1
|
Matsuki Y, Iwamoto M, Maki T, Takashima M, Yoshida T, Oiki S. Programmable Lipid Bilayer Tension-Control Apparatus for Quantitative Mechanobiology. ACS NANO 2024; 18:30561-30573. [PMID: 39437160 PMCID: PMC11544928 DOI: 10.1021/acsnano.4c09017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
The biological membrane is not just a platform for information processing but also a field of mechanics. The lipid bilayer that constitutes the membrane is an elastic body, generating stress upon deformation, while the membrane protein embedded therein deforms the bilayer through structural changes. Among membrane-protein interplays, various channel species act as tension-current converters for signal transduction, serving as elementary processes in mechanobiology. However, in situ studies in chaotically complex cell membranes are challenging, and characterizing the tension dependency of mechanosensitive channels remains semiquantitative owing to technical limitations. Here, we developed a programmable membrane tension-control apparatus on a lipid bilayer system. This synthetic membrane system [contact bubble bilayer (CBB)] uses pressure to drive bilayer tension changes via the Young-Laplace principle, whereas absolute bilayer tension is monitored in real-time through image analysis of the bubble geometry via the Young principle. Consequently, the mechanical nature of the system permits the implementation of closed-loop feedback control of bilayer tension (tension-clamp CBB), maintaining a constant tension for minutes and allowing stepwise tension changes within a hundred milliseconds in the tension range of 0.8 to 15 mN·m-1. We verified the system performance by examining the single-channel behavior of tension-dependent KcsA and TREK-1 potassium channels under scheduled tension time courses prescribed via visual interfaces. The result revealed steady-state activity and dynamic responses to the step tension changes, which are essential to the biophysical characterization of the channels. The apparatus explores a frontier for quantitative mechanobiology studies and promotes the development of a tension-operating experimental robot.
Collapse
Affiliation(s)
- Yuka Matsuki
- Department
of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Masayuki Iwamoto
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Takahisa Maki
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Masako Takashima
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Toshiyuki Yoshida
- Department
of Information Science, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Shigetoshi Oiki
- Biomedical
Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
2
|
Petersen EN, Pavel MA, Hansen SS, Gudheti M, Wang H, Yuan Z, Murphy KR, Ja W, Ferris HA, Jorgensen E, Hansen SB. Mechanical activation of TWIK-related potassium channel by nanoscopic movement and rapid second messenger signaling. eLife 2024; 12:RP89465. [PMID: 38407149 PMCID: PMC10942622 DOI: 10.7554/elife.89465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Rapid conversion of force into a biological signal enables living cells to respond to mechanical forces in their environment. The force is believed to initially affect the plasma membrane and then alter the behavior of membrane proteins. Phospholipase D2 (PLD2) is a mechanosensitive enzyme that is regulated by a structured membrane-lipid site comprised of cholesterol and saturated ganglioside (GM1). Here we show stretch activation of TWIK-related K+ channel (TREK-1) is mechanically evoked by PLD2 and spatial patterning involving ordered GM1 and 4,5-bisphosphate (PIP2) clusters in mammalian cells. First, mechanical force deforms the ordered lipids, which disrupts the interaction of PLD2 with the GM1 lipids and allows a complex of TREK-1 and PLD2 to associate with PIP2 clusters. The association with PIP2 activates the enzyme, which produces the second messenger phosphatidic acid (PA) that gates the channel. Co-expression of catalytically inactive PLD2 inhibits TREK-1 stretch currents in a biological membrane. Cellular uptake of cholesterol inhibits TREK-1 currents in culture and depletion of cholesterol from astrocytes releases TREK-1 from GM1 lipids in mouse brain. Depletion of the PLD2 ortholog in flies results in hypersensitivity to mechanical force. We conclude PLD2 mechanosensitivity combines with TREK-1 ion permeability to elicit a mechanically evoked response.
Collapse
Affiliation(s)
- E Nicholas Petersen
- Departments of Molecular Medicine, The Scripps Research Institute, ScrippsJupiterUnited States
- Scripps Research Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, Scripps,JupiterUnited States
| | - Mahmud Arif Pavel
- Departments of Molecular Medicine, The Scripps Research Institute, ScrippsJupiterUnited States
| | - Samuel S Hansen
- Departments of Molecular Medicine, The Scripps Research Institute, ScrippsJupiterUnited States
| | - Manasa Gudheti
- Division of Endocrinology and Metabolism, Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Hao Wang
- Departments of Molecular Medicine, The Scripps Research Institute, ScrippsJupiterUnited States
- Scripps Research Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, Scripps,JupiterUnited States
| | - Zixuan Yuan
- Departments of Molecular Medicine, The Scripps Research Institute, ScrippsJupiterUnited States
- Scripps Research Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, Scripps,JupiterUnited States
| | - Keith R Murphy
- Department of Neuroscience, The Scripps Research Institute, ScrippsJupiterUnited States
- Center on Aging,The Scripps Research Institute, ScrippsJupiterUnited States
| | - William Ja
- Department of Neuroscience, The Scripps Research Institute, ScrippsJupiterUnited States
- Center on Aging,The Scripps Research Institute, ScrippsJupiterUnited States
| | - Heather A Ferris
- Division of Endocrinology and Metabolism, Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Erik Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of UtahSalt Lake CityUnited States
| | - Scott B Hansen
- Departments of Molecular Medicine, The Scripps Research Institute, ScrippsJupiterUnited States
| |
Collapse
|
3
|
Mitrokhin V, Bilichenko A, Kazanski V, Schobik R, Shileiko S, Revkova V, Kalsin V, Kamkina O, Kamkin A, Mladenov M. Transcriptomic profile of the mechanosensitive ion channelome in human cardiac fibroblasts. Exp Biol Med (Maywood) 2023; 248:2341-2350. [PMID: 38158807 PMCID: PMC10903254 DOI: 10.1177/15353702231218488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/27/2023] [Indexed: 01/03/2024] Open
Abstract
Human cardiac fibroblasts (HCFs) have mRNA transcripts that encode different mechanosensitive ion channels and channel regulatory proteins whose functions are not known yet. The primary goal of this work was to define the mechanosensitive ion channelome of HCFs. The most common type of cationic channel is the transient receptor potential (TRP) family, which is followed by the TWIK-related K+ channel (TREK), transmembrane protein 63 (TMEM63), and PIEZO channel (PIEZO) families. In the sodium-dependent NON-voltage-gated channel (SCNN) subfamily, only SCNN1D was shown to be highly expressed. Particular members of the acid-sensing ion channel (ASIC) (ASIC1 and ASIC3) subfamilies were also significantly expressed. The transcripts per kilobase million (TPMs) for Piezo 2 were almost 100 times less abundant than those for Piezo 1. The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-2 channel, TWIK-related acid-sensitive K+ channel (TASK)-5, TASK-1, and the TWIK-related K1 (TREK-1) channel were the four most prevalent types in the K2P subfamily. The highest expression in the TRPP subfamily was found for PKD2 and PKD1, while in the TRPM subfamily, it was found for TRPM4, TRPM7, and TRPM3. TRPV2, TRPV4, TRPV3, and TRPV6 (all members of the TRPV subfamily) were also substantially expressed. A strong expression of the TRPC1, TRPC4, TRPC6, and TRPC2 channels and all members of the TRPML subfamily (MCOLN1, MCOLN2, and MCOLN3) was also shown. In terms of the transmembrane protein 16 (TMEM16) family, the HCFs demonstrated significant expression of the TMEM16H, TMEM16F, TMEM16J, TMEM16A, and TMEM16G channels. TMC3 is the most expressed channel in HCFs of all known members of the transmembrane channel-like protein (TMC) family. This analysis of the mechanosensitive ionic channel transcriptome in HCFs: (1) agrees with previously documented findings that all currently identified mechanosensitive channels play a significant and well recognized physiological function in elucidating the mechanosensitive characteristics of HCFs; (2) supports earlier preliminary reports that point to the most common expression of the TRP mechanosensitive family in HCFs; and (3) points to other new mechanosensitive channels (TRPC1, TRPC2, TWIK-2, TMEM16A, ASIC1, and ASIC3).
Collapse
Affiliation(s)
- Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andrei Bilichenko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Viktor Kazanski
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Roman Schobik
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Stanislav Shileiko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Veronika Revkova
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladimir Kalsin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Olga Kamkina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Mitko Mladenov
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
| |
Collapse
|
4
|
Bogdanović I, Opačić M, Baščarević V, Raičević S, Ilić R, Grujičić D, Spasojević I, Ristić AJ. A potential role of mechano-gated potassium channels in meningioma-related seizures. Heliyon 2023; 9:e20761. [PMID: 37860528 PMCID: PMC10582377 DOI: 10.1016/j.heliyon.2023.e20761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Every third patient with intracranial meningioma develops seizures of poorly understood etiology. Tumor and peritumoral edema may exert mechanical pressure on the cortex that may affect mechano-gated potassium channels - KCNK2 and KCNK4. These channels regulate neuron excitability and have been related to seizures in some other conditions. The objective of the present study was to explore a potential relation between the levels of these proteins in tumor tissue and adjacent cortex and seizures development. The study included 19 meningioma patients that presented one or more preoperative seizures and 24 patients with no seizures. Tissue samples were collected in the course of surgical removal of the meningioma. Postoperative seizure freedom was achieved in 11 out of 19 patients. The relative level of KCNK2 in the cortical tissue was lower in patients with preoperative seizures. On the other hand, cortical tissue level of KCNK4 was higher in patients that became seizure-free after the surgery. In addition, relative levels of KCNK4 in the cortical and tumor tissue appear to be lowered by the treatment with anti-seizure medication levetiracetam. These results imply that KCNK2 and KCNK4 may be involved in the development of meningioma-related seizures and may represent promising therapeutic targets.
