1
|
Zhou Q, Su Y, Wang R, Song Z, Ge H, Qin X. The nuclear transportation of CHRONO regulates the circadian rhythm. J Biol Chem 2024:107917. [PMID: 39454958 DOI: 10.1016/j.jbc.2024.107917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The pace of the endogenous circadian clock is important for organisms to maintain homeostasis. CHRONO has been shown to be a core component of the mammalian clock and has recently been implicated to function in several important physiological aspects. To function properly, CHRONO needs to enter the nucleus to repress transcription. We have previously shown that the N-terminus of CHRONO is required for its nuclear entry. However, how CHRONO enters the nucleus and regulates the circadian clock remains unknown. Here, we report that a novel non-classical nuclear localization signal (NLS) in the N-terminus of CHRONO is responsible for its nuclear entry. Multiple nuclear transporters are identified that facilitate the nuclear import of CHRONO. We show that the Arg63 is the critical amino acid of the NLS. Using prime editing technology, we precisely edit the Arg63 to Ala at the genomic loci and demonstrate that this mutation prolongs the circadian period, which is similar to knockdown of CHRONO. By using the CHRONO knockout and R63A mutant cells, we also investigated the changes in the cytoplasmic/nuclear distribution of BMAL1. We show that BMAL1 localizes more in the cytoplasm in the deficiency of CHRONO nuclear entry. These results provide a model for CHRONO nuclear entry using a network of importins involved in the regulation of the circadian period.
Collapse
Affiliation(s)
- Qin Zhou
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, 230601, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, 230601, China
| | - Yunxia Su
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, 230601, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, 230601, China
| | - Ruohan Wang
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, 230601, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, 230601, China
| | - Zhiyuan Song
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, 230601, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, 230601, China
| | - Honghua Ge
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, 230601, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, 230601, China.
| | - Ximing Qin
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, 230601, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, 230601, China.
| |
Collapse
|
2
|
Swaminathan A, Kenzior A, McCoin C, Price A, Weaver K, Hintermann A, Morris N, Keene AC, Rohner N. A repeatedly evolved mutation in Cryptochrome-1 of subterranean animals alters behavioral and molecular circadian rhythms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613894. [PMID: 39386508 PMCID: PMC11463651 DOI: 10.1101/2024.09.19.613894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The repeated evolution of similar phenotypes in independent lineages often occurs in response to similar environmental pressures, through similar or different molecular pathways. Recently, a repeatedly occurring mutation R263Q in a conserved domain of the protein Cryptochrome-1 (CRY1) was reported in multiple species inhabiting subterranean environments. Cryptochromes regulate circadian rhythms, and glucose and lipid metabolism. Subterranean species show changes to their circadian rhythm and metabolic pathways, making it likely that this mutation in CRY1 contributes to adaptive phenotypic changes. To identify the functional consequences of the CRY1 R263Q mutation, we generated a mouse model homozygous for this mutation. Indirect calorimetry experiments revealed delayed energy expenditure, locomotor activity and feeding patterns of mutant mice in the dark phase, but no further metabolic phenotypes - unlike a full loss of function of CRY1. Gene expression analyses showed altered expression of several canonical circadian genes in the livers of the mutant mice, fortifying the notion that CRY1 R263Q impacts metabolism. Our data provide the first characterization of a novel mutation that has repeatedly evolved in subterranean environments, supporting the idea that shared environmental constraints can drive the evolution of similar phenotypes through similar genetic changes.
Collapse
|
3
|
Zhou Q, Wang R, Su Y, Wang B, Zhang Y, Qin X. The molecular circadian rhythms regulating the cell cycle. J Cell Biochem 2024; 125:e30539. [PMID: 38372014 DOI: 10.1002/jcb.30539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
The circadian clock controls the expression of a large proportion of protein-coding genes in mammals and can modulate a wide range of physiological processes. Recent studies have demonstrated that disruption or dysregulation of the circadian clock is involved in the development and progression of several diseases, including cancer. The cell cycle is considered to be the fundamental process related to cancer. Accumulating evidence suggests that the circadian clock can control the expression of a large number of genes related to the cell cycle. This article reviews the mechanism of cell cycle-related genes whose chromatin regulatory elements are rhythmically occupied by core circadian clock transcription factors, while their RNAs are rhythmically expressed. This article further reviews the identified oscillatory cell cycle-related genes in higher organisms such as baboons and humans. The potential functions of these identified genes in regulating cell cycle progression are also discussed. Understanding how the molecular clock controls the expression of cell cycle genes will be beneficial for combating and treating cancer.
Collapse
Affiliation(s)
- Qin Zhou
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ruohan Wang
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunxia Su
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Bowen Wang
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunfei Zhang
- Modern Experiment Technology Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ximing Qin
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| |
Collapse
|
4
|
Wang L, Hu L, Wang X, Geng Z, Wan M, Hao J, Liu H, Fan Y, Xu T, Li Z. Long non-coding RNA LncCplx2 regulates glucose homeostasis and pancreatic β cell function. Mol Metab 2024; 80:101878. [PMID: 38218537 PMCID: PMC10832480 DOI: 10.1016/j.molmet.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE Numerous studies have highlighted the role of clock genes in diabetes disease and pancreatic β cell functions. However, whether rhythmic long non-coding RNAs involve in this process is unknown. METHODS RNA-seq and 3' rapid amplification of cDNA ends (RACE)-PCR were used to identify the rat LncCplx2 in pancreatic β cells. The subcellular analysis with qRT-PCR and RNA-Scope were used to assess the localization of LncCplx2. The effects of LncCplx2 overexpression or knockout (KO) on the regulation of pancreatic β cell functions were assessed in vitro and in vivo. RNA-seq, immunoblotting (IB), Immunoprecipitation (IP), RNA pull-down, and chromatin immunoprecipitation (ChIP)-PCR assays were employed to explore the regulatory mechanisms through LncRNA-protein interaction. Metabolism cage was used to measure the circadian behaviors. RESULTS We first demonstrate that LncCplx2 is a conserved nuclear long non-coding RNA and enriched in pancreatic islets, which is driven by core clock transcription factor BMAL1. LncCplx2 is downregulated in the diabetic islets and repressed by high glucose, which regulates the insulin secretion in vitro and ex vivo. Furthermore, LncCplx2 KO mice exhibit diabetic phenotypes, such as high blood glucose and impaired glucose tolerance. Notably, LncCplx2 deficiency has significant effects on circadian behavior, including prolonged period duration, decreased locomotor activity, and reduced metabolic rates. Mechanistically, LncCplx2 recruits EZH2, a core subunit of polycomb repression complex 2 (PRC2), to the promoter of target genes, thereby silencing circadian gene expression, which leads to phase shifts and amplitude changes in insulin secretion and cell cycle genes. CONCLUSIONS Our results propose LncCplx2 as an unanticipated transcriptional regulator in a circadian system and suggest a more integral mechanism for the coordination of circadian rhythms and glucose homeostasis.
Collapse
Affiliation(s)
- Linlin Wang
- Guangzhou National Laboratory, Guangzhou, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liqiao Hu
- Guangzhou National Laboratory, Guangzhou, China
| | - Xingyue Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoxu Geng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Meng Wan
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Junfeng Hao
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Huisheng Liu
- Guangzhou National Laboratory, Guangzhou, China; School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Yuying Fan
- School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Tao Xu
- Guangzhou National Laboratory, Guangzhou, China; School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Zonghong Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory Clinical Base, Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China.
| |
Collapse
|
5
|
Imamura K, Bota A, Shirafuji T, Takumi T. The blues and rhythm. Neurosci Res 2023:S0168-0102(23)00199-2. [PMID: 38000448 DOI: 10.1016/j.neures.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023]
Abstract
Most organisms, including humans, show daily rhythms in many aspects of physiology and behavior, and abnormalities in the rhythms are potential risk factors for various diseases. Mood disorders such as depression are no exception. Accumulating evidence suggests strong associations between circadian disturbances and the development of depression. Numerous studies have shown that interventions to circadian rhythms trigger depression-like phenotypes in human cases and animal models. Conversely, mood changes can affect circadian rhythms as symptoms of depression. Our preliminary data suggest that the phosphorylation signal pathway of the clock protein may act as a common pathway for mood and clock regulation. We hypothesize that mood regulation and circadian rhythms may influence each other and may share a common regulatory mechanism. This review provides an overview of circadian disturbances in animal models and human patients with depression.
Collapse
Affiliation(s)
- Kiyomichi Imamura
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Ayaka Bota
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Toshihiko Shirafuji
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan; RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe 650-0047, Japan.
| |
Collapse
|
6
|
Nicolaides NC, Chrousos GP. The human glucocorticoid receptor. VITAMINS AND HORMONES 2023; 123:417-438. [PMID: 37717993 DOI: 10.1016/bs.vh.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Glucocorticoids are members of steroid hormones that are biosynthesized in the intermediate cellular zone of the adrenal cortex (zona fasciculata) and released into the peripheral blood as final products of the hypothalamic-pituitary-adrenal (HPA) axis, as well as under the control of the circadian biologic system. These molecules regulate every physiologic function of the organism as they bind to an almost ubiquitous hormone-activated transcription factor, the glucocorticoid receptor (GR), which influences the rate of transcription of a huge number of target genes amounting to up to 20% of the mammalian genome. The evolving progress of cellular, molecular and computational-structural biology and the implication of epigenetics in every-day clinical practice have enabled us a deeper and ever-increasing understanding of how target tissues respond to natural and synthetic glucocorticoids. In this chapter, we summarize the current knowledge on the structure, expression, function and signaling of the human glucocorticoid receptor in normal and pathologic conditions.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
7
|
Courtin C, Marie-Claire C, Gross G, Hennion V, Mundwiller E, Guégan J, Meyrel M, Bellivier F, Etain B. Gene expression of circadian genes and CIART in bipolar disorder: A preliminary case-control study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110691. [PMID: 36481223 DOI: 10.1016/j.pnpbp.2022.110691] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Based on the observed circadian rhythms disruptions and sleep abnormalities in bipolar disorders (BD), a chronobiological model has been proposed suggesting that core clock genes play a central role in the vulnerability to the disorder. In this context, the analysis of circadian genes expression levels is particularly relevant, however studies focused on the whole set of core clock genes are scarce. We compared the levels of expression of 19 circadian genes (including the recently described circadian repressor (CIART)) in 37 euthymic individuals with BD and 20 healthy controls (HC), using data obtained by RNA sequencing of lymphoblastoid cell lines and validated the results using RT-qPCR. RNA sequencing data showed that CIART gene expression was correlated with those of ARNTL, ARNTL2, DBP, PER2 and TIMELESS. Data from RNA sequencing showed that the level of expression of four circadian genes (ARNTL, ARNTL2, BHLHE41 and CIART) discriminated individuals with BD from HC. We replicated this result using RT-qPCR for ARNTL and CIART. This study suggests that an imbalance between activation/repression of the transcription within the circadian system in individuals with BD as compared to HC and as such opens avenues for further research in larger independent samples combining both expression and epigenetic analyses.
