1
|
Shen Y, Jin H, Guo F, Zhang W, Fu H, Jin M, Chen G. Association of Magnesium, Iron, Copper, and Zinc Levels with the Prevalence of Behavior Problems in Children and Adolescents. Biol Trace Elem Res 2024; 202:5356-5365. [PMID: 38388752 DOI: 10.1007/s12011-024-04098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Magnesium (Mg), iron (Fe), copper (Cu), and zinc (Zn) are indispensable elements in children's growth and development. However, epidemiological evidence regarding essential elements and their mixed exposure to behavior problems remains in its infancy. The objective of the present study was to evaluate the association between essential elements and the manifestation of behavior problems, with an additional focus on the implications of their mixture. An electronic medical records review was performed among 4122 subjects aged 6-18 years who underwent examinations at Children's Hospital, Zhejiang University School of Medicine, between January 2019 and July 2022. The concentrations of essential elements were measured by atomic absorption spectrometry, and behavior problems were assessed by using the Conners' Parent Rating Scale (CPRS). A total of 895 (21.7%) children and adolescents were identified as having behavior problems. For single exposure, inversely linear dose-response relationships were identified between continuous Mg and Zn levels and the prevalence of behavior problems, and the prevalence ratios (PRs) in the categorical lowest tertile were 1.28 (95% confidence interval, CI: 1.07-1.54) for Mg and 1.31 (95% CI: 1.05-1.63) for Zn compared to the highest tertile. For mixture exposure, an inverse association between essential elements and behavior problems was also found, mainly contributed by Mg (posterior inclusion probability, PIP = 0.854). Whole blood levels of Mg and Zn were significantly inversely associated with behavior problems. The findings highlight the pivotal role of essential elements in behavior problems and emphasize the importance of maintaining adequate levels of essential elements during children's maturation.
Collapse
Affiliation(s)
- Ying Shen
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Huyi Jin
- Department of Public Health, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fanjia Guo
- Department of Public Health, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Wanting Zhang
- Department of Public Health, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314000, China
| | - Hao Fu
- Department of Public Health, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mingjuan Jin
- Department of Public Health, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Guangdi Chen
- Department of Public Health, and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Nguyen H, Cheng MH, Lee JY, Aggarwal S, Mortensen OV, Bahar I. Allosteric modulation of serotonin and dopamine transporters: New insights from computations and experiments. Curr Res Physiol 2024; 7:100125. [PMID: 38836245 PMCID: PMC11148570 DOI: 10.1016/j.crphys.2024.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 06/06/2024] Open
Abstract
Human monoamine transporters (MATs) are critical to regulating monoaminergic neurotransmission by translocating their substrates from the synaptic space back into the presynaptic neurons. As such, their primary substrate binding site S1 has been targeted by a wide range of compounds for treating neuropsychiatric and neurodegenerative disorders including depression, ADHD, neuropathic pain, and anxiety disorders. We present here a comparative study of the structural dynamics and ligand-binding properties of two MATs, dopamine transporter (DAT) and serotonin transporter (SERT), with focus on the allosteric modulation of their transport function by drugs or substrates that consistently bind a secondary site S2, proposed to serve as an allosteric site. Our systematic analysis of the conformational space and dynamics of a dataset of 50 structures resolved for DAT and SERT in the presence of one or more ligands/drugs reveals the specific residues playing a consistent role in coordinating the small molecules bound to subsites S2-I and S2-II within S2, such as R476 and Y481 in dDAT and E494, P561, and F556 in hSERT. Further analysis reveals how DAT and SERT differ in their two principal modes of structural changes, PC1 and PC2. Notably, PC1 underlies the transition between outward- and inward-facing states of the transporters as well as their gating; whereas PC2 supports the rearrangements of TM helices near the S2 site. Finally, the examination of cross-correlations between structural elements lining the respective sites S1 and S2 point to the crucial role of coupled motions between TM6a and TM10. In particular, we note the involvement of hSERT residues F335 and G338, and E493-E494-T497 belonging to these two respective helices, in establishing the allosteric communication between S1 and S2. These results help understand the molecular basis of the action of drugs that bind to the S2 site of DAT or SERT. They also provide a basis for designing allosteric modulators that may provide better control of specific interactions and cellular pathways, rather than indiscriminately inhibiting the transporter by targeting its orthosteric site.
