1
|
Pla-Tenorio J, Velazquez-Perez B, Mendez-Borrero Y, Cruz-Rentas M, Sepulveda-Orengo M, Noel RJ. Astrocytic HIV-1 Nef expression decreases glutamate transporter expression in the nucleus accumbens and increases cocaine-seeking behavior in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617598. [PMID: 39416088 PMCID: PMC11483060 DOI: 10.1101/2024.10.10.617598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cocaine use disorder is an intersecting issue in populations with HIV-1, further exacerbating the clinical course of the disease, contributing to neurotoxicity and neuroinflammation. Cocaine and HIV neurotoxins play roles in neuronal damage during neuroHIV progression by disrupting glutamate homeostasis in the brain. Even with cART, HIV-1 Nef, an early viral protein expressed in approximately 1% of infected astrocytes, remains a key neurotoxin. This study investigates the relationship that exists between Nef, glutamate homeostasis, and cocaine in the NAc, a critical brain region associated with drug motivation and reward. Using a rat model, we compared the effects of astrocytic Nef and cocaine by molecular analysis of glutamate transporters in the NAc. We further conducted behavioral assessments for cocaine self-administration to evaluate cocaine-seeking behavior. Our findings indicate that both cocaine and Nef independently decrease the expression of the glutamate transporter GLT-1 in the NAc. Additionally, rats with astrocytic Nef expression exhibited increased cocaine-seeking behavior but demonstrated sex dependent molecular differences after behavioral paradigm. In conclusion, our results suggest the expression of Nef intensifies cocaine-induced alterations in glutamate homeostasis in the NAc, potentially underlying increased cocaine-seeking. Understanding these interactions better may inform therapeutic strategies for managing cocaine use disorder in HIV-infected individuals.
Collapse
Affiliation(s)
- Jessalyn Pla-Tenorio
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Bethzaly Velazquez-Perez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
- Department of Biomedical Sciences, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | - Yainira Mendez-Borrero
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Myrella Cruz-Rentas
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Marian Sepulveda-Orengo
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Richard J. Noel
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
2
|
Duffy BC, King KM, Nepal B, Nonnemacher MR, Kortagere S. Acute Administration of HIV-1 Tat Protein Drives Glutamatergic Alterations in a Rodent Model of HIV-Associated Neurocognitive Disorders. Mol Neurobiol 2024; 61:8467-8480. [PMID: 38514527 DOI: 10.1007/s12035-024-04113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
HIV-1-associated neurocognitive disorders (HAND) are a major comorbidity of HIV-1 infection, marked by impairment of executive function varying in severity. HAND affects nearly half of people living with HIV (PLWH), with mild forms predominating since the use of anti-retroviral therapies (ART). The HIV-1 transactivator of transcription (Tat) protein is found in the cerebrospinal fluid of patients adherent to ART, and its administration or expression in animals causes cognitive symptoms. Studies of Tat interaction with the N-methyl-D-aspartate receptor (NMDAR) suggest that glutamate toxicity contributes to Tat-induced impairments. To identify changes in regional glutamatergic circuitry underlying cognitive impairment, we injected recombinant Tat86 or saline to medial prefrontal cortex (mPFC) of male Sprague-Dawley rats. Rats were assessed with behavioral tasks that involve intact functioning of mPFC including the novel object recognition (NOR), spatial object recognition (SOR), and temporal order (TO) tasks at 1 and 2 postoperative weeks. Following testing, mPFC tissue was collected and analyzed by RT-PCR. Results showed Tat86 in mPFC-induced impairment in SOR, and upregulation of Grin1 and Grin2a transcripts. To further understand the mechanism of Tat toxicity, we assessed the effects of full-length Tat101 on gene expression in mPFC by RNA sequencing. The results of RNAseq suggest that glutamatergic effects of Tat86 are maintained with Tat101, as Grin2a was upregulated in Tat101-injected tissue, among other differentially expressed genes. Spatial learning and memory impairment and Grin2a upregulation suggest that exposure to Tat protein drives adaptation in mPFC, altering the function of circuitry supporting spatial learning and memory.
Collapse
Affiliation(s)
- Brenna C Duffy
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kirsten M King
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Ewens AN, Pilski A, Hastings SD, Krook-Magnuson C, Graves SM, Krook-Magnuson E, Thayer SA. Levetiracetam Prevents Neurophysiological Changes and Preserves Cognitive Function in the Human Immunodeficiency Virus (HIV)-1 Transactivator of Transcription Transgenic Mouse Model of HIV-Associated Neurocognitive Disorder. J Pharmacol Exp Ther 2024; 391:104-118. [PMID: 39060163 PMCID: PMC11413936 DOI: 10.1124/jpet.124.002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) affects nearly half of the 39 million people living with HIV. HAND symptoms range from subclinical cognitive impairment to dementia; the mechanisms that underlie HAND remain unclear and there is no treatment. The HIV protein transactivator of transcription (TAT) is thought to contribute to HAND because it persists in the central nervous system and elicits neurotoxicity in animal models. Network hyperexcitability is associated with accelerated cognitive decline in neurodegenerative disorders. Here we show that the antiepileptic drug levetiracetam (LEV) attenuated aberrant excitatory synaptic transmission, protected synaptic plasticity, reduced seizure susceptibility, and preserved cognition in inducible TAT (iTAT) transgenic male mice. iTAT mice had an increased frequency of spontaneous excitatory postsynaptic currents in hippocampal slice recordings and impaired long-term potentiation, a form of synaptic plasticity that underlies learning and memory. Two-week administration of LEV by osmotic minipump prevented both impairments. Kainic acid administered to iTAT mice induced a higher maximum behavioral seizure score, longer seizure duration, and shorter latency to first seizure, consistent with a lower seizure threshold. LEV treatment prevented these in vivo signs of hyperexcitability. Lastly, in the Barnes maze, iTAT mice required more time to reach the goal, committed more errors, and received lower cognitive scores relative to iTAT mice treated with LEV. Thus, TAT expression drives functional deficits, suggesting a causative role in HAND. As LEV not only prevented aberrant synaptic activity in iTAT mice but also prevented cognitive dysfunction, it may provide a promising pharmacological approach to the treatment of HAND. SIGNIFICANCE STATEMENT: Approximately half of people living with human immunodeficiency virus (HIV) also suffer from HIV-associated neurocognitive disorder (HAND), for which there is no treatment. The HIV protein transactivator of transcription (TAT) causes toxicity that is thought to contribute to HAND. Here, the antiepileptic drug levetiracetam (LEV) prevented synaptic and cognitive impairments in a TAT-expressing mouse. LEV is widely used to treat seizures and is well-tolerated in humans, including those with HIV. This study supports further investigation of LEV-mediated neuroprotection in HAND.
Collapse
Affiliation(s)
- Ashley N Ewens
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Alexander Pilski
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Shayne D Hastings
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Chris Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Steven M Graves
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Esther Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| |
Collapse
|
4
|
Chen X, Wei J, Zhang Y, Zhang Y, Zhang T. Crosstalk between gut microbiome and neuroinflammation in pathogenesis of HIV-associated neurocognitive disorder. J Neurol Sci 2024; 457:122889. [PMID: 38262196 DOI: 10.1016/j.jns.2024.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
HIV-associated neurocognitive disorder (HAND) has become a chronic neurodegenerative disease affecting the quality of life in people living with HIV (PLWH). Despite an established association between HAND and neuroinflammation induced by HIV proteins (gp120, Tat, Rev., Nef, and Vpr), the pathogenesis of HAND remains to be fully elucidated. Accumulating evidence demonstrated that the gut microbiome is emerging as a critical regulator of various neurodegenerative diseases (e.g., Parkinson's disease, Alzheimer's disease), suggesting that the crosstalk between the gut microbiome and neuroinflammation may contribute to the development of these diseases, for example, gut dysbiosis and microbiota-derived metabolites can trigger inflammation in the brain. However, the potential role of the gut microbiome in the pathogenesis of HAND remains largely unexplored. In this review, we aim to discuss and elucidate the HAND pathogenesis correlated with gut microbiome and neuroinflammation, and intend to explore the probable intervention strategies for HAND.