Collapse
Affiliation(s)
- Cindie Courtin
- Université de Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, OTeN, Paris, France
| | - Cynthia Marie-Claire
- Université de Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, OTeN, Paris, France.
| | - Gregory Gross
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Vincent Hennion
- Université de Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, OTeN, Paris, France; Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | | | - Justine Guégan
- Data Analysis Core platform, Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Manon Meyrel
- Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | - Frank Bellivier
- Université de Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, OTeN, Paris, France; Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | - Bruno Etain
- Université de Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, OTeN, Paris, France; Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| |
Collapse
|
8
|
Tang X, Xue D, Zhang T, Nilsson-Payant BE, Carrau L, Duan X, Gordillo M, Tan AY, Qiu Y, Xiang J, Schwartz RE, tenOever BR, Evans T, Chen S. A multi-organoid platform identifies CIART as a key factor for SARS-CoV-2 infection. Nat Cell Biol 2023; 25:381-389. [PMID: 36918693 PMCID: PMC10014579 DOI: 10.1038/s41556-023-01095-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
COVID-19 is a systemic disease involving multiple organs. We previously established a platform to derive organoids and cells from human pluripotent stem cells to model SARS-CoV-2 infection and perform drug screens1,2. This provided insight into cellular tropism and the host response, yet the molecular mechanisms regulating SARS-CoV-2 infection remain poorly defined. Here we systematically examined changes in transcript profiles caused by SARS-CoV-2 infection at different multiplicities of infection for lung airway organoids, lung alveolar organoids and cardiomyocytes, and identified several genes that are generally implicated in controlling SARS-CoV-2 infection, including CIART, the circadian-associated repressor of transcription. Lung airway organoids, lung alveolar organoids and cardiomyocytes derived from isogenic CIART-/- human pluripotent stem cells were significantly resistant to SARS-CoV-2 infection, independently of viral entry. Single-cell RNA-sequencing analysis further validated the decreased levels of SARS-CoV-2 infection in ciliated-like cells of lung airway organoids. CUT&RUN, ATAC-seq and RNA-sequencing analyses showed that CIART controls SARS-CoV-2 infection at least in part through the regulation of NR4A1, a gene also identified from the multi-organoid analysis. Finally, transcriptional profiling and pharmacological inhibition led to the discovery that the Retinoid X Receptor pathway regulates SARS-CoV-2 infection downstream of CIART and NR4A1. The multi-organoid platform identified the role of circadian-clock regulation in SARS-CoV-2 infection, which provides potential therapeutic targets for protection against COVID-19 across organ systems.
Collapse
Affiliation(s)
- Xuming Tang
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Dongxiang Xue
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin E Nilsson-Payant
- Department of Microbiology, New York University, New York, NY, USA
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Lucia Carrau
- Department of Microbiology, New York University, New York, NY, USA
| | - Xiaohua Duan
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Miriam Gordillo
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Adrian Y Tan
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Yunping Qiu
- Stable Isotope and Metabolomics Core Facility, The Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA.
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Albrecht U. The circadian system and mood related behavior in mice. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:269-291. [PMID: 37709379 DOI: 10.1016/bs.apcsb.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Most organisms on earth have evolved an internal clock in order to predict daily recurring events. This clock called circadian clock has a period of about 24 h and allows organisms to organize biochemical and physiological processes over one day. Changes in lighting conditions as they occur naturally over seasons, or man made by jet lag or shift work, advance or delay clock phase in order to synchronize an organism's physiology to the environment. A misalignment of the clock to its environment results in sleep disturbances and mood disorders. Although there are strong associations between the circadian clock and mood disorders such as depression, the underlying molecular mechanisms are not well understood. This review describes the currently known molecular links between circadian clock components and mood related behaviors in mice, which will help to understand the causal links between the clock and mood in humans in the future.
Collapse
Affiliation(s)
- U Albrecht
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
10
|
Overnight Corticosterone and Gene Expression in Mouse Hippocampus: Time Course during Resting Period. Int J Mol Sci 2023; 24:ijms24032828. [PMID: 36769150 PMCID: PMC9917930 DOI: 10.3390/ijms24032828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The aim of the experiment was to test the effect of an elevated level of glucocorticoids on the mouse hippocampal transcriptome after 12 h of treatment with corticosterone that was administered during an active phase of the circadian cycle. Additionally, we also tested the circadian changes in gene expression and the decay time of transcriptomic response to corticosterone. Gene expression was analyzed using microarrays. Obtained results show that transcriptomic responses to glucocorticoids are heterogeneous in terms of the decay time with some genes displaying persistent changes in expression during 9 h of rest. We have also found a considerable overlap between genes regulated by corticosterone and genes implicated previously in stress response. The examples of such genes are Acer2, Agt, Apod, Aqp4, Etnppl, Fabp7, Fam107a, Fjx1, Fmo2, Galnt15, Gjc2, Heph, Hes5, Htra1, Jdp2, Kif5a, Lfng, Lrg1, Mgp, Mt1, Pglyrp1, Pla2g3, Plin4, Pllp, Ptgds, Ptn, Slc2a1, Slco1c1, Sult1a1, Thbd and Txnip. This indicates that the applied model is a useful tool for the investigation of mechanisms underlying the stress response.
Collapse
|
11
|
Mood phenotypes in rodent models with circadian disturbances. Neurobiol Sleep Circadian Rhythms 2022; 13:100083. [PMID: 36345502 PMCID: PMC9636574 DOI: 10.1016/j.nbscr.2022.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Many physiological functions with approximately 24-h rhythmicity (circadian rhythms) are generated by an internal time-measuring system of the circadian clock. While sleep/wake cycles, feeding patterns, and body temperature are the most widely known physiological functions under the regulation of the circadian clock, physiological regulation by the circadian clock extends to higher brain functions. Accumulating evidence suggests strong associations between the circadian clock and mood disorders such as depression, but the underlying mechanisms of the functional relationship between them are obscure. This review overviews rodent models with disrupted circadian rhythms on depression-related responses. The animal models with circadian disturbances (by clock gene mutations and artifactual interventions) will help understand the causal link between the circadian clock and depression. The molecular mechanisms of the mammalian circadian rhythm are systematically overviewed. We overview how genetic and pharmacological manipulations of clock (related) genes are linked to mood phenotypes. We overview how artificial perturbations, such as SCN lesions and aberrant light, affect circadian rhythm and mood.
Collapse
|
12
|
Minaduola M, Aili A, Bao Y, Peng Z, Ge Q, Jin R. The circadian clock sets a spatial–temporal window for recent thymic emigrants. Immunol Cell Biol 2022; 100:731-741. [DOI: 10.1111/imcb.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/11/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Mili Minaduola
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University) Peking University Beijing China
| | - Abudureyimujiang Aili
- Department of Medical Oncology and Radiation Sickness Peking University Third Hospital Beijing China
| | - Yuhui Bao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University) Peking University Beijing China
| | - Zhi Peng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University) Peking University Beijing China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences Peking University Beijing China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University) Peking University Beijing China
| |
Collapse
|
13
|
Lu JY, Simon M, Zhao Y, Ablaeva J, Corson N, Choi Y, Yamada KYH, Schork NJ, Hood WR, Hill GE, Miller RA, Seluanov A, Gorbunova V. Comparative transcriptomics reveals circadian and pluripotency networks as two pillars of longevity regulation. Cell Metab 2022; 34:836-856.e5. [PMID: 35580607 PMCID: PMC9364679 DOI: 10.1016/j.cmet.2022.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 01/24/2023]
Abstract
Mammals differ more than 100-fold in maximum lifespan. Here, we conducted comparative transcriptomics on 26 species with diverse lifespans. We identified thousands of genes with expression levels negatively or positively correlated with a species' maximum lifespan (Neg- or Pos-MLS genes). Neg-MLS genes are primarily involved in energy metabolism and inflammation. Pos-MLS genes show enrichment in DNA repair, microtubule organization, and RNA transport. Expression of Neg- and Pos-MLS genes is modulated by interventions, including mTOR and PI3K inhibition. Regulatory networks analysis showed that Neg-MLS genes are under circadian regulation possibly to avoid persistent high expression, whereas Pos-MLS genes are targets of master pluripotency regulators OCT4 and NANOG and are upregulated during somatic cell reprogramming. Pos-MLS genes are highly expressed during embryogenesis but significantly downregulated after birth. This work provides targets for anti-aging interventions by defining pathways correlating with longevity across mammals and uncovering circadian and pluripotency networks as central regulators of longevity.