Collapse
Affiliation(s)
- Ivan Bogdanović
- Neurosurgery Clinic, Clinical Center of Serbia, Koste Todorovića 4, 11000, Belgrade, Serbia
| | - Miloš Opačić
- University of Belgrade - Institute for Multidisciplinary Research, Life Sciences Department, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Vladimir Baščarević
- Neurosurgery Clinic, Clinical Center of Serbia, Koste Todorovića 4, 11000, Belgrade, Serbia
| | - Savo Raičević
- Neurosurgery Clinic, Clinical Center of Serbia, Koste Todorovića 4, 11000, Belgrade, Serbia
| | - Rosanda Ilić
- Neurosurgery Clinic, Clinical Center of Serbia, Koste Todorovića 4, 11000, Belgrade, Serbia
| | - Danica Grujičić
- Neurosurgery Clinic, Clinical Center of Serbia, Koste Todorovića 4, 11000, Belgrade, Serbia
| | - Ivan Spasojević
- University of Belgrade - Institute for Multidisciplinary Research, Life Sciences Department, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Aleksandar J. Ristić
- Center for Epilepsy and Sleep Disorders, Neurology Clinic, Clinical Center of Serbia, Dr Subotića Starijeg 6, 11000, Belgrade, Serbia
| |
Collapse
|
5
|
Canella R, Benedusi M, Vallese A, Pecorelli A, Guiotto A, Ferrara F, Rispoli G, Cervellati F, Valacchi G. The role of potassium current in the pulmonary response to environmental oxidative stress. Arch Biochem Biophys 2023; 737:109534. [PMID: 36740034 DOI: 10.1016/j.abb.2023.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Exposure of human lung epithelial cells (A549 cell line) to the oxidant pollutant ozone (O3) alters cell membrane currents inducing its decrease, when the cell undergoes to a voltage-clamp protocol ranging from -90 to +70mV. The membrane potential of these cells is mainly maintained by the interplay of potassium and chloride currents. Our previous studies indicated the ability of O3 to activate ORCC (Outward Rectifier Chloride Channel) and consequently increases the chloride current. In this paper our aim was to understand the response of potassium current to oxidative stress challenge and to identify the kind potassium channel involved in O3 induced current changes. After measuring the total membrane current using an intracellular solution with or without potassium ions, we obtained the contribution of potassium to the overall membrane current in control condition by a mathematical approach. Repeating these experiments after O3 treatment we observed a significant decrease of Ipotassium. Treatment of the cells with Iberiotoxin (IbTx), a specific inhibitor of BK channel, we were able to verify the presence and the functionality of BK channels. In addition, the administration of 4-Aminopyridine (an inhibitor of voltage dependent K channels but not BK channels) and Tetraethylammonium (TEA) before and after O3 treatment we observed the formation of BK oxidative post-translation modifications. Our data suggest that O3 is able to inhibit potassium current by targeting BK channel. Further studies are needed to better clarify the role of this BK channel and its interplay with the other membrane channels under oxidative stress conditions. These findings can contribute to identify the biomolecular pathway induced by O3 allowing a possible pharmacological intervention against oxidative stress damage in lung tissue.
Collapse
Affiliation(s)
- Rita Canella
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy.
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Andrea Vallese
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Anna Guiotto
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Giorgio Rispoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Franco Cervellati
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy; NC State University, Plants for Human Health Institute, Animal Science Dept. NC Research Campus 600 Laureate Way, Kannapolis, NC, 28081, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
6
|
Young MN, Sindoni MJ, Lewis AH, Zauscher S, Grandl J. The energetics of rapid cellular mechanotransduction. Proc Natl Acad Sci U S A 2023; 120:e2215747120. [PMID: 36795747 PMCID: PMC9974467 DOI: 10.1073/pnas.2215747120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Cells throughout the human body detect mechanical forces. While it is known that the rapid (millisecond) detection of mechanical forces is mediated by force-gated ion channels, a detailed quantitative understanding of cells as sensors of mechanical energy is still lacking. Here, we combine atomic force microscopy with patch-clamp electrophysiology to determine the physical limits of cells expressing the force-gated ion channels (FGICs) Piezo1, Piezo2, TREK1, and TRAAK. We find that, depending on the ion channel expressed, cells can function either as proportional or nonlinear transducers of mechanical energy and detect mechanical energies as little as ~100 fJ, with a resolution of up to ~1 fJ. These specific energetic values depend on cell size, channel density, and cytoskeletal architecture. We also make the surprising discovery that cells can transduce forces either nearly instantaneously (<1 ms) or with a substantial time delay (~10 ms). Using a chimeric experimental approach and simulations, we show how such delays can emerge from channel-intrinsic properties and the slow diffusion of tension in the membrane. Overall, our experiments reveal the capabilities and limits of cellular mechanosensing and provide insights into molecular mechanisms that different cell types may employ to specialize for their distinct physiological roles.
Collapse
Affiliation(s)
- Michael N. Young
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| | - Michael J. Sindoni
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| | - Amanda H. Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27710
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
7
|
Xing C, Bao L, Li W, Fan H. Progress on role of ion channels of cardiac fibroblasts in fibrosis. Front Physiol 2023; 14:1138306. [PMID: 36969589 PMCID: PMC10033868 DOI: 10.3389/fphys.2023.1138306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac fibrosis is defined as excessive deposition of extracellular matrix (ECM) in pathological conditions. Cardiac fibroblasts (CFs) activated by injury or inflammation differentiate into myofibroblasts (MFs) with secretory and contractile functions. In the fibrotic heart, MFs produce ECM which is composed mainly of collagen and is initially involved in maintaining tissue integrity. However, persistent fibrosis disrupts the coordination of excitatory contractile coupling, leading to systolic and diastolic dysfunction, and ultimately heart failure. Numerous studies have demonstrated that both voltage- and non-voltage-gated ion channels alter intracellular ion levels and cellular activity, contributing to myofibroblast proliferation, contraction, and secretory function. However, an effective treatment strategy for myocardial fibrosis has not been established. Therefore, this review describes the progress made in research related to transient receptor potential (TRP) channels, Piezo1, Ca2+ release-activated Ca2+ (CRAC) channels, voltage-gated Ca2+ channels (VGCCs), sodium channels, and potassium channels in myocardial fibroblasts with the aim of providing new ideas for treating myocardial fibrosis.
Collapse
|
8
|
Yang H, Hou C, Xiao W, Qiu Y. The role of mechanosensitive ion channels in the gastrointestinal tract. Front Physiol 2022; 13:904203. [PMID: 36060694 PMCID: PMC9437298 DOI: 10.3389/fphys.2022.904203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanosensation is essential for normal gastrointestinal (GI) function, and abnormalities in mechanosensation are associated with GI disorders. There are several mechanosensitive ion channels in the GI tract, namely transient receptor potential (TRP) channels, Piezo channels, two-pore domain potassium (K2p) channels, voltage-gated ion channels, large-conductance Ca2+-activated K+ (BKCa) channels, and the cystic fibrosis transmembrane conductance regulator (CFTR). These channels are located in many mechanosensitive intestinal cell types, namely enterochromaffin (EC) cells, interstitial cells of Cajal (ICCs), smooth muscle cells (SMCs), and intrinsic and extrinsic enteric neurons. In these cells, mechanosensitive ion channels can alter transmembrane ion currents in response to mechanical forces, through a process known as mechanoelectrical coupling. Furthermore, mechanosensitive ion channels are often associated with a variety of GI tract disorders, including irritable bowel syndrome (IBS) and GI tumors. Mechanosensitive ion channels could therefore provide a new perspective for the treatment of GI diseases. This review aims to highlight recent research advances regarding the function of mechanosensitive ion channels in the GI tract. Moreover, it outlines the potential role of mechanosensitive ion channels in related diseases, while describing the current understanding of interactions between the GI tract and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Haoyu Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Chaofeng Hou
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Yuan Qiu,
| |
Collapse
|
9
|
Martinac B, Kung C. The force-from-lipid principle and its origin, a ‘ what is true for E. coli is true for the elephant’ refrain. J Neurogenet 2022; 36:44-54. [DOI: 10.1080/01677063.2022.2097674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Ching Kung
- Laboratory of Molecular Biology and the Department of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
10
|
Miles L, Powell J, Kozak C, Song Y. Mechanosensitive Ion Channels, Axonal Growth, and Regeneration. Neuroscientist 2022:10738584221088575. [PMID: 35414308 PMCID: PMC9556659 DOI: 10.1177/10738584221088575] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cells sense and respond to mechanical stimuli by converting those stimuli into biological signals, a process known as mechanotransduction. Mechanotransduction is essential in diverse cellular functions, including tissue development, touch sensitivity, pain, and neuronal pathfinding. In the search for key players of mechanotransduction, several families of ion channels were identified as being mechanosensitive and were demonstrated to be activated directly by mechanical forces in both the membrane bilayer and the cytoskeleton. More recently, Piezo ion channels were discovered as a bona fide mechanosensitive ion channel, and its characterization led to a cascade of research that revealed the diverse functions of Piezo proteins and, in particular, their involvement in neuronal repair.