Collapse
Affiliation(s)
- Xue Chen
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jiaqi Wei
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yulin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Sriramulu S, Malayaperumal S, Banerjee A, Anbalagan M, Kumar MM, Radha RKN, Liu X, Zhang H, Hu G, Sun XF, Pathak S. AEG-1 as a Novel Therapeutic Target in Colon Cancer: A Study from Silencing AEG-1 in BALB/c Mice to Large Data Analysis. Curr Gene Ther 2024; 24:307-320. [PMID: 38783530 DOI: 10.2174/0115665232273077240104045022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Astrocyte elevated gene-1 (AEG-1) is overexpressed in various malignancies. Exostosin-1 (EXT-1), a tumor suppressor, is an intermediate for malignant tumors. Understanding the mechanism behind the interaction between AEG-1 and EXT-1 may provide insights into colon cancer metastasis. METHODS AOM/DSS was used to induce tumor in BALB/c mice. Using an in vivo-jetPEI transfection reagent, transient transfection of AEG-1 and EXT-1 siRNAs were achieved. Histological scoring, immunohistochemical staining, and gene expression studies were performed from excised tissues. Data from the Cancer Genomic Atlas and GEO databases were obtained to identify the expression status of AEG-1 and itsassociation with the survival. RESULTS In BALB/c mice, the AOM+DSS treated mice developed necrotic, inflammatory and dysplastic changes in the colon with definite clinical symptoms such as loss of goblet cells, colon shortening, and collagen deposition. Administration of AEG-1 siRNA resulted in a substantial decrease in the disease activity index. Mice treated with EXT-1 siRNA showed diffusely reduced goblet cells. In vivo investigations revealed that PTCH-1 activity was influenced by upstream gene AEG-1, which in turn may affect EXT-1 activity. Data from The Cancer Genomic Atlas and GEO databases confirmed the upregulation of AEG-1 and downregulation of EXT-1 in cancer patients. CONCLUSIONS This study revealed that AEG-1 silencing might alter EXT-1 expression indirectly through PTCH-1, influencing cell-ECM interactions, and decreasing dysplastic changes, proliferation and invasion.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Sarubala Malayaperumal
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Makalakshmi Murali Kumar
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Rajesh Kanna Nandagopal Radha
- Department of Pathology, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Xingyi Liu
- Center for Systems Biology, Department of Bioinformatics, School of Basic Medicine and Biological Sciences, Suzhou, China
| | - Hong Zhang
- School of Medicine, Institute of Medical Sciences, Orebro University, SE-701 82 Orebro, Sweden
| | - Guang Hu
- School of Medicine, Institute of Medical Sciences, Orebro University, SE-701 82 Orebro, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| |
Collapse
|
6
|
Kim H, Choi M, Han S, Park SY, Jeong M, Kim SR, Hwang EM, Lee SG. Expression patterns of AEG-1 in the normal brain. Brain Struct Funct 2023; 228:1629-1641. [PMID: 37421418 DOI: 10.1007/s00429-023-02676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Astrocyte elevated gene-1 (AEG-1) is a well-known oncogene implicated in various types of human cancers, including brain tumors. Recently, AEG-1 has also been reported to play pivotal roles in glioma-associated neurodegeneration and neurodegenerative diseases like Parkinson's disease and amyotrophic lateral sclerosis. However, the normal physiological functions and expression patterns of AEG-1 in the brain are not well understood. In this study, we investigated the expression patterns of AEG-1 in the normal mouse brain and found that AEG-1 is widely expressed in neurons and neuronal precursor cells, but little in glial cells. We observed differential expression levels of AEG-1 in various brain regions, and its expression was mainly localized in the cell body of neurons rather than the nucleus. Additionally, AEG-1 was expressed in the cytoplasm of Purkinje cells in both the mouse and human cerebellum, suggesting its potential role in this brain region. These findings suggest that AEG-1 may have important functions in normal brain physiology and warrant further investigation. Our results may also shed light on the differential expression patterns of AEG-1 in normal and pathological brains, providing insights into its roles in various neurological disorders.
Collapse
Affiliation(s)
- Hail Kim
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Minji Choi
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Clinical Research Institute, Kyung Hee University Medical Center, Seoul, 02447, Republic of Korea
| | - Sanghee Han
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang-Yoon Park
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Myoungseok Jeong
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang Ryong Kim
- Brain Science and Engineering Institute, School of Life Sciences, BK21 Four KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
7
|
Pabian-Jewuła S, Bragiel-Pieczonka A, Rylski M. Ying Yang 1 engagement in brain pathology. J Neurochem 2022; 161:236-253. [PMID: 35199341 DOI: 10.1111/jnc.15594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
Herein, we discuss data concerning the involvement of transcription factor Yin Yang 1 (YY1) in the development of brain diseases, highlighting mechanisms of its pathological actions. YY1 plays an important role in the developmental and adult pathology of the nervous system. YY1 is essential for neurulation as well as maintenance and differentiation of neuronal progenitor cells and oligodendrocytes regulating both neural and glial tissues of the brain. Lack of a YY1 gene causes many developmental abnormalities and anatomical malformations of the central nervous system (CNS). Once dysregulated, YY1 exerts multiple neuropathological actions being involved in the induction of many brain disorders like stroke, epilepsy, Alzheimer's and Parkinson's diseases, autism spectrum disorder, dystonia, and brain tumors. Better understanding of YY1's dysfunction in the nervous system may lead to the development of novel therapeutic strategies related to YY1's actions.
Collapse
Affiliation(s)
- Sylwia Pabian-Jewuła
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Aneta Bragiel-Pieczonka
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Marcin Rylski
- Department of Radiology, Institute of Psychiatry and Neurology, 9 Sobieski Street, Warsaw, Poland
| |
Collapse
|
8
|
Sheng L, Luo Q, Chen L. Amino Acid Solute Carrier Transporters in Inflammation and Autoimmunity. Drug Metab Dispos 2022; 50:DMD-AR-2021-000705. [PMID: 35152203 DOI: 10.1124/dmd.121.000705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 02/21/2024] Open
Abstract
The past decade exposed the importance of many homeostasis and metabolism related proteins in autoimmunity disease and inflammation. Solute carriers (SLCs) are a group of membrane channels that can transport amino acids, the building blocks of proteins, nutrients, and neurotransmitters. This review summarizes the role of SLCs amino acid transporters in inflammation and autoimmunity disease. In detail, the importance of Glutamate transporters SLC1A1, SLC1A2, and SLC1A3, mainly expressed in the brain where they help prevent glutamate excitotoxicity, is discussed in the context of central nervous system disorders such as multiple sclerosis. Similarly, the cationic amino acid transporter SLC7A1 (CAT1), which is an important arginine transporter for T cells, and SLC7A2 (CAT2), essential for innate immunity. SLC3 family proteins, which bind with light chains from the SLC7 family (SLC7A5, SLC7A7 and SLC7A11) to form heteromeric amino acid transporters, are also explored to describe their roles in T cells, NK cells, macrophages and tumor immunotherapies. Altogether, the link between SLC amino acid transporters with inflammation and autoimmunity may contribute to a better understanding of underlying mechanism of disease and provide novel potential therapeutic avenues. Significance Statement SIGNIFICANCE STATEMENT In this review, we summarize the link between SLC amino acid transporters and inflammation and immune responses, specially SLC1 family members and SLC7 members. Studying the link may contribute to a better understanding of related diseases and provide potential therapeutic targets and useful to the researchers who have interest in the involvement of amino acids in immunity.
Collapse
Affiliation(s)
| | - Qi Luo
- Tsinghua University, China
| | | |
Collapse
|
9
|
Wang L, Zhang N, Han D, Su P, Chen B, Zhao W, Liu Y, Zhang H, Hu G, Yang Q. MTDH Promotes Intestinal Inflammation by Positively Regulating TLR Signalling. J Crohns Colitis 2021; 15:2103-2117. [PMID: 33987665 DOI: 10.1093/ecco-jcc/jjab086] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Macrophages in the intestinal mucosa can rapidly engage Toll-like receptor [TLR]-mediated inflammatory responses to protect against pathogen invasion, but these same innate immune responses can also drive the induction of colitis. Our previous research revealed that metadherin [MTDH] is overexpressed in multiple cancers and plays vital roles in tumour progression. However, the role of MTDH in intestinal inflammation is largely unknown. In this study, we found the MTDH expression in colonic lamina propria [CLP] macrophages was positively correlated with inflammatory colitis severity. MTDH-/- mice were protected against the symptoms of dextran sodium sulphate [DSS]-induced colitis; however, adoptive transfer of MTDH wild-type [WT] monocytes partially restored the susceptibility of MTDH-/- mice to DSS-induced colitis. TLR stimulation was sufficient to induce the expression of MTDH, whereas the absence of MTDH was sufficient to suppress TLR-induced production of inflammatory cytokines by macrophages. From a mechanistic perspective, MTDH recruited TRAF6 to TAK1, leading to TRAF6-mediated TAK1 K63 ubiquitination and phosphorylation, ultimately facilitating TLR-induced NF-κB and MAPK signalling. Taken together, our results indicate that MTDH contributes to colitis development by promoting TLR-induced pro-inflammatory cytokine production in CLP macrophages and might represent a potential therapeutic approach for intestine inflammation intervention.
Collapse
Affiliation(s)
- Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Peng Su
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Ying Liu
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Hanwen Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Guohong Hu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China
| | - Qifeng Yang
- Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China.,Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China.,Research Institute of Breast Cancer, Shandong University, Ji'nan, Shandong, China
| |
Collapse
|
10
|
Cisneros IE, Cunningham KA. Covid-19 interface with drug misuse and substance use disorders. Neuropharmacology 2021; 198:108766. [PMID: 34454912 PMCID: PMC8388132 DOI: 10.1016/j.neuropharm.2021.108766] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022]
Abstract
The coronavirus disease 2019 (Covid-19) pandemic intensified the already catastrophic drug overdose and substance use disorder (SUD) epidemic, signaling a syndemic as social isolation, economic and mental health distress, and disrupted treatment services disproportionally impacted this vulnerable population. Along with these social and societal factors, biological factors triggered by intense stress intertwined with incumbent overactivity of the immune system and the resulting inflammatory outcomes may impact the functional status of the central nervous system (CNS). We review the literature concerning SARS-CoV2 infiltration and infection in the CNS and the prospects of synergy between stress, inflammation, and kynurenine pathway function during illness and recovery from Covid-19. Taken together, inflammation and neuroimmune signaling, a consequence of Covid-19 infection, may dysregulate critical pathways and underlie maladaptive changes in the CNS, to exacerbate the development of neuropsychiatric symptoms and in the vulnerability to develop SUD. This article is part of the special Issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- I E Cisneros
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA.
| | - K A Cunningham
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
11
|
Bryant J, Andhavarapu S, Bever C, Guda P, Katuri A, Gupta U, Arvas M, Asemu G, Heredia A, Gerzanich V, Simard JM, Makar TK. 7,8-Dihydroxyflavone improves neuropathological changes in the brain of Tg26 mice, a model for HIV-associated neurocognitive disorder. Sci Rep 2021; 11:18519. [PMID: 34531413 PMCID: PMC8446048 DOI: 10.1038/s41598-021-97220-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
The combined antiretroviral therapy era has significantly increased the lifespan of people with HIV (PWH), turning a fatal disease to a chronic one. However, this lower but persistent level of HIV infection increases the susceptibility of HIV-associated neurocognitive disorder (HAND). Therefore, research is currently seeking improved treatment for this complication of HIV. In PWH, low levels of brain derived neurotrophic factor (BDNF) has been associated with worse neurocognitive impairment. Hence, BDNF administration has been gaining relevance as a possible adjunct therapy for HAND. However, systemic administration of BDNF is impractical because of poor pharmacological profile. Therefore, we investigated the neuroprotective effects of BDNF-mimicking 7,8 dihydroxyflavone (DHF), a bioactive high-affinity TrkB agonist, in the memory-involved hippocampus and brain cortex of Tg26 mice, a murine model for HAND. In these brain regions, we observed astrogliosis, increased expression of chemokine HIV-1 coreceptors CXCR4 and CCR5, neuroinflammation, and mitochondrial damage. Hippocampi and cortices of DHF treated mice exhibited a reversal of these pathological changes, suggesting the therapeutic potential of DHF in HAND. Moreover, our data indicates that DHF increases the phosphorylation of TrkB, providing new insights about the role of the TrkB-Akt-NFkB signaling pathway in mediating these pathological hallmarks. These findings guide future research as DHF shows promise as a TrkB agonist treatment for HAND patients in adjunction to the current antiviral therapies.