Collapse
Affiliation(s)
- Hoang Nguyen
- Laufer Center for Physical and Quantitative Biology and, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Ji Young Lee
- Laufer Center for Physical and Quantitative Biology and, USA
| | - Shaili Aggarwal
- Department of Pharmacology and Physiology, Drexel University School of Medicine, Philadelphia, PA, 19102, USA
| | - Ole Valente Mortensen
- Department of Pharmacology and Physiology, Drexel University School of Medicine, Philadelphia, PA, 19102, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology and, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
3
|
Hettiarachchi P, Niyangoda S, Shigemoto A, Solowiej IJ, Burdette SC, Johnson MA. Caged Zn 2+ Photolysis in Zebrafish Whole Brains Reveals Subsecond Modulation of Dopamine Uptake. ACS Chem Neurosci 2024; 15:772-782. [PMID: 38301116 PMCID: PMC11036533 DOI: 10.1021/acschemneuro.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Free, ionic zinc (Zn2+) modulates neurotransmitter dynamics in the brain. However, the sub-s effects of transient concentration changes of Zn2+ on neurotransmitter release and uptake are not well understood. To address this lack of knowledge, we have combined the photolysis of the novel caged Zn2+ compound [Zn(DPAdeCageOMe)]+ with fast scan cyclic voltammetry (FSCV) at carbon fiber microelectrodes in live, whole brain preparations from zebrafish (Danio rerio). After treating the brain with [Zn(DPAdeCageOMe)]+, Zn2+ was released by application of light that was gated through a computer-controlled shutter synchronized with the FSCV measurements and delivered through a 1 mm fiber optic cable. We systematically optimized the photocage concentration and light application parameters, including the total duration and light-to-electrical stimulation delay time. While sub-s Zn2+ application with this method inhibited DA reuptake, assessed by the first-order rate constant (k) and half-life (t1/2), it had no effect on the electrically stimulated DA overflow ([DA]STIM). Increasing the photocage concentration and light duration progressively inhibited uptake, with maximal effects occurring at 100 μM and 800 ms, respectively. Furthermore, uptake was inhibited 200 ms after Zn2+ photorelease, but no measurable effect occurred after 800 ms. We expect that application of this method to the zebrafish whole brain and other preparations will help expand the current knowledge of how Zn2+ affects neurotransmitter release/uptake in select neurological disease states.
Collapse
Affiliation(s)
- Piyanka Hettiarachchi
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Sayuri Niyangoda
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Austin Shigemoto
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Isabel J. Solowiej
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Shawn C. Burdette
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Michael A. Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
4
|
Boytsov D, Schicker K, Hellsberg E, Freissmuth M, Sandtner W. Allosteric modulators of solute carrier function: a theoretical framework. Front Physiol 2023; 14:1166450. [PMID: 37250134 PMCID: PMC10210158 DOI: 10.3389/fphys.2023.1166450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Large-scale drug screening is currently the basis for the identification of new chemical entities. This is a rather laborious approach, because a large number of compounds must be tested to cover the chemical space in an unbiased fashion. However, the structures of targetable proteins have become increasingly available. Thus, a new era has arguably been ushered in with the advent of methods, which allow for structure-based docking campaigns (i.e., virtual screens). Solute carriers (SLCs) are among the most promising drug targets. This claim is substantiated by the fact that a large fraction of the 400 solute carrier genes is associated with human diseases. The ability to dock large ligand libraries into selected structures of solute carriers has set the stage for rational drug design. In the present study, we show that these structure-based approaches can be refined by taking into account how solute carriers operate. We specifically address the feasibility of targeting solute carriers with allosteric modulators, because their actions differ fundamentally from those of ligands, which bind to the substrate binding site. For the pertinent analysis we used transition state theory in conjunction with the linear free energy relationship (LFER). These provide the theoretical framework to understand how allosteric modulators affect solute carrier function.
Collapse
Affiliation(s)
- D. Boytsov
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - K. Schicker
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - E. Hellsberg
- Computational Structural Biology Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - M. Freissmuth
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - W. Sandtner
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
The schizophrenia-associated missense variant rs13107325 regulates dendritic spine density. Transl Psychiatry 2022; 12:361. [PMID: 36056013 PMCID: PMC9440106 DOI: 10.1038/s41398-022-02137-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
The missense variant rs13107325 (C/T, p.Ala391Thr) in SLC39A8 consistently showed robust association with schizophrenia in recent genome-wide association studies (GWASs), suggesting the potential pathogenicity of this non-synonymous risk variant. Nevertheless, how this missense variant confers schizophrenia risk remains unknown. Here we constructed a knock-in mouse model (by introducing a threonine at the 393th amino acid of mouse SLC39A8 (SLC39A8-p.393T), which corresponds to rs13107325 (p.Ala391Thr) of human SLC39A8) to explore the potential roles and biological effects of this missense variant in schizophrenia pathogenesis. We assessed multiple phenotypes and traits (associated with rs13107325) of the knock-in mice, including body and brain weight, concentrations of metal ions (including cadmium, zinc, manganese, and iron) transported by SLC39A8, blood lipids, proliferation and migration of neural stem cells (NSCs), cortical development, behaviors and cognition, transcriptome, dendritic spine density, and synaptic transmission. Many of the tested phenotypes did not show differences in SLC39A8-p.393T knock-in and wild-type mice. However, we found that zinc concentration in brain and blood of SLC39A8-p.393T knock-in mice was dysregulated compared with wild-types, validating the functionality of rs13107325. Further analysis indicated that cortical dendritic spine density of the SLC39A8-p.393T knock-in mice was significantly decreased compared with wild-types, indicating the important role of SLC39A8-p.393T in dendritic spine morphogenesis. These results indicated that SLC39A8-p.393T knock-in resulted in decreased dendritic spine density, thus mimicking the dendritic spine pathology observed in schizophrenia. Our study indicates that rs13107325 might confer schizophrenia risk by regulating zinc concentration and dendritic spine density, a featured characteristic that was frequently reported to be decreased in schizophrenia.