Collapse
Affiliation(s)
- Leann Miles
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jackson Powell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Casey Kozak
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuanquan Song
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Puech PH, Bongrand P. Mechanotransduction as a major driver of cell behaviour: mechanisms, and relevance to cell organization and future research. Open Biol 2021; 11:210256. [PMID: 34753321 PMCID: PMC8586914 DOI: 10.1098/rsob.210256] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
How do cells process environmental cues to make decisions? This simple question is still generating much experimental and theoretical work, at the border of physics, chemistry and biology, with strong implications in medicine. The purpose of mechanobiology is to understand how biochemical and physical cues are turned into signals through mechanotransduction. Here, we review recent evidence showing that (i) mechanotransduction plays a major role in triggering signalling cascades following cell-neighbourhood interaction; (ii) the cell capacity to continually generate forces, and biomolecule properties to undergo conformational changes in response to piconewton forces, provide a molecular basis for understanding mechanotransduction; and (iii) mechanotransduction shapes the guidance cues retrieved by living cells and the information flow they generate. This includes the temporal and spatial properties of intracellular signalling cascades. In conclusion, it is suggested that the described concepts may provide guidelines to define experimentally accessible parameters to describe cell structure and dynamics, as a prerequisite to take advantage of recent progress in high-throughput data gathering, computer simulation and artificial intelligence, in order to build a workable, hopefully predictive, account of cell signalling networks.
Collapse
Affiliation(s)
- Pierre-Henri Puech
- Lab Adhesion and Inflammation (LAI), Inserm UMR 1067, CNRS UMR 7333, Aix-Marseille Université UM61, Marseille, France
| | - Pierre Bongrand
- Lab Adhesion and Inflammation (LAI), Inserm UMR 1067, CNRS UMR 7333, Aix-Marseille Université UM61, Marseille, France
| |
Collapse
|
12
|
Uray IP, Uray K. Mechanotransduction at the Plasma Membrane-Cytoskeleton Interface. Int J Mol Sci 2021; 22:11566. [PMID: 34768998 PMCID: PMC8584042 DOI: 10.3390/ijms222111566] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
Mechanical cues are crucial for survival, adaptation, and normal homeostasis in virtually every cell type. The transduction of mechanical messages into intracellular biochemical messages is termed mechanotransduction. While significant advances in biochemical signaling have been made in the last few decades, the role of mechanotransduction in physiological and pathological processes has been largely overlooked until recently. In this review, the role of interactions between the cytoskeleton and cell-cell/cell-matrix adhesions in transducing mechanical signals is discussed. In addition, mechanosensors that reside in the cell membrane and the transduction of mechanical signals to the nucleus are discussed. Finally, we describe two examples in which mechanotransduction plays a significant role in normal physiology and disease development. The first example is the role of mechanotransduction in the proliferation and metastasis of cancerous cells. In this system, the role of mechanotransduction in cellular processes, including proliferation, differentiation, and motility, is described. In the second example, the role of mechanotransduction in a mechanically active organ, the gastrointestinal tract, is described. In the gut, mechanotransduction contributes to normal physiology and the development of motility disorders.
Collapse
Affiliation(s)
- Iván P. Uray
- Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
13
|
MCAs in Arabidopsis are Ca 2+-permeable mechanosensitive channels inherently sensitive to membrane tension. Nat Commun 2021; 12:6074. [PMID: 34667173 PMCID: PMC8526687 DOI: 10.1038/s41467-021-26363-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/02/2021] [Indexed: 02/05/2023] Open
Abstract
Mechanosensitive (MS) ion channels respond to mechanical stress and convert it into intracellular electric and ionic signals. Five MS channel families have been identified in plants, including the Mid1-Complementing Activity (MCA) channel; however, its activation mechanisms have not been elucidated in detail. We herein demonstrate that the MCA2 channel is a Ca2+-permeable MS channel that is directly activated by membrane tension. The N-terminal 173 residues of MCA1 and MCA2 were synthesized in vitro, purified, and reconstituted into artificial liposomal membranes. Liposomes reconstituted with MCA1(1-173) or MCA2(1-173) mediate Ca2+ influx and the application of pressure to the membrane reconstituted with MCA2(1-173) elicits channel currents. This channel is also activated by voltage. Blockers for MS channels inhibit activation by stretch, but not by voltage. Since MCA proteins are found exclusively in plants, these results suggest that MCA represent plant-specific MS channels that open directly with membrane tension. Mechanosensitive ion channels convert mechanical stimuli into intracellular electric and ionic signals. Here the authors show that Arabidopsis MCA2 is a Ca2+-permeable mechanosensitive channel that is directly activated by membrane tension.
Collapse
|
14
|
Grage SL, Culetto A, Ulrich AS, Weinschenk S. Membrane-Mediated Activity of Local Anesthetics. Mol Pharmacol 2021; 100:502-512. [PMID: 34475108 DOI: 10.1124/molpharm.121.000252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/19/2021] [Indexed: 01/06/2023] Open
Abstract
The activity of local anesthetics (LAs) has been attributed to the inhibition of ion channels, causing anesthesia. However, there is a growing body of research showing that LAs act on a wide range of receptors and channel proteins far beyond simple analgesia. The current concept of ligand recognition may no longer explain the multitude of protein targets influenced by LAs. We hypothesize that LAs can cause anesthesia without directly binding to the receptor proteins just by changing the physical properties of the lipid bilayer surrounding these proteins and ion channels based on LAs' amphiphilicity. It is possible that LAs act in one of the following ways: They 1) dissolve raft-like membrane microdomains, 2) impede nerve impulse propagation by lowering the lipid phase transition temperature, or 3) modulate the lateral pressure profile of the lipid bilayer. This could also explain the numerous additional effects of LAs besides anesthesia. Furthermore, the concepts of membrane-mediated activity and binding to ion channels do not have to exclude each other. If we were to consider LA as the middle part of a continuum between unspecific membrane-mediated activity on one end and highly specific ligand binding on the other end, we could describe LA as the link between the unspecific action of general anesthetics and toxins with their highly specific receptor binding. This comprehensive membrane-mediated model offers a fresh perspective to clinical and pharmaceutical research and therapeutic applications of local anesthetics. SIGNIFICANCE STATEMENT: Local anesthetics, according to the World Health Organization, belong to the most important drugs available to mankind. Their rediscovery as therapeutics and not only anesthetics marks a milestone in global pain therapy. The membrane-mediated mechanism of action proposed in this review can explain their puzzling variety of target proteins and their thus far inexplicable therapeutic effects. The new concept presented here places LAs on a continuum of structures and molecular mechanisms in between small general anesthetics and the more complex molecular toxins.
Collapse
Affiliation(s)
- Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| | - Anke Culetto
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| | - Stefan Weinschenk
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| |
Collapse
|
15
|
Richardson J, Kotevski A, Poole K. From stretch to deflection: the importance of context in the activation of mammalian, mechanically activated ion channels. FEBS J 2021; 289:4447-4469. [PMID: 34060230 DOI: 10.1111/febs.16041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 01/21/2023]
Abstract
The ability of cells to convert mechanical perturbations into biochemical information is an essential aspect of mammalian physiology. The molecules that mediate such mechanotransduction include mechanically activated ion channels, which directly convert mechanical inputs into electrochemical signals. The unifying feature of these channels is that their open probability increases with the application of a mechanical input. However, the structure, activation profile and sensitivity of distinct mechanically activated ion channels vary from channel to channel. In this review, we discuss how ionic currents can be mechanically evoked and monitored in vitro, and describe the distinct activation profiles displayed by a range of mammalian channels. In addition, we discuss the various mechanisms by which the best-characterized mammalian, mechanically activated ion channel, PIEZO1, can be modulated. The diversity of activation and modulation of these mammalian ion channels suggest that these molecules may facilitate a finely controlled and diverse ability to sense mechanical inputs in mammalian cells.
Collapse
Affiliation(s)
- Jessica Richardson
- EMBL Australia node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia.,Cellular and Systems Physiology, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Adrian Kotevski
- EMBL Australia node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia.,Cellular and Systems Physiology, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Kate Poole
- EMBL Australia node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia.,Cellular and Systems Physiology, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
16
|
Joshi V, Strege PR, Farrugia G, Beyder A. Mechanotransduction in gastrointestinal smooth muscle cells: role of mechanosensitive ion channels. Am J Physiol Gastrointest Liver Physiol 2021; 320:G897-G906. [PMID: 33729004 PMCID: PMC8202201 DOI: 10.1152/ajpgi.00481.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanosensation, the ability to properly sense mechanical stimuli and transduce them into physiologic responses, is an essential determinant of gastrointestinal (GI) function. Abnormalities in this process result in highly prevalent GI functional and motility disorders. In the GI tract, several cell types sense mechanical forces and transduce them into electrical signals, which elicit specific cellular responses. Some mechanosensitive cells like sensory neurons act as specialized mechanosensitive cells that detect forces and transduce signals into tissue-level physiological reactions. Nonspecialized mechanosensitive cells like smooth muscle cells (SMCs) adjust their function in response to forces. Mechanosensitive cells use various mechanoreceptors and mechanotransducers. Mechanoreceptors detect and convert force into electrical and biochemical signals, and mechanotransducers amplify and direct mechanoreceptor responses. Mechanoreceptors and mechanotransducers include ion channels, specialized cytoskeletal proteins, cell junction molecules, and G protein-coupled receptors. SMCs are particularly important due to their role as final effectors for motor function. Myogenic reflex-the ability of smooth muscle to contract in response to stretch rapidly-is a critical smooth muscle function. Such rapid mechanotransduction responses rely on mechano-gated and mechanosensitive ion channels, which alter their ion pores' opening in response to force, allowing fast electrical and Ca2+ responses. Although GI SMCs express a variety of such ion channels, their identities remain unknown. Recent advancements in electrophysiological, genetic, in vivo imaging, and multi-omic technologies broaden our understanding of how SMC mechano-gated and mechanosensitive ion channels regulate GI functions. This review discusses GI SMC mechanosensitivity's current developments with a particular emphasis on mechano-gated and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Vikram Joshi
- 1Division of Gastroenterology & Hepatology, Enteric NeuroScience Program (ENSP), Mayo Clinic, Rochester, Minnesota
| | - Peter R. Strege
- 1Division of Gastroenterology & Hepatology, Enteric NeuroScience Program (ENSP), Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- 1Division of Gastroenterology & Hepatology, Enteric NeuroScience Program (ENSP), Mayo Clinic, Rochester, Minnesota,2Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Arthur Beyder
- 1Division of Gastroenterology & Hepatology, Enteric NeuroScience Program (ENSP), Mayo Clinic, Rochester, Minnesota,2Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Stewart L, Turner NA. Channelling the Force to Reprogram the Matrix: Mechanosensitive Ion Channels in Cardiac Fibroblasts. Cells 2021; 10:990. [PMID: 33922466 PMCID: PMC8145896 DOI: 10.3390/cells10050990] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.