Collapse
Affiliation(s)
- Joseph Bryant
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | | | - Christopher Bever
- Research Service, Veterans Affairs Center, Baltimore, MD, 21201, USA
| | | | - Akhil Katuri
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | - Udit Gupta
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | | | - Girma Asemu
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | | | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland, Baltimore, MD, 21201, USA
| | - J Marc Simard
- Research Service, Veterans Affairs Center, Baltimore, MD, 21201, USA
- Department of Neurosurgery, University of Maryland, Baltimore, MD, 21201, USA
| | - Tapas Kumar Makar
- Institute of Human Virology, Baltimore, MD, 21201, USA.
- Research Service, Veterans Affairs Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
12
|
Banerjee I, Fisher PB, Sarkar D. Astrocyte elevated gene-1 (AEG-1): A key driver of hepatocellular carcinoma (HCC). Adv Cancer Res 2021; 152:329-381. [PMID: 34353442 DOI: 10.1016/bs.acr.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An array of human cancers, including hepatocellular carcinoma (HCC), overexpress the oncogene Astrocyte elevated gene-1 (AEG-1). It is now firmly established that AEG-1 is a key driver of carcinogenesis, and enhanced expression of AEG-1 is a marker of poor prognosis in cancer patients. In-depth studies have revealed that AEG-1 positively regulates different hallmarks of HCC progression including growth and proliferation, angiogenesis, invasion, migration, metastasis and resistance to therapeutic intervention. By interacting with a plethora of proteins as well as mRNAs, AEG-1 regulates gene expression at transcriptional, post-transcriptional, and translational levels, and modulates numerous pro-tumorigenic and tumor-suppressive signal transduction pathways. Even though extensive research over the last two decades using various in vitro and in vivo models has established the pivotal role of AEG-1 in HCC, effective targeting of AEG-1 as a therapeutic intervention for HCC is yet to be achieved in the clinic. Targeted delivery of AEG-1 small interfering ribonucleic acid (siRNA) has demonstrated desired therapeutic effects in mouse models of HCC. Peptidomimetic inhibitors based on protein-protein interaction studies has also been developed recently. Continuous unraveling of novel mechanisms in the regulation of HCC by AEG-1 will generate valuable knowledge facilitating development of specific AEG-1 inhibitory strategies. The present review describes the current status of AEG-1 in HCC gleaned from patient-focused and bench-top studies as well as transgenic and knockout mouse models. We also address the challenges that need to be overcome and discuss future perspectives on this exciting molecule to transform it from bench to bedside.
Collapse
Affiliation(s)
- Indranil Banerjee
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
13
|
Role of the Outer Inflammatory Protein A/Cystine-Glutamate Transporter Pathway in Gastric Mucosal Injury Induced by Helicobacter pylori. Clin Transl Gastroenterol 2021; 11:e00178. [PMID: 32677810 PMCID: PMC7263648 DOI: 10.14309/ctg.0000000000000178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori infection is a major cause of gastrointestinal diseases. However, the pathogenesis of gastric mucosal injury by H. pylori remains unclear. Exogenous glutamate supplementation protects against gastric mucosal injury caused by H. pylori. Previously, we showed that aspirin-induced gastric injury is associated with reduction in glutamate release by inhibition of cystine–glutamate transporter (xCT) activity. We hypothesized that the xCT pathway is involved in H. pylori-induced gastric mucosal injury. In this study, we tested the activity of xCT and evaluated the regulatory effect of outer inflammatory protein (Oip) A on xCT in H. pylori-induced gastric mucosal injury.
Collapse
|
14
|
Manna D, Sarkar D. Multifunctional Role of Astrocyte Elevated Gene-1 (AEG-1) in Cancer: Focus on Drug Resistance. Cancers (Basel) 2021; 13:cancers13081792. [PMID: 33918653 PMCID: PMC8069505 DOI: 10.3390/cancers13081792] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Chemotherapy is a major mode of treatment for cancers. However, cancer cells adapt to survive in stressful conditions and in many cases, they are inherently resistant to chemotherapy. Additionally, after initial response to chemotherapy, the surviving cancer cells acquire new alterations making them chemoresistant. Genes that help adapt the cancer cells to cope with stress often contribute to chemoresistance and one such gene is Astrocyte elevated gene-1 (AEG-1). AEG-1 levels are increased in all cancers studied to date and AEG-1 contributes to the development of highly aggressive, metastatic cancers. In this review, we provide a comprehensive description of the mechanism by which AEG-1 augments tumor development with special focus on its ability to regulate chemoresistance. We also discuss potential ways to inhibit AEG-1 to overcome chemoresistance. Abstract Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease. Resistance to chemotherapy, chemoresistance, is an important hallmark of aggressive cancers, and driver oncogene-induced signaling pathways and molecular abnormalities create the platform for chemoresistance. The oncogene Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) is overexpressed in a diverse array of cancers, and its overexpression promotes all the hallmarks of cancer, such as proliferation, invasion, metastasis, angiogenesis and chemoresistance. The present review provides a comprehensive description of the molecular mechanism by which AEG-1 promotes tumorigenesis, with a special emphasis on its ability to regulate chemoresistance.
Collapse
|
15
|
Irollo E, Luchetta J, Ho C, Nash B, Meucci O. Mechanisms of neuronal dysfunction in HIV-associated neurocognitive disorders. Cell Mol Life Sci 2021; 78:4283-4303. [PMID: 33585975 PMCID: PMC8164580 DOI: 10.1007/s00018-021-03785-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) is characterized by cognitive and behavioral deficits in people living with HIV. HAND is still common in patients that take antiretroviral therapies, although they tend to present with less severe symptoms. The continued prevalence of HAND in treated patients is a major therapeutic challenge, as even minor cognitive impairment decreases patient’s quality of life. Therefore, modern HAND research aims to broaden our understanding of the mechanisms that drive cognitive impairment in people with HIV and identify promising molecular pathways and targets that could be exploited therapeutically. Recent studies suggest that HAND in treated patients is at least partially induced by subtle synaptodendritic damage and disruption of neuronal networks in brain areas that mediate learning, memory, and executive functions. Although the causes of subtle neuronal dysfunction are varied, reversing synaptodendritic damage in animal models restores cognitive function and thus highlights a promising therapeutic approach. In this review, we examine evidence of synaptodendritic damage and disrupted neuronal connectivity in HAND from clinical neuroimaging and neuropathology studies and discuss studies in HAND models that define structural and functional impairment of neurotransmission. Then, we report molecular pathways, mechanisms, and comorbidities involved in this neuronal dysfunction, discuss new approaches to reverse neuronal damage, and highlight current gaps in knowledge. Continued research on the manifestation and mechanisms of synaptic injury and network dysfunction in HAND patients and experimental models will be critical if we are to develop safe and effective therapies that reverse subtle neuropathology and cognitive impairment.
Collapse
Affiliation(s)
- Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Jared Luchetta
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Chunta Ho
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
16
|
Cisneros IE, Ghorpade A, Borgmann K. Methamphetamine Activates Trace Amine Associated Receptor 1 to Regulate Astrocyte Excitatory Amino Acid Transporter-2 via Differential CREB Phosphorylation During HIV-Associated Neurocognitive Disorders. Front Neurol 2020; 11:593146. [PMID: 33324330 PMCID: PMC7724046 DOI: 10.3389/fneur.2020.593146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Methamphetamine (METH) use, referred to as methamphetamine use disorder (MUD), results in neurocognitive decline, a characteristic shared with HIV-associated neurocognitive disorders (HAND). MUD exacerbates HAND partly through glutamate dysregulation. Astrocyte excitatory amino acid transporter (EAAT)-2 is responsible for >90% of glutamate uptake from the synaptic environment and is significantly decreased with METH and HIV-1. Our previous work demonstrated astrocyte trace amine associated receptor (TAAR) 1 to be involved in EAAT-2 regulation. Astrocyte EAAT-2 is regulated at the transcriptional level by cAMP responsive element binding (CREB) protein and NF-κB, transcription factors activated by cAMP, calcium and IL-1β. Second messengers, cAMP and calcium, are triggered by TAAR1 activation, which is upregulated by IL-1β METH-mediated increases in these second messengers and signal transduction pathways have not been shown to directly decrease astrocyte EAAT-2. We propose CREB activation serves as a master regulator of EAAT-2 transcription, downstream of METH-induced TAAR1 activation. To investigate the temporal order of events culminating in CREB activation, genetically encoded calcium indicators, GCaMP6s, were used to visualize METH-induced calcium signaling in primary human astrocytes. RNA interference and pharmacological inhibitors targeting or blocking cAMP-dependent protein kinase A and calcium/calmodulin kinase II confirmed METH-induced regulation of EAAT-2 and resultant glutamate clearance. Furthermore, we investigated METH-mediated CREB phosphorylation at both serine 133 and 142, the co-activator and co-repressor forms, respectively. Overall, this work revealed METH-induced differential CREB phosphorylation is a critical regulator for EAAT-2 function and may thus serve as a mechanistic target for the attenuation of METH-induced excitotoxicity in the context of HAND.