Collapse
Affiliation(s)
- J Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Matthew Simon
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Nancy Corson
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Yongwook Choi
- Quantitative Medicine and Systems Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - KayLene Y H Yamada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Nicholas J Schork
- Quantitative Medicine and Systems Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
14
|
Xu L, Lin J, Liu Y, Hua B, Cheng Q, Lin C, Yan Z, Wang Y, Sun N, Qian R, Lu C. CLOCK regulates Drp1 mRNA stability and mitochondrial homeostasis by interacting with PUF60. Cell Rep 2022; 39:110635. [PMID: 35417690 DOI: 10.1016/j.celrep.2022.110635] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Circadian genes such as Clock, Bmal1, Cryptochrome1/2, and Period1/2/3 constitute the precise circadian system. ClockΔ19 is a commonly used mouse model harboring a circadian clock gene mutation, which lacks the EXON-19-encoded 51 amino acids. Previous reports have shown that ClockΔ19 mice have severe metabolic abnormalities. Here, we report that the mitochondria of ClockΔ19 mice exhibit excessive fission and dysfunction. We also demonstrate that CLOCK binds to the RNA-binding protein PUF60 through its EXON 19. Further, we find that PUF60 directly maintains mitochondrial homeostasis through regulating Drp1 mRNA stability, while the association with CLOCK can competitively inhibit this function. In ClockΔ19 mice, CLOCKΔ19 releases PUF60, leading to enhanced Drp1 mRNA stability and persistent mitochondrial fission. Our results reveal a direct post-transcriptional role of CLOCK in regulating mitochondrial homeostasis via Drp1 mRNA stability and that the loss of EXON 19 of CLOCK in ClockΔ19 mice leads to severe mitochondrial homeostasis disorders.
Collapse
Affiliation(s)
- Lirong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiaxin Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yutong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bingxuan Hua
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qianyun Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Changpo Lin
- Institute of Vascular Surgery, Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zuoqin Yan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yaping Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, Jiangsu 214122, China.
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Chao Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
TRITHORAX-dependent arginine methylation of HSP68 mediates circadian repression by PERIOD in the monarch butterfly. Proc Natl Acad Sci U S A 2022; 119:2115711119. [PMID: 35064085 PMCID: PMC8795551 DOI: 10.1073/pnas.2115711119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
Circadian repression drives the transcriptional feedback loops that keep circadian (∼24-h) time and synchronize an animal’s physiology and behavior to the daily environmental changes. Although PERIOD (PER) is known to initiate transcriptional repression by displacing the transcription activator CLOCK:BMAL1 from DNA, the underlying mechanism remains unknown. Using the monarch butterfly as a model harboring a simplified version of the mammalian circadian clock, we demonstrate that the binding of heat shock protein 68 (HSP68) to a region homologous to CLOCK mouse exon 19 is essential for CLK–PER interaction and PER repression. We further show that CLK–PER interaction and PER repression are promoted by the methylation of a single arginine methylation site (R45) on HSP68 via TRITHORAX catalytic activity. Transcriptional repression drives feedback loops that are central to the generation of circadian (∼24-h) rhythms. In mammals, circadian repression of circadian locomotor output cycles kaput, and brain and muscle ARNT-like 1 (CLOCK:BMAL1)-mediated transcription is provided by a complex formed by PERIOD (PER) and CRYPTOCHROME (CRY) proteins. PER initiates transcriptional repression by binding CLK:BMAL1, which ultimately results in their removal from DNA. Although PER’s ability to repress transcription is widely recognized, how PER binding triggers repression by removing CLK:BMAL1 from DNA is not known. Here, we use the monarch butterfly as a model system to address this problem because it harbors a simplified version of the CLK:BMAL1-activated circadian clock present in mammals. We report that an intact CLOCK mouse exon 19 homologous region (CLKe19r) and the histone methyltransferase TRITHORAX (TRX) are both necessary for monarch CLK:BMAL1-mediated transcriptional activation, CLK–PER interaction, and PER repression. Our results show that TRX catalytic activity is essential for CLK–PER interaction and PER repression via the methylation of a single arginine methylation site (R45) on heat shock protein 68 (HSP68). Our study reveals TRX and HSP68 as essential links between circadian activation and PER-mediated repression and suggests a potential conserved clock function for HSPs in eukaryotes.
Collapse
|
16
|
Wu Y, Tian T, Wu Y, Yang Y, Zhang Y, Qin X. Systematic Studies of the Circadian Clock Genes Impact on Temperature Compensation and Cell Proliferation Using CRISPR Tools. BIOLOGY 2021; 10:biology10111204. [PMID: 34827197 PMCID: PMC8614980 DOI: 10.3390/biology10111204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary One of the major characteristics of the circadian clock is temperature compensation, and previous studies suggested a single clock gene may determine the temperature compensation. In this study, we report the first full collection of clock gene knockout cell lines using CRISPR/Cas9 tools. Our full collections indicate that the temperature compensation is a complex gene regulation system instead of being regulated by any single gene. Besides, we systematically compared the proliferation rates and circadian periods using our full collections, and we found that the cell growth rate is not dependent on the circadian period. Therefore, complex interaction between clock genes and their protein products may underlie the mechanism of temperature compensation, which needs further investigations. Abstract Mammalian circadian genes are capable of producing a self-sustained, autonomous oscillation whose period is around 24 h. One of the major characteristics of the circadian clock is temperature compensation. However, the mechanism underlying temperature compensation remains elusive. Previous studies indicate that a single clock gene may determine the temperature compensation in several model organisms. In order to understand the influence of each individual clock gene on the temperature compensation, twenty-three well-known mammalian clock genes plus Timeless and Myc genes were knocked out individually, using a powerful gene-editing tool, CRISPR/Cas9. First, Bmal1, Cry1, and Cry2 were knocked out as examples to verify that deleting genes by CRISPR is effective and precise. Cell lines targeting twenty-two genes were successfully edited in mouse fibroblast NIH3T3 cells, and off-target analysis indicated these genes were correctly knocked out. Through measuring the luciferase reporters, the circadian periods of each cell line were recorded under two different temperatures, 32.5 °C and 37 °C. The temperature compensation coefficient Q10 was subsequently calculated for each cell line. Estimations of the Q10 of these cell lines showed that none of the individual cell lines can adversely affect the temperature compensation. Cells with a longer period at lower temperature tend to have a shorter period at higher temperature, while cells with a shorter period at lower temperature tend to be longer at higher temperature. Thus, the temperature compensation is a fundamental property to keep cellular homeostasis. We further conclude that the temperature compensation is a complex gene regulation system instead of being regulated by any single gene. We also estimated the proliferation rates of these cell lines. After systematically comparing the proliferation rates and circadian periods, we found that the cell growth rate is not dependent on the circadian period.
Collapse
Affiliation(s)
- Yue Wu
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Tian Tian
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Yin Wu
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Yu Yang
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
| | - Yunfei Zhang
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
- Moeden Experiment Technology Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Correspondence: (Y.Z.); (X.Q.)
| | - Ximing Qin
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (Y.W.); (T.T.); (Y.W.); (Y.Y.)
- Correspondence: (Y.Z.); (X.Q.)
| |
Collapse
|
17
|
Cahill T, Cope H, Bass JJ, Overbey EG, Gilbert R, da Silveira WA, Paul AM, Mishra T, Herranz R, Reinsch SS, Costes SV, Hardiman G, Szewczyk NJ, Tahimic CGT. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight. Int J Mol Sci 2021; 22:ijms22179470. [PMID: 34502375 PMCID: PMC8430797 DOI: 10.3390/ijms22179470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
| | - Henry Cope
- Nottingham Biomedical Research Centre (BRC), School of Computer Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - Joseph J. Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
| | - Eliah G. Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Rachel Gilbert
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Willian Abraham da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Biological Sciences, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent ST4 2DF, UK
| | - Amber M. Paul
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Tejaswini Mishra
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas–CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Sigrid S. Reinsch
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathaniel J. Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Candice G. T. Tahimic
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- Correspondence:
| |
Collapse
|
18
|
Differential gene expression of the healthy conjunctiva during the day. Cont Lens Anterior Eye 2021; 45:101494. [PMID: 34315655 DOI: 10.1016/j.clae.2021.101494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE To determine if there is diurnal variation in gene expression in normal healthy conjunctival cells. METHODS Bulbar conjunctival swab samples were collected from four healthy subjects in the morning and evening of the same day. The two swab samples were taken from one eye of each participant, with a minimum of five hours gap between the two samples. RNA was extracted and analysed using RNA sequencing (RNA-Seq). RESULTS A total of 121 genes were differentially expressed between the morning and the evening conjunctival samples, of which 94 genes were upregulated in the morning, and 27 genes were upregulated in the evening. Many of the genes that were upregulated in the morning were involved in defence, cell turnover and regulation of gene expression, while the genes upregulated in the evening were involved in signalling and mucin production. CONCLUSIONS This study has identified several genes whose expression changes over the course of the day. Knowledge of diurnal variations of conjunctival gene expression provides an insight into the regulatory status of the healthy eye and provides a baseline for examining changes during ocular surface disease.
Collapse
|
19
|
Zhang J, Cai R, Liang J, Izaz A, Shu Y, Pan T, Wu X. Molecular mechanism of Chinese alligator (Alligator sinensis) adapting to hibernation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:32-49. [PMID: 33231934 DOI: 10.1002/jez.b.23013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Hibernation is a physiological state for Chinese alligators to cope with cold weather. In mammals, gene expression changes during hibernation and their regulatory mechanisms have been extensively studied, however, these studies in reptiles are still rare. Here, integrated analysis of messenger RNA (mRNA), microRNA (miRNA), and long noncoding RNA (lncRNA) reveals the molecular mechanisms of the hypothalamus, liver, and skeletal muscle in hibernating and active individuals. During hibernation, the number of genes increased in the hypothalamus, liver, and skeletal muscle was 585, 282, and 297, while the number of genes decreased was 215, 561, and 627, respectively, as compared with active individuals. Through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, the differential expressed genes were mainly enriched in DNA damage repair, biological rhythm, energy metabolism, myoprotein degradation, and other related items and pathways. Besides, 4740 miRNAs were identified in three tissues. Through the comprehensive analysis of miRNA and mRNA abundance profiles, 12,291, 6997, and 8232 miRNA-mRNA pairs all showed a negative correlation in the hypothalamus, liver, and skeletal muscle, respectively. Some miRNA target genes were related tobiological rhythm and energy metabolism, suggesting that miRNA may play an important role in the physiological metabolism of the hibernating adaptability of Chinese alligators. Moreover, 402, 230, and 130 differentially expressed lncRNAs were identified in the hypothalamus, liver, and skeletal muscle, respectively. The targeting relationship of four lncRNA-mRNA pairs were predicted, with the main function of target genes involved in the amino acid transportation. These results are helpful to further understand the molecular regulatory basis of the hibernation adaptation in Chinese alligators.