Collapse
Affiliation(s)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
18
|
Cox CD, Bavi N, Martinac B. Biophysical Principles of Ion-Channel-Mediated Mechanosensory Transduction. Cell Rep 2020; 29:1-12. [PMID: 31577940 DOI: 10.1016/j.celrep.2019.08.075] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/09/2019] [Accepted: 08/22/2019] [Indexed: 01/12/2023] Open
Abstract
Recent rapid progress in the field of mechanobiology has been driven by novel emerging tools and methodologies and growing interest from different scientific disciplines. Specific progress has been made toward understanding how cell mechanics is linked to intracellular signaling and the regulation of gene expression in response to a variety of mechanical stimuli. There is a direct link between the mechanoreceptors at the cell surface and intracellular biochemical signaling, which in turn controls downstream effector molecules. Among the mechanoreceptors in the cell membrane, mechanosensitive (MS) ion channels are essential for the ultra-rapid (millisecond) transduction of mechanical stimuli into biologically relevant signals. The three decades of research on mechanosensitive channels resulted in the formulation of two basic principles of mechanosensitive channel gating: force-from-lipids and force-from-filament. In this review, we revisit the biophysical principles that underlie the innate force-sensing ability of mechanosensitive channels as contributors to the force-dependent evolution of life forms.
Collapse
Affiliation(s)
- Charles D Cox
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Navid Bavi
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
19
|
Quinn TA, Kohl P. Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm. Physiol Rev 2020; 101:37-92. [PMID: 32380895 DOI: 10.1152/physrev.00036.2019] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The heart is vital for biological function in almost all chordates, including humans. It beats continually throughout our life, supplying the body with oxygen and nutrients while removing waste products. If it stops, so does life. The heartbeat involves precise coordination of the activity of billions of individual cells, as well as their swift and well-coordinated adaption to changes in physiological demand. Much of the vital control of cardiac function occurs at the level of individual cardiac muscle cells, including acute beat-by-beat feedback from the local mechanical environment to electrical activity (as opposed to longer term changes in gene expression and functional or structural remodeling). This process is known as mechano-electric coupling (MEC). In the current review, we present evidence for, and implications of, MEC in health and disease in human; summarize our understanding of MEC effects gained from whole animal, organ, tissue, and cell studies; identify potential molecular mediators of MEC responses; and demonstrate the power of computational modeling in developing a more comprehensive understanding of ‟what makes the heart tick.ˮ.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Life with Bacterial Mechanosensitive Channels, from Discovery to Physiology to Pharmacological Target. Microbiol Mol Biol Rev 2020; 84:84/1/e00055-19. [PMID: 31941768 DOI: 10.1128/mmbr.00055-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
General principles in biology have often been elucidated from the study of bacteria. This is true for the bacterial mechanosensitive channel of large conductance, MscL, the channel highlighted in this review. This channel functions as a last-ditch emergency release valve discharging cytoplasmic solutes upon decreases in osmotic environment. Opening the largest gated pore, MscL passes molecules up to 30 Å in diameter; exaggerated conformational changes yield advantages for study, including in vivo assays. MscL contains structural/functional themes that recur in higher organisms and help elucidate how other, structurally more complex, channels function. These features of MscL include (i) the ability to directly sense, and respond to, biophysical changes in the membrane, (ii) an α helix ("slide helix") or series of charges ("knot in a rope") at the cytoplasmic membrane boundary to guide transmembrane movements, and (iii) important subunit interfaces that, when disrupted, appear to cause the channel to gate inappropriately. MscL may also have medical applications: the modality of the MscL channel can be changed, suggesting its use as a triggered nanovalve in nanodevices, including those for drug targeting. In addition, recent studies have shown that the antibiotic streptomycin opens MscL and uses it as one of the primary paths to the cytoplasm. Moreover, the recent identification and study of novel specific agonist compounds demonstrate that the channel is a valid drug target. Such compounds may serve as novel-acting antibiotics and adjuvants, a way of permeabilizing the bacterial cell membrane and, thus, increasing the potency of commonly used antibiotics.
Collapse
|
21
|
Petersen EN, Pavel MA, Wang H, Hansen SB. Disruption of palmitate-mediated localization; a shared pathway of force and anesthetic activation of TREK-1 channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183091. [PMID: 31672538 PMCID: PMC6907892 DOI: 10.1016/j.bbamem.2019.183091] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
TWIK related K+ channel (TREK-1) is a mechano- and anesthetic sensitive channel that when activated attenuates pain and causes anesthesia. Recently the enzyme phospholipase D2 (PLD2) was shown to bind to the channel and generate a local high concentration of phosphatidic acid (PA), an anionic signaling lipid that gates TREK-1. In a biological membrane, the cell harnesses lipid heterogeneity (lipid compartments) to control gating of TREK-1 using palmitate-mediated localization of PLD2. Here we discuss the ability of mechanical force and anesthetics to disrupt palmitate-mediated localization of PLD2 giving rise to TREK-1's mechano- and anesthetic-sensitive properties. The likely consequences of this indirect lipid-based mechanism of activation are discussed in terms of a putative model for excitatory and inhibitory mechano-effectors and anesthetic sensitive ion channels in a biological context. Lastly, we discuss the ability of locally generated PA to reach mM concentrations near TREK-1 and the biophysics of localized signaling. Palmitate-mediated localization of PLD2 emerges as a central control mechanism of TREK-1 responding to mechanical force and anesthetic action. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- E Nicholas Petersen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mahmud Arif Pavel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hao Wang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Scott B Hansen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
22
|
Bavi N, Richardson J, Heu C, Martinac B, Poole K. PIEZO1-Mediated Currents Are Modulated by Substrate Mechanics. ACS NANO 2019; 13:13545-13559. [PMID: 31689081 DOI: 10.1021/acsnano.9b07499] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PIEZO1 is a bona fide mammalian mechanically activated channel that has recently been shown to provide instructive cues during neuronal specification, texture sensing, and cell migration where mechanical inputs arise at the interface between the cells and their substrate. Here, we have investigated whether the mechanical properties of the substrate alone can modulate PIEZO1 activity, in response to exogenously applied stimuli, using elastomeric pillar arrays as force transducers. This methodology enables application of mechanical stimuli at cell-substrate contact points by deflecting individual pili. We found that PIEZO1 is more sensitive to substrate deflections with increased spacing between pili (reducing surface roughness) but not on more stiff substrates. Cellular contractility was required for the sensitization of PIEZO1 but was not essential for PIEZO1 activation. Computational modeling suggested that the membrane tension changes generated by pillar deflections were below the membrane tension changes that arise from cellular indentation or high-speed pressure clamp assays. We conclude that the mechanics of the microenvironment can modulate PIEZO1 signaling, highlighting the importance of studying channel activation directly at the cell-substrate interface. We propose that forces arising from actin-mediated contractility and within the lipid bilayer act synergistically to regulate PIEZO1 activation by stimuli applied at contacts between cells and their surroundings.
Collapse
Affiliation(s)
- Navid Bavi
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
- Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
- Cellular and Systems Physiology, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Jessica Richardson
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
- Cellular and Systems Physiology, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Celine Heu
- Biomedical Imaging Facility , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division , Victor Chang Cardiac Research Institute , Darlinghurst , NSW 2010 , Australia
- St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Darlinghurst , NSW 2010 , Australia
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
- Cellular and Systems Physiology, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
23
|
Ridone P, Vassalli M, Martinac B. Piezo1 mechanosensitive channels: what are they and why are they important. Biophys Rev 2019; 11:795-805. [PMID: 31494839 PMCID: PMC6815293 DOI: 10.1007/s12551-019-00584-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Mechanosensitive (MS) ion channels are integral membrane proteins which play a crucial role in fast signaling during mechanosensory transduction processes in living cells. They are ubiquitous and old in the evolutionary sense, given their presence in cells from all three kingdoms of life found on Earth, including bacterial, archaeal, and eukaryotic organisms. As molecular transducers of mechanical force, MS channels are activated by mechanical stimuli exerted on cellular membranes, upon which they rapidly and efficiently convert these stimuli into electrical, osmotic, and/or chemical intracellular signals. Most of what we know about the gating mechanisms of MS channels comes from the work carried out on bacterial channels. However, recent progress resulting from identification and structural information of eukaryotic K2P-type TREK and TRAAK as well as Piezo1 and Piezo2 MS channels has greatly contributed to our understanding of the common biophysical principles underlying the gating mechanism and evolutionary origins of these fascinating membrane proteins. Using Piezo1 channels as an example, we briefly describe in this review what we have learned about their biophysics, physiological functions, and potential roles in "mechanopathologies."