Collapse
Affiliation(s)
- Irma E Cisneros
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Anuja Ghorpade
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kathleen Borgmann
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
17
|
Jia H, Li Z, Chang Y, Fang B, Zhou Y, Ma H. Downregulation of Long Noncoding RNA TUG1 Attenuates MTDH-Mediated Inflammatory Damage via Targeting miR-29b-1-5p After Spinal Cord Ischemia Reperfusion. J Neuropathol Exp Neurol 2020; 80:254-264. [PMID: 33225366 DOI: 10.1093/jnen/nlaa138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Long noncoding RNAs and microRNAs (miRNAs) play a vital role in spinal cord ischemia reperfusion (IR) injury. The aim of this study was to identify the potential interactions between taurine upregulated gene 1 (TUG1) and miRNA-29b-1-5p in a rat model of spinal cord IR. The IR injury was established by 14-minute occlusion of aortic arch. TUG1 and metadherin (MTDH) knockdown were induced by respective siRNAs, and miR-29b-1-5p expression was modulated using specific inhibitor or mimics. The interactions between TUG1, miR-29b-1-5p, and the target genes were determined using the dual-luciferase reporter assay. We found that IR respectively downregulated and upregulated miR-29b-1-5p and TUG1, and significantly increased MTDH expression. MTDH was predicted as a target of miR-29b-1-5p and its knockdown downregulated NF-κB and IL-1β levels. A direct interaction was observed between TUG1 and miR-29b-1-5p, and knocking down TUG1 upregulated the latter. Furthermore, overexpression of miR-29b-1-5p or knockdown of TUG1 alleviated blood-spinal cord barrier leakage and improved hind-limb motor function by suppressing MTDH and its downstream pro-inflammatory cytokines. Knocking down TUG1 also alleviated MTDH/NF-κB/IL-1β pathway-mediated inflammatory damage after IR by targeting miR-29b-1-5p, whereas blocking the latter reversed the neuroprotective effect of TUG1 knockdown and restored MTDH/NF-κB/IL-1β levels.
Collapse
Affiliation(s)
- Hui Jia
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhe Li
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi Chang
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Fang
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongjian Zhou
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hong Ma
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
How HIV-1 Gag Manipulates Its Host Cell Proteins: A Focus on Interactors of the Nucleocapsid Domain. Viruses 2020; 12:v12080888. [PMID: 32823718 PMCID: PMC7471995 DOI: 10.3390/v12080888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) polyprotein Gag (Group-specific antigen) plays a central role in controlling the late phase of the viral lifecycle. Considered to be only a scaffolding protein for a long time, the structural protein Gag plays determinate and specific roles in HIV-1 replication. Indeed, via its different domains, Gag orchestrates the specific encapsidation of the genomic RNA, drives the formation of the viral particle by its auto-assembly (multimerization), binds multiple viral proteins, and interacts with a large number of cellular proteins that are needed for its functions from its translation location to the plasma membrane, where newly formed virions are released. Here, we review the interactions between HIV-1 Gag and 66 cellular proteins. Notably, we describe the techniques used to evidence these interactions, the different domains of Gag involved, and the implications of these interactions in the HIV-1 replication cycle. In the final part, we focus on the interactions involving the highly conserved nucleocapsid (NC) domain of Gag and detail the functions of the NC interactants along the viral lifecycle.
Collapse
|
19
|
Gorska AM, Eugenin EA. The Glutamate System as a Crucial Regulator of CNS Toxicity and Survival of HIV Reservoirs. Front Cell Infect Microbiol 2020; 10:261. [PMID: 32670889 PMCID: PMC7326772 DOI: 10.3389/fcimb.2020.00261] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate (Glu) is the most abundant excitatory neurotransmitter in the central nervous system (CNS). HIV-1 and viral proteins compromise glutamate synaptic transmission, resulting in poor cell-to-cell signaling and bystander toxicity. In this study, we identified that myeloid HIV-1-brain reservoirs survive in Glu and glutamine (Gln) as a major source of energy. Thus, we found a link between synaptic compromise, metabolomics of viral reservoirs, and viral persistence. In the current manuscript we will discuss all these interactions and the potential to achieve eradication and cure using this unique metabolic profile.
Collapse
Affiliation(s)
- Anna Maria Gorska
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
20
|
Abstract
People living with HIV can experience accelerated aging and the development of neurological disorders. Recently, we reported that HIV-1 infection results in a dramatic loss of peroxisomes in macrophages and brain tissue. This is significant because (i) peroxisomes are important for the innate immune response and (ii) loss of peroxisome function is associated with cellular aging and neurodegeneration. Accordingly, understanding how HIV-1 infection causes peroxisome depletion may provide clues regarding how the virus establishes persistent infections and, potentially, the development of neurological disorders. Here, we show that the accessory protein Vpu is necessary and sufficient for the induction of microRNAs that target peroxisome biogenesis factors. The ability of Vpu to downregulate peroxisome formation depends on the Wnt/β-catenin pathway. Thus, in addition to revealing a novel mechanism by which HIV-1 uses intracellular signaling pathways to target antiviral signaling platforms (peroxisomes), we have uncovered a previously unknown link between the Wnt/β-catenin pathway and peroxisome homeostasis. Human immunodeficiency virus type 1 (HIV-1) establishes lifelong infections in humans, a process that relies on its ability to thwart innate and adaptive immune defenses of the host. Recently, we reported that HIV-1 infection results in a dramatic reduction of the cellular peroxisome pool. Peroxisomes are metabolic organelles that also function as signaling platforms in the innate immune response. Here, we show that the HIV-1 accessory protein Vpu is necessary and sufficient for the depletion of cellular peroxisomes during infection. Vpu induces the expression of four microRNAs that target mRNAs encoding proteins required for peroxisome formation and metabolic function. The ability of Vpu to downregulate peroxisomes was found to be dependent upon the Wnt/β-catenin signaling pathway. Given the importance of peroxisomes in innate immune signaling and central nervous system function, the roles of Vpu in dampening antiviral signaling appear to be more diverse than previously realized. Finally, our findings highlight a potential role for Wnt/β-catenin signaling in peroxisome homeostasis through modulating the production of biogenesis factors.
Collapse
|
21
|
Abdel Ghafar MT, Gharib F, Abdel-Salam S, Elkhouly RA, Elshora A, Shalaby KH, El-Guindy D, El-Rashidy MA, Soliman NA, Abu-Elenin MM, Allam AA. Role of serum Metadherin mRNA expression in the diagnosis and prediction of survival in patients with colorectal cancer. Mol Biol Rep 2020; 47:2509-2519. [PMID: 32088817 DOI: 10.1007/s11033-020-05334-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/18/2020] [Indexed: 01/05/2023]
Abstract
Early diagnosis and treatment of colorectal cancer (CRC) are important for improving patients' survival. Metadherin is an oncogene that plays a pivotal role in carcinogenesis and can be suggested as a cancer biomarker. This study aimed to elucidate the efficacy of serum Metadherin mRNA expression as a potential non-invasive biomarker for early diagnosis of CRC in relation to other screening markers as carcinoembryonic antigen (CEA), carbohydrate antigen 19.9 (CA19.9) and Fecal occult blood (FOB) and also to assess its relationship with the tumor stage and survival rate. A convenience series of 86 CRC cases (group I) were recruited with 78 subjects as controls (group II). Serum Metadherin mRNA expression level was determined using reverse transcription polymerase chain reaction (RT-PCR). Serum Metadherin mRNA expression level was significantly elevated in CRC cases when compared with controls (P < 0.001). For CRC diagnosis; Receiver operator characteristic (ROC) analyses revealed that the diagnostic accuracy of serum Metadherin mRNA (AUC = 0.976) was significantly higher than other routine CRC screening markers as CEA, CA19.9 and FOB. The combined accuracy of these markers (AUC = 0.741) was increased when used with serum Metadherin mRNA (AUC = 0.820). High serum Metadherin mRNA expression was associated with poorly differentiated histological grade, advanced tumor stage and lower survival rate. AUC of Metadherin was 0.820 for differentiating advanced versus early tumor stages. Serum Metadherin mRNA expression is a useful non-invasive biomarker for CRC. It can be used for screening and early diagnosis of CRC and can increase the efficacy of other routine CRC screening markers when it is estimated in CRC patients with them. It is also associated with advanced tumor stage and a lower survival rate.
Collapse
Affiliation(s)
- Muhammad Tarek Abdel Ghafar
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Aljaysh st, Medical Campus, Tanta, 31511, Egypt.
| | - Fatma Gharib
- Department of Oncology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Sherief Abdel-Salam
- Department of Tropical Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Ahmed Elshora
- Department of General Surgery, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Khaled H Shalaby
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina El-Guindy
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mira Maged Abu-Elenin
- Department of Public Health and Community Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Alzahraa A Allam
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
22
|
Kery R, Chen APF, Kirschen GW. Genetic targeting of astrocytes to combat neurodegenerative disease. Neural Regen Res 2020; 15:199-211. [PMID: 31552885 PMCID: PMC6905329 DOI: 10.4103/1673-5374.265541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Astrocytes, glial cells that interact extensively with neurons and other support cells throughout the central nervous system, have recently come under the spotlight for their potential contribution to, or potential regenerative role in a host of neurodegenerative disorders. It is becoming increasingly clear that astrocytes, in concert with microglial cells, activate intrinsic immunological pathways in the setting of neurodegenerative injury, although the direct and indirect consequences of such activation are still largely unknown. We review the current literature on the astrocyte’s role in several neurodegenerative diseases, as well as highlighting recent advances in genetic manipulation of astrocytes that may prove critical to modulating their response to neurological injury, potentially combatting neurodegenerative damage.
