. Neurosci Lett 2011; 489:142-7. [DOI: 10.1016/j.neulet.2010.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
|
13
|
Prostaglandin E2 activates cAMP response element-binding protein in glioma cells via a signaling pathway involving PKA-dependent inhibition of ERK. Prostaglandins Other Lipid Mediat 2009; 91:18-29. [PMID: 20015475 DOI: 10.1016/j.prostaglandins.2009.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/03/2009] [Accepted: 12/07/2009] [Indexed: 12/13/2022]
Abstract
Prostaglandin E(2) (PGE(2)) plays a critical role in influencing the biological behavior of tumor cells. We previously demonstrated that PGE(2) stimulates human glioma cell growth via activation of protein kinase A (PKA) type II. This study was undertaken to further elucidate the intracellular pathways activated by PGE(2) downstream to PKA. Stimulation of U87-MG glioma cells with PGE(2) increased phosphorylation of the cyclic-AMP response element (CRE) binding protein CREB at Ser-133 and CREB-driven transcription in a dose- and time-dependent manner. Expression of dominant CREB constructs that interfere with CREB phosphorylation at Ser-133 or with its binding to the CRE site markedly decreased PGE(2)-induced CREB activation. Inhibition of PKA by H-89 or expression of a dominant negative PKA construct attenuated PGE(2)-induced CREB activation. Moreover, inhibition of PKA type II decreased PGE(2)-induced CREB-dependent transcription by 45% compared to vehicle-treated cells. To investigate the involvement of additional signaling pathways, U87-MG cells were pretreated with wortmannin or LY294002 to inhibit the PI3-kinase/AKT pathway. Both inhibitors had no effect on PGE(2)-induced CREB phosphorylation and transcriptional activity, suggesting that PGE(2) activates CREB in a PI3-kinase/AKT independent manner. Challenge of U87-MG cells with PGE(2), at concentrations that induced maximal CREB activation, or with forskolin inhibited extracellular signal-regulated kinase (ERK) phosphorylation. Pretreatment of U87-MG cells with the ERK inhibitor PD98059, accentuated ERK inhibition and increased CREB phosphorylation at Ser-133 and CREB-driven transcription stimulated by PGE(2), suggesting that inhibition of ERK contributes to PGE(2)-induced CREB activation. Inhibition of ERK by PGE(2) or by forskolin was rescued by treatment of cells with H-89 or by the dominant negative PKA construct. Moreover, PGE(2) or forskolin inhibited phosphorylation of Raf-1 phosphorylation at Ser-338. Challenge of U87-MG cells with 11-deoxy-PGE(1) increased CREB-driven transcription and stimulated cell growth, while other PGE(2) analogues had no effect. Together our results reveal a novel signaling pathway whereby PGE(2) signals through PKA to inhibit ERK and increase CREB transcriptional activity.
Collapse
|
14
|
Conti AC, Maas JW, Moulder KL, Jiang X, Dave BA, Mennerick S, Muglia LJ. Adenylyl cyclases 1 and 8 initiate a presynaptic homeostatic response to ethanol treatment. PLoS One 2009; 4:e5697. [PMID: 19479030 PMCID: PMC2682654 DOI: 10.1371/journal.pone.0005697] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 04/16/2009] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Although ethanol exerts widespread action in the brain, only recently has progress been made in understanding the specific events occurring at the synapse during ethanol exposure. Mice deficient in the calcium-stimulated adenylyl cyclases, AC1 and AC8 (DKO), demonstrate increased sedation duration and impaired phosphorylation by protein kinase A (PKA) following acute ethanol treatment. While not direct targets for ethanol, we hypothesize that these cyclases initiate a homeostatic presynaptic response by PKA to reactivate neurons from ethanol-mediated inhibition. METHODOLOGY/PRINCIPAL FINDINGS Here, we have used phosphoproteomic techniques and identified several presynaptic proteins that are phosphorylated in the brains of wild type mice (WT) after ethanol exposure, including synapsin, a known PKA target. Phosphorylation of synapsins I and II, as well as phosphorylation of non-PKA targets, such as, eukaryotic elongation factor-2 (eEF-2) and dynamin is significantly impaired in the brains of DKO mice. This deficit is primarily driven by AC1, as AC1-deficient, but not AC8-deficient mice also demonstrate significant reductions in phosphorylation of synapsin and eEF-2 in cortical and hippocampal tissues. DKO mice have a reduced pool of functional recycling vesicles and fewer active terminals as measured by FM1-43 uptake compared to WT controls, which may be a contributing factor to the impaired presynaptic response to ethanol treatment. CONCLUSIONS/SIGNIFICANCE These data demonstrate that calcium-stimulated AC-dependent PKA activation in the presynaptic terminal, primarily driven by AC1, is a critical event in the reactivation of neurons following ethanol-induced activity blockade.
Collapse
Affiliation(s)
- Alana C Conti
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States of America.
| | | | | | | | | | | | | |
Collapse
|
15
|
Dyson MT, Kowalewski MP, Manna PR, Stocco DM. The differential regulation of steroidogenic acute regulatory protein-mediated steroidogenesis by type I and type II PKA in MA-10 cells. Mol Cell Endocrinol 2009; 300:94-103. [PMID: 19111595 PMCID: PMC2692359 DOI: 10.1016/j.mce.2008.11.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/19/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
Abstract
Following tropic hormone challenge, steroidogenic tissues utilize PKA to phosphorylate unique subsets of proteins necessary to facilitate steroidogenesis. This includes the PKA-dependent expression and activation of the steroidogenic acute regulatory protein (STAR), which mediates the rate-limiting step of steroidogenesis by inducing the transfer of cholesterol from the outer to the inner mitochondrial membrane. Since both type I and type II PKA are present in steroidogenic tissues, we have utilized cAMP analog pairs that preferentially activate each PKA subtype in order to examine their impact on STAR synthesis and activity. In MA-10 mouse Leydig tumor cells Star gene expression is more dependent upon type I PKA, while the post-transcriptional regulation of STAR appears subject to type II PKA. These experiments delineate the discrete effects that type I and type II PKA exert on STAR-mediated steroidogenesis, and suggest complimentary roles for each subtype in coordinating steroidogenesis.