Collapse
Affiliation(s)
- Pietro Ridone
- Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia
- School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Massimo Vassalli
- Institute of Biophysics, National Research Council, Genoa, Italy
| | - Boris Martinac
- Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
24
|
Canella R, Martini M, Cavicchio C, Cervellati F, Benedusi M, Valacchi G. Involvement of the TREK-1 channel in human alveolar cell membrane potential and its regulation by inhibitors of the chloride current. J Cell Physiol 2019; 234:17704-17713. [PMID: 30805940 DOI: 10.1002/jcp.28396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
K+ channels of the alveolar epithelium control the driving force acting on the ionic and solvent flow through the cell membrane contributing to the maintenance of cell volume and the constitution of epithelial lining fluid. In the present work, we analyze the effect of the Cl- channel inhibitors: (4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-inden-5-yl)oxy] butanoic acid (DCPIB) and 9-anthracenecarboxylic acid (9-AC) on the total current in a type II pneumocytes (A549 cell line) model by patch clamp, immunocytochemical, and gene knockdown techniques. We noted that DCPIB and 9-AC promote the activation of K conductance. In fact, they significantly increase the intensity of the current and shift its reversal potential to values more negative than the control. By silencing outward rectifier channel in its anoctamin 6 portion, we excluded a direct involvement of Cl- ions in modulation of IK and, by means of functional tests with its specific inhibitor spadin, we identified the TREK-1 channel as the presumable target of both drugs. As the activity of TREK-1 has a key role for the correct functioning of the alveolar epithelium, the identification of DCPIB and 9-AC molecules as its activators suggests their possible use to build new pharmacological tools for the modulation of this channel.
Collapse
Affiliation(s)
- Rita Canella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marta Martini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Carlotta Cavicchio
- Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina
| | - Franco Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mascia Benedusi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina
| |
Collapse
|
25
|
Martinac B, Bavi N, Ridone P, Nikolaev YA, Martinac AD, Nakayama Y, Rohde PR, Bavi O. Tuning ion channel mechanosensitivity by asymmetry of the transbilayer pressure profile. Biophys Rev 2018; 10:1377-1384. [PMID: 30182202 DOI: 10.1007/s12551-018-0450-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 01/04/2023] Open
Abstract
Mechanical stimuli acting on the cellular membrane are linked to intracellular signaling events and downstream effectors via different mechanoreceptors. Mechanosensitive (MS) ion channels are the fastest known primary mechano-electrical transducers, which convert mechanical stimuli into meaningful intracellular signals on a submillisecond time scale. Much of our understanding of the biophysical principles that underlie and regulate conversion of mechanical force into conformational changes in MS channels comes from studies based on MS channel reconstitution into lipid bilayers. The bilayer reconstitution methods have enabled researchers to investigate the structure-function relationship in MS channels and probe their specific interactions with their membrane lipid environment. This brief review focuses on close interactions between MS channels and the lipid bilayer and emphasizes the central role that the transbilayer pressure profile plays in mechanosensitivity and gating of these fascinating membrane proteins.
Collapse
Affiliation(s)
- Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, University of New South Wales, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia.
| | - Navid Bavi
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, 60637, USA
| | - Pietro Ridone
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia
| | - Yury A Nikolaev
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
- Dept. of Cellular & Molecular Physiology, Yale University, 333 Cedar Street, New Haven, CT 06520-8026, USA
| | - Adam D Martinac
- NeuRA, Margarete Ainsworth Building, Barker St, Randwick, NSW, 2031, Australia
| | - Yoshitaka Nakayama
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
| | - Paul R Rohde
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
| | - Omid Bavi
- Institute for Nanoscience and Nanotechnology, Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, 7155713876, Iran
| |
Collapse
|
26
|
Walewska A, Kulawiak B, Szewczyk A, Koprowski P. Mechanosensitivity of mitochondrial large-conductance calcium-activated potassium channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:797-805. [PMID: 29775559 DOI: 10.1016/j.bbabio.2018.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/29/2018] [Accepted: 05/10/2018] [Indexed: 12/01/2022]
Abstract
Potassium channels have been discovered in the inner mitochondrial membrane of various cells. These channels can regulate the mitochondrial membrane potential, the matrix volume, respiration and reactive species generation. Therefore, it is believed that their activation is cytoprotective in various tissues. In our study, the single-channel activity of a large-conductance calcium-activated potassium channel (mitoBKCa) was measured by the patch-clamp technique on mitoplasts derived from mitochondria isolated from human glioma U-87 MG cells. Here, we show for the first time that mechanical stimulation of mitoBKCa channels results in an increased probability of channel opening. However, the mechanosensitivity of mitoBKCa channels was variable with some channels exhibiting no mechanosensitivity. We detected the expression of mechanosensitive BKCa-STREX exon in U-87 MG cells and hypotesize, based on previous studies demonstrating the presence of multiple BKCa splice variants that variable mechanosensitivity of mitoBKCa could be the result of the presence of diverse BKCa isoforms in mitochondria of U-87 MG cells. Our findings indicate the possible involvement of the mitoBKCa channel in mitochondria activities in which changes in membrane tension and shape play a crucial role, such as fusion/fission and cristae remodeling.
Collapse
Affiliation(s)
- Agnieszka Walewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
27
|
Global versus local mechanisms of temperature sensing in ion channels. Pflugers Arch 2018; 470:733-744. [PMID: 29340775 DOI: 10.1007/s00424-017-2102-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNaV) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.
Collapse
|
28
|
Sachs F. Mechanical Transduction and the Dark Energy of Biology. Biophys J 2018; 114:3-9. [PMID: 29320693 PMCID: PMC5984904 DOI: 10.1016/j.bpj.2017.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022] Open
|
29
|
Del Mármol J, Rietmeijer RA, Brohawn SG. Studying Mechanosensitivity of Two-Pore Domain K + Channels in Cellular and Reconstituted Proteoliposome Membranes. Methods Mol Biol 2018; 1684:129-150. [PMID: 29058189 PMCID: PMC6202064 DOI: 10.1007/978-1-4939-7362-0_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanical force sensation is fundamental to a wide breadth of biology from the classic senses of touch, pain, hearing, and balance to less conspicuous sensations of proprioception, blood pressure, and osmolarity and basic aspects of cell growth, differentiation, and development. These diverse and essential systems use force-gated (or mechanosensitive) ion channels that convert mechanical stimuli into cellular electrical signals. TRAAK, TREK1, and TREK2 are K+-selective ion channels of the two-pore domain K+ (K2P) family that are mechanosensitive: they are gated open by increasing membrane tension. TRAAK and TREK channels are thought to play roles in somatosensory and other mechanosensory processes in neuronal and non-neuronal tissues. Here, we present protocols for three assays to study mechanical activation of these channels in cell membranes: (1) cell swelling, (2) cell poking, and (3) patched membrane stretching. Patched membrane stretching is also applicable to the study of mechanosensitive K2P channel activity in a cell-free system and a procedure for proteoliposome reconstitution and patching is also presented. These approaches are also readily applicable to the study of other mechanosensitive ion channels.
Collapse
Affiliation(s)
- Josefina Del Mármol
- Department of Molecular and Cell Biology, University of California - Berkeley, 289 Life Science Addition, Berkeley, CA, 94720, USA
- The Helen Wills Neuroscience Institute, University of California - Berkeley, 289 Life Science Addition, Berkeley, CA, 94720, USA
| | - Robert A Rietmeijer
- Biophysics Graduate Group, University of California, Berkeley, CA, 94720, USA
| | - Stephen G Brohawn
- Department of Molecular and Cell Biology, University of California - Berkeley, 289 Life Science Addition, Berkeley, CA, 94720, USA.
- The Helen Wills Neuroscience Institute, University of California - Berkeley, 289 Life Science Addition, Berkeley, CA, 94720, USA.
| |
Collapse
|
30
|
Abstract
Mechanosensitive (MS) channels protect bacteria against hypo-osmotic shock and fulfil additional functions. Hypo-osmotic shock leads to high turgor pressure that can cause cell rupture and death. MS channels open under these conditions and release unspecifically solutes and consequently the turgor pressure. They can recognise the raised pressure via the increased tension in the cell membrane. Currently, a better understanding how MS channels can sense tension on molecular level is developing because the interaction of the lipid bilayer with the channel is being investigated in detail. The MS channel of large conductance (MscL) and of small conductance (MscS) have been distinguished and studied in molecular detail. In addition, larger channels were found that contain a homologous region corresponding to MscS so that MscS represents a family of channels. Often several members of this family are present in a species. The importance of this family is underlined by the fact that members can be found not only in bacteria but also in higher organisms. While MscL and MscS have been studied for years in particular by electrophysiology, mutagenesis, molecular dynamics, X-ray crystallography and other biophysical techniques, only recently more details are emerging about other members of the MscS-family.