Collapse
|
6
|
Farr CV, El-Kasaby A, Erdem FA, Sucic S, Freissmuth M, Sandtner W. Cooperative Binding of Substrate and Ions Drives Forward Cycling of the Human Creatine Transporter-1. Front Physiol 2022; 13:919439. [PMID: 35837012 PMCID: PMC9273935 DOI: 10.3389/fphys.2022.919439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Creatine serves as an ATP buffer and is thus an integral component of cellular energy metabolism. Most cells maintain their creatine levels via uptake by the creatine transporter (CRT-1, SLC6A8). The activity of CRT-1, therefore, is a major determinant of cytosolic creatine concentrations. We determined the kinetics of CRT-1 in real time by relying on electrophysiological recordings of transport-associated currents. Our analysis revealed that CRT-1 harvested the concentration gradient of NaCl and the membrane potential but not the potassium gradient to achieve a very high concentrative power. We investigated the mechanistic basis for the ability of CRT-1 to maintain the forward cycling mode in spite of high intracellular concentrations of creatine: this is achieved by cooperative binding of substrate and co-substrate ions, which, under physiological ion conditions, results in a very pronounced (i.e. about 500-fold) drop in the affinity of creatine to the inward-facing state of CRT-1. Kinetic estimates were integrated into a mathematical model of the transport cycle of CRT-1, which faithfully reproduced all experimental data. We interrogated the kinetic model to examine the most plausible mechanistic basis of cooperativity: based on this systematic exploration, we conclude that destabilization of binary rather than ternary complexes is necessary for CRT-1 to maintain the observed cytosolic creatine concentrations. Our model also provides a plausible explanation why neurons, heart and skeletal muscle cells must express a creatine releasing transporter to achieve rapid equilibration of the intracellular creatine pool.
Collapse
Affiliation(s)
| | | | | | | | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
7
|
Abd Wahil MS, Ja’afar MH, Md Isa Z. Assessment of Urinary Lead (Pb) and Essential Trace Elements in Autism Spectrum Disorder: a Case-Control Study Among Preschool Children in Malaysia. Biol Trace Elem Res 2022; 200:97-121. [PMID: 33661472 PMCID: PMC7930527 DOI: 10.1007/s12011-021-02654-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022]
Abstract
Lead (Pb) is a heavy metal which is abundant in the environment and known to cause neurotoxicity in children even at minute concentration. However, the trace elements calcium (Ca), magnesium (Mg), zinc (Zn) and iron (Fe) are essential to children due to its protective effect on neurodevelopment. The primary objective of this study was to assess the role of Pb and trace elements in the development of autism spectrum disorder (ASD) among preschool children. A total of 81 ASD children and 74 typically developed (TD) children aged between 3 and 6 years participated in the study. Self-administered online questionnaires were completed by the parents. A first-morning urine sample was collected in a sterile polyethene urine container and assayed for Pb, Ca, Mg, Zn and Fe using an inductively coupled plasma mass spectrometry (ICP-MS). Comparisons between groups revealed that the urinary Pb, Mg, Zn and Fe levels in ASD children were significantly lower than TD children. The odds of ASD reduced significantly by 5.0% and 23.0% with an increment of every 1.0 μg/dL urinary Zn and Fe, respectively. Post interaction analysis showed that the odds of ASD reduced significantly by 11.0% and 0.1% with an increment of every 1.0 μg/dL urinary Zn and Pb, respectively. A significantly lower urinary Pb level in ASD children than TD children may be due to their poor detoxifying mechanism. Also, the significantly lower urinary Zn and Fe levels in ASD children may augment the neurotoxic effect of Pb.
Collapse
Affiliation(s)
- Mohd Shahrol Abd Wahil
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Hasni Ja’afar
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Zaleha Md Isa
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Association of Prenatal Maternal Anemia with Tics and Tourette's Syndrome in Offspring. J Pers Med 2021; 11:jpm11101038. [PMID: 34683179 PMCID: PMC8541066 DOI: 10.3390/jpm11101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
Iron deficiency anemia (IDA) accounts for most of the anemia in pregnancy, and iron is essential for neurodevelopment. Tics and Tourette’s syndrome (TS) are neurodevelopmental disorders that manifest in childhood. A few studies reported an inconclusive association between iron deficiency and tics in children. No study has investigated the relationship between prenatal maternal anemia and tics in children. We aimed to assess the relationship between prenatal anemia exposure and the incidence of tics or TS in offspring. We linked the Taiwan National Health Insurance Research Database to the Maternal and Child Health Database for the analysis and identified 153,854 children with prenatal anemia exposure and 2,014,619 children without prenatal anemia exposure from 2004 to 2016 and followed them through 2017. Cox regression models were applied to compare the risk of tics or TS between the exposed and nonexposed groups. Among the exposed group, 37,832 were exposed at ≤12 weeks of gestational age (GA) and 116,022 at >12 weeks of GA. We observed an increased risk of tics and TS in those exposed at ≤12 weeks compared with the nonexposed group (adjusted hazard ratio (aHR) = 1.23, 95% confidence interval (CI): 1.12–1.34). The result remained consistent after adjusting for birth year, sex, birth order, maternal age, low-income levels, gestational age, birth weight, and alcohol use and smoking during pregnancy (aHR = 1.16, CI: 1.04–1.28). Fetuses exposed to maternal anemia at ≤12 weeks of GA are at high risk of tics or TS. However, this effect was attenuated to insignificance in the sibling comparison. Our study highlights the importance of detection of anemia during pregnancy and proper timing of iron supplementation.