Collapse
Affiliation(s)
| | | | | | - Douglas M. Stocco
- To whom correspondence should be addressed: Dr. Douglas Stocco, Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center. 3601 4th Street, Lubbock, TX 79430, Phone: (806)-743-2505, Fax: (806) 743-2990, E-mail:
| |
Collapse
|
16
|
Karaçay B, Li S, Bonthius DJ. Maturation-dependent alcohol resistance in the developing mouse: cerebellar neuronal loss and gene expression during alcohol-vulnerable and -resistant periods. Alcohol Clin Exp Res 2008; 32:1439-50. [PMID: 18565154 DOI: 10.1111/j.1530-0277.2008.00720.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol abuse during pregnancy injures the fetal brain. One of alcohol's most important neuroteratogenic effects is neuronal loss. Rat models have shown that the cerebellum becomes less vulnerable to alcohol-induced neuronal death as it matures. We determined if maturation-dependent alcohol resistance occurs in mice and compared patterns of gene expression during the alcohol resistant and sensitive periods. METHODS Neonatal mice received alcohol daily over postnatal day (PD) 2 to 4 or PD8 to 10. Purkinje cells and granule cells were quantified on PD25. The temporal expression patterns of 4 neuro-developmental genes and 3 neuro-protective genes in the cerebellum were determined daily over PD0 to 15 to determine how gene expression changes as the cerebellum transitions from alcohol-vulnerable to alcohol-resistant. The effect of alcohol on expression of these genes was determined when the cerebellum is alcohol sensitive (PD4) and resistant (PD10). RESULTS Purkinje and granule cells were vulnerable to alcohol-induced death at PD2 to 4, but not at PD8 to 10. Acquisition of maturation-dependent alcohol resistance coincided with changes in the expression of neurodevelopmental genes. The vulnerability of cerebellar neurons to alcohol toxicity declined in parallel with decreasing levels of Math1 and Cyclin D2, markers of immature granule cells. Likewise, the rising resistance to alcohol toxicity paralleled increasing levels of GABA alpha-6 and Wnt-7a, markers of mature granule neurons. Expression of growth factors and genes with survival promoting function (IGF-1, BDNF, and cyclic AMP response element binding protein) did not rise as the cerebellum transitioned from alcohol-vulnerable to alcohol-resistant. All 3 were expressed at substantial levels during the vulnerable period and were not expressed at higher levels later. Acute alcohol exposure altered the expression of neurodevelopmental genes and growth factor genes when administered either during the alcohol vulnerable period or resistant period. However, the patterns in which gene expression changed varied among the genes and depended on timing of alcohol administration. CONCLUSIONS Mice have a temporal window of vulnerability in the first week of life, during which cerebellar neurons are more sensitive to alcohol toxicity than during the second week. Expression of genes governing neuronal maturation changes in synchrony with the acquisition of alcohol resistance. Growth factors do not rise as the cerebellum transitions from alcohol-vulnerable to alcohol-resistant. Thus, a process intrinsic to neuronal maturation, rather than rising levels of growth factors, likely underlies maturation-dependent alcohol resistance.
Collapse
Affiliation(s)
- Bahri Karaçay
- Division of Child Neurology, Department of Pediatrics, 200 Hawkins Dr., University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
17
|
Davis MI. Ethanol-BDNF interactions: still more questions than answers. Pharmacol Ther 2008; 118:36-57. [PMID: 18394710 DOI: 10.1016/j.pharmthera.2008.01.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 01/02/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has emerged as a regulator of development, plasticity and, recently, addiction. Decreased neurotrophic activity may be involved in ethanol-induced neurodegeneration in the adult brain and in the etiology of alcohol-related neurodevelopmental disorders. This can occur through decreased expression of BDNF or through inability of the receptor to transduce signals in the presence of ethanol. In contrast, recent studies implicate region-specific up-regulation of BDNF and associated signaling pathways in anxiety, addiction and homeostasis after ethanol exposure. Anxiety and depression are precipitating factors for substance abuse and these disorders also involve region-specific changes in BDNF in both pathogenesis and response to pharmacotherapy. Polymorphisms in the genes coding for BDNF and its receptor TrkB are linked to affective, substance abuse and appetitive disorders and therefore may play a role in the development of alcoholism. This review summarizes historical and pre-clinical data on BDNF and TrkB as it relates to ethanol toxicity and addiction. Many unresolved questions about region-specific changes in BDNF expression and the precise role of BDNF in neuropsychiatric disorders and addiction remain to be elucidated. Resolution of these questions will require significant integration of the literature on addiction and comorbid psychiatric disorders that contribute to the development of alcoholism.
Collapse
Affiliation(s)
- Margaret I Davis
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Dwivedi Y, Pandey GN. Adenylyl cyclase-cyclicAMP signaling in mood disorders: role of the crucial phosphorylating enzyme protein kinase A. Neuropsychiatr Dis Treat 2008; 4:161-76. [PMID: 18728821 PMCID: PMC2515915 DOI: 10.2147/ndt.s2380] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mood disorders are among the most prevalent and recurrent forms of psychiatric illnesses. In the last decade, there has been increased understanding of the biological basis of mood disorders. In fact, novel mechanistic concepts of the neurobiology of unipolar and bipolar disorders are evolving based on recent pre-clinical and clinical studies, most of which now focus on the role of signal transduction mechanisms in these psychiatric illnesses. Particular investigative emphasis has been given to the role of phosphorylating enzymes, which are crucial in regulating gene expression and neuronal and synaptic plasticity. Among the most important phosphorylating enzyme is protein kinase A (PKA), a component of adenylyl cyclase-cyclic adenosine monophosphate (AC-cAMP) signaling system. In this review, we critically and comprehensively discuss the role of various components of AC-cAMP signaling in mood disorders, with a special focus on PKA, because of the interesting observation that have been made about its involvement in unipolar and bipolar disorders. We also discuss the functional significance of the findings regarding PKA by discussing the role of important PKA substrates, namely, Rap-1, cyclicAMP-response element binding protein, and brain-derived neurotrophic factor. These studies suggest the interesting possibility that PKA and related signaling molecules may serve as important neurobiological factors in mood disorders and may be relevant in target-specific therapeutic interventions for these disorders.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago Chicago, Illinois 60612, USA.