Collapse
Affiliation(s)
- Jihui Zhang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Ruiqing Cai
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Juanjuan Liang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Ali Izaz
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yilin Shu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tao Pan
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xiaobing Wu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
20
|
Palanivel R, Vinayachandran V, Biswal S, Deiuliis JA, Padmanabhan R, Park B, Gangwar RS, Durieux JC, Ebreo Cara EA, Das L, Bevan G, Fayad ZA, Tawakol A, Jain MK, Rao S, Rajagopalan S. Exposure to Air Pollution Disrupts Circadian Rhythm through Alterations in Chromatin Dynamics. iScience 2020; 23:101728. [PMID: 33241196 PMCID: PMC7672280 DOI: 10.1016/j.isci.2020.101728] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/21/2020] [Accepted: 10/21/2020] [Indexed: 11/27/2022] Open
Abstract
Particulate matter ≤2.5μm (PM2.5) air pollution is a leading environmental risk factor contributing disproportionately to the global burden of non-communicable disease. We compared impact of chronic exposure to PM2.5 alone, or with light at night exposure (LL) on metabolism. PM2.5 induced peripheral insulin resistance, circadian rhythm (CR) dysfunction, and metabolic and brown adipose tissue (BAT) dysfunction, akin to LL (with no additive interaction between PM2.5 and LL). Transcriptomic analysis of liver and BAT revealed widespread but unique alterations in CR genes, with evidence for differentially accessible promoters and enhancers of CR genes in response to PM2.5 by ATAC-seq. The histone deacetylases 2, 3, and 4 were downregulated with PM2.5 exposure, with increased promoter occupancy by the histone acetyltransferase p300 as evidenced by ChIP-seq. These findings suggest a previously unrecognized role of PM2.5 in promoting CR disruption and metabolic dysfunction through epigenetic regulation of circadian targets.
Collapse
Affiliation(s)
- Rengasamy Palanivel
- Cardiovascular Research Institute, Department of Medicine, University Hospitals/Case Western Reserve University, Cleveland, OH, USA
| | - Vinesh Vinayachandran
- Cardiovascular Research Institute, Department of Medicine, University Hospitals/Case Western Reserve University, Cleveland, OH, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey A. Deiuliis
- Cardiovascular Research Institute, Department of Medicine, University Hospitals/Case Western Reserve University, Cleveland, OH, USA
| | - Roshan Padmanabhan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bongsoo Park
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Roopesh Singh Gangwar
- Cardiovascular Research Institute, Department of Medicine, University Hospitals/Case Western Reserve University, Cleveland, OH, USA
| | - Jared C. Durieux
- Harrington Heart and Vascular Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
| | - Elaine Ann Ebreo Cara
- Cardiovascular Research Institute, Department of Medicine, University Hospitals/Case Western Reserve University, Cleveland, OH, USA
| | - Lopa Das
- Cardiovascular Research Institute, Department of Medicine, University Hospitals/Case Western Reserve University, Cleveland, OH, USA
| | - Graham Bevan
- Cardiovascular Research Institute, Department of Medicine, University Hospitals/Case Western Reserve University, Cleveland, OH, USA
| | - Zahi A. Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Tawakol
- Cardiology Division and Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mukesh K. Jain
- Cardiovascular Research Institute, Department of Medicine, University Hospitals/Case Western Reserve University, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Department of Medicine, University Hospitals/Case Western Reserve University, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
21
|
Kim YH, Lazar MA. Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocr Rev 2020; 41:5835826. [PMID: 32392281 PMCID: PMC7334005 DOI: 10.1210/endrev/bnaa014] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
All biological processes, living organisms, and ecosystems have evolved with the Sun that confers a 24-hour periodicity to life on Earth. Circadian rhythms arose from evolutionary needs to maximize daily organismal fitness by enabling organisms to mount anticipatory and adaptive responses to recurrent light-dark cycles and associated environmental changes. The clock is a conserved feature in nearly all forms of life, ranging from prokaryotes to virtually every cell of multicellular eukaryotes. The mammalian clock comprises transcription factors interlocked in negative feedback loops, which generate circadian expression of genes that coordinate rhythmic physiology. In this review, we highlight previous and recent studies that have advanced our understanding of the transcriptional architecture of the mammalian clock, with a specific focus on epigenetic mechanisms, transcriptomics, and 3-dimensional chromatin architecture. In addition, we discuss reciprocal ways in which the clock and metabolism regulate each other to generate metabolic rhythms. We also highlight implications of circadian biology in human health, ranging from genetic and environment disruptions of the clock to novel therapeutic opportunities for circadian medicine. Finally, we explore remaining fundamental questions and future challenges to advancing the field forward.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Abstract
The circadian clock is a global regulatory mechanism that controls the expression of 50 to 80% of transcripts in mammals. Some of the genes controlled by the circadian clock are oncogenes or tumor suppressors. Among these Myc has been the focus of several studies which have investigated the effect of clock genes and proteins on Myc transcription and MYC protein stability. Other studies have focused on effects of Myc mutation or overproduction on the circadian clock in comparison to their effects on cell cycle progression and tumorigenesis. Here we have used mice with mutations in the essential clock genes Bmal1, Cry1, and Cry2 to gain further insight into the effect of the circadian clock on this important oncogene/oncoprotein and tumorigenesis. We find that mutation of both Cry1 and Cry2, which abolishes the negative arm of the clock transcription-translation feedback loop (TTFL), causes down-regulation of c-MYC, and mutation of Bmal1, which abolishes the positive arm of TTFL, causes up-regulation of the c-MYC protein level in mouse spleen. These findings must be taken into account in models of the clock disruption-cancer connection.
Collapse
|
23
|
Luo PH, Shu YM, Ni RJ, Liu YJ, Zhou JN. A Characteristic Expression Pattern of Core Circadian Genes in the Diurnal Tree Shrew. Neuroscience 2020; 437:145-160. [PMID: 32339628 DOI: 10.1016/j.neuroscience.2020.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023]
Abstract
The day-active tree shrew may serve as an animal model of human-like diurnal rhythms. However, the molecular basis for circadian rhythms in this species has remained unclear. In the present study, we investigated the expression patterns of core circadian genes involved in transcriptional/translational feedback loops (TTFLs) in both central and peripheral tissues of the tree shrew. The expression of 12 core circadian genes exhibited similar rhythmic patterns in the olfactory bulb, prefrontal cortex, hippocampus, and cerebellum, while the hypothalamus exhibited the weakest oscillations. The rhythms in peripheral tissues, especially the liver, were much more robust than those in brain tissues. ARNTL and NPAS2 were weakly rhythmic in brain tissues but exhibited almost the strongest rhythmicity in peripheral tissues. CLOCK and CRY2 exhibited the weakest rhythms in both central and peripheral tissues, while NR1D1 and CIART exhibited robust rhythms in both tissues. Most of these circadian genes were highly expressed at light/dark transitions in both brain and peripheral tissues, such as ARNTL and NPAS2 peaking at dusk while PERs peaking at dawn. Additionally, the peripheral clock was phase-advanced relative to the brain clock, as there was a significant advance (2-4 h) for PER3, DBP, NR1D1 and NR1D2. Furthermore, these genes exhibited an anti-phasic relationship between the diurnal tree shrew and the nocturnal mouse (i.e., 12-h phasing differential). Collectively, our findings demonstrate a characteristic expression pattern of core circadian genes in the tree shrew, which may provide a means for elucidating molecular mechanisms of diurnal rhythms.
Collapse
Affiliation(s)
- Peng-Hao Luo
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yu-Mian Shu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu, China
| | - Rong-Jun Ni
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China; Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ya-Jing Liu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China; Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
24
|
Identification of the Repressive Domain of the Negative Circadian Clock Component CHRONO. Int J Mol Sci 2020; 21:ijms21072469. [PMID: 32252431 PMCID: PMC7177903 DOI: 10.3390/ijms21072469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
Circadian rhythm is an endogenous, self-sustainable oscillation that participates in regulating organisms’ physiological activities. Key to this oscillation is a negative feedback by the main clock components Periods and Cryptochromes that repress the transcriptional activity of BMAL1/CLOCK (defined in the Abbreviations) complexes. In addition, a novel repressor, CHRONO, has been identified recently, but details of CHRONO’s function during repressing the circadian cycle remain unclear. Here we report that a domain of CHRONO mainly composed of α-helixes is critical to repression through the exploitation of protein–protein interactions according to luciferase reporter assays, co-immunoprecipitation, immunofluorescence, genome editing, and structural information analysis via circular dichroism spectroscopy. This repression is fulfilled by interactions between CHRONO and a region on the C-terminus of BMAL1 where Cryptochrome and CBP (defined in the Abbreviations) bind. Our resultsindicate that CHRONO and PER differentially function as BMAL1/CLOCK-dependent repressors. Besides, the N-terminus of CHRONO is important for its nuclear localization. We further develop a repression model of how PER, CRY, and CHRONO proteins associate with BMAL1, respectively.
Collapse
|
25
|
Raftopoulou S, Nicolaides NC, Papageorgiou L, Amfilochiou A, Zakinthinos SG, George P, Eliopoulos E, Chrousos GP, Vlachakis D. Structural Study of the DNA: Clock/Bmal1 Complex Provides Insights for the Role of Cortisol, hGR, and HPA Axis in Stress Management and Sleep Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1195:59-71. [PMID: 32468460 DOI: 10.1007/978-3-030-32633-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we deploy an in silico pipeline of structural bioinformatics, thermodynamics, and molecular dynamics to investigate the role of cortisol in circadian rhythms, biorhythms, stress response, and even sleep disorders. Our study shows that high concentrations of cortisol intercalate in the minor groove of DNA. This phenomenon widens the adjacent major grooves and provides the Clock/Bmal1 complex with more space to dock and interact with DNA. Then, the strong charges of cortisol pull the alpha helices of the Clock/Bmal1 complex and bend it inward, thus establishing stronger interactions and prolonged signaling. Our results indicate that elevated cortisol levels play an important role in stress, inflammation, and sleep disorders as a result of prolonged and stronger dsDNA - Clock/Bmal1 interactions.