Collapse
|
9
|
Zieminska E, Ruszczynska A, Augustyniak J, Toczylowska B, Lazarewicz JW. Zinc and Copper Brain Levels and Expression of Neurotransmitter Receptors in Two Rat ASD Models. Front Mol Neurosci 2021; 14:656740. [PMID: 34267627 PMCID: PMC8277171 DOI: 10.3389/fnmol.2021.656740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Zinc and copper are important trace elements necessary for the proper functioning of neurons. Impaired zinc and/or copper metabolism and signaling are implicated in many brain diseases, including autism (ASD). In our studies, autistic-like behavior in rat offsprings was induced by application to pregnant mothers valproic acid or thalidomide. Zinc and copper contents were measured in serum and brain structures: hippocampus, cerebral cortex, and cerebellum. Our research shows no interconnections in the particular metal concentrations measured in autistic animal brains and their sera. Based on patient researches, we studied 26 genes belonging to disturbed neurotransmitter pathways. In the same brain regions, we examined the expression of genes encoding proteins of cholinergic, adrenergic, serotonin, and dopamine receptors. In both rats’ ASD models, 17 out of the tested gene expression were decreased. In the cerebellum and cerebral cortex, expression of genes encoding cholinergic, adrenergic, and dopaminergic receptors decreased, whereas in the hippocampus only expression of serotoninergic receptors genes was downregulated. The changes in metals content observed in the rat brain can be secondary phenomena, perhaps elements of mechanisms that compensate for neurotransmission dysfunctions.
Collapse
Affiliation(s)
- Elzbieta Zieminska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Ruszczynska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Justyna Augustyniak
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Toczylowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Jerzy W Lazarewicz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Bhat S, Niello M, Schicker K, Pifl C, Sitte HH, Freissmuth M, Sandtner W. Handling of intracellular K + determines voltage dependence of plasmalemmal monoamine transporter function. eLife 2021; 10:67996. [PMID: 34061030 PMCID: PMC8192120 DOI: 10.7554/elife.67996] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/30/2021] [Indexed: 12/16/2022] Open
Abstract
The concentrative power of the transporters for dopamine (DAT), norepinephrine (NET), and serotonin (SERT) is thought to be fueled by the transmembrane Na+ gradient, but it is conceivable that they can also tap other energy sources, for example, membrane voltage and/or the transmembrane K+ gradient. We have addressed this by recording uptake of endogenous substrates or the fluorescent substrate APP+(4-(4-dimethylamino)phenyl-1-methylpyridinium) under voltage control in cells expressing DAT, NET, or SERT. We have shown that DAT and NET differ from SERT in intracellular handling of K+. In DAT and NET, substrate uptake was voltage-dependent due to the transient nature of intracellular K+ binding, which precluded K+ antiport. SERT, however, antiports K+ and achieves voltage-independent transport. Thus, there is a trade-off between maintaining constant uptake and harvesting membrane potential for concentrative power, which we conclude to occur due to subtle differences in the kinetics of co-substrate ion binding in closely related transporters.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marco Niello
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Klaus Schicker
- Division of Neurophysiology and Neuropharmacology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christian Pifl
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Schicker K, Bhat S, Farr C, Burtscher V, Horner A, Freissmuth M, Sandtner W. Descriptors of Secondary Active Transporter Function and How They Relate to Partial Reactions in the Transport Cycle. MEMBRANES 2021; 11:178. [PMID: 33802510 PMCID: PMC8001282 DOI: 10.3390/membranes11030178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022]
Abstract
Plasmalemmal solute carriers (SLCs) gauge and control solute abundance across cellular membranes. By virtue of this action, they play an important role in numerous physiological processes. Mutations in genes encoding the SLCs alter amino acid sequence that often leads to impaired protein function and onset of monogenic disorders. To understand how these altered proteins cause disease, it is necessary to undertake relevant functional assays. These experiments reveal descriptors of SLC function such as the maximal transport velocity (Vmax), the Michaelis constant for solute uptake (KM), potencies for inhibition of transporter function (IC50/EC50), and many more. In several instances, the mutated versions of different SLC transporters differ from their wild-type counterparts in the value of these descriptors. While determination of these experimental parameters can provide conjecture as to how the mutation gives rise to disease, they seldom provide any definitive insights on how a variant differ from the wild-type transporter in its operation. This is because the experimental determination of association between values of the descriptors and several partial reactions a transporter undergoes is casual, but not causal, at best. In the present study, we employ kinetic models that allow us to derive explicit mathematical terms and provide experimental descriptors as a function of the rate constants used to parameterize the kinetic model of the transport cycle. We show that it is possible to utilize these mathematical expressions to deduce, from experimental outcomes, how the mutation has impinged on partial reactions in the transport cycle.