| | | |
Collapse
|
19
|
Meneses AM, Medina RA, Kato S, Pinto M, Jaque MP, Lizama I, García MDLA, Nualart F, Owen GI. Regulation of GLUT3 and glucose uptake by the cAMP signalling pathway in the breast cancer cell line ZR-75. J Cell Physiol 2007; 214:110-6. [PMID: 17559076 DOI: 10.1002/jcp.21166] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Increased glucose uptake as a principal energy source is a requirement for the continued survival of tumour cells. Facilitative glucose transporter-1 (GLUT1) and -3 (GLUT3) have been previously shown to be present and regulated in breast cancer cells and are associated with poor patient prognosis. In cancer cells, the cAMP secondary messenger pathway is known to potentiate described glucose transporter activators and regulate cell fate. However, no regulation of the glucose transporters in breast cancer cells by cAMP has previously been examined. Herein, we determined in the well-characterized breast cancer cell line ZR-75, if the cAMP analogue 8-br-cAMP was capable of regulating GLUT1 and GLUT3 expression and thus glucose uptake. We demonstrated that 8-br-cAMP transiently up-regulates GLUT3 mRNA levels. The use of actinomycin-D and the cloning of 1,200 bp upstream of the human GLUT3 promoter demonstrated that this regulation was transcriptional. Immunocytochemistry and Western blotting confirmed that the increase in mRNA was reflected by an increase in protein levels. No notable regulation of GLUT1 in the presence of 8-br-cAMP was detected. Finally, we determined using the non-metabolizable glucose analogue 2-DOG if this up-regulation in GLUT3 increased glucose uptake. We observed the presence of two uptake components, one corresponding to the Km of GLUT1/4 and the other to GLUT3. A doubling in the uptake velocity was observed only at the Km corresponding to GLUT3. In conclusion, we demonstrate and characterize for the first time, an up-regulation of GLUT3 mRNA, protein and glucose uptake by the cAMP pathway in breast cancer cells.
Collapse
Affiliation(s)
- Ana Maria Meneses
- Laboratorio de Biología Celular y Molecular, MIFAB, Universidad Nacional Andrés Bello, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Repunte-Canonigo V, Lutjens R, van der Stap LD, Sanna PP. Increased expression of protein kinase A inhibitor alpha (PKI-alpha) and decreased PKA-regulated genes in chronic intermittent alcohol exposure. Brain Res 2007; 1138:48-56. [PMID: 17270154 PMCID: PMC4485929 DOI: 10.1016/j.brainres.2006.09.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 09/19/2006] [Accepted: 09/29/2006] [Indexed: 11/17/2022]
Abstract
Intermittent models of alcohol exposure that mimic human patterns of alcohol consumption produce profound physiological and biochemical changes and induce rapid increases in alcohol self-administration. We used high-density oligonucleotide microarrays to investigate gene expression changes during chronic intermittent alcohol exposure in three brain regions that receive mesocorticolimbic dopaminergic projections and that are believed to be involved in alcohol's reinforcing actions: the medial prefrontal cortex, the nucleus accumbens and the amygdala. An independent replication of the experiment was used for RT-PCR validation of the microarray results. The protein kinase A inhibitor alpha (PKI-alpha, Pkia), a member of the endogenous PKI family implicated in reducing nuclear PKA activity, was found to be increased in all three regions tested. Conversely, we observed a downregulation of the expression of several PKA-regulated transcripts in one or more of the brain regions studied, including the activity and neurotransmitter-regulated early gene (Ania) - 1, -3, -7, -8, the transcription factors Egr1 and NGFI-B (Nr4a1) and the neuropeptide NPY. Reduced expression of PKA-regulated genes in mesocorticolimbic projection areas may have motivational significance in the rapid increase in alcohol self-administration induced by intermittent alcohol exposure.
Collapse
Affiliation(s)
- Vez Repunte-Canonigo
- Molecular and Integrative Neuroscience Department and San Diego Alcohol Research Center, The Scripps Research Institute, La Jolla, CA, 92103, USA
| | - Robert Lutjens
- Molecular and Integrative Neuroscience Department and San Diego Alcohol Research Center, The Scripps Research Institute, La Jolla, CA, 92103, USA
| | - Lena D. van der Stap
- Molecular and Integrative Neuroscience Department and San Diego Alcohol Research Center, The Scripps Research Institute, La Jolla, CA, 92103, USA
| | - Pietro Paolo Sanna
- Molecular and Integrative Neuroscience Department and San Diego Alcohol Research Center, The Scripps Research Institute, La Jolla, CA, 92103, USA
- To whom correspondence should be addressed ()
| |
Collapse
|
21
|
Asyyed A, Storm D, Diamond I. Ethanol activates cAMP response element-mediated gene expression in select regions of the mouse brain. Brain Res 2006; 1106:63-71. [PMID: 16854384 DOI: 10.1016/j.brainres.2006.05.107] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/19/2006] [Accepted: 05/24/2006] [Indexed: 11/18/2022]
Abstract
UNLABELLED The specific brain regions that contribute to behavioral changes produced by ethanol are not clearly understood. We know that cAMP-PKA signaling has been strongly implicated in the CNS effects of ethanol. Ethanol promotes activation and translocation of the PKA catalytic subunit (Calpha) into the nucleus in cell lines and primary neuronal cultures. PKA Calpha translocation to the nucleus is followed by cAMP Response Element protein phosphorylation (pCREB) and cAMP Response Element (CRE)-mediated gene expression. Here, we use X-gal histochemistry to map CRE-mediated gene transcription in the brain of CRE-lacZ transgenic mice following ethanol injection. RESULTS 3 h after i.p. ethanol injection (3.2 g/kg, 16% wt/vol.), the number of X-gal positive cells was increased in the nucleus accumbens (202 +/- 63 cells/field compared to 71 +/- 47 cells/field in saline injected controls, P < 0.05 by paired t-test, n = 10). Similar increases were found in other mesolimbic areas and brain regions associated with rewarding and addictive responses. These include: prefrontal cortex, lateral and medial septum, basolateral amygdala, paraventricular and anterior hypothalamus, centromedial thalamus, CA1 region of hippocampus and dentate gyrus, substantia nigra pars compacta, ventral tegmental area, geniculate nucleus and the superior colliculus. CONCLUSION these results confirm and extend current concepts that ethanol stimulates cAMP-PKA signaling in brain regions involved in CNS responses to ethanol.