Collapse
Affiliation(s)
- Sofia Raftopoulou
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Affidea Healthcare Company, Athens, Greece
| | - Nicolas C Nicolaides
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Louis Papageorgiou
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anastasia Amfilochiou
- Sismanoglio General Hospital of Attica, Respiratory Function & Sleep Study Unit, Marousi, Greece
| | - Spyros G Zakinthinos
- Critical Care and Pulmonary Services, Evangelismos Hospital, Medical School of Athens University, Athens, Greece
| | | | - Elias Eliopoulos
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Dimitrios Vlachakis
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece. .,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
26
|
Sardon Puig L, Pillon NJ, Näslund E, Krook A, Zierath JR. Influence of obesity, weight loss, and free fatty acids on skeletal muscle clock gene expression. Am J Physiol Endocrinol Metab 2020; 318:E1-E10. [PMID: 31613643 DOI: 10.1152/ajpendo.00289.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular circadian clock plays a role in metabolic homeostasis. We tested the hypothesis obesity and systemic factors associated with insulin resistance affect skeletal muscle clock gene expression. We determined clock gene expression in skeletal muscle of obese women (n = 5) and men (n = 18) before and 6 mo after Roux-en-Y gastric bypass (RYGB) surgery and normal-weight controls (women n = 6, men n = 8). Skeletal muscle clock gene expression was affected by obesity and weight loss. CRY1 mRNA (P = 0.05) was increased and DBP mRNA (P < 0.05) was decreased in obese vs. normal weight women and restored to control levels after RYGB-induced weight loss. CLOCK, CRY1, CRY2, and DBP mRNA (P < 0.05) was decreased in obese men compared with normal weight men. Expression of all other clock genes was unaltered by obesity or weight loss in both cohorts. We correlated clock gene expression with clinical characteristics of the participants. Among the genes studied, DBP and PER3 expression was inversely correlated with plasma lipids in both cohorts. Circadian time-course studies revealed that core clock genes oscillate over time (P < 0.05), with BMAL1, CIART, CRY2, DBP, PER1, and PER3 expression profiles altered by palmitate treatment. In conclusion, skeletal muscle clock gene expression and function is altered by obesity, coincident with changes in plasma lipid levels. Palmitate exposure disrupts clock gene expression in myotubes, indicating that dyslipidemia directly alters the circadian program. Strategies to reduce lipid overload and prevent elevations in nonesterified fatty acid and cholesterol levels may sustain circadian clock signals in skeletal muscle.
Collapse
Affiliation(s)
- Laura Sardon Puig
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas J Pillon
- Section of Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Section of Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Section of Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 2019; 21:67-84. [PMID: 31768006 DOI: 10.1038/s41580-019-0179-2] [Citation(s) in RCA: 604] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
To accommodate daily recurring environmental changes, animals show cyclic variations in behaviour and physiology, which include prominent behavioural states such as sleep-wake cycles but also a host of less conspicuous oscillations in neurological, metabolic, endocrine, cardiovascular and immune functions. Circadian rhythmicity is created endogenously by genetically encoded molecular clocks, whose components cooperate to generate cyclic changes in their own abundance and activity, with a periodicity of about a day. Throughout the body, such molecular clocks convey temporal control to the function of organs and tissues by regulating pertinent downstream programmes. Synchrony between the different circadian oscillators and resonance with the solar day is largely enabled by a neural pacemaker, which is directly responsive to certain environmental cues and able to transmit internal time-of-day representations to the entire body. In this Review, we discuss aspects of the circadian clock in Drosophila melanogaster and mammals, including the components of these molecular oscillators, the function and mechanisms of action of central and peripheral clocks, their synchronization and their relevance to human health.
Collapse
|
28
|
Nikkola V, Miettinen ME, Karisola P, Grönroos M, Ylianttila L, Alenius H, Snellman E, Partonen T. Ultraviolet B radiation modifies circadian time in epidermal skin and in subcutaneous adipose tissue. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 35:157-163. [PMID: 30472764 DOI: 10.1111/phpp.12440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent findings suggest that circadian time regulates cellular functions in the skin and may affect protection against ultraviolet radiation (UVR). It is not known, however, whether UVR through skin directly affects the expression of circadian genes. We investigated the effect of ultraviolet B (UVB) exposure on cryptochrome circadian clock 1 (CRY1), cryptochrome circadian clock 2 (CRY2), and circadian associated repressor of transcription (CIART) genes. METHODS Healthy volunteers (n = 12) were exposed to narrow-band UVB radiation of four standard erythemal dose (SED). Epidermal/dermal and subcutaneous adipose tissue samples were obtained by punch biopsies from irradiated and non-irradiated skin 10 cm away from the irradiated site 24 hours after UVB exposure. Gene expression of CRY1, CRY2, and CIART was measured using RT-PCR (TaqMan). RESULTS Ultraviolet B radiation affected mRNA expression in the epidermal/dermal skin and in the subcutaneous adipose tissue. It down-regulated expression of CRY2 gene in the epidermal/dermal skin, whereas it up-regulated expression of CRY1 and CIART genes in the subcutaneous adipose tissue. CONCLUSION We showed for the first time that UVB radiation affects expression of circadian genes in the subcutaneous adipose tissue. Further studies are warranted to understand the mechanisms in detail.
Collapse
Affiliation(s)
- Veera Nikkola
- Department of Dermatology and Venereology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Department of Dermatology and Allergology, Tampere University Hospital, Tampere, Finland.,Department of Dermatology and Allergology, Päijät-Häme Social and Health Care Group, Lahti, Finland
| | - Maija E Miettinen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Piia Karisola
- Department of Bacteriology and Immunology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| | - Mari Grönroos
- Department of Dermatology and Allergology, Päijät-Häme Social and Health Care Group, Lahti, Finland
| | - Lasse Ylianttila
- STUK - Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Harri Alenius
- Department of Bacteriology and Immunology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erna Snellman
- Department of Dermatology and Venereology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Department of Dermatology and Allergology, Tampere University Hospital, Tampere, Finland
| | - Timo Partonen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
29
|
Rosensweig C, Green CB. Periodicity, repression, and the molecular architecture of the mammalian circadian clock. Eur J Neurosci 2018; 51:139-165. [PMID: 30402960 DOI: 10.1111/ejn.14254] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/03/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
Abstract
Large molecular machines regulate daily cycles of transcriptional activity and help generate rhythmic behavior. In recent years, structural and biochemical analyses have elucidated a number of principles guiding the interactions of proteins that form the basis of circadian timing. In its simplest form, the circadian clock is composed of a transcription/translation feedback loop. However, this description elides a complicated process of activator recruitment, chromatin decompaction, recruitment of coactivators, expression of repressors, formation of a repressive complex, repression of the activators, and ultimately degradation of the repressors and reinitiation of the cycle. Understanding the core principles underlying the clock requires careful examination of molecular and even atomic level details of these processes. Here, we review major structural and biochemical findings in circadian biology and make the argument that shared protein interfaces within the clockwork are critical for both the generation of rhythmicity and timing of the clock.
Collapse
Affiliation(s)
- Clark Rosensweig
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
30
|
Engeland WC, Massman L, Mishra S, Yoder JM, Leng S, Pignatti E, Piper ME, Carlone DL, Breault DT, Kofuji P. The Adrenal Clock Prevents Aberrant Light-Induced Alterations in Circadian Glucocorticoid Rhythms. Endocrinology 2018; 159:3950-3964. [PMID: 30321360 PMCID: PMC6240903 DOI: 10.1210/en.2018-00769] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022]
Abstract
The glucocorticoid (GC) rhythm is entrained to light-dark (LD) cycles via a molecular clock in the suprachiasmatic nucleus (SCN) and is maintained by an adrenal clock synchronized by SCN-dependent signals. Targeted deletion of the core clock gene Bmal1 can disrupt adrenal clock function. The requirement of the adrenal clock to stabilize the circadian GC rhythm during exposure to aberrant LD cycles was determined using novel aldosterone synthase (AS)Cre/+::Bmal1Fl/Fl mice in which Bmal1 deletion occurred during postnatal adrenal transdifferentiation. To examine whether adrenal Bmal1 deletion results in loss of the adrenal clock, mice were crossed with mPER2::Luciferase (mPER2Luc/+) mice. Adrenals from ASCre/+::Bmal1+/+::PER2Luc/+ [control (CTRL)] mice show mPER2Luc rhythms ex vivo, whereas slices from ASCre/+::Bmal1Fl/Fl::PER2Luc/+ [knockout (KO)] mice show dampened rhythms. To monitor corticosterone rhythmicity, mice were implanted with subcutaneous microdialysis probes and sampled at 60-minute intervals for up to 3 days under 12:12-hour [τ (T) 24] LD or 3.5:3.5-hour (T7) LD cycles. Corticosterone rhythms were entrained to T24 LD in CTRL and KO mice. Under T7 LD, circadian corticosterone rhythms persisted in most CTRL mice but not KO mice. Hyperadrenocorticism also was observed in KO mice under T7 LD, reflected by increased corticosterone peak amplitude, total daily corticosterone, and responses to ACTH. Analysis of dysregulated adrenal genes in KO mice exposed to aberrant light identified candidates involved in cholesterol metabolism and trafficking, including steroidogenic acute regulatory protein, which could increase steroidogenesis. Our results show that the adrenal clock functions to buffer steroidogenic responses to aberrant light and stabilize circadian GC rhythmicity.