Collapse
|
31
|
Ridone P, Grage SL, Patkunarajah A, Battle AR, Ulrich AS, Martinac B. "Force-from-lipids" gating of mechanosensitive channels modulated by PUFAs. J Mech Behav Biomed Mater 2017; 79:158-167. [PMID: 29304430 DOI: 10.1016/j.jmbbm.2017.12.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/15/2022]
Abstract
The level of fatty acid saturation in phospholipids is a crucial determinant of the biophysical properties of the lipid bilayer. Integral membrane proteins are sensitive to changes of their bilayer environment such that their activities and localization can be profoundly affected. When incorporated into phospholipids of mammalian cells, poly-unsaturated fatty acids (PUFAs) determine the mechanical properties of the bilayer thereby affecting several membrane-associated functions such as endo- and exo-cytosis and ion channel/membrane receptor signalling cascades. In order to understand how membrane tension is propagated through poly-unsaturated bilayers, we characterized the effect of lipid saturation on liposome reconstituted MscS and MscL, the two bacterial mechanosensitive ion channels that have for many years served as models of ion- channel-mediated mechanotransduction. The combination of NMR and patch clamp experiments in this study demonstrate that bilayer thinning is the main responsible factor for the modulation of the MscL threshold of activation while a change in transbilayer pressure profile is indicated as the main factor behind the observed modulation of the MscS kinetics. Together, our data offer a novel insight into how the structural shape differences between the two types of mechanosensitive channels determine their differential modulation by poly-unsaturated phospholipids and thus lay the foundation for future functional studies of eukaryotic ion channels involved in the physiology of mechanosensory transduction processes in mammalian cells. SUMMARY Mechanosensitive channels MscL and MscS are differentially modulated by poly-unsaturated fatty acids in lipid bilayers. MscL becomes sensitized because of increased hydrophobic mismatch while MscS open state is stabilized due to changes in the bilayer lateral pressure profile determined by NMR.
Collapse
Affiliation(s)
- Pietro Ridone
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Stephan L Grage
- Institute for Biological Interfaces IBG-2, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Amrutha Patkunarajah
- School of Medical Sciences, University of New South Wales, Kensington, Sydney 2052, Australia
| | - Andrew R Battle
- Translational Research Institute (TRI) and Institute of Health and Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Anne S Ulrich
- Institute for Biological Interfaces IBG-2, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
32
|
Abstract
Bacteria represent one of the most evolutionarily successful groups of organisms to inhabit Earth. Their world is awash with mechanical cues, probably the most ancient form of which are osmotic forces. As a result, they have developed highly robust mechanosensors in the form of bacterial mechanosensitive (MS) channels. These channels are essential in osmoregulation, and in this setting, provide one of the simplest paradigms for the study of mechanosensory transduction. We explore the past, present, and future of bacterial MS channels, including the alternate mechanosensory roles that they may play in complex microbial communities. Central to all of these functions is their ability to change conformation in response to mechanical stimuli. We discuss their gating according to the force-from-lipids principle and its applicability to eukaryotic MS channels. This includes the new paradigms emerging for bilayer-mediated channel mechanosensitivity and how this molecular detail may provide advances in both industry and medicine.
Collapse
Affiliation(s)
- Charles D Cox
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; , , .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Navid Bavi
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; , , .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; , , .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
33
|
Syeda R, Florendo MN, Cox CD, Kefauver JM, Santos JS, Martinac B, Patapoutian A. Piezo1 Channels Are Inherently Mechanosensitive. Cell Rep 2017; 17:1739-1746. [PMID: 27829145 DOI: 10.1016/j.celrep.2016.10.033] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/26/2016] [Accepted: 10/10/2016] [Indexed: 12/27/2022] Open
Abstract
The conversion of mechanical force to chemical signals is critical for many biological processes, including the senses of touch, pain, and hearing. Mechanosensitive ion channels play a key role in sensing the mechanical stimuli experienced by various cell types and are present in organisms from bacteria to mammals. Bacterial mechanosensitive channels are characterized thoroughly, but less is known about their counterparts in vertebrates. Piezos have been recently established as ion channels required for mechanotransduction in disparate cell types in vitro and in vivo. Overexpression of Piezos in heterologous cells gives rise to large mechanically activated currents; however, it is unclear whether Piezos are inherently mechanosensitive or rely on alternate cellular components to sense mechanical stimuli. Here, we show that mechanical perturbations of the lipid bilayer alone are sufficient to activate Piezo channels, illustrating their innate ability as molecular force transducers.
Collapse
Affiliation(s)
- Ruhma Syeda
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Maria N Florendo
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia
| | - Jennifer M Kefauver
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jose S Santos
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
34
|
Abstract
Living organisms perceive and respond to a diverse range of mechanical stimuli. A variety of mechanosensitive ion channels have evolved to facilitate these responses, but the molecular mechanisms underlying their exquisite sensitivity to different forces within the membrane remains unclear. TREK-2 is a mammalian two-pore domain (K2P) K+ channel important for mechanosensation, and recent studies have shown how increased membrane tension favors a more expanded conformation of the channel within the membrane. These channels respond to a complex range of mechanical stimuli, however, and it is uncertain how differences in tension between the inner and outer leaflets of the membrane contribute to this process. To examine this, we have combined computational approaches with functional studies of oppositely oriented single channels within the same lipid bilayer. Our results reveal how the asymmetric structure of TREK-2 allows it to distinguish a broad profile of forces within the membrane, and illustrate the mechanisms that eukaryotic mechanosensitive ion channels may use to detect and fine-tune their responses to different mechanical stimuli.
Collapse
|
35
|
Abstract
Mechanosensitive (MS) channels provide protection against hypo-osmotic shock in bacteria whereas eukaryotic MS channels fulfil a multitude of important functions beside osmoregulation. Interactions with the membrane lipids are responsible for the sensing of mechanical force for most known MS channels. It emerged recently that not only prokaryotic, but also eukaryotic, MS channels are able to directly sense the tension in the membrane bilayer without any additional cofactor. If the membrane is solely viewed as a continuous medium with specific anisotropic physical properties, the sensitivity towards tension changes can be explained as result of the hydrophobic coupling between membrane and transmembrane (TM) regions of the channel. The increased cross-sectional area of the MS channel in the active conformation and elastic deformations of the membrane close to the channel have been described as important factors. However, recent studies suggest that molecular interactions of lipids with the channels could play an important role in mechanosensation. Pockets in between TM helices were identified in the MS channel of small conductance (MscS) and YnaI that are filled with lipids. Less lipids are present in the open state of MscS than the closed according to MD simulations. Thus it was suggested that exclusion of lipid fatty acyl chains from these pockets, as a consequence of increased tension, would trigger gating. Similarly, in the eukaryotic MS channel TRAAK it was found that a lipid chain blocks the conducting path in the closed state. The role of these specific lipid interactions in mechanosensation are highlighted in this review.
Collapse
|
36
|
Endlich K, Kliewe F, Endlich N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflugers Arch 2017; 469:937-949. [PMID: 28687864 DOI: 10.1007/s00424-017-2025-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
Increased glomerular capillary pressure (glomerular hypertension) and increased glomerular filtration rate (glomerular hyperfiltration) have been proven to cause glomerulosclerosis in animal models and are likely to be operative in patients. Since podocytes cover the glomerular basement membrane, they are exposed to tensile stress due to circumferential wall tension and to fluid shear stress arising from filtrate flow through the narrow filtration slits and through Bowman's space. In vitro evidence documents that podocytes respond to tensile stress as well as to fluid shear stress. Several proteins are discussed in this review that are expressed in podocytes and could act as mechanosensors converting mechanical force via a conformational change into a biochemical signal. The cation channels P2X4 and TRPC6 were shown to be involved in mechanosignaling in podocytes. P2X4 is activated by stretch-induced ATP release, while TRPC6 might be inherently mechanosensitive. Membrane, slit diaphragm and cell-matrix contact proteins are connected to the sublemmal actin network in podocytes via various linker proteins. Therefore, actin-associated proteins, like the proven mechanosensor filamin, are ideal candidates to sense forces in the podocyte cytoskeleton. Furthermore, podocytes express talin, p130Cas, and fibronectin that are known to undergo a conformational change in response to mechanical force exposing cryptic binding sites. Downstream of mechanosensors, experimental evidence suggests the involvement of MAP kinases, Ca2+ and COX2 in mechanosignaling and an emerging role of YAP/TAZ. In summary, our understanding of mechanotransduction in podocytes is still sketchy, but future progress holds promise to identify targets to alleviate conditions of increased mechanical load.
Collapse
Affiliation(s)
- Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany.
- Institut für Anatomie and Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, 17489, Greifswald, Germany.
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
37
|
Rosholm KR, Baker MAB, Ridone P, Nakayama Y, Rohde PR, Cuello LG, Lee LK, Martinac B. Activation of the mechanosensitive ion channel MscL by mechanical stimulation of supported Droplet-Hydrogel bilayers. Sci Rep 2017; 7:45180. [PMID: 28345591 PMCID: PMC5366917 DOI: 10.1038/srep45180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/17/2017] [Indexed: 11/29/2022] Open
Abstract
The droplet on hydrogel bilayer (DHB) is a novel platform for investigating the function of ion channels. Advantages of this setup include tight control of all bilayer components, which is compelling for the investigation of mechanosensitive (MS) ion channels, since they are highly sensitive to their lipid environment. However, the activation of MS ion channels in planar supported lipid bilayers, such as the DHB, has not yet been established. Here we present the activation of the large conductance MS channel of E. coli, (MscL), in DHBs. By selectively stretching the droplet monolayer with nanolitre injections of buffer, we induced quantifiable DHB tension, which could be related to channel activity. The MscL activity response revealed that the droplet monolayer tension equilibrated over time, likely by insertion of lipid from solution. Our study thus establishes a method to controllably activate MS channels in DHBs and thereby advances studies of MS channels in this novel platform.