Collapse
Affiliation(s)
- Klaus Schicker
- Center for Physiology and Pharmacology, Division of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Shreyas Bhat
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Clemens Farr
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Verena Burtscher
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, 4040 Linz, Austria;
| | - Michael Freissmuth
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| |
Collapse
|
12
|
Huysmans GHM, Ciftci D, Wang X, Blanchard SC, Boudker O. The high-energy transition state of the glutamate transporter homologue GltPh. EMBO J 2021; 40:e105415. [PMID: 33185289 PMCID: PMC7780239 DOI: 10.15252/embj.2020105415] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane transporters mediate cellular uptake of nutrients, signaling molecules, and drugs. Their overall mechanisms are often well understood, but the structural features setting their rates are mostly unknown. Earlier single-molecule fluorescence imaging of the archaeal model glutamate transporter homologue GltPh from Pyrococcus horikoshii suggested that the slow conformational transition from the outward- to the inward-facing state, when the bound substrate is translocated from the extracellular to the cytoplasmic side of the membrane, is rate limiting to transport. Here, we provide insight into the structure of the high-energy transition state of GltPh that limits the rate of the substrate translocation process. Using bioinformatics, we identified GltPh gain-of-function mutations in the flexible helical hairpin domain HP2 and applied linear free energy relationship analysis to infer that the transition state structurally resembles the inward-facing conformation. Based on these analyses, we propose an approach to search for allosteric modulators for transporters.
Collapse
Affiliation(s)
- Gerard H M Huysmans
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Mass Spectrometry for Biology Unit, USR 2000CNRSInstitut PasteurParisFrance
| | - Didar Ciftci
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
| | - Xiaoyu Wang
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
| | - Scott C Blanchard
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
- St. Jude Children’s Research HospitalMemphisTNUSA
| | - Olga Boudker
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| |
Collapse
|
13
|
Niello M, Gradisch R, Loland CJ, Stockner T, Sitte HH. Allosteric Modulation of Neurotransmitter Transporters as a Therapeutic Strategy. Trends Pharmacol Sci 2020; 41:446-463. [PMID: 32471654 PMCID: PMC7610661 DOI: 10.1016/j.tips.2020.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Neurotransmitter transporters (NTTs) are involved in the fine-tuning of brain neurotransmitter homeostasis. As such, they are implicated in a plethora of complex behaviors, including reward, movement, and cognition. During recent decades, compounds that modulate NTT functions have been developed. Some of them are in clinical use for the management of different neuropsychiatric conditions. The majority of these compounds have been found to selectively interact with the orthosteric site of NTTs. Recently, diverse allosteric sites have been described in a number of NTTs, modulating their function. A more complex NTT pharmacology may be useful in the development of novel therapeutics. Here, we summarize current knowledge on such modulatory allosteric sites, with specific focus on their pharmacological and therapeutic potential.
Collapse
Affiliation(s)
- Marco Niello
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ralph Gradisch
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Claus Juul Loland
- Laboratory for Membrane Protein Dynamics. Department of Neuroscience. University of Copenhagen, Copenhagen, Denmark
| | - Thomas Stockner
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria; AddRess, Centre for Addiction Research and Science, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Blood and hair zinc levels in children with attention deficit hyperactivity disorder: A meta-analysis. Asian J Psychiatr 2020; 47:101805. [PMID: 31704595 DOI: 10.1016/j.ajp.2019.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 01/05/2023]
Abstract
We summarized the observational studies on the correlation between zinc and attention deficit hyperactivity disorder (ADHD) since 1986, extracted relevant data for meta-analysis to determine the relationship between zinc and ADHD. We searched PubMed, Scopus, Cochrane Library, EMBASE (included EMBASE and Medline), Web of Science and Clinical Trials.gov databases from inception to April 8, 2019. We assessed the blood zinc, hair zinc and ADHD by combined the standardized mean difference (SMD) and 95% confidence interval (CI). Statistical analysis was performed using Stata 14.0. We included 11 studies for meta-analysis. Of these, 8 studies comprising 1311 participants reported blood zinc and 3 studies comprising 206 participants reported hair zinc. The zinc levels in blood (SMD: -0.91, 95% CI: -1.88-0.07, P(SMD) < 0.068), and hair (SMD: 1.42, 95% CI: -4.49-7.33, P(SMD) = 0.638) not significantly compare ADHD with controls. Nevertheless, high heterogeneity (I2 > 97.3%) emerged among the included studies. The subgroup analysis showed that the heterogeneity of samples >100 group was significantly reduced. The sensitivity analysis found that the results changed significantly after excluding the only cross-sectional study. In conclusion, our meta-analysis showed that there was no statistically significant difference in blood zinc and hair zinc levels between ADHD children and adolescents compared with healthy children and adolescents.