Collapse
MESH Headings
- Alcohol-Induced Disorders, Nervous System/genetics
- Alcohol-Induced Disorders, Nervous System/metabolism
- Alcohol-Induced Disorders, Nervous System/physiopathology
- Animals
- Brain/anatomy & histology
- Brain/drug effects
- Brain/metabolism
- Brain Chemistry/drug effects
- Brain Chemistry/genetics
- Central Nervous System Depressants/pharmacology
- Cyclic AMP/metabolism
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP-Dependent Protein Kinases/drug effects
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Disease Models, Animal
- Ethanol/pharmacology
- Female
- Galactosides
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Genes, Reporter/drug effects
- Genes, Reporter/physiology
- Indoles
- Lac Operon/drug effects
- Lac Operon/genetics
- Limbic System/anatomy & histology
- Limbic System/drug effects
- Limbic System/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Reward
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Asma Asyyed
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, 5858 Horton St., Ste. 200, Emeryville, CA 94608, USA.
| | - Daniel Storm
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Ivan Diamond
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, 5858 Horton St., Ste. 200, Emeryville, CA 94608, USA; Department of Neuroscience, CV Therapeutics, Palo Alto, CA 94304, USA
| |
Collapse
|
22
|
Uddin RK, Singh SM. Ethanol-responsive genes: identification of transcription factors and their role in metabolomics. THE PHARMACOGENOMICS JOURNAL 2006; 7:38-47. [PMID: 16652119 DOI: 10.1038/sj.tpj.6500394] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcription factors (TFs) and their combinatorial control on cis-regulatory elements play critical role in the co-expression of genes. This affects the interaction of genes in the transcriptome and thus may affect signals that cascade through cellular pathways. Using a combination of bioinformatic approaches, we sought to identify such common combinations of TFs in a set of ethanol-responsive (ER) genes and assess the role of ethanol in affecting multiple pathways through their co-regulation. Our results show that the metallothionein genes are regulated by TF motifs cAMP responsive element binding protein (CREB) and metal-activated transcription factor 1 and primarily involved in zinc ion homeostasis. We have also identified new target genes, Synaptojanin 1 and tryptophan hydroxylase 1, potentially regulated by this module. Altered arrangement of TF-binding sites in the module may direct the action of these and other target genes in intracellular signaling cascades, cell growth and/or maintenance. In addition to CREB, other key TFs identified are ecotropic viral integration site-1 and SP1. These modulate the contribution of the target ER genes in cell cycle regulation and apoptosis or programmed cell death. Multiple lines of evidence confirm the above findings and indicate that different groups of ER genes are involved in different biological processes and their co-regulation most likely results from different sets of regulatory modules. These findings associate the role of the ER genes studied and their potential TF modules with alcohol response pathways and phenotypes.
Collapse
Affiliation(s)
- R K Uddin
- Department of Biology and Division of Medical Genetics, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
23
|
Maas JW, Vogt SK, Chan GCK, Pineda VV, Storm DR, Muglia LJ. Calcium-stimulated adenylyl cyclases are critical modulators of neuronal ethanol sensitivity. J Neurosci 2006; 25:4118-26. [PMID: 15843614 PMCID: PMC6724953 DOI: 10.1523/jneurosci.4273-04.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The importance of the cAMP signaling pathway in the modulation of ethanol sensitivity has been suggested by studies in organisms from Drosophila melanogaster to man. However, the involvement of specific isoforms of adenylyl cyclase (AC), the molecule that converts ATP to cAMP, has not been systemically determined in vivo. Because AC1 and AC8 are the only AC isoforms stimulated by calcium, and ethanol modulates calcium flux by the NMDA receptor, we hypothesized that these ACs would be important in the neural response to ethanol. AC1 knock-out (KO) mice and double knock-out (DKO) mice with genetic deletion of both AC1 and AC8 display substantially increased sensitivity to ethanol-induced sedation compared with wild-type (WT) mice, whereas AC8 KO mice are only minimally more sensitive. In contrast, AC8 KO and DKO mice, but not AC1 KO mice, demonstrate decreased voluntary ethanol consumption compared with WT mice. DKO mice do not display increased sleep time compared with WT mice after administration of ketamine or pentobarbital, indicating that the mechanism of enhanced ethanol sensitivity in these mice is likely distinct from the antagonism of ethanol of the NMDA receptor and potentiation of the GABA(A) receptor. Ethanol does not enhance calcium-stimulated AC activity, but the ethanol-induced phosphorylation of a discrete subset of protein kinase A (PKA) substrates is compromised in the brains of DKO mice. These results indicate that the unique activation of PKA signaling mediated by the calcium-stimulated ACs is an important component of the neuronal response to ethanol.