Collapse
Affiliation(s)
- Rachel Kery
- Medical Scientist Training Program (MSTP), Stony Brook Medicine; Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Allen P F Chen
- Medical Scientist Training Program (MSTP), Stony Brook Medicine; Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Gregory W Kirschen
- Medical Scientist Training Program (MSTP), Stony Brook Medicine, Stony Brook, NY, USA
| |
Collapse
|
23
|
Alam MA, Datta PK. Epigenetic Regulation of Excitatory Amino Acid Transporter 2 in Neurological Disorders. Front Pharmacol 2019; 10:1510. [PMID: 31920679 PMCID: PMC6927272 DOI: 10.3389/fphar.2019.01510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022] Open
Abstract
Excitatory amino acid transporter 2 (EAAT2) is the predominant astrocyte glutamate transporter involved in the reuptake of the majority of the synaptic glutamate in the mammalian central nervous system (CNS). Gene expression can be altered without changing DNA sequences through epigenetic mechanisms. Mechanisms of epigenetic regulation, include DNA methylation, post-translational modifications of histones, chromatin remodeling, and small non-coding RNAs. This review is focused on neurological disorders, such as glioblastoma multiforme (GBM), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), bipolar disorder (BD), and neuroHIV where there is evidence that epigenetics plays a role in the reduction of EAAT2 expression. The emerging field of pharmaco-epigenetics provides a novel avenue for epigenetics-based drug therapy. This review highlights findings on the role of epigenetics in the regulation of EAAT2 in different neurological disorders and discusses the current pharmacological approaches used and the potential use of novel therapeutic approaches to induce EAAT2 expression in neurological disorders using CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Afaque Alam
- Department of Neuroscience, Center for Comprehensive NeuroAIDS, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Prasun K Datta
- Department of Neuroscience, Center for Comprehensive NeuroAIDS, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
24
|
Liu W, Chen X, Wang Y, Chen Y, Chen S, Gong W, Chen T, Sun L, Zheng C, Yin B, Li S, Luo C, Huang Q, Xiao J, Xu Z, Peng F, Long H. Micheliolide ameliorates diabetic kidney disease by inhibiting Mtdh-mediated renal inflammation in type 2 diabetic db/db mice. Pharmacol Res 2019; 150:104506. [DOI: 10.1016/j.phrs.2019.104506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
|
25
|
SIV-Mediated Synaptic Dysfunction Is Associated with an Increase in Synapsin Site 1 Phosphorylation and Impaired PP2A Activity. J Neurosci 2019; 39:7006-7018. [PMID: 31270156 DOI: 10.1523/jneurosci.0178-19.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/31/2019] [Accepted: 06/22/2019] [Indexed: 11/21/2022] Open
Abstract
Although the reduction of viral loads in people with HIV undergoing combination antiretroviral therapy has mitigated AIDS-related symptoms, the prevalence of neurological impairments has remained unchanged. HIV-associated CNS dysfunction includes impairments in memory, attention, memory processing, and retrieval. Here, we show a significant site-specific increase in the phosphorylation of Syn I serine 9, site 1, in the frontal cortex lysates and synaptosome preparations of male rhesus macaques infected with simian immunodeficiency virus (SIV) but not in uninfected or SIV-infected antiretroviral therapy animals. Furthermore, we found that a lower protein phosphatase 2A (PP2A) activity, a phosphatase responsible for Syn I (S9) dephosphorylation, is primarily associated with the higher S9 phosphorylation in the frontal cortex of SIV-infected macaques. Comparison of brain sections confirmed higher Syn I (S9) in the frontal cortex and greater coexpression of Syn I and PP2A A subunit, which was observed as perinuclear aggregates in the somata of the frontal cortex of SIV-infected macaques. Synaptosomes from SIV-infected animals were physiologically tested using a synaptic vesicle endocytosis assay and FM4-64 dye showing a significantly higher baseline depolarization levels in synaptosomes of SIV+-infected than uninfected control or antiretroviral therapy animals. A PP2A-activating FDA-approved drug, FTY720, decreased the higher synaptosome depolarization in SIV-infected animals. Our results suggest that an impaired distribution and lower activity of serine/threonine phosphatases in the context of HIV infection may cause an indirect effect on the phosphorylation levels of essential proteins involving in synaptic transmission, supporting the occurrence of specific impairments in the synaptic activity during SIV infection.SIGNIFICANCE STATEMENT Even with antiretroviral therapy, neurocognitive deficits, including impairments in attention, memory processing, and retrieval, are still major concerns in people living with HIV. Here, we used the rhesus macaque simian immunodeficiency virus model with and without antiretroviral therapy to study the dynamics of phosphorylation of key amino acid residues of synapsin I, which critically impacts synaptic vesicle function. We found a significant increase in synapsin I phosphorylation at serine 9, which was driven by dysfunction of serine/threonine protein phosphatase 2A in the nerve terminals. Our results suggest that an impaired distribution and lower activity of serine/threonine phosphatases in the context of HIV infection may cause an indirect effect on the phosphorylation levels of essential proteins involved in synaptic transmission.
Collapse
|
26
|
Qing Z, Ye J, Wu S. Lipopolysaccharide-induced expression of astrocyte elevated gene-1 promotes degeneration and inflammation of chondrocytes via activation of nuclear factor-κB signaling. Int Immunopharmacol 2019; 71:84-92. [PMID: 30878819 DOI: 10.1016/j.intimp.2019.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023]
Abstract
Osteoarthritis is an inflammatory disease characterized by joint degeneration and inflammation. Astrocyte elevated gene-1 (AEG-1) has been suggested as a novel inflammation-related factor in the pathological processes of various inflammatory diseases. To date, little is known about the role of AEG-1 in osteoarthritis. The aim of the present study was to explore the potential role of AEG-1 in the regulation of lipopolysaccharide-induced apoptosis and inflammation of chondrocytes. The results showed that AEG-1 expression was significantly upregulated in chondrocytes following exposure to lipopolysaccharide. Knockdown of AEG-1 increased the survival and decreased the expression of matrix metalloproteinases in chondrocytes treated with lipopolysaccharide. Moreover, silencing of AEG-1 restricted the lipopolysaccharide-induced production of proinflammatory cytokines. In contrast, AEG-1 overexpression caused opposite effects. Notably, we found that AEG-1 inhibition blocked the lipopolysaccharide-induced activation of nuclear factor-κB signaling through impeding the nuclear translocation of nuclear factor-κB p65 subunit. Additionally, inhibition of nuclear factor-κB partially reversed the AEG-1-mediated promotion of lipopolysaccharide-induced inflammatory injury in chondrocytes. In conclusion, our results demonstrate that inhibition of AEG-1 expression attenuates lipopolysaccharide-induced degeneration and inflammation of chondrocytes through suppressing the activation of nuclear factor-κB signaling. This work therefore highlights a potential role of AEG-1 in the pathogenesis of osteoarthritis, and indicates its potential as a therapeutic target.
Collapse
Affiliation(s)
- Zhong Qing
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; The Department of Joint Surgery, Knee Word, Honghui Hospital, Xian Jiaotong University, Xi'an 710054, China
| | - Jiumin Ye
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
27
|
Robertson CL, Mendoza RG, Jariwala N, Dozmorov M, Mukhopadhyay ND, Subler MA, Windle JJ, Lai Z, Fisher PB, Ghosh S, Sarkar D. Astrocyte Elevated Gene-1 Regulates Macrophage Activation in Hepatocellular Carcinogenesis. Cancer Res 2018; 78:6436-6446. [PMID: 30181179 PMCID: PMC6239947 DOI: 10.1158/0008-5472.can-18-0659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 01/22/2023]
Abstract
Chronic inflammation is a known hallmark of cancer and is central to the onset and progression of hepatocellular carcinoma (HCC). Hepatic macrophages play a critical role in the inflammatory process leading to HCC. The oncogene Astrocyte elevated gene-1 (AEG-1) regulates NFκB activation, and germline knockout of AEG-1 in mice (AEG-1-/-) results in resistance to inflammation and experimental HCC. In this study, we developed conditional hepatocyte- and myeloid cell-specific AEG-1-/- mice (AEG-1ΔHEP and AEG-1ΔMAC, respectively) and induced HCC by treatment with N-nitrosodiethylamine (DEN) and phenobarbital (PB). AEG-1ΔHEP mice exhibited a significant reduction in disease severity compared with control littermates, while AEG-1ΔMAC mice were profoundly resistant. In vitro, AEG-1-/- hepatocytes exhibited increased sensitivity to stress and senescence. Notably, AEG-1-/- macrophages were resistant to either M1 or M2 differentiation with significant inhibition in migration, endothelial adhesion, and efferocytosis activity, indicating that AEG-1 ablation renders macrophages functionally anergic. These results unravel a central role of AEG-1 in regulating macrophage activation and indicate that AEG-1 is required in both tumor cells and tumor microenvironment to stimulate hepatocarcinogenesis.Significance: These findings distinguish a novel role of macrophage-derived oncogene AEG-1 from hepatocellular AEG-1 in promoting inflammation and driving tumorigenesis. Cancer Res; 78(22); 6436-46. ©2018 AACR.