Collapse
|
15
|
Qian R, Ma Y, You L, Zhao Y, Li S, Shen J, Jiang L, Yang C, Jiang P, Yuan Z, Gao F, Mao S. The Blood Levels of Trace Elements Are Lower in Children With Tic Disorder: Results From a Retrospective Study. Front Neurol 2019; 10:1324. [PMID: 31920944 PMCID: PMC6928139 DOI: 10.3389/fneur.2019.01324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/29/2019] [Indexed: 11/29/2022] Open
Abstract
Background: Tic disorders (TD) are common neuropsychiatric disorders among children and adolescents. It is controversial that trace elements may participate in the pathogenesis of TD. Our study aimed to investigate the trace elements status of zinc (Zn), copper (Cu), iron (Fe), and magnesium (Mg) in children with TD, in comparison to healthy controls. Methods: The medical records of eligible TD children and normal healthy children from January 1 to December 31, 2018 in the outpatient clinic were retrospectively reviewed. The clinical information of all subjects were collected including age, gender, diagnosis, previous health records, and serum trace elements level (Cu, Zn, Fe, Mg) at the time of diagnosis before initiating treatment. Results: In total, 1204 TD children (7.63 ± 2.45 years) and 1,220 healthy children (7.27 ± 3.15 years) who were divided into two gender and three age groups (2–4years, 5–9years, ≥10 years) were reviewed in our study. Our study showed that TD children generally had lower whole blood levels of Zn, Cu, Fe than the normal controls (P < 0.01). No significant difference was observed in whole blood levels of Mg. After adjusting for gender, the trends still remained. Further analysis was performed according to age, the trends still remained in Zn and Fe in all age groups (P < 0.05). However, we observed an almost significantly (P = 0.055) lower level of Cu in TD of 2–4 years group while significant differences in other two groups (P < 0.01). Further multiple linear regression and point biserial correlation showed that the lower blood levels of Zn, Cu, and Fe were correlated with the incidence of TD. Conclusion: The present results indicated that lower blood levels of zinc, iron, copper were associated with TD. Trace elements may be used as an auxiliary treatment for TD and need to be further explored.
Collapse
Affiliation(s)
- Ruiying Qian
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ying Ma
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Liuqing You
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, China
| | - Yanmin Zhao
- Department of General Practice, Community Health Service Center, Hangzhou, China
| | - Shuxian Li
- Department of Pulmonology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jue Shen
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lihua Jiang
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Cuiwei Yang
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Peifang Jiang
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhefeng Yuan
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Feng Gao
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shanshan Mao
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
16
|
Martínez-Martínez MI, Muñoz-Fambuena I, Cauli O. Neurotransmitters and Behavioral Alterations Induced by Nickel Exposure. Endocr Metab Immune Disord Drug Targets 2019; 20:985-991. [PMID: 31789138 DOI: 10.2174/1871530319666191202141209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nickel ions (Ni2+) are a heavy metal with wide industrial uses. Environmental and occupational exposures to Ni are potential risk factors for brain dysfunction and behavioral and neurological symptoms in humans. METHODS We reviewed the current evidence about neurochemical and behavioral alterations associated with Ni exposure in laboratory animals and humans. RESULTS Ni2+ exposure can alter (both inhibition and stimulation) dopamine release and inhibit glutamate NMDA receptors. Few reports claim an effect of Ni2+ at the level of GBA and serotonin neurotransmission. At behavioral levels, exposure to Ni2+ in rodents alters motor activity, learning and memory as well as anxiety and depressive-like symptoms. However, no analysis of the dose-dependent relationship has been carried out regarding these effects and the levels of the Ni2+ in the brain, in blood or urine. CONCLUSION Further research is needed to correlate the concentration of Ni2+ in biological fluids with specific symptoms/deficits. Future studies addressing the impact of Ni2+ under environmental or occupational exposure should consider the administration protocols to find Ni2+ levels similar in the general population or occupationally exposed workers.
Collapse
Affiliation(s)
| | | | - Omar Cauli
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
17
|
Burtscher V, Schicker K, Freissmuth M, Sandtner W. Kinetic Models of Secondary Active Transporters. Int J Mol Sci 2019; 20:E5365. [PMID: 31661895 PMCID: PMC6862442 DOI: 10.3390/ijms20215365] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 01/18/2023] Open
Abstract
Kinetic models have been employed to understand the logic of substrate transport through transporters of the Solute Carrier (SLC) family. All SLC transporters operate according to the alternate access model, which posits that substrate transport occurs in a closed loop of partial reactions (i.e., a transport cycle). Kinetic models can help to find realistic estimates for conformational transitions between individual states of the transport cycle. When constrained by experimental results, kinetic models can faithfully describe the function of a candidate transporter at a pre-steady state. In addition, we show that kinetic models can accurately predict the intra- and extracellular substrate concentrations maintained by the transporter at a steady state, even under the premise of loose coupling between the electrochemical gradient of the driving ion and of the substrate. We define the criteria for the design of a credible kinetic model of the SLC transporter. Parsimony is the guiding principle of kinetic modeling. We argue, however, that the level of acceptable parsimony is limited by the need to account for the substrate gradient established by a secondary active transporter, and for random order binding of co-substrates and substrate. Random order binding has consistently been observed in transporters of the SLC group.