Collapse
Affiliation(s)
- James W Maas
- Department of Pediatrics and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
24
|
Pandey SC, Zhang H, Roy A, Xu T. Deficits in amygdaloid cAMP-responsive element-binding protein signaling play a role in genetic predisposition to anxiety and alcoholism. J Clin Invest 2005; 115:2762-73. [PMID: 16200210 PMCID: PMC1236671 DOI: 10.1172/jci24381] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 06/14/2005] [Indexed: 11/17/2022] Open
Abstract
We investigated the role of cAMP-responsive element-binding protein (CREB) in genetic predisposition to anxiety and alcohol-drinking behaviors using alcohol-preferring (P) and -nonpreferring (NP) rats. The levels of CREB, phosphorylated CREB, and neuropeptide Y (NPY) were innately lower in the central amygdala (CeA) and medial amygdala (MeA), but not in the basolateral amygdala (BLA), of P rats compared with NP rats. P rats displayed higher baseline anxiety-like behaviors and consumed higher amounts of alcohol compared with NP rats. Ethanol injection or voluntary intake reduced the higher anxiety levels in P rats. Ethanol also increased CREB function in the CeA and MeA, but not in the BLA, of P rats. Infusion of the PKA activator Sp-cAMP or NPY into the CeA decreased the alcohol intake and anxiety-like behaviors of P rats. PKA activator infusion also increased CREB function in the CeA of P rats. On the other hand, ethanol injection or voluntary intake did not produce any changes either in anxiety levels or on CREB function in the amygdaloid structures of NP rats. Interestingly, infusion of the PKA inhibitor Rp-cAMP into the CeA provoked anxiety-like behaviors and increased alcohol intake in NP rats. PKA inhibitor decreased CREB function in the CeA of NP rats. These novel results provide the first evidence to our knowledge that decreased CREB function in the CeA may be operative in maintaining the high anxiety and excessive alcohol-drinking behaviors of P rats.
Collapse
Affiliation(s)
- Subhash C Pandey
- Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, and Jesse Brown VA Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
25
|
Li Z, Kang SS, Lee S, Rivier C. Effect of ethanol on the regulation of corticotropin-releasing factor (CRF) gene expression. Mol Cell Neurosci 2005; 29:345-54. [PMID: 15914027 DOI: 10.1016/j.mcn.2005.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 02/09/2005] [Accepted: 04/06/2005] [Indexed: 11/20/2022] Open
Abstract
Ethanol stimulates hypothalamic-pituitary-adrenal axis activity in vivo. To determine the cellular and molecular mechanisms through which ethanol regulates corticotropin-releasing factor (CRF) gene expression, we compared the effect of ethanol and forskolin on CRF peptide secretion and messenger RNA levels in hypothalamic primary cell cultures, and on CRF promoter activity in the NG108-15 cell line. CRF secretion, mRNA levels, and gene transcription significantly increased in response to ethanol or forskolin. Mutation of the cAMP-response element (CRE) reduced luciferase activity under basal conditions as well as in response to forskolin or ethanol. On the other hand, plasmid with five CRE repeats yielded dramatically elevated basal luciferase activity and significantly increased upregulation by ethanol. Inclusion of adenosine deaminase reduced the promoter response to ethanol. Finally a PKA inhibitor and a cAMP antagonist both decreased ethanol-induced CRF peptide secretion, gene expression, and transcription. These results suggest that ethanol upregulates CRF expression through cAMP/PKA-dependent pathways.
Collapse
Affiliation(s)
- Zhongqi Li
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
26
|
Newton PM, Messing RO. Intracellular signaling pathways that regulate behavioral responses to ethanol. Pharmacol Ther 2005; 109:227-37. [PMID: 16102840 DOI: 10.1016/j.pharmthera.2005.07.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
Recent evidence indicates that ethanol modulates the function of specific intracellular signaling cascades, including those that contain cyclic adenosine 3', 5'-monophosphate (cAMP)-dependent protein kinase A (PKA), protein kinase C (PKC), the tyrosine kinase Fyn, and phospholipase D (PLD). In some cases, the specific components of these cascades appear to mediate the effects of ethanol, whereas other components indirectly modify responses to ethanol. Studies utilizing selective inhibitors and genetically modified mice have identified specific isoforms of proteins involved in responses to ethanol. The effects of ethanol on neuronal signaling appear restricted to certain brain regions, partly due to the restricted distribution of these proteins. This likely contributes specificity to ethanol's actions on behavior. This review summarizes recent work on ethanol and intracellular signal transduction, emphasizing studies that have identified specific molecular events that underlie behavioral responses to ethanol.
Collapse
Affiliation(s)
- P M Newton
- The Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, United States
| | | |
Collapse
|
27
|
Rani CSS, Qiang M, Ticku MK. Potential role of cAMP response element-binding protein in ethanol-induced N-methyl-D-aspartate receptor 2B subunit gene transcription in fetal mouse cortical cells. Mol Pharmacol 2005; 67:2126-36. [PMID: 15774772 DOI: 10.1124/mol.104.007872] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have shown previously that long-term ethanol treatment causes an up-regulation of N-methyl-D-aspartate (NMDA) receptor 2B subunit (NR2B) number and function in cultured fetal mouse cortical neurons. To examine the intracellular signaling pathways involved in this NR2B gene transcription, we have subjected fetal cortical neurons to long-term treatment with ethanol and studied its effect on cAMP response element-binding protein (CREB) and extracellular signal-regulated kinase (ERK) levels by Western blot and enzyme-linked immunosorbent assay. We find a significant increase in phosphorylated CREB, without change in total CREB protein, in cells treated with ethanol for 5 days. Long-term ethanol treatment did not increase levels of both total and phospho-ERK in serum-free medium, whereas it did increase ERK phosphorylation in medium containing serum, without affecting total ERK levels. CREB phosphorylation was increased by ethanol treatment in both media, irrespective of the presence of serum. Electrophoretic mobility shift assay, using a 25-base pair (bp) double-stranded DNA fragment containing the cyclic AMP response element (CRE)-like sequence of the NR2B promoter as (32)P-labeled probe, showed an increase in specific CRE binding to nuclear proteins isolated from cells undergoing long-term ethanol treatment. A 467-bp DNA fragment of the NR2B promoter containing the CRE sequence cloned into the luciferase vector exhibited high reporter activity in transient cotransfection assay of mouse cortical neurons, and ethanol treatment increased this activity. Introducing site-directed mutation in the CRE sequence significantly reduced the reporter activity relative to the wild-type construct, and it also abolished the stimulatory effect by ethanol. Our results indicate that CREB is probably involved in mediating ethanol-induced up-regulation of NR2B gene.