Collapse
Affiliation(s)
- Chadia L Robertson
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Rachel G Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Nidhi Jariwala
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Nitai D Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
28
|
Rubin LH, Sacktor N, Creighton J, Du Y, Endres CJ, Pomper MG, Coughlin JM. Microglial activation is inversely associated with cognition in individuals living with HIV on effective antiretroviral therapy. AIDS 2018; 32:1661-1667. [PMID: 29746297 DOI: 10.1097/qad.0000000000001858] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Despite viral suppression, HIV-associated cognitive impairment persists and may be partially due to persistent immune signalling by cells of the myeloid-lineage. Here, we aimed to understand the contribution of activated microglia located in vulnerable brain regions (e.g. frontal, subcortical) of HIV-infected, virally suppressed (HIV+VS) individuals in relation to cognitive and motor function. DESIGN Twenty-one HIV+VS individuals underwent PET with [11C]DPA-713 to image the translocator protein 18 kDa (TSPO), a marker of microglial activation, and completed a comprehensive neuropsychological test battery. METHODS Multivariable linear regressions were used to examine the contribution of [11C]DPA-713 binding to cognitive performance. RESULTS Higher [11C]DPA-713 binding was associated with lower cognition among HIV+VS individuals. [11C]DPA-713 binding in middle frontal gyrus/frontal cortex, hippocampus/temporal cortex and occipital cortex was inversely associated with performance on a number of cognitive domains, including verbal memory, processing speed/attention/concentration, executive function, working memory and motor function. [C]DPA-713 binding in parietal cortex, cerebellum and thalamus was associated with only specific cognitive domains including visual construction and verbal memory. Binding was not associated with global cognitive performance. CONCLUSION The findings add to the growing body of evidence that immune-mediated brain injury may contribute to domain specific, HIV-associated, cognitive vulnerabilities despite viral suppression.
Collapse
|
29
|
HIV-1 Tat inhibits EAAT-2 through AEG-1 upregulation in models of HIV-associated neurocognitive disorder. Oncotarget 2018; 8:39922-39934. [PMID: 28404980 PMCID: PMC5503662 DOI: 10.18632/oncotarget.16485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/23/2017] [Indexed: 11/25/2022] Open
Abstract
During HIV-associated neurocognitive disorder (HAND), decreasing in excitatory amino acid transporter 2 (EAAT-2) in astrocyte plasma membranes leads to elevated levels of extracellular glutamate and, in turn, neuronal apoptosis. We used immunohistochemistry, western blot, qRT-PCR, and RNA interference to elucidate the molecular mechanisms underlying the decreased EAAT-2 expression during HAND at the tissue and cellular levels. We used simian immunodeficiency virus-human immunodeficiency virus chimeric virus (SHIV)-infected macaques as an in vivo model of HAND. Our results show that EAAT-2 expression was decreased in the cerebral cortex, while AEG-1 expression was increased, and the expression levels of these proteins were negatively correlated. In vitro analyses showed that HIV-1 Tat inhibited EAAT-2 expression by inducing overexpression of AEG-1. More specifically, HIV-1 Tat increased AEG-1 expression via the PI3-K signaling pathway, while increasing EAAT-2 inhibition by YinYan-1 (YY-1) via the NF-κB signaling pathway. These results warrant testing AEG-1 as a potential therapeutic target for treating HAND.
Collapse
|
30
|
Yin X, Wang S, Qi Y, Wang X, Jiang H, Wang T, Yang Y, Wang Y, Zhang C, Feng H. Astrocyte elevated gene-1 is a novel regulator of astrogliosis and excitatory amino acid transporter-2 via interplaying with nuclear factor-κB signaling in astrocytes from amyotrophic lateral sclerosis mouse model with hSOD1 G93A mutation. Mol Cell Neurosci 2018; 90:1-11. [PMID: 29777762 DOI: 10.1016/j.mcn.2018.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
AEG-1 has received extensive attention on cancer research. However, little is known about its roles in astrogliosis of Amyotrophic lateral sclerosis (ALS). In this study, we detected AEG-1 expression in hSOD1G93A-positive (mut-SOD1) astrocytes and wild type (wt-SOD1) astrocytes, and intend to elucidate its potential functions in ALS related astrogliosis and the always accompanied dysregulated glutamate clearance. Results showed elevated protein and mRNA levels of AEG-1 in mut-SOD1 astrocytes; Also, NF-κB signaling pathway related proteins and inflammatory cytokines were upregulated in mut-SOD1 astrocytes; AEG-1 knockdown attenuated astrocytes proliferation and pro-inflammatory release; also we found that AEG-1 silence inhibited translocation of p65 from cytoplasma to nuclear, which was associated with inhibited NF-κB signaling. Besides, excitatory amino acid transporter-2 (EAAT2) expression levels were significantly decreased, accompanied by impaired glutamate clearance ability, in mut-SOD1 astrocytes; yin yang 1 (YY1), a transcriptional inhibitor for EAAT2, increased in nucleus of mut-SOD1 astrocytes. AEG-1 silence inhibited translocation of YY1 to nucleus, increased EAAT2 expression levels, and enhanced astrocytic ability of glutamate clearance, ultimately exerted the neuronal protection. Findings from this study implicate potential function of AEG-1 in mut-SOD1 related astrogliosis and the accompanied excitatory cytotoxic mechanism in ALS.
Collapse
Affiliation(s)
- Xiang Yin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Shuyu Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yan Qi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xudong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Hongquan Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Tianhang Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yueqing Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Chunting Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
31
|
Wu H, He M, Yang R, Zuo Y, Bian Z. Astrocyte elevated gene-1 participates in the production of pro-inflammatory cytokines in dental pulp cells via NF-κB signalling pathway. Int Endod J 2018; 51:1130-1138. [DOI: 10.1111/iej.12921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 02/27/2018] [Indexed: 12/23/2022]
Affiliation(s)
- H. Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| | - M. He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| | - R. Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| | - Y. Zuo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| | - Z. Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
32
|
Wong CP, Xu Z, Power C, Hobman TC. Targeted Elimination of Peroxisomes During Viral Infection: Lessons from HIV and Other Viruses. DNA Cell Biol 2018; 37:417-421. [PMID: 29443540 DOI: 10.1089/dna.2018.4153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Peroxisomes are membrane-bound organelles that are best known for their roles in lipid metabolism. Mounting evidence indicates that they are also important nodes for antiviral signaling. While research over the past few decades has revealed effective viral strategies to block antiviral signalling pathways from the plasma membrane, mitochondria and/or the nucleus, until recently, very little was known about how viruses interfere with peroxisome-based antiviral signaling. In this essay, we review how viruses use a variety of strategies to interfere with peroxisome biogenesis, a phenomenon that has implications for evasion of the host immune system as well as pathogenesis.
Collapse
Affiliation(s)
- Cheung Pang Wong
- 1 Department of Medical Microbiology and Immunology, University of Alberta , Edmonton, Canada
| | - Zaikun Xu
- 2 Department of Cell Biology, University of Alberta , Edmonton, Canada
| | - Christopher Power
- 3 Department of Medicine (Neurology), University of Alberta , Edmonton, Canada
| | - Tom C Hobman
- 1 Department of Medical Microbiology and Immunology, University of Alberta , Edmonton, Canada .,2 Department of Cell Biology, University of Alberta , Edmonton, Canada .,4 Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Canada .,5 Women & Children's Health Research Institute, University of Alberta , Edmonton, Canada
| |
Collapse
|
33
|
Rubin LH, Benning L, Keating SM, Norris PJ, Burke-Miller J, Savarese A, Kumanan KN, Awadalla S, Springer G, Anastos K, Young M, Milam J, Valcour VG, Weber KM, Maki PM. Variability in C-reactive protein is associated with cognitive impairment in women living with and without HIV: a longitudinal study. J Neurovirol 2018; 24:41-51. [PMID: 29063513 PMCID: PMC6036635 DOI: 10.1007/s13365-017-0590-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/11/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022]
Abstract
Despite the availability of effective antiretroviral therapies, cognitive impairment (CI) remains prevalent in HIV-infected (HIV+) individuals. Evidence from primarily cross-sectional studies, in predominantly male samples, implicates monocyte- and macrophage-driven inflammatory processes linked to HIV-associated CI. Thus, peripheral systemic inflammatory markers may be clinically useful biomarkers in tracking HIV-associated CI. Given sex differences in immune function, we focused here on whether mean and intra-individual variability in inflammatory marker-predicted CI in HIV+ and HIV- women. Seventy-two HIV+ (36 with CI) and 58 HIV- (29 with CI) propensity-matched women participating in the Women's Interagency HIV Study completed a neuropsychological battery once between 2009 and 2011, and performance was used to determine CI status. Analysis of 13 peripheral immune markers was conducted on stored biospecimens at three time points (7 and 3.5 years before neuropsychological data collection and concurrent with data collection). HIV+ women showed alterations in 8 immune markers compared to HIV- women. The strongest predictors of CI across HIV+ and HIV- women were lower mean soluble tumor necrosis factor receptor I (sTNFRI) levels, higher mean interleukin (IL)-6 levels, and greater variability in C-reactive protein (CRP) and matrix metalloproteinase (MMP)-9 (p values < 0.05). Stratified by HIV, the only significant predictor of CI was greater variability in CRP for both HIV+ and HIV- women (p values < 0.05). This variability predicted lower executive function, attention/working memory, and psychomotor speed in HIV+ but only learning in HIV- women (p values < 0.05). Intra-individual variability in CRP levels over time may be a good predictor of CI in predominately minority low-socioeconomic status midlife women.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street/Meyer 6-113, Baltimore, MD, 21287-7613, USA.