Collapse
Affiliation(s)
- Kadla R Rosholm
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia
| | - Matthew A B Baker
- School of Medical Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Pietro Ridone
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia
| | - Yoshitaka Nakayama
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia
| | - Paul R Rohde
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Lawrence K Lee
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia.,School of Medical Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Boris Martinac
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
38
|
Gnanasambandam R, Gottlieb PA, Sachs F. The Kinetics and the Permeation Properties of Piezo Channels. CURRENT TOPICS IN MEMBRANES 2017; 79:275-307. [PMID: 28728821 DOI: 10.1016/bs.ctm.2016.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Piezo channels are eukaryotic, cation-selective mechanosensitive channels (MSCs), which show rapid activation and voltage-dependent inactivation. The kinetics of these channels are largely consistent across multiple cell types and different stimulation paradigms with some minor variability. No accessory subunits that associate with Piezo channels have been reported. They are homotrimers and each ∼300kD monomer has an N-terminal propeller blade-like mechanosensing module, which can confer mechanosensing capabilities on ASIC-1 (the trimeric non-MSC, acid-sensing ion channel-1) and a C-terminal pore module, which influences conductance, selectivity, and channel inactivation. Repeated stimulation can cause domain fracture and diffusion of these channels leading to synchronous loss of inactivation. The reconstituted channels spontaneously open only in asymmetric bilayers but lack inactivation. Mutations that cause hereditary xerocytosis alter PIEZO1 kinetics. The kinetics of the wild-type PIEZO1 and alterations thereof in mutants (M2225R, R2456K, and DhPIEZO1) are summarized in the form of a quantitative model and hosted online. The pore is permeable to alkali ions although Li+ permeates poorly. Divalent cations, notably Ca2+, traverse the channel and inhibit the flux of monovalents. The large monovalent organic cations such as tetramethyl ammonium and tetraethyl ammonium can traverse the channel, but slowly, suggesting a pore diameter of ∼8Å, and the estimated in-plane area change upon opening is around 6-20nm2. Ruthenium red can enter the channel only from the extracellular side and seems to bind in a pocket close to residue 2496.
Collapse
Affiliation(s)
- R Gnanasambandam
- State University of New York at Buffalo, Buffalo, NY, United States
| | - P A Gottlieb
- State University of New York at Buffalo, Buffalo, NY, United States
| | - F Sachs
- State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
39
|
Alcaino C, Farrugia G, Beyder A. Mechanosensitive Piezo Channels in the Gastrointestinal Tract. CURRENT TOPICS IN MEMBRANES 2017; 79:219-244. [PMID: 28728818 PMCID: PMC5606247 DOI: 10.1016/bs.ctm.2016.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sensation of mechanical forces is critical for normal function of the gastrointestinal (GI) tract and abnormalities in mechanosensation are linked to GI pathologies. In the GI tract there are several mechanosensitive cell types-epithelial enterochromaffin cells, intrinsic and extrinsic enteric neurons, smooth muscle cells and interstitial cells of Cajal. These cells use mechanosensitive ion channels that respond to mechanical forces by altering transmembrane ionic currents in a process called mechanoelectrical coupling. Several mechanosensitive ionic conductances have been identified in the mechanosensory GI cells, ranging from mechanosensitive voltage-gated sodium and calcium channels to the mechanogated ion channels, such as the two-pore domain potassium channels K2P (TREK-1) and nonselective cation channels from the transient receptor potential family. The recently discovered Piezo channels are increasingly recognized as significant contributors to cellular mechanosensitivity. Piezo1 and Piezo2 are nonselective cationic ion channels that are directly activated by mechanical forces and have well-defined biophysical and pharmacologic properties. The role of Piezo channels in the GI epithelium is currently under investigation and their role in the smooth muscle syncytium and enteric neurons is still not known. In this review, we outline the current state of knowledge on mechanosensitive ion channels in the GI tract, with a focus on the known and potential functions of the Piezo channels.
Collapse
Affiliation(s)
- C Alcaino
- Mayo Clinic College of Medicine, Rochester, MN, United States
| | - G Farrugia
- Mayo Clinic College of Medicine, Rochester, MN, United States
| | - A Beyder
- Mayo Clinic College of Medicine, Rochester, MN, United States
| |
Collapse
|
40
|
|
41
|
Abstract
Mechanotransduction is one of the processes by which cells sense and convert mechanical stimuli into biological signals. Experimental data from various species have revealed crucial roles for mechanotransduction in organ development and a plethora of physiological activities. Piezo proteins have recently been identified as the long-sought-after mechanically activated cation channels in eukaryotes. The architecture of mouse Piezo1 (mPiezo1) channel determined by cryoelectron microscopic single-particle analysis at medium resolution yielded important insights into the mechanical force sensing mechanism. mPiezo1 is found to form a trimeric propeller-like structure with the extracellular domains resembling three distal blades and a central cap. The transmembrane region consists of a central pore module that likely determines the ion-conducting properties of mPiezo1, and three peripheral wings formed by arrays of paired transmembrane helices. Compared with the central pore module, the three distal blades display considerably larger flexibility. In the intracellular region, three long beam-like domains (∼80Å in length) support the whole transmembrane region and connect the mobile peripheral regions to the central pore module. This unique design suggests that the trimeric mPiezo1 may mechanistically function in similar principles as how propellers sense and transduce force to control the ion conductivity. This review summarizes the current knowledge on the structure and proposes possible gating mechanisms of mPiezo1.
Collapse
|
42
|
Cox CD, Bavi N, Martinac B. Origin of the Force: The Force-From-Lipids Principle Applied to Piezo Channels. CURRENT TOPICS IN MEMBRANES 2016; 79:59-96. [PMID: 28728824 DOI: 10.1016/bs.ctm.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Piezo channels are a ubiquitously expressed, principal type of molecular force sensor in eukaryotes. They enable cells to decode a myriad of physical stimuli and are essential components of numerous mechanosensory processes. Central to their physiological role is the ability to change conformation in response to mechanical force. Here we discuss the evolutionary origin of Piezo in relation to other MS channels in addition to the force that gates Piezo channels. In particular, we discuss whether Piezo channels are inherently mechanosensitive in accordance with the force-from-lipid paradigm which has been firmly established for bacterial MS channels and two-pore domain K+ (K2P) channels. We also discuss the evidence supporting a reliance on or direct interaction with structural scaffold proteins of the cytoskeleton and extracellular matrix according to the force-from-filament principle. In doing so, we explain the false dichotomy that these distinctions represent. We also discuss the possible unifying models that shed light on channel mechanosensitivity at the molecular level.
Collapse
Affiliation(s)
- C D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| | - N Bavi
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| | - B Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
43
|
Fels B, Nielsen N, Schwab A. Role of TRPC1 channels in pressure-mediated activation of murine pancreatic stellate cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:657-670. [PMID: 27670661 DOI: 10.1007/s00249-016-1176-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022]
Abstract
The tumor environment contributes importantly to tumor cell behavior and cancer progression. Aside from biochemical constituents, physical factors of the environment also influence the tumor. Growing evidence suggests that mechanics [e.g., tumor (stroma) elasticity, tissue pressure] are critical players of cancer progression. Underlying mechanobiological mechanisms involve among others the regulation of focal adhesion molecules, cytoskeletal modifications, and mechanosensitive (MS) ion channels of cancer- and tumor-associated cells. After reviewing the current concepts of cancer mechanobiology, we will focus on the canonical transient receptor potential 1 (TRPC1) channel and its role in mechano-signaling in tumor-associated pancreatic stellate cells (PSCs). PSCs are key players of pancreatic fibrosis, especially in cases of pancreatic ductal adenocarcinoma (PDAC). PDAC is characterized by the formation of a dense fibrotic stroma (desmoplasia), primarily formed by activated PSCs. Desmoplasia contributes to high pancreatic tissue pressure, which in turn activates PSCs, thereby perpetuating matrix deposition. Here, we investigated the role of the putatively mechanosensitive TRPC1 channels in murine PSCs exposed to elevated ambient pressure. Pressurization leads to inhibition of mRNA expression of MS ion channels. Migration of PSCs representing a readout of their activation is enhanced in pressurized PSCs. Knockout of TRPC1 leads to an attenuated phenotype. While TRPC1-mediated calcium influx is increased in wild-type PSCs after pressure incubation, loss of TRPC1 abolishes this effect. Our findings provide mechanistic insight how pressure, an important factor of the PDAC environment, contributes to PSC activation. TRPC1-mediated activation could be a potential target to disrupt the positive feedback of PSC activation and PDAC progression.
Collapse
Affiliation(s)
- Benedikt Fels
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany
| | - Nikolaj Nielsen
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany. .,Novo Nordisk A/S, Smørmosevej 10-12, 2880, Bagsværd, Denmark.
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany
| |
Collapse
|
44
|
Abstract
Mechanical forces will have been omnipresent since the origin of life, and living organisms have evolved mechanisms to sense, interpret, and respond to mechanical stimuli. The cardiovascular system in general, and the heart in particular, is exposed to constantly changing mechanical signals, including stretch, compression, bending, and shear. The heart adjusts its performance to the mechanical environment, modifying electrical, mechanical, metabolic, and structural properties over a range of time scales. Many of the underlying regulatory processes are encoded intracardially and are, thus, maintained even in heart transplant recipients. Although mechanosensitivity of heart rhythm has been described in the medical literature for over a century, its molecular mechanisms are incompletely understood. Thanks to modern biophysical and molecular technologies, the roles of mechanical forces in cardiac biology are being explored in more detail, and detailed mechanisms of mechanotransduction have started to emerge. Mechano-gated ion channels are cardiac mechanoreceptors. They give rise to mechano-electric feedback, thought to contribute to normal function, disease development, and, potentially, therapeutic interventions. In this review, we focus on acute mechanical effects on cardiac electrophysiology, explore molecular candidates underlying observed responses, and discuss their pharmaceutical regulation. From this, we identify open research questions and highlight emerging technologies that may help in addressing them.