Collapse
Affiliation(s)
- Verena Burtscher
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Klaus Schicker
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Erdem FA, Ilic M, Koppensteiner P, Gołacki J, Lubec G, Freissmuth M, Sandtner W. A comparison of the transport kinetics of glycine transporter 1 and glycine transporter 2. J Gen Physiol 2019; 151:1035-1050. [PMID: 31270129 PMCID: PMC6683666 DOI: 10.1085/jgp.201912318] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/16/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Transporters of the solute carrier 6 (SLC6) family translocate their cognate substrate together with Na+ and Cl- Detailed kinetic models exist for the transporters of GABA (GAT1/SLC6A1) and the monoamines dopamine (DAT/SLC6A3) and serotonin (SERT/SLC6A4). Here, we posited that the transport cycle of individual SLC6 transporters reflects the physiological requirements they operate under. We tested this hypothesis by analyzing the transport cycle of glycine transporter 1 (GlyT1/SLC6A9) and glycine transporter 2 (GlyT2/SLC6A5). GlyT2 is the only SLC6 family member known to translocate glycine, Na+, and Cl- in a 1:3:1 stoichiometry. We analyzed partial reactions in real time by electrophysiological recordings. Contrary to monoamine transporters, both GlyTs were found to have a high transport capacity driven by rapid return of the empty transporter after release of Cl- on the intracellular side. Rapid cycling of both GlyTs was further supported by highly cooperative binding of cosubstrate ions and substrate such that their forward transport mode was maintained even under conditions of elevated intracellular Na+ or Cl- The most important differences in the transport cycle of GlyT1 and GlyT2 arose from the kinetics of charge movement and the resulting voltage-dependent rate-limiting reactions: the kinetics of GlyT1 were governed by transition of the substrate-bound transporter from outward- to inward-facing conformations, whereas the kinetics of GlyT2 were governed by Na+ binding (or a related conformational change). Kinetic modeling showed that the kinetics of GlyT1 are ideally suited for supplying the extracellular glycine levels required for NMDA receptor activation.
Collapse
Affiliation(s)
- Fatma Asli Erdem
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marija Ilic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - Jakub Gołacki
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
How to rescue misfolded SERT, DAT and NET: targeting conformational intermediates with atypical inhibitors and partial releasers. Biochem Soc Trans 2019; 47:861-874. [PMID: 31064865 PMCID: PMC6599159 DOI: 10.1042/bst20180512] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 11/17/2022]
Abstract
Point mutations in the coding sequence for solute carrier 6 (SLC6) family members result in clinically relevant disorders, which are often accounted for by a loss-of-function phenotype. In many instances, the mutated transporter is not delivered to the cell surface because it is retained in the endoplasmic reticulum (ER). The underlying defect is improper folding of the transporter and is the case for many of the known dopamine transporter mutants. The monoamine transporters, i.e. the transporters for norepinephrine (NET/SLC6A2), dopamine (DAT/SLC6A3) and serotonin (SERT/SLC6A4), have a rich pharmacology; hence, their folding-deficient mutants lend themselves to explore the concept of pharmacological chaperoning. Pharmacochaperones are small molecules, which bind to folding intermediates with exquisite specificity and scaffold them to a folded state, which is exported from the ER and delivered to the cell surface. Pharmacochaperoning of mutant monoamine transporters, however, is not straightforward: ionic conditions within the ER are not conducive to binding of most typical monoamine transporter ligands. A collection of compounds exists, which are classified as atypical ligands because they trap monoamine transporters in unique conformational states. The atypical binding mode of some DAT inhibitors has been linked to their anti-addictive action. Here, we propose that atypical ligands and also compounds recently classified as partial releasers can serve as pharmacochaperones.
Collapse
|
20
|
Navratna V, Gouaux E. Insights into the mechanism and pharmacology of neurotransmitter sodium symporters. Curr Opin Struct Biol 2019; 54:161-170. [PMID: 30921707 DOI: 10.1016/j.sbi.2019.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
Neurotransmitter sodium symporters (NSS) belong to the SLC6 family of solute carriers and play an essential role in neurotransmitter homeostasis throughout the body. In the past decade, structural studies employing bacterial orthologs of NSSs have provided insight into the mechanism of neurotransmitter transport. While the overall architecture of SLC6 transporters is conserved among species, in comparison to the bacterial homologs, the eukaryotic SLC6 family members harbor differences in amino acid sequence and molecular structure, which underpins their functional and pharmacological diversity, as well as their ligand specificity. Here, we review the structures and mechanisms of eukaryotic NSSs, focusing on the molecular basis for ligand recognition and on transport mechanism.