Collapse
Affiliation(s)
- C S Sheela Rani
- Department of Pharmacology, The University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
28
|
Pandey SC, Chartoff EH, Carlezon WA, Zou J, Zhang H, Kreibich AS, Blendy JA, Crews FT. CREB Gene Transcription Factors: Role in Molecular Mechanisms of Alcohol and Drug Addiction. Alcohol Clin Exp Res 2005; 29:176-84. [PMID: 15714041 DOI: 10.1097/01.alc.0000153550.31168.1d] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This article presents the proceedings of a symposium presented at the meeting of the Research Society on Alcoholism, held in Vancouver, British Columbia, Canada, in June 2004. The organizers and chairpersons were Subhash C. Pandey and Fulton Crews. The presentations were (1) Ethanol Modulation of CREB: Role in Dependence and Withdrawal, by Fulton Crews; (2) Effects of D1 Dopamine Receptor Activation During Withdrawal From Chronic Morphine: Enhanced CREB Activation and Decreased Conditioned Place Aversion, by Elena H. Chartoff; (3) CREB-Haplodeficient Mice: Role in Anxiety and Alcohol-Drinking Behaviors, by Subhash C. Pandey; and (4) A Role for CREB in Stress and Drug Addiction, by Julie A. Blendy.
Collapse
Affiliation(s)
- Subhash C Pandey
- Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Fee JR, Sparta DR, Knapp DJ, Breese GR, Picker MJ, Thiele TE. Predictors of high ethanol consumption in RIIbeta knock-out mice: assessment of anxiety and ethanol-induced sedation. Alcohol Clin Exp Res 2005; 28:1459-68. [PMID: 15597077 PMCID: PMC1360241 DOI: 10.1097/01.alc.0000141809.53115.71] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Genetic and pharmacological evidence suggests that the cyclic adenosine monophosphate-dependent protein kinase A pathway modulates neurobiological responses to ethanol. Mutant mice lacking the RIIbeta subunit of protein kinase A (RIIbeta(-/-)) are resistant to ethanol-induced sedation and drink significantly more ethanol than littermate wild-type mice (RIIbeta(+/+)). We determined whether high ethanol intake by the RIIbeta(-/-) mice on alternate genetic backgrounds is reliably predicted by high basal levels of anxiety or resistance to the sedative effects of ethanol. METHODS Two-bottle choice procedures and a battery of behavioral tests (elevated plus maze, open-field activity, and zero maze) were used to assess voluntary ethanol consumption and basal levels of anxiety in RIIbeta(-/-) and RIIbeta(+/+) mice on either a C57BL/6J or a 129/SvEv x C57BL/6J genetic background. Additionally, ethanol-induced sedation and blood ethanol levels were determined in RIIbeta(-/-) and RIIbeta(+/+) mice after intraperitoneal injection of ethanol (3.8 g/kg). RESULTS RIIbeta(-/-) mice on both genetic backgrounds consumed more ethanol and had a greater preference for ethanol relative to RIIbeta(+/+) mice. However, RIIbeta(-/-) mice showed reduced basal levels of anxiety when maintained on the C57BL/6J background but showed increased anxiety when maintained on the 129/SvEv x C57BL/6J background. Consistent with prior research, RIIbeta(-/-) mice were resistant to the sedative effects of ethanol, regardless of the genetic background. Finally, RIIbeta(-/-) and RIIbeta(+/+) mice showed similar blood ethanol levels. CONCLUSIONS These results indicate that high ethanol consumption is associated with resistance to the sedative effects of ethanol but that basal levels of anxiety, as well as ethanol metabolism, do not reliably predict high ethanol drinking by RIIbeta(-/-) mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Todd E. Thiele
- Reprint requests: Todd E. Thiele, PhD, Department of Psychology, University of North Carolina, Davie Hall, CB# 3270, Chapel Hill, NC 27599-3270; Fax: 919-962-2537; E-mail:
| |
Collapse
|
30
|
Fischer QS, Beaver CJ, Yang Y, Rao Y, Jakobsdottir KB, Storm DR, McKnight GS, Daw NW. Requirement for the RIIbeta isoform of PKA, but not calcium-stimulated adenylyl cyclase, in visual cortical plasticity. J Neurosci 2005; 24:9049-58. [PMID: 15483123 PMCID: PMC6730071 DOI: 10.1523/jneurosci.2409-04.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cAMP-dependent protein kinase (PKA) signaling pathway plays a key role in visual cortical plasticity. Inhibitors that block activation of all PKA regulatory subunits (RIalpha,RIbeta, RIIalpha, RIIbeta) abolish long-term potentiation (LTP) and long-term depression (LTD) in vitro and ocular dominance plasticity (ODP) in vivo. The details of this signaling cascade, however, including the source of PKA signals and which PKA subunits are involved, are unknown. To investigate these issues we have examined LTP, LTD, and ODP in knock-out mice lacking either the two cortically expressed Ca2+-stimulated adenylyl cyclases (AC1 and AC8) or the predominant neocortical subunit of PKA (RIIbeta). Here we show that plasticity remains intact in AC1/AC8-/- mice, whereas ODP and LTD, but not LTP, are absent in RIIbeta-/- mice. We conclude that (1) plasticity in the visual cortex does not require the activity of known Ca2+-stimulated adenylyl cyclases, (2) the PKA dependence of ODP and LTD, but not LTP, is mediated by RIIbeta-PKA, and (3) multiple isoforms of PKA contribute to LTD.