Collapse
Affiliation(s)
- William C Engeland
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Logan Massman
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Shubhendu Mishra
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - J Marina Yoder
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Emanuele Pignatti
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mary E Piper
- Harvard Chan Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
31
|
Population-level rhythms in human skin with implications for circadian medicine. Proc Natl Acad Sci U S A 2018; 115:12313-12318. [PMID: 30377266 DOI: 10.1073/pnas.1809442115] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Skin is the largest organ in the body and serves important barrier, regulatory, and sensory functions. The epidermal layer shows rhythmic physiological responses to daily environmental variation (e.g., DNA repair). We investigated the role of the circadian clock in the transcriptional regulation of epidermis using a hybrid experimental design, in which a limited set of human subjects (n = 20) were sampled throughout the 24-h cycle and a larger population (n = 219) were sampled once. We found a robust circadian oscillator in human epidermis at the population level using pairwise correlations of clock and clock-associated genes in 298 epidermis samples. We then used CYCLOPS to reconstruct the temporal order of all samples, and identified hundreds of rhythmically expressed genes at the population level in human epidermis. We compared these results with published time-series skin data from mice and found a strong concordance in circadian phase across species for both transcripts and pathways. Furthermore, like blood, epidermis is readily accessible and a potential source of biomarkers. Using ZeitZeiger, we identified a biomarker set for human epidermis that is capable of reporting circadian phase to within 3 hours from a single sample. In summary, we show rhythms in human epidermis that persist at the population scale and describe a path to develop robust single-sample circadian biomarkers.
Collapse
|
32
|
Li CY, Cui JY. Regulation of protein-coding gene and long noncoding RNA pairs in liver of conventional and germ-free mice following oral PBDE exposure. PLoS One 2018; 13:e0201387. [PMID: 30067809 PMCID: PMC6070246 DOI: 10.1371/journal.pone.0201387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/14/2018] [Indexed: 02/07/2023] Open
Abstract
Gut microbiome communicates with the host liver to modify hepatic xenobiotic biotransformation and nutrient homeostasis. Polybrominated diphenyl ethers (PBDEs) are persistent environmental contaminants that are detected in fatty food, household dust, and human breast milk at worrisome levels. Recently, long noncoding RNAs (lncRNAs) have been recognized as novel biomarkers for toxicological responses and may regulate the transcriptional/translational output of protein-coding genes (PCGs). However, very little is known regarding to what extent the interactions between PBDEs and gut microbiome modulate hepatic lncRNAs and PCGs, and what critical signaling pathways are impacted at the transcriptomic scale. In this study, we performed RNA-Seq in livers of nine-week-old male conventional (CV) and germ-free (GF) mice orally exposed to the most prevalent PBDE congeners BDE-47 and BDE-99 (100 μmol/kg once daily for 4-days; vehicle: corn oil, 10 ml/kg), and unveiled key molecular pathways and PCG-lncRNA pairs targeted by PBDE-gut microbiome interactions. Lack of gut microbiome profoundly altered the PBDE-mediated transcriptomic response in liver, with the most prominent effect observed in BDE-99-exposed GF mice. The top pathways up-regulated by PBDEs were related to xenobiotic metabolism, whereas the top pathways down-regulated by PBDEs were in lipid metabolism and protein synthesis in both enterotypes. Genomic annotation of the differentially regulated lncRNAs revealed that majority of these lncRNAs overlapped with introns and 3'-UTRs of PCGs. Lack of gut microbiome profoundly increased the percentage of PBDE-regulated lncRNAs mapped to the 3'-UTRs of PCGs, suggesting the potential involvement of lncRNAs in increasing the translational efficiency of PCGs by preventing miRNA-3'-UTR binding, as a compensatory mechanism following toxic exposure to PBDEs. Pathway analysis of PCGs paired with lncRNAs revealed that in CV mice, BDE-47 regulated nucleic acid and retinol metabolism, as well as circadian rhythm; whereas BDE-99 regulated fatty acid metabolism. In GF mice, BDE-47 differentially regulated 19 lncRNA-PCG pairs that were associated with glutathione conjugation and transcriptional regulation. In contrast, BDE-99 up-regulated the xenobiotic-metabolizing Cyp3a genes, but down-regulated the fatty acid-metabolizing Cyp4 genes. Taken together, the present study reveals common and unique lncRNAs and PCG targets of PBDEs in mouse liver, and is among the first to show that lack of gut microbiome sensitizes the liver to toxic exposure of BDE-99 but not BDE-47. Therefore, lncRNAs may serve as specific biomarkers that differentiate various PBDE congeners as well as environmental chemical-mediated dysbiosis. Coordinate regulation of PCG-lncRNA pairs may serve as a more efficient molecular mechanism to combat against xenobiotic insult, and especially during dysbiosis-induced increase in the internal dose of toxicants.
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
33
|
Chao HW, Doi M, Fustin JM, Chen H, Murase K, Maeda Y, Hayashi H, Tanaka R, Sugawa M, Mizukuchi N, Yamaguchi Y, Yasunaga JI, Matsuoka M, Sakai M, Matsumoto M, Hamada S, Okamura H. Circadian clock regulates hepatic polyploidy by modulating Mkp1-Erk1/2 signaling pathway. Nat Commun 2017; 8:2238. [PMID: 29269828 PMCID: PMC5740157 DOI: 10.1038/s41467-017-02207-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Liver metabolism undergoes robust circadian oscillations in gene expression and enzymatic activity essential for liver homeostasis, but whether the circadian clock controls homeostatic self-renewal of hepatocytes is unknown. Here we show that hepatocyte polyploidization is markedly accelerated around the central vein, the site of permanent cell self-renewal, in mice deficient in circadian Period genes. In these mice, a massive accumulation of hyperpolyploid mononuclear and binuclear hepatocytes occurs due to impaired mitogen-activated protein kinase phosphatase 1 (Mkp1)-mediated circadian modulation of the extracellular signal-regulated kinase (Erk1/2) activity. Time-lapse imaging of hepatocytes suggests that the reduced activity of Erk1/2 in the midbody during cytokinesis results in abscission failure, leading to polyploidization. Manipulation of Mkp1 phosphatase activity is sufficient to change the ploidy level of hepatocytes. These data provide clear evidence that the Period genes not only orchestrate dynamic changes in metabolic activity, but also regulate homeostatic self-renewal of hepatocytes through Mkp1-Erk1/2 signaling pathway. Circadian clock regulates hepatic gene expression and functions. Here Chao et al. show that alteration of circadian clock genes by Period deletion induces polyploidy in hepatocytes due to impaired regulation of Erk signaling by mitogen-activated protein kinase phosphatase 1.
Collapse
Affiliation(s)
- Hsu-Wen Chao
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Jean-Michel Fustin
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Huatao Chen
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Kimihiko Murase
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.,The Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuki Maeda
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hida Hayashi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Rina Tanaka
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Maho Sugawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Naoki Mizukuchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan.,Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Mashito Sakai
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | | | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
34
|
Orozco-Solis R, Montellier E, Aguilar-Arnal L, Sato S, Vawter MP, Bunney BG, Bunney WE, Sassone-Corsi P. A Circadian Genomic Signature Common to Ketamine and Sleep Deprivation in the Anterior Cingulate Cortex. Biol Psychiatry 2017; 82:351-360. [PMID: 28395871 PMCID: PMC5660920 DOI: 10.1016/j.biopsych.2017.02.1176] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Conventional antidepressants usually require several weeks to achieve a full clinical response in patients with major depressive disorder, an illness associated with dysregulated circadian rhythms and a high incidence of suicidality. Two rapid-acting antidepressant strategies, low-dose ketamine (KT) and sleep deprivation (SD) therapies, dramatically reduce depressive symptoms within 24 hours in a subset of major depressive disorder patients. However, it is unknown whether they exert their actions through shared regulatory mechanisms. To address this question, we performed comparative transcriptomics analyses to identify candidate genes and relevant pathways common to KT and SD. METHODS We used the forced swim test, a standardized behavioral approach to measure antidepressant-like activity of KT and SD. We investigated gene expression changes using high-density microarrays and pathway analyses (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Gene Set Enrichment Analysis) in KT- and SD-treated mice compared with saline-treated control male mice. RESULTS We show that KT and SD elicit common transcriptional responses implicating distinct elements of the circadian clock and processes involved in neuronal plasticity. There is an overlap of 64 genes whose expression is common in KT and SD. Specifically, there is downregulation of clock genes including Ciart, Per2, Npas4, Dbp, and Rorb in both KT- and SD-treated mice. CONCLUSIONS We demonstrate a potential involvement of the circadian clock in rapid antidepressant responses. These findings could open new research avenues to help design chronopharmacological strategies to treat major depressive disorder.
Collapse
Affiliation(s)
- Ricardo Orozco-Solis
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, Irvine, California
| | - Emilie Montellier
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, Irvine, California
| | - Lorena Aguilar-Arnal
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, Irvine, California
| | - Shogo Sato
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, Irvine, California
| | - Marquis P Vawter
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California
| | - Blynn G Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California
| | - William E Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, Irvine, California.
| |
Collapse
|
35
|
Hou Z, Su L, Pei J, Grishin NV, Zhang H. Crystal Structure of the CLOCK Transactivation Domain Exon19 in Complex with a Repressor. Structure 2017; 25:1187-1194.e3. [PMID: 28669630 DOI: 10.1016/j.str.2017.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/04/2017] [Accepted: 05/25/2017] [Indexed: 11/24/2022]
Abstract
In the canonical clock model, CLOCK:BMAL1-mediated transcriptional activation is feedback regulated by its repressors CRY and PER and, in association with other coregulators, ultimately generates oscillatory gene expression patterns. How CLOCK:BMAL1 interacts with coregulator(s) is not well understood. Here we report the crystal structures of the mouse CLOCK transactivating domain Exon19 in complex with CIPC, a potent circadian repressor that functions independently of CRY and PER. The Exon19:CIPC complex adopts a three-helical coiled-coil bundle conformation containing two Exon19 helices and one CIPC. Unique to Exon19:CIPC, three highly conserved polar residues, Asn341 of CIPC and Gln544 of the two Exon19 helices, are located at the mid-section of the coiled-coil bundle interior and form hydrogen bonds with each other. Combining results from protein database search, sequence analysis, and mutagenesis studies, we discovered for the first time that CLOCK Exon19:CIPC interaction is a conserved transcription regulatory mechanism among mammals, fish, flies, and other invertebrates.