Collapse
Affiliation(s)
- Vikas Navratna
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States; Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
21
|
Yang R, Zhang Y, Gao W, Lin N, Li R, Zhao Z. Blood Levels of Trace Elements in Children with Attention-Deficit Hyperactivity Disorder: Results from a Case-Control Study. Biol Trace Elem Res 2019; 187:376-382. [PMID: 29909491 DOI: 10.1007/s12011-018-1408-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
Abstract
Some trace elements may participate in the pathogenesis of attention-deficit hyperactivity disorder (ADHD). This study aimed to investigate the trace element status of zinc (Zn), copper (Cu), iron (Fe), magnesium (Mg), and lead (Pb) in children with ADHD, and to compare them with normal controls. Associations between examined elements and SNAP-IV rating scores of ADHD symptoms were also assessed. Four hundred nineteen children with ADHD (8.8 ± 2.1 years) and 395 matched normal controls (8.9 ± 1.7 years) were recruited in the study. The concentrations of Zn, Fe, Cu, Mg, and Pb in the whole blood were measured by atomic absorption spectrometry. Lower zinc levels (P < 0.001) and the number out of normal ranges (P = 0.015) were found in children with ADHD when compared with the normal control group. The difference remained when adjusting the factor of BMI z-score. No significant between-group differences were found in levels of other elements. Zinc levels were negatively correlated with parent-rated scores of inattentive subscale of SNAP-IV (r = - 0.40) as well as with total score of SNAP-IV (r = - 0.24). Other significant associations were not observed. The present results indicated that there were alterations in blood levels of zinc, which was associated with the symptom scores of ADHD.
Collapse
Affiliation(s)
- Rongwang Yang
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, No.57, Zhuganxiang Road, Hangzhou, Zhejiang Province, China.
| | - Yanyi Zhang
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, No.57, Zhuganxiang Road, Hangzhou, Zhejiang Province, China
| | - Weijia Gao
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, No.57, Zhuganxiang Road, Hangzhou, Zhejiang Province, China
| | - Nannan Lin
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, No.57, Zhuganxiang Road, Hangzhou, Zhejiang Province, China
| | - Rong Li
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, No.57, Zhuganxiang Road, Hangzhou, Zhejiang Province, China
| | - Zhengyan Zhao
- Department of Child Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
22
|
Hasenhuetl PS, Bhat S, Freissmuth M, Sandtner W. Functional Selectivity and Partial Efficacy at the Monoamine Transporters: A Unified Model of Allosteric Modulation and Amphetamine-Induced Substrate Release. Mol Pharmacol 2018; 95:303-312. [PMID: 30567955 DOI: 10.1124/mol.118.114793] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
All clinically approved drugs targeting the plasmalemmal transporters for dopamine, norepinephrine, and serotonin act either as competitive uptake inhibitors or as amphetamine-like releasers. Monoamine transporter (MAT) ligands that allosterically affect MAT-mediated substrate uptake, release, or both were recently discovered. Their modes of action have not yet been explained in a unified framework. Here, we go beyond competitive inhibitors and classic amphetamines and introduce concepts for partial efficacy at and allosteric modulation of MATs. After we elaborate on a kinetic account for amphetamine action, we provide an explanation for partial release (i.e., the observation that some amphetamines are less efficacious than others in inducing monoamine efflux). We then elucidate mechanisms of allosteric inhibition and stimulation of MATs, which can be functionally selective for either substrate uptake or amphetamine-induced release. These concepts are integrated into a parsimonious kinetic framework, which relies exclusively on physiologic transport modes (without any deviation from an alternating access mechanism). The model posits cooperative substrate and Na+ binding and functional selectivity by conformational selection (i.e., preference of the allosteric modulators for the substrate-loaded or substrate-free states of the transporter). Thus, current knowledge about the kinetics of monoamine transport is sufficiently detailed to provide a quantitative description of the releasing action of amphetamines, of substrate uptake, and of selective modulation thereof by allosteric modulators.
Collapse
Affiliation(s)
- Peter S Hasenhuetl
- Institute of Pharmacology, Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Shreyas Bhat
- Institute of Pharmacology, Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology, Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Nishiuchi M, Sakai K, Tajima H, Katayama K, Kimura F, Hoshi S, Goto T, Shirakawa H, Komai M. Orexigenic action of oral zinc: metabolomic analysis in the rat hypothalamus. Biosci Biotechnol Biochem 2018; 82:2168-2175. [PMID: 30240332 DOI: 10.1080/09168451.2018.1516543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We previously reported an orexigenic action of oral zinc administration in male Sprague-Dawley (SD) rats during an early stage of feeding with a zinc-deficient diet, without decreased zinc concentrations in tissues. The overall conclusion was that orally but not intraperitoneally administered zinc stimulates food intake in short-term zinc-deficient-diet fed rats. We here investigate the mechanism of the orexigenic action of zinc using GC-MS/MS-targeted metabolomic analysis in the rat hypothalamus. Four-week-old, male SD/Slc rats were used, and after 2 days of feeding with a zinc-deficient diet, 3 mg of ZnSO4 in 5 mL saline solution were administered to each rat either orally or intraperitoneally. Three hours after administration, the rats were sacrificed and the hypothalamus were excised and analyzed. We found