| | - Lorie Benning
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | - Jane Burke-Miller
- Cook County Health and Hospitals System/Hektoen Institute of Medicine, Chicago, IL, USA
| | - Antonia Savarese
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Krithika N Kumanan
- School of Public Health, Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, USA
| | - Saria Awadalla
- School of Public Health, Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, USA
| | - Gayle Springer
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kathyrn Anastos
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Mary Young
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - Joel Milam
- Institute for Health Promotion and Disease Prevention Research, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Victor G Valcour
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kathleen M Weber
- Cook County Health and Hospitals System/Hektoen Institute of Medicine, Chicago, IL, USA
| | - Pauline M Maki
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
34
|
Xu Z, Asahchop EL, Branton WG, Gelman BB, Power C, Hobman TC. MicroRNAs upregulated during HIV infection target peroxisome biogenesis factors: Implications for virus biology, disease mechanisms and neuropathology. PLoS Pathog 2017; 13:e1006360. [PMID: 28594894 PMCID: PMC5464672 DOI: 10.1371/journal.ppat.1006360] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) represent a spectrum neurological syndrome that affects up to 25% of patients with HIV/AIDS. Multiple pathogenic mechanisms contribute to the development of HAND symptoms including chronic neuroinflammation and neurodegeneration. Among the factors linked to development of HAND is altered expression of host cell microRNAs (miRNAs) in brain. Here, we examined brain miRNA profiles among HIV/AIDS patients with and without HAND. Our analyses revealed differential expression of 17 miRNAs in brain tissue from HAND patients. A subset of the upregulated miRNAs (miR-500a-5p, miR-34c-3p, miR-93-3p and miR-381-3p), are predicted to target peroxisome biogenesis factors (PEX2, PEX7, PEX11B and PEX13). Expression of these miRNAs in transfected cells significantly decreased levels of peroxisomal proteins and concomitantly decreased peroxisome numbers or affected their morphology. The levels of miR-500a-5p, miR-34c-3p, miR-93-3p and miR-381-3p were not only elevated in the brains of HAND patients, but were also upregulated during HIV infection of primary macrophages. Moreover, concomitant loss of peroxisomal proteins was observed in HIV-infected macrophages as well as in brain tissue from HIV-infected patients. HIV-induced loss of peroxisomes was abrogated by blocking the functions of the upregulated miRNAs. Overall, these findings point to previously unrecognized miRNA expression patterns in the brains of HIV patients. Targeting peroxisomes by up-regulating miRNAs that repress peroxisome biogenesis factors may represent a novel mechanism by which HIV-1 subverts innate immune responses and/or causes neurocognitive dysfunction.
Collapse
Affiliation(s)
- Zaikun Xu
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Eugene L. Asahchop
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - William G. Branton
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Christopher Power
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Women & Childrens Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Tom C. Hobman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Women & Childrens Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
35
|
Yin X, Feng H. Roles of AEG-1 in CNS neurons and astrocytes during noncancerous processes. J Neurosci Res 2017; 95:2086-2090. [PMID: 28370184 DOI: 10.1002/jnr.24044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Xiang Yin
- Department of Neurology and Neuroscience Center; First Hospital of Jilin University; Changchun People's Republic of China
| | - Honglin Feng
- Department of Neurology; First Affiliated Hospital of Harbin Medical University; Harbin People's Republic of China
| |
Collapse
|
36
|
Destination Brain: the Past, Present, and Future of Therapeutic Gene Delivery. J Neuroimmune Pharmacol 2017; 12:51-83. [PMID: 28160121 DOI: 10.1007/s11481-016-9724-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
Neurological diseases and disorders (NDDs) present a significant societal burden and currently available drug- and biological-based therapeutic strategies have proven inadequate to alleviate it. Gene therapy is a suitable alternative to treat NDDs compared to conventional systems since it can be tailored to specifically alter select gene expression, reverse disease phenotype and restore normal function. The scope of gene therapy has broadened over the years with the advent of RNA interference and genome editing technologies. Consequently, encouraging results from central nervous system (CNS)-targeted gene delivery studies have led to their transition from preclinical to clinical trials. As we shift to an exciting gene therapy era, a retrospective of available literature on CNS-associated gene delivery is in order. This review is timely in this regard, since it analyzes key challenges and major findings from the last two decades and evaluates future prospects of brain gene delivery. We emphasize major areas consisting of physiological and pharmacological challenges in gene therapy, function-based selection of a ideal cellular target(s), available therapy modalities, and diversity of viral vectors and nanoparticles as vehicle systems. Further, we present plausible answers to key questions such as strategies to circumvent low blood-brain barrier permeability and most suitable CNS cell types for targeting. We compare and contrast pros and cons of the tested viral vectors in the context of delivery systems used in past and current clinical trials. Gene vector design challenges are also evaluated in the context of cell-specific promoters. Key challenges and findings reported for recent gene therapy clinical trials, assessing viral vectors and nanoparticles are discussed from the perspective of bench to bedside gene therapy translation. We conclude this review by tying together gene delivery challenges, available vehicle systems and comprehensive analyses of neuropathogenesis to outline future prospects of CNS-targeted gene therapies.
Collapse
|
37
|
András IE, Leda A, Contreras MG, Bertrand L, Park M, Skowronska M, Toborek M. Extracellular vesicles of the blood-brain barrier: Role in the HIV-1 associated amyloid beta pathology. Mol Cell Neurosci 2016; 79:12-22. [PMID: 28040512 DOI: 10.1016/j.mcn.2016.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 11/20/2022] Open
Abstract
HIV-infected brains are characterized by increased amyloid beta (Aβ) deposition. It is believed that the blood-brain barrier (BBB) is critical for Aβ homeostasis and contributes to Aβ accumulation in the brain. Extracellular vesicles (ECV), like exosomes, recently gained a lot of attention as potentially playing a significant role in Aβ pathology. In addition, HIV-1 hijacks the exosomal pathway for budding and release. Therefore, we investigated the involvement of BBB-derived ECV in the HIV-1-induced Aβ pathology in the brain. Our results indicate that HIV-1 increases ECV release from brain endothelial cells as well as elevates their Aβ cargo when compared to controls. Interestingly, brain endothelial cell-derived ECV transferred Aβ to astrocytes and pericytes. Infusion of brain endothelial ECV carrying fluorescent Aβ into the internal carotid artery of mice resulted in Aβ fluorescence associated with brain microvessels and in the brain parenchyma. These results suggest that ECV carrying Aβ can be successfully transferred across the BBB into the brain. Based on these observations, we conclude that HIV-1 facilitates the shedding of brain endothelial ECV carrying Aβ; a process that may increase Aβ exposure of cells of neurovascular unit, and contribute to amyloid deposition in HIV-infected brain.
Collapse
Affiliation(s)
- Ibolya E András
- Department of Biochemistry and Molecular Biology, 1011 NW 15th Street, Gautier Building, Room 528, University of Miami School of Medicine, Miami, FL 33136-1019, USA.
| | - Ana Leda
- Department of Biochemistry and Molecular Biology, 1011 NW 15th Street, Gautier Building, Room 528, University of Miami School of Medicine, Miami, FL 33136-1019, USA
| | - Marta Garcia Contreras
- Diabetes Research Institute, 1450 NW 10th Ave, University of Miami School of Medicine, Miami, FL 33136-1011, USA
| | - Luc Bertrand
- Department of Biochemistry and Molecular Biology, 1011 NW 15th Street, Gautier Building, Room 528, University of Miami School of Medicine, Miami, FL 33136-1019, USA
| | - Minseon Park
- Department of Biochemistry and Molecular Biology, 1011 NW 15th Street, Gautier Building, Room 528, University of Miami School of Medicine, Miami, FL 33136-1019, USA
| | - Marta Skowronska
- Department of Biochemistry and Molecular Biology, 1011 NW 15th Street, Gautier Building, Room 528, University of Miami School of Medicine, Miami, FL 33136-1019, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, 1011 NW 15th Street, Gautier Building, Room 528, University of Miami School of Medicine, Miami, FL 33136-1019, USA.
| |
Collapse
|
38
|
Metadherin facilitates podocyte apoptosis in diabetic nephropathy. Cell Death Dis 2016; 7:e2477. [PMID: 27882943 PMCID: PMC5260885 DOI: 10.1038/cddis.2016.335] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 02/01/2023]
Abstract
Apoptosis, one of the major causes of podocyte loss, has been reported to have a vital role in diabetic nephropathy (DN) pathogenesis, and understanding the mechanisms underlying the regulation of podocyte apoptosis is crucial. Metadherin (MTDH) is an important oncogene, which is overexpressed in most cancers and responsible for apoptosis, metastasis, and poor patient survival. Here we show that the expression levels of Mtdh and phosphorylated p38 mitogen-activated protein kinase (MAPK) are significantly increased, whereas those of the microRNA-30 family members (miR-30s) are considerably reduced in the glomeruli of DN rat model and in high glucose (HG)-induced conditionally immortalized mouse podocytes (MPC5). These levels are positively correlated with podocyte apoptosis rate. The inhibition of Mtdh expression, using small interfering RNA, but not Mtdh overexpression, was shown to inhibit HG-induced MPC5 apoptosis and p38 MAPK pathway, and Bax and cleaved caspase 3 expression. This was shown to be similar to the effects of p38 MAPK inhibitor (SB203580). Furthermore, luciferase assay results demonstrated that Mtdh represents the target of miR-30s. Transient transfection experiments, using miR-30 microRNA (miRNA) inhibitors, led to the increase in Mtdh expression and induced the apoptosis of MPC5, whereas the treatment with miR-30 miRNA mimics led to the reduction in Mtdh expression and apoptosis of HG-induced MPC5 cells in comparison with their respective controls. Our results demonstrate that Mtdh is a potent modulator of podocyte apoptosis, and that it represents the target of miR-30 miRNAs, facilitating podocyte apoptosis through the activation of HG-induced p38 MAPK-dependent pathway.