Collapse
Affiliation(s)
- Quentin S Fischer
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut 06520-8061, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Constantinescu A, Wu M, Asher O, Diamond I. cAMP-dependent protein kinase type I regulates ethanol-induced cAMP response element-mediated gene expression via activation of CREB-binding protein and inhibition of MAPK. J Biol Chem 2004; 279:43321-9. [PMID: 15299023 DOI: 10.1074/jbc.m406994200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that the two types of cAMP-dependent protein kinase (PKA) in NG108-15 cells differentially mediate forskolin- and ethanol-induced cAMP response element (CRE)-binding protein (CREB) phosphorylation and CRE-mediated gene transcription. Activated type II PKA is translocated into the nucleus where it phosphorylates CREB. By contrast, activated type I PKA does not translocate to the nucleus but is required for CRE-mediated gene transcription by inducing the activation of other transcription cofactors such as CREB-binding protein (CBP). We show here that CBP is required for forskolin- and ethanol-induced CRE-mediated gene expression. Forskolin- and ethanol-induced CBP phosphorylation, demonstrable at 10 min, persists up to 24 h. CBP phosphorylation requires type I PKA but not type II PKA. In NG108-15 cells, ethanol and forskolin activation of type I PKA also inhibits several components of the MAPK pathway including B-Raf kinase, ERK1/2, and p90RSK phosphorylation. As a result, unphosphorylated p90RSK no longer binds to nor inhibits CBP. Moreover, MEK inhibition by PD98059 induces a significant increase of CRE-mediated gene activation. Taken together, our findings suggest that inhibition of the MAPK pathway enhances cAMP-dependent gene activation during exposure of NG108-15 cells to ethanol. This mechanism appears to involve type I PKA-dependent phosphorylation of CBP and inhibition of MEK-dependent phosphorylation of p90RSK. Under these conditions p90RSK is no longer bound to CBP, thereby promoting CBP-dependent CREB-mediated gene expression.
Collapse
Affiliation(s)
- Anastasia Constantinescu
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, CA 94608, USA.
| | | | | | | |
Collapse
|
32
|
Otsuka M, Kato N, Shao RX, Hoshida Y, Ijichi H, Koike Y, Taniguchi H, Moriyama M, Shiratori Y, Kawabe T, Omata M. Vitamin K2 inhibits the growth and invasiveness of hepatocellular carcinoma cells via protein kinase A activation. Hepatology 2004; 40:243-51. [PMID: 15239108 DOI: 10.1002/hep.20260] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common human malignancy. Its high mortality rate is mainly a result of high intrahepatic recurrence and portal venous invasion (PVI). We previously reported that the development of PVI is related to levels of des-gamma-carboxy prothrombin (DCP), a serum protein that increases at a notably higher rate in patients with HCC. Because DCP is produced by a vitamin K shortage, we examined the biological effects of extrinsic supplementation of vitamin K(2) in HCC cells in vitro and in vivo. Consequently, vitamin K(2) inhibits the growth and invasion of HCC cells through the activation of protein kinase A, which modulates the activities of several transcriptional factors and inhibits the small GTPase Rho, independent of suppression of DCP. In addition, administration of vitamin K(2) to nude mice inoculated with liver tumor cells reduced both tumor growth and body weight loss. In conclusion, similar to an acyclic retinoid--which was previously reported to prevent the recurrence of HCC--vitamin K(2), another lipid-soluble vitamin, may be a promising therapeutic means for the management of HCC.
Collapse
Affiliation(s)
- Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu J, Hu JY, Schacher S, Schwartz JH. The two regulatory subunits of aplysia cAMP-dependent protein kinase mediate distinct functions in producing synaptic plasticity. J Neurosci 2004; 24:2465-74. [PMID: 15014122 PMCID: PMC6729487 DOI: 10.1523/jneurosci.4331-03.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of the cAMP-dependent protein kinase (PKA) is critical for both short- and long-term facilitation in Aplysia sensory neurons. There are two types of the kinase, I and II, differing in their regulatory (R) subunits. We cloned Aplysia RII; RI was cloned previously. Type I PKA is mostly soluble in the cell body whereas type II is enriched at nerve endings where it is bound to two prominent A kinase-anchoring-proteins (AKAPs). Disruption of the binding of RII to AKAPs by Ht31, an inhibitory peptide derived from a human thyroid AKAP, prevents both the short- and the long-term facilitation produced by serotonin (5-HT). During long-term facilitation, RII is transcriptionally upregulated; in contrast, the amount of RI subunits decreases, and previous studies have indicated that the decrease is through ubiquitin-proteosome-mediated proteolysis. Experiments with antisense oligonucleotides injected into the sensory neuron cell body show that the increase in RII protein is essential for the production of long-term facilitation. Using synaptosomes, we found that 5-HT treatment causes RII protein to increase at nerve endings. In addition, using reverse transcription-PCR, we found that RII mRNA is transported from the cell body to nerve terminals. Our results suggest that type I operates in the nucleus to maintain cAMP response element-binding protein-dependent gene expression, and type II PKA acts at sensory neuron synapses phosphorylating proteins to enhance release of neurotransmitter. Thus, the two types of the kinase have distinct but complementary functions in the production of facilitation at synapses of an identified neuron.
Collapse
Affiliation(s)
- Jinming Liu
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York State Psychiatric Institute, New York, New York 10032, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Neuronal responses to alcohol involve several hormone- and neurotransmitter-activated signal transduction pathways. Recent studies suggest that the adenosine A2 receptor (A2) mediates important actions of alcohol. Ethanol inhibits adenosine reuptake, increases extracellular adenosine, and promotes activation of A2. This leads to enhanced cAMP/protein kinase A (PKA) signaling ranging from increases in cAMP to stimulation of cAMP-dependent cAMP response element (CRE)-mediated gene expression. Medium spiny neurons in the striatum/nucleus accumbens (NAc) express A2 and dopamine D2 receptor (D2) on the same cells. Studies in model neuronal cell lines and primary neurons in culture expressing A2 and D2 provide evidence for synergy between ethanol/A2 and D2. Subthreshold concentrations of ethanol or a D2 agonist, without effect separately, synergistically activate cAMP/PKA signaling. Thus, neurons expressing A2 and D2 on the same cells, like in the NAc, are characterized by hypersensitivity to ethanol with a simultaneous activation of dopaminergic signaling. Synergy requires adenosine and appears to be mediated by the release of free betagamma dimers from G(i/o) via D2 activation. The release of free betagamma has pathophysiological significance in the drinking animal because specific blockade of betagamma signaling in the NAc strikingly reduces voluntary alcohol consumption. These findings suggest that signaling pathways, which regulate synergy between A2 and D2, might contain molecular targets for the prevention and treatment of alcoholism and alcohol abuse.