Collapse
Affiliation(s)
- Zhiqiang Hou
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lijing Su
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hong Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
36
|
Abstract
Circadian rhythms are a critical part of the body's homeostatic mechanisms. These rhythms repeat with a cycle-length of approximately 24 h and are generated by a transcriptional-translational feedback loop. These rhythms are critical for proper behavioral, physiological, and molecular functions. CHRONO, a novel circadian clock gene, forms a complex with other clock proteins and modulates the circadian machinery. CHRONO also interacts with histone deacetylase (HDAC) to modulate the epigenetic status of the transcriptional regulation. Chrono knockout mice display a longer period of circadian behavior and an elevated stress response. This paper reviews the molecular function of CHRONO with a focus on epigenetic regulation and speculates on the possible function of CHRONO in physiological processes. Key messages Chrono is a circadian clock gene whose transcription exhibits a robust circadian oscillation. CHRONO is a repressor of circadian transcriptional/translational feedback loops. CHRONO may function to link epigenetic control mechanisms to stress responses.
Collapse
Affiliation(s)
| | - Toru Takumi
- a RIKEN Brain Science Institute , Wako , Saitama , Japan
| |
Collapse
|
37
|
Nicolaides NC, Charmandari E, Kino T, Chrousos GP. Stress-Related and Circadian Secretion and Target Tissue Actions of Glucocorticoids: Impact on Health. Front Endocrinol (Lausanne) 2017; 8:70. [PMID: 28503165 PMCID: PMC5408025 DOI: 10.3389/fendo.2017.00070] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/24/2017] [Indexed: 12/13/2022] Open
Abstract
Living organisms are highly complex systems that must maintain a dynamic equilibrium or homeostasis that requires energy to be sustained. Stress is a state in which several extrinsic or intrinsic disturbing stimuli, the stressors, threaten, or are perceived as threatening, homeostasis. To achieve homeostasis against the stressors, organisms have developed a highly sophisticated system, the stress system, which provides neuroendocrine adaptive responses, to restore homeostasis. These responses must be appropriate in terms of size and/or duration; otherwise, they may sustain life but be associated with detrimental effects on numerous physiologic functions of the organism, leading to a state of disease-causing disturbed homeostasis or cacostasis. In addition to facing a broad spectrum of external and/or internal stressors, organisms are subject to recurring environmental changes associated with the rotation of the planet around itself and its revolution around the sun. To adjust their homeostasis and to synchronize their activities to day/night cycles, organisms have developed an evolutionarily conserved biologic system, the "clock" system, which influences several physiologic functions in a circadian fashion. Accumulating evidence suggests that the stress system is intimately related to the circadian clock system, with dysfunction of the former resulting in dysregulation of the latter and vice versa. In this review, we describe the functional components of the two systems, we discuss their multilevel interactions, and we present how excessive or prolonged activity of the stress system affects the circadian rhythm of glucocorticoid secretion and target tissue effects.
Collapse
Affiliation(s)
- Nicolas C. Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ’Aghia Sophia’ Children’s Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- *Correspondence: Nicolas C. Nicolaides,
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ’Aghia Sophia’ Children’s Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Tomoshige Kino
- Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar
| | - George P. Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ’Aghia Sophia’ Children’s Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
38
|
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. NATURE REVIEWS. GENETICS 2016. [PMID: 27990019 DOI: 10.1038/nrg.2016.150]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circadian clocks are endogenous oscillators that control 24-hour physiological and behavioural processes in organisms. These cell-autonomous clocks are composed of a transcription-translation-based autoregulatory feedback loop. With the development of next-generation sequencing approaches, biochemical and genomic insights into circadian function have recently come into focus. Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling. The genomic targets of circadian clocks are pervasive and are intimately linked to the regulation of metabolism, cell growth and physiology.
Collapse
Affiliation(s)
- Joseph S Takahashi
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, NA4.118, Dallas, Texas 75390-9111, USA
| |
Collapse
|
39
|
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 2016; 18:164-179. [PMID: 27990019 DOI: 10.1038/nrg.2016.150] [Citation(s) in RCA: 1514] [Impact Index Per Article: 189.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circadian clocks are endogenous oscillators that control 24-hour physiological and behavioural processes in organisms. These cell-autonomous clocks are composed of a transcription-translation-based autoregulatory feedback loop. With the development of next-generation sequencing approaches, biochemical and genomic insights into circadian function have recently come into focus. Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling. The genomic targets of circadian clocks are pervasive and are intimately linked to the regulation of metabolism, cell growth and physiology.
Collapse
Affiliation(s)
- Joseph S Takahashi
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, NA4.118, Dallas, Texas 75390-9111, USA
| |
Collapse
|
40
|
Wang H, Fan Z, Zhao M, Li J, Lu M, Liu W, Ying H, Liu M, Yan J. Oscillating primary transcripts harbor miRNAs with circadian functions. Sci Rep 2016; 6:21598. [PMID: 26898952 PMCID: PMC4761921 DOI: 10.1038/srep21598] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/27/2016] [Indexed: 12/25/2022] Open
Abstract
The roles of miRNAs as important post-transcriptional regulators in the circadian clock have been suggested in several studies. But the search for circadian miRNAs has led to disparate results. Here we demonstrated that at least 57 miRNA primary transcripts are rhythmically transcribed in mouse liver. Most of these transcripts are under the regulation of circadian transcription factors such as BMAL1/CLOCK and REV-ERBα/β. However, the mature miRNAs derived from these transcripts are either not oscillating or oscillating at low amplitudes, which could explain the inconsistency of different circadian miRNA studies. In order to show that these circadian primary transcripts can give rise to miRNAs with circadian functions, we over-expressed one of them, miR-378, in mouse by adenovirus injection. We found a significant over-representation of circadian oscillating genes under-expressed by miR-378 over-expression in liver. In particular, we observed that miR-378 modulates the oscillation amplitudes of Cdkn1a in the control of cell cycle and Por in the regulation of oxidation reduction by forming partnership with different circadian transcription factors. Our study suggests that circadian transcription of miRNA at primary transcript level can be a good indicator for circadian miRNA functions.
Collapse
Affiliation(s)
- Haifang Wang
- CAS-MPG Partner Institute for Computational Biology, Shanghai 200031, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| | - Zenghua Fan
- CAS-MPG Partner Institute for Computational Biology, Shanghai 200031, China
- University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Meng Zhao
- CAS-MPG Partner Institute for Computational Biology, Shanghai 200031, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| | - Juan Li
- CAS-MPG Partner Institute for Computational Biology, Shanghai 200031, China
| | - Minghua Lu
- Institute for Biochemistry and Cell Biology, Shanghai 200031, China
| | - Wei Liu
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Ying
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mofang Liu
- Institute for Biochemistry and Cell Biology, Shanghai 200031, China
| | - Jun Yan
- CAS-MPG Partner Institute for Computational Biology, Shanghai 200031, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| |
Collapse
|
41
|
Ayuso M, Fernández A, Núñez Y, Benítez R, Isabel B, Barragán C, Fernández AI, Rey AI, Medrano JF, Cánovas Á, González-Bulnes A, López-Bote C, Ovilo C. Comparative Analysis of Muscle Transcriptome between Pig Genotypes Identifies Genes and Regulatory Mechanisms Associated to Growth, Fatness and Metabolism. PLoS One 2015; 10:e0145162. [PMID: 26695515 PMCID: PMC4687939 DOI: 10.1371/journal.pone.0145162] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Iberian ham production includes both purebred (IB) and Duroc-crossbred (IBxDU) Iberian pigs, which show important differences in meat quality and production traits, such as muscle growth and fatness. This experiment was conducted to investigate gene expression differences, transcriptional regulation and genetic polymorphisms that could be associated with the observed phenotypic differences between IB and IBxDU pigs. Nine IB and 10 IBxDU pigs were slaughtered at birth. Morphometric measures and blood samples were obtained and samples from Biceps femoris muscle were employed for compositional and transcriptome analysis by RNA-Seq technology. Phenotypic differences were evident at this early age, including greater body size and weight in IBxDU and greater Biceps femoris intramuscular fat and plasma cholesterol content in IB newborns. We detected 149 differentially expressed genes between IB and IBxDU neonates (p < 0.01 and Fold-Change > 1. 5). Several were related to adipose and muscle tissues development (DLK1, FGF21 or UBC). The functional interpretation of the transcriptomic differences revealed enrichment of functions and pathways related to lipid metabolism in IB and to cellular and muscle growth in IBxDU pigs. Protein catabolism, cholesterol biosynthesis and immune system were functions enriched in both genotypes. We identified transcription factors potentially affecting the observed gene expression differences. Some of them have known functions on adipogenesis (CEBPA, EGRs), lipid metabolism (PPARGC1B) and myogenesis (FOXOs, MEF2D, MYOD1), which suggest a key role in the meat quality differences existing between IB and IBxDU hams. We also identified several polymorphisms showing differential segregation between IB and IBxDU pigs. Among them, non-synonymous variants were detected in several transcription factors as PPARGC1B and TRIM63 genes, which could be associated to altered gene function. Taken together, these results provide information about candidate genes, metabolic pathways and genetic polymorphisms potentially involved in phenotypic differences between IB and IBxDU pigs associated to meat quality and production traits.