Collapse
|
39
|
Abstract
OBJECTIVE HIV-associated neurocognitive disorder (HAND) is a common neurological disorder among HIV-infected patients despite the availability of combination antiretroviral therapy. Host-encoded microRNAs (miRNA) regulate both host and viral gene expression contributing to HAND pathogenesis and can also serve as disease biomarkers. Herein, plasma miRNA profiles were investigated in HIV/AIDS patients with HAND. METHODS Discovery and Validation Cohorts comprising HIV/AIDS patients were studied that included patients with and without HAND (non-HAND). Plasma miRNA levels were measured by array hybridization and verified by quantitative real-time reverse transcriptase PCR (qRT-PCR). Multiple bioinformatic and biostatistical analyses were applied to the data from each cohort. RESULTS Expression analyses identified nine miRNAs in the Discovery Cohort (HAND, n = 22; non-HAND, n = 25) with increased levels (≥two-fold) in the HAND group compared with the non-HAND group (P < 0.05). In the Validation Cohort (HAND, n = 12; non-HAND, n = 12) upregulation (≥two-fold) of three miRNAs (miR-3665, miR-4516 and miR-4707-5p) was observed in the HAND group that were also increased in the Discovery Cohort's HAND patients, which were verified subsequently by qRT-PCR. Receiver-operating characteristic curve analyses for the three miRNAs also pointed to the diagnosis of HAND (area under curve, 0.87, P < 0.005). Bioinformatics tools predicted that all three miRNAs targeted sequences of genes implicated in neural development, cell death, inflammation, cell signalling and cytokine functions. CONCLUSION Differentially expressed plasma-derived miRNAs were detected in HIV/AIDS patients with HAND that were conserved across different patient cohorts and laboratory methods. Plasma-derived miRNAs might represent biomarkers for HAND and also provide insights into disease mechanisms.
Collapse
|
40
|
Emdad L, Das SK, Hu B, Kegelman T, Kang DC, Lee SG, Sarkar D, Fisher PB. AEG-1/MTDH/LYRIC: A Promiscuous Protein Partner Critical in Cancer, Obesity, and CNS Diseases. Adv Cancer Res 2016; 131:97-132. [PMID: 27451125 DOI: 10.1016/bs.acr.2016.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since its original discovery in 2002, AEG-1/MTDH/LYRIC has emerged as a primary regulator of several diseases including cancer, inflammatory diseases, and neurodegenerative diseases. AEG-1/MTDH/LYRIC has emerged as a key contributory molecule in almost every aspect of cancer progression, including uncontrolled cell growth, evasion of apoptosis, increased cell migration and invasion, angiogenesis, chemoresistance, and metastasis. Additionally, recent studies highlight a seminal role of AEG-1/MTDH/LYRIC in neurodegenerative diseases and obesity. By interacting with multiple protein partners, AEG-1/MTDH/LYRIC plays multifaceted roles in the pathogenesis of a wide variety of diseases. This review discusses the current state of understanding of AEG-1/MTDH/LYRIC regulation and function in cancer and other diseases with a focus on its association/interaction with several pivotal protein partners.
Collapse
Affiliation(s)
- L Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - S K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - B Hu
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - T Kegelman
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - D-C Kang
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea
| | - S-G Lee
- Cancer Preventive Material Development Research Center, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - D Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - P B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
41
|
Vartak-Sharma N, Nooka S, Ghorpade A. Astrocyte elevated gene-1 (AEG-1) and the A(E)Ging HIV/AIDS-HAND. Prog Neurobiol 2016; 157:133-157. [PMID: 27090750 DOI: 10.1016/j.pneurobio.2016.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 12/23/2022]
Abstract
Recent attempts to analyze human immunodeficiency virus (HIV)-1-induced gene expression changes in astrocytes uncovered a multifunctional oncogene, astrocyte elevated gene-1 (AEG-1). Our previous studies revealed that AEG-1 regulates reactive astrocytes proliferation, migration and inflammation, hallmarks of aging and CNS injury. Moreover, the involvement of AEG-1 in neurodegenerative disorders, such as Huntington's disease and migraine, and its induction in the aged brain suggest a plausible role in regulating overall CNS homeostasis and aging. Therefore, it is important to investigate AEG-1 specifically in aging-associated cognitive decline. In this study, we decipher the common mechanistic links in cancer, aging and HIV-1-associated neurocognitive disorders that likely contribute to AEG-1-based regulation of astrocyte responses and function. Despite AEG-1 incorporation into HIV-1 virions and its induction by HIV-1, tumor necrosis factor-α and interleukin-1β, the specific role(s) of AEG-1 in astrocyte-driven HIV-1 neuropathogenesis are incompletely defined. We propose that AEG-1 plays a central role in a multitude of cellular stress responses involving mitochondria, endoplasmic reticulum and the nucleolus. It is thus important to further investigate AEG-1-based cellular and molecular regulation in order to successfully develop better therapeutic approaches that target AEG-1 to combat cancer, HIV-1 and aging.
Collapse
Affiliation(s)
- Neha Vartak-Sharma
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA; Institute for Integrated Cell-Material Sciences, Kyoto University, Japan; Institute for Stem Cell Research and Regenerative Medicine, National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shruthi Nooka
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA.
| |
Collapse
|
42
|
Chowen JA, Argente-Arizón P, Freire-Regatillo A, Frago LM, Horvath TL, Argente J. The role of astrocytes in the hypothalamic response and adaptation to metabolic signals. Prog Neurobiol 2016; 144:68-87. [PMID: 27000556 DOI: 10.1016/j.pneurobio.2016.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
The hypothalamus is crucial in the regulation of homeostatic functions in mammals, with the disruption of hypothalamic circuits contributing to chronic conditions such as obesity, diabetes mellitus, hypertension, and infertility. Metabolic signals and hormonal inputs drive functional and morphological changes in the hypothalamus in attempt to maintain metabolic homeostasis. However, the dramatic increase in the incidence of obesity and its secondary complications, such as type 2 diabetes, have evidenced the need to better understand how this system functions and how it can go awry. Growing evidence points to a critical role of astrocytes in orchestrating the hypothalamic response to metabolic cues by participating in processes of synaptic transmission, synaptic plasticity and nutrient sensing. These glial cells express receptors for important metabolic signals, such as the anorexigenic hormone leptin, and determine the type and quantity of nutrients reaching their neighboring neurons. Understanding the mechanisms by which astrocytes participate in hypothalamic adaptations to changes in dietary and metabolic signals is fundamental for understanding the neuroendocrine control of metabolism and key in the search for adequate treatments of metabolic diseases.
Collapse
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain.
| | - Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
43
|
Borgmann K, Ghorpade A. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol 2015; 6:1143. [PMID: 26579077 PMCID: PMC4621459 DOI: 10.3389/fmicb.2015.01143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022] Open
Abstract
As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation.
Collapse
Affiliation(s)
- Kathleen Borgmann
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| |
Collapse
|
44
|
Robertson CL, Srivastava J, Rajasekaran D, Gredler R, Akiel MA, Jariwala N, Siddiq A, Emdad L, Fisher PB, Sarkar D. The role of AEG-1 in the development of liver cancer. Hepat Oncol 2015; 2:303-312. [PMID: 26798451 DOI: 10.2217/hep.15.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AEG-1 is an oncogene that is overexpressed in all cancers, including hepatocellular carcinoma. AEG-1 plays a seminal role in promoting cancer development and progression by augmenting proliferation, invasion, metastasis, angiogenesis and chemoresistance, all hallmarks of aggressive cancer. AEG-1 mediates its oncogenic function predominantly by interacting with various protein complexes. AEG-1 acts as a scaffold protein, activating multiple protumorigenic signal transduction pathways, such as MEK/ERK, PI3K/Akt, NF-κB and Wnt/β-catenin while regulating gene expression at transcriptional, post-transcriptional and translational levels. Our recent studies document that AEG-1 is fundamentally required for activation of inflammation. A comprehensive and convincing body of data currently points to AEG-1 as an essential component critical to the onset and progression of cancer. The present review describes the current knowledge gleaned from patient and experimental studies as well as transgenic and knockout mouse models, on the impact of AEG-1 on hepatocarcinogenesis.
Collapse
Affiliation(s)
- Chadia L Robertson
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Jyoti Srivastava
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Devaraja Rajasekaran
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Rachel Gredler
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Maaged A Akiel
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Nidhi Jariwala
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Ayesha Siddiq
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Luni Emdad
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA; VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA
| | - Paul B Fisher
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA; VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Molecular Medicine Research Building 1220 East Broad Street, 7th Floor PO Box 980033, Richmond, VA 23298-0033, USA
| | - Devanand Sarkar
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA; VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Molecular Medicine Research Building 1220 East Broad Street, 7th Floor PO Box 980033, Richmond, VA 23298-0033, USA
| |
Collapse
|
45
|
Cerebrospinal fluid metabolomics implicate bioenergetic adaptation as a neural mechanism regulating shifts in cognitive states of HIV-infected patients. AIDS 2015; 29:559-69. [PMID: 25611149 DOI: 10.1097/qad.0000000000000580] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES To identify prognostic surrogate markers for change in cognitive states of HIV-infected patients. DESIGN Longitudinal cerebrospinal fluid (CSF) samples were collected from 98 HIV-infected patients identified by temporal change in cognitive states classified as normal, stably impaired, improving and worsening. METHODS The metabolic composition of CSF was analysed using H nuclear magnetic resonance (H NMR) spectroscopy that focused on energy metabolites. Metabolic biomarkers for cognitive states were identified using multivariate partial least squares regression modelling of the acquired spectra, combined with nonparametric analyses of metabolites with clinical features. RESULTS Multivariate modelling and cross-validated recursive partitioning identified several energy metabolites that, when combined with clinical variables, classified patients based on change in neurocognitive states. Prognostic identification for worsening was achieved with four features that included no change in a detectable plasma viral load, elevated citrate and acetate; decreased creatine, to produce a model with a predictive accuracy of 92%, sensitivity of 88% and 96% specificity. Prognosis for improvement contained seven features that included first visit age less than 47 years, new or continued use of antiretrovirals, elevated glutamine and glucose; decreased myo-inositol, β-glucose and creatinine to generate a model with a predictive accuracy of 92%, sensitivity of 100% and specificity of 84%. CONCLUSION These CSF metabolic results suggest that worsening cognitive status in HIV-infected patients is associated with increased aerobic glycolysis, and improvements in cognitive status are associated with a shift to anaerobic glycolysis. Dietary, lifestyle and pharmacologic interventions that promote anaerobic glycolysis could protect the brain in setting of HIV infection with combined antiretroviral therapy.
Collapse
|