Collapse
Affiliation(s)
- Rémi Peyronnet
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.)
| | - Jeanne M Nerbonne
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.)
| | - Peter Kohl
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.).
| |
Collapse
|
45
|
The Rap1-RIAM-talin axis of integrin activation and blood cell function. Blood 2016; 128:479-87. [PMID: 27207789 DOI: 10.1182/blood-2015-12-638700] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/07/2016] [Indexed: 12/14/2022] Open
Abstract
Integrin adhesion receptors mediate the adhesion of blood cells, such as leukocytes, to other cells, such as endothelial cells. Integrins also are critical for anchorage of hematopoietic precursors to the extracellular matrix. Blood cells can dynamically regulate the affinities of integrins for their ligands ("activation"), an event central to their functions. Here we review recent progress in understanding the mechanisms of integrin activation with a focus on the functions of blood cells. We discuss how talin binding to the integrin β cytoplasmic domain, in conjunction with the plasma membrane, induces long-range allosteric rearrangements that lead to integrin activation. Second, we review our understanding of how signaling events, particularly those involving Rap1 small guanosine triphosphate (GTP)hydrolases, can regulate the talin-integrin interaction and resulting activation. Third, we review recent findings that highlight the role of the Rap1-GTP-interacting adapter molecule (RIAM), encoded by the APBB1IP gene, in leukocyte integrin activation and consequently in leukocyte trafficking.
Collapse
|
46
|
Bavi O, Vossoughi M, Naghdabadi R, Jamali Y. The Combined Effect of Hydrophobic Mismatch and Bilayer Local Bending on the Regulation of Mechanosensitive Ion Channels. PLoS One 2016; 11:e0150578. [PMID: 26958847 PMCID: PMC4784931 DOI: 10.1371/journal.pone.0150578] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/17/2016] [Indexed: 12/03/2022] Open
Abstract
The hydrophobic mismatch between the lipid bilayer and integral membrane proteins has well-defined effect on mechanosensitive (MS) ion channels. Also, membrane local bending is suggested to modulate MS channel activity. Although a number of studies have already shown the significance of each individual factor, the combined effect of these physical factors on MS channel activity have not been investigated. Here using finite element simulation, we study the combined effect of hydrophobic mismatch and local bending on the archetypal mechanosensitive channel MscL. First we show how the local curvature direction impacts on MS channel modulation. In the case of MscL, we show inward (cytoplasmic) bending can more effectively gate the channel compared to outward bending. Then we indicate that in response to a specific local curvature, MscL inserted in a bilayer with the same hydrophobic length is more expanded in the constriction pore region compared to when there is a protein-lipid hydrophobic mismatch. Interestingly in the presence of a negative mismatch (thicker lipids), MscL constriction pore is more expanded than in the presence of positive mismatch (thinner lipids) in response to an identical membrane curvature. These results were confirmed by a parametric energetic calculation provided for MscL gating. These findings have several biophysical consequences for understanding the function of MS channels in response to two major physical stimuli in mechanobiology, namely hydrophobic mismatch and local membrane curvature.
Collapse
Affiliation(s)
- Omid Bavi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
- Biochemical & Bioenvironmental Research Center (BBRC), Tehran, Iran
| | - Reza Naghdabadi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Yousef Jamali
- Department of Mathematics, Tarbiat Modares University, Tehran, Iran
- Computational physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- * E-mail:
| |
Collapse
|
47
|
Bavi O, Cox CD, Vossoughi M, Naghdabadi R, Jamali Y, Martinac B. Influence of Global and Local Membrane Curvature on Mechanosensitive Ion Channels: A Finite Element Approach. MEMBRANES 2016; 6:membranes6010014. [PMID: 26861405 PMCID: PMC4812420 DOI: 10.3390/membranes6010014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 01/24/2016] [Accepted: 01/25/2016] [Indexed: 11/25/2022]
Abstract
Mechanosensitive (MS) channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these channels is the patch clamp technique. However, the patch of membrane surveyed using this methodology is far from physiological. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local) affects a model MS channel. Firstly, to increase the accuracy of the Laplace’s equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace’s equation. Most importantly, we unambiguously show that the global curvature of a patch, which is visible under the microscope during patch clamp experiments, is of negligible energetic consequence for activation of an MS channel in a model membrane. However, the local curvature (RL < 50) and the direction of bending are able to cause considerable changes in the stress distribution through the thickness of the membrane. Not only does local bending, in the order of physiologically relevant curvatures, cause a substantial change in the pressure profile but it also significantly modifies the stress distribution in response to force application. Understanding these stress variations in regions of high local bending is essential for a complete understanding of the effects of curvature on MS channels.
Collapse
Affiliation(s)
- Omid Bavi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 89694-14588 Tehran, Iran.
- Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
| | - Manouchehr Vossoughi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 89694-14588 Tehran, Iran.
- Biochemical & Bioenvironmental Research Center (BBRC), 89694-14588 Tehran, Iran.
| | - Reza Naghdabadi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 89694-14588 Tehran, Iran.
- Department of Mechanical Engineering, Sharif University of Technology, 89694-14588 Tehran, Iran.
| | - Yousef Jamali
- Department of Mathematics and Bioscience, Tarbiat Modares University, Jalal Ale Ahmad Highway, 14115-111 Tehran, Iran.
- Computational physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran, Iran.
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
48
|
Abstract
Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels.
Collapse
Affiliation(s)
- Sanjeev S Ranade
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ruhma Syeda
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
49
|
Brohawn SG. How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann N Y Acad Sci 2015; 1352:20-32. [PMID: 26332952 DOI: 10.1111/nyas.12874] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to sense and respond to mechanical forces is essential for life and cells have evolved a variety of systems to convert physical forces into cellular signals. Within this repertoire are the mechanosensitive ion channels, proteins that play critical roles in mechanosensation by transducing forces into ionic currents across cellular membranes. Understanding how these channels work, particularly in animals, remains a major focus of study. Here, I review the current understanding of force gating for a family of metazoan mechanosensitive ion channels, the two-pore domain K(+) channels (K2Ps) TRAAK, TREK1, and TREK2. Structural and functional insights have led to a physical model for mechanical activation of these channels. This model of force sensation by K2Ps is compared to force sensation by bacterial mechanosensitive ion channels MscL and MscS to highlight principles shared among these evolutionarily unrelated channels, as well as differences of potential functional relevance. Recent advances address fundamental questions and stimulate new ideas about these unique mechanosensors.
Collapse
Affiliation(s)
- Stephen G Brohawn
- Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, New York, New York
| |
Collapse
|
50
|
Nomura T, Cox CD, Bavi N, Sokabe M, Martinac B. Unidirectional incorporation of a bacterial mechanosensitive channel into liposomal membranes. FASEB J 2015; 29:4334-45. [PMID: 26116700 DOI: 10.1096/fj.15-275198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/22/2015] [Indexed: 11/11/2022]
Abstract
The bacterial mechanosensitive channel of small conductance (MscS) plays a crucial role in the protection of bacterial cells against hypo-osmotic shock. The functional characteristics of MscS have been extensively studied using liposomal reconstitution. This is a widely used experimental paradigm and is particularly important for mechanosensitive channels as channel activity can be probed free from cytoskeletal influence. A perpetual issue encountered using this paradigm is unknown channel orientation. Here we examine the orientation of MscS in liposomes formed using 2 ion channel reconstitution methods employing the powerful combination of patch clamp electrophysiology, confocal microscopy, and continuum mechanics simulation. Using the previously determined electrophysiological and pharmacological properties of MscS, we were able to determine that in liposomes, independent of lipid composition, MscS adopts the same orientation seen in native membranes. These results strongly support the idea that these specific methods result in uniform incorporation of membrane ion channels and caution against making assumptions about mechanosensitive channel orientation using the stimulus type alone.
Collapse
Affiliation(s)
- Takeshi Nomura
- *Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Department of Physical Therapy, Faculty of Rehabilitation, Graduate School of Health Sciences, Kyushu Nutrition Welfare University, Kitakyushu, Japan; St. Vincent's Clinical School, The University of New South Wales, Sydney, New South Wales, Australia; and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Charles D Cox
- *Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Department of Physical Therapy, Faculty of Rehabilitation, Graduate School of Health Sciences, Kyushu Nutrition Welfare University, Kitakyushu, Japan; St. Vincent's Clinical School, The University of New South Wales, Sydney, New South Wales, Australia; and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Navid Bavi
- *Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Department of Physical Therapy, Faculty of Rehabilitation, Graduate School of Health Sciences, Kyushu Nutrition Welfare University, Kitakyushu, Japan; St. Vincent's Clinical School, The University of New South Wales, Sydney, New South Wales, Australia; and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sokabe
- *Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Department of Physical Therapy, Faculty of Rehabilitation, Graduate School of Health Sciences, Kyushu Nutrition Welfare University, Kitakyushu, Japan; St. Vincent's Clinical School, The University of New South Wales, Sydney, New South Wales, Australia; and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Boris Martinac
- *Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Department of Physical Therapy, Faculty of Rehabilitation, Graduate School of Health Sciences, Kyushu Nutrition Welfare University, Kitakyushu, Japan; St. Vincent's Clinical School, The University of New South Wales, Sydney, New South Wales, Australia; and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|