Collapse
Affiliation(s)
- Miriam Ayuso
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | - Yolanda Núñez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Rita Benítez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Beatriz Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | - Ana Isabel Rey
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Juan F. Medrano
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Ángela Cánovas
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | | | - Clemente López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Cristina Ovilo
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
42
|
Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc Natl Acad Sci U S A 2015; 113:206-11. [PMID: 26699485 DOI: 10.1073/pnas.1508249112] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With aging, significant changes in circadian rhythms occur, including a shift in phase toward a "morning" chronotype and a loss of rhythmicity in circulating hormones. However, the effects of aging on molecular rhythms in the human brain have remained elusive. Here, we used a previously described time-of-death analysis to identify transcripts throughout the genome that have a significant circadian rhythm in expression in the human prefrontal cortex [Brodmann's area 11 (BA11) and BA47]. Expression levels were determined by microarray analysis in 146 individuals. Rhythmicity in expression was found in ∼ 10% of detected transcripts (P < 0.05). Using a metaanalysis across the two brain areas, we identified a core set of 235 genes (q < 0.05) with significant circadian rhythms of expression. These 235 genes showed 92% concordance in the phase of expression between the two areas. In addition to the canonical core circadian genes, a number of other genes were found to exhibit rhythmic expression in the brain. Notably, we identified more than 1,000 genes (1,186 in BA11; 1,591 in BA47) that exhibited age-dependent rhythmicity or alterations in rhythmicity patterns with aging. Interestingly, a set of transcripts gained rhythmicity in older individuals, which may represent a compensatory mechanism due to a loss of canonical clock function. Thus, we confirm that rhythmic gene expression can be reliably measured in human brain and identified for the first time (to our knowledge) significant changes in molecular rhythms with aging that may contribute to altered cognition, sleep, and mood in later life.
Collapse
|
43
|
Identifying Novel Transcriptional Regulators with Circadian Expression. Mol Cell Biol 2015; 36:545-58. [PMID: 26644408 DOI: 10.1128/mcb.00701-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/19/2015] [Indexed: 01/06/2023] Open
Abstract
Organisms adapt their physiology and behavior to the 24-h day-night cycle to which they are exposed. On a cellular level, this is regulated by intrinsic transcriptional-translational feedback loops that are important for maintaining the circadian rhythm. These loops are organized by members of the core clock network, which further regulate transcription of downstream genes, resulting in their circadian expression. Despite progress in understanding circadian gene expression, only a few players involved in circadian transcriptional regulation, including transcription factors, epigenetic regulators, and long noncoding RNAs, are known. Aiming to discover such genes, we performed a high-coverage transcriptome analysis of a circadian time course in murine fibroblast cells. In combination with a newly developed algorithm, we identified many transcription factors, epigenetic regulators, and long intergenic noncoding RNAs that are cyclically expressed. In addition, a number of these genes also showed circadian expression in mouse tissues. Furthermore, the knockdown of one such factor, Zfp28, influenced the core clock network. Mathematical modeling was able to predict putative regulator-effector interactions between the identified circadian genes and may help for investigations into the gene regulatory networks underlying circadian rhythms.
Collapse
|
44
|
Sundar IK, Yao H, Sellix MT, Rahman I. Circadian molecular clock in lung pathophysiology. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1056-75. [PMID: 26361874 DOI: 10.1152/ajplung.00152.2015] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| |
Collapse
|
45
|
Michael AK, Harvey SL, Sammons PJ, Anderson AP, Kopalle HM, Banham AH, Partch CL. Cancer/Testis Antigen PASD1 Silences the Circadian Clock. Mol Cell 2015; 58:743-54. [PMID: 25936801 PMCID: PMC4458219 DOI: 10.1016/j.molcel.2015.03.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/13/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
Abstract
The circadian clock orchestrates global changes in transcriptional regulation on a daily basis via the bHLH-PAS transcription factor CLOCK:BMAL1. Pathways driven by other bHLH-PAS transcription factors have a homologous repressor that modulates activity on a tissue-specific basis, but none have been identified for CLOCK:BMAL1. We show here that the cancer/testis antigen PASD1 fulfills this role to suppress circadian rhythms. PASD1 is evolutionarily related to CLOCK and interacts with the CLOCK:BMAL1 complex to repress transcriptional activation. Expression of PASD1 is restricted to germline tissues in healthy individuals but can be induced in cells of somatic origin upon oncogenic transformation. Reducing PASD1 in human cancer cells significantly increases the amplitude of transcriptional oscillations to generate more robust circadian rhythms. Our results describe a function for a germline-specific protein in regulation of the circadian clock and provide a molecular link from oncogenic transformation to suppression of circadian rhythms.
Collapse
Affiliation(s)
- Alicia K Michael
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Stacy L Harvey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patrick J Sammons
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Amanda P Anderson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Hema M Kopalle
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
46
|
Cline BH, Costa-Nunes JP, Cespuglio R, Markova N, Santos AI, Bukhman YV, Kubatiev A, Steinbusch HWM, Lesch KP, Strekalova T. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression. Front Behav Neurosci 2015; 9:37. [PMID: 25767439 PMCID: PMC4341562 DOI: 10.3389/fnbeh.2015.00037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/01/2015] [Indexed: 11/13/2022] Open
Abstract
Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies.
Collapse
Affiliation(s)
- Brandon H Cline
- Faculté de Médecine, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg Strasbourg, France
| | - Joao P Costa-Nunes
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Group of Behavioural Neuroscience and Pharmacology, Institute for Hygiene and Tropical Medicine, New University of Lisbon Lisbon, Portugal
| | - Raymond Cespuglio
- Faculty of Medicine, Neuroscience Research Center of Lyon, INSERM U1028, C. Bernard University Lyon, France
| | - Natalyia Markova
- Laboratory of Biomolecular Screening, Institute of Physiologically Active Compounds, Russian Academy of Sciences Moscow, Russia ; Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia
| | - Ana I Santos
- Faculdade de Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa Lisboa, Portugal
| | - Yury V Bukhman
- Great Lakes Bioenergy Research Center, Computational Biology, Wisconsin Energy Institute, University of Wisconsin Madison, WI, USA
| | - Aslan Kubatiev
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia
| | | | - Klaus-Peter Lesch
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Laboratory of Translational Neuroscience, Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg Wuerzburg, Germany
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Group of Behavioural Neuroscience and Pharmacology, Institute for Hygiene and Tropical Medicine, New University of Lisbon Lisbon, Portugal ; Laboratory of Biomolecular Screening, Institute of Physiologically Active Compounds, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
47
|
Gustafson CL, Partch CL. Emerging models for the molecular basis of mammalian circadian timing. Biochemistry 2014; 54:134-49. [PMID: 25303119 PMCID: PMC4303291 DOI: 10.1021/bi500731f] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mammalian circadian timekeeping arises from a transcription-based feedback loop driven by a set of dedicated clock proteins. At its core, the heterodimeric transcription factor CLOCK:BMAL1 activates expression of Period, Cryptochrome, and Rev-Erb genes, which feed back to repress transcription and create oscillations in gene expression that confer circadian timing cues to cellular processes. The formation of different clock protein complexes throughout this transcriptional cycle helps to establish the intrinsic ∼24 h periodicity of the clock; however, current models of circadian timekeeping lack the explanatory power to fully describe this process. Recent studies confirm the presence of at least three distinct regulatory complexes: a transcriptionally active state comprising the CLOCK:BMAL1 heterodimer with its coactivator CBP/p300, an early repressive state containing PER:CRY complexes, and a late repressive state marked by a poised but inactive, DNA-bound CLOCK:BMAL1:CRY1 complex. In this review, we analyze high-resolution structures of core circadian transcriptional regulators and integrate biochemical data to suggest how remodeling of clock protein complexes may be achieved throughout the 24 h cycle. Defining these detailed mechanisms will provide a foundation for understanding the molecular basis of circadian timing and help to establish new platforms for the discovery of therapeutics to manipulate the clock.
Collapse
Affiliation(s)
- Chelsea L Gustafson
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | | |
Collapse
|
48
|
Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. Genes Dev 2014; 28:1989-98. [PMID: 25228643 PMCID: PMC4173159 DOI: 10.1101/gad.249417.114] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mammalian circadian clock is based on a transcription–translation feedback loop in which CLOCK and BMAL1 proteins act as transcriptional activators of Cryptochrome and Period genes, which encode proteins that repress CLOCK–BMAL1 with a periodicity of ∼ 24 h. Ye et al. show that CRY binds to CLOCK–BMAL1 at the promoter and inhibits CLOCK–BMAL1-dependent transcription without dissociating the complex. PER alone has no effect on CLOCK–BMAL1-activated transcription, but in the presence of CRY, nuclear entry of PER inhibits transcription by displacing CLOCK–BMAL1 from the promoter. The mammalian circadian clock is based on a transcription–translation feedback loop (TTFL) in which CLOCK and BMAL1 proteins act as transcriptional activators of Cryptochrome and Period genes, which encode proteins that repress CLOCK–BMAL1 with a periodicity of ∼24 h. In this model, the mechanistic roles of CRY and PER are unclear. Here, we used a controlled targeting system to introduce CRY1 or PER2 into the nuclei of mouse cells with defined circadian genotypes to characterize the functions of CRY and PER. Our data show that CRY is the primary repressor in the TTFL: It binds to CLOCK–BMAL1 at the promoter and inhibits CLOCK–BMAL1-dependent transcription without dissociating the complex (“blocking”-type repression). PER alone has no effect on CLOCK–BMAL1-activated transcription. However, in the presence of CRY, nuclear entry of PER inhibits transcription by displacing CLOCK–BMAL1 from the promoter (“displacement”-type repression). In light of these findings, we propose a new model for the mammalian circadian clock in which the negative arm of the TTFL proceeds by two different mechanisms during the circadian cycle.
Collapse
|
49
|
Anafi RC, Lee Y, Sato TK, Venkataraman A, Ramanathan C, Kavakli IH, Hughes ME, Baggs JE, Growe J, Liu AC, Kim J, Hogenesch JB. Machine learning helps identify CHRONO as a circadian clock component. PLoS Biol 2014; 12:e1001840. [PMID: 24737000 PMCID: PMC3988006 DOI: 10.1371/journal.pbio.1001840] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/07/2014] [Indexed: 12/03/2022] Open
Abstract
Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.
Collapse
Affiliation(s)
- Ron C. Anafi
- Division of Sleep Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yool Lee
- Department of Pharmacology and the Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Trey K. Sato
- Department of Pharmacology and the Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Anand Venkataraman
- Department of Pharmacology and the Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Chidambaram Ramanathan
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Ibrahim H. Kavakli
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Michael E. Hughes
- Department of Biology, University of Missouri–St. Louis, St. Louis, Missouri, United States of America
| | - Julie E. Baggs
- Department of Pharmacology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Jacqueline Growe
- Division of Sleep Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Andrew C. Liu
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John B. Hogenesch
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacology and the Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|