Collapse
Affiliation(s)
- William S Mailliard
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, 5858 Horton Street, Suite 200, , Emeryville, CA 94608, USA
| | | |
Collapse
|
35
|
Goldbart A, Row BW, Kheirandish L, Schurr A, Gozal E, Guo SZ, Payne RS, Cheng Z, Brittian KR, Gozal D. Intermittent hypoxic exposure during light phase induces changes in cAMP response element binding protein activity in the rat CA1 hippocampal region: water maze performance correlates. Neuroscience 2004; 122:585-90. [PMID: 14622901 DOI: 10.1016/j.neuroscience.2003.08.054] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Intermittent hypoxia (IH) during sleep, a characteristic feature of sleep-disordered breathing (SDB) is associated with time-dependent apoptosis and spatial learning deficits in the adult rat. The mechanisms underlying such neurocognitive deficits remain unclear. Activation of the cAMP-response element binding protein (CREB) transcription factor mediates critical components of neuronal survival and memory consolidation in mammals. CREB phosphorylation and DNA binding, as well as the presence of apoptosis in the CA1 region of the hippocampus were examined in Sprague-Dawley male rats exposed to IH. Spatial reference task learning was assessed with the Morris water maze. IH induced significant decreases in Ser-133 phosphorylated CREB (pCREB) without changes in total CREB, starting as early as 1 h IH, peaking at 6 h-3 days, and returning toward normoxic levels by 14-30 days. Double-labeling immunohistochemistry for pCREB and Neu-N (a neuronal marker) confirmed these findings. The expression of cleaved caspase 3 (cC3) in the CA1, a marker of apoptosis, peaked at 3 days and returned to normoxic values at 14 days. Initial IH-induced impairments in spatial learning were followed by partial functional recovery starting at 14 days of IH exposure. We postulate that IH elicits time-dependent changes in CREB phosphorylation and nuclear binding that may account for decreased neuronal survival and spatial learning deficits in the adult rat. We suggest that CREB changes play an important role in the neurocognitive morbidity of SDB patients.
Collapse
Affiliation(s)
- A Goldbart
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Suite 321, 570 South Preston Street, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dwivedi Y, Rizavi HS, Shukla PK, Lyons J, Faludi G, Palkovits M, Sarosi A, Conley RR, Roberts RC, Tamminga CA, Pandey GN. Protein kinase A in postmortem brain of depressed suicide victims: altered expression of specific regulatory and catalytic subunits. Biol Psychiatry 2004; 55:234-43. [PMID: 14744463 DOI: 10.1016/j.biopsych.2003.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND We recently reported reduced [3H]cyclic adenosine monophosphate binding and catalytic activity of protein kinase A in prefrontal cortex of depressed suicide victims. Here we examined the molecular basis of these alterations and whether these findings can be replicated in another cohort. METHODS Prefrontal cortex from depressed suicide victims and nonpsychiatric controls were obtained from the Lenhossek Human Brain Program, Budapest and the Maryland Brain Collection Program. [3H]cyclic adenosine monophosphate binding and protein kinase A activity were determined by radioligand binding and enzymatic assay, respectively. Expression of catalytic and regulatory subunits was determined by quantitative reverse transcription polymerase chain reaction and Western blot, respectively. RESULTS [3H]cyclic adenosine monophosphate binding and total and endogenous protein kinase A activity were significantly decreased in membrane and cytosol fractions of prefrontal cortex of depressed suicide victims from the Budapest cohort, with a similar magnitude (33%-40% reduction) as reported for the Maryland cohort. In both cohorts, selective reduction (36%-41%) in mRNA and protein expression of the regulatory RIIbeta and the catalytic Cbeta was observed. CONCLUSIONS Our results suggest abnormalities in [3H]cyclic adenosine monophosphate binding and catalytic activity kinase A in brain of depressed suicide victims, which could be due to reduced expression of RIIbeta and Cbeta. These abnormalities in PKA may be critical in the pathophysiology of depression.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hassan S, Duong B, Kim KS, Miles MF. Pharmacogenomic analysis of mechanisms mediating ethanol regulation of dopamine beta-hydroxylase. J Biol Chem 2003; 278:38860-9. [PMID: 12842874 DOI: 10.1074/jbc.m305040200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously showed that ethanol regulates dopamine beta-hydroxylase (DBH) mRNA and protein levels in human neuroblastoma cells (Thibault, C., Lai, C., Wilke, N., Duong, B., Olive, M. F., Rahman, S., Dong, H., Hodge, C. W., Lockhart, D. J., and Miles, M. F. (2000) Mol. Pharmacol. 58, 1593-1600). DBH catalyzes norepinephrine synthesis, and several studies have suggested a role for norepinephrine in ethanol-mediated behaviors. Here, we performed a detailed analysis of mechanism(s) underlying ethanol regulation of DBH expression in SH-SY5Y cells. Transient transfection analysis showed that ethanol (25-200 mM) caused concentration- and time-dependent increases in DBH gene transcription. Progressive deletions identified ethanol-responsive sequences in the -262 to -142 bp region of the DBH gene promoter. Mutagenesis of cAMP-response element (CRE) sequences in this region abolished ethanol responsiveness while maintaining responsiveness to phorbol esters. Coexpression of dominant-negative CRE-binding protein greatly reduced ethanol induction of DBH. Inhibitors of protein kinase A, casein kinase II, and MAPK reduced ethanol induction of DBH promoter activity. Pharmacogenomic studies with microarrays showed that protein kinase A, MEK, and casein kinase II inhibitors blocked induction of DBH and a large subset of ethanol-responsive genes. These genes had diverse functional groupings, including multiple members of the MAPK and phosphatidylinositol signaling cascades. Real-time PCR analysis validated select microarray results. Taken together, these results suggest that ethanol regulation of DBH requires a functional CRE and its binding protein and may require interaction of multiple kinase pathways. This mechanism may also mediate ethanol responsiveness of a complex subset of genes in neural cells. These studies may have implications for behavioral responses to ethanol or mechanisms underlying ethanol-related neurological disease.
Collapse
Affiliation(s)
- Sajida Hassan
- Departments of Pharmacology Toxicology and Neurology and the Center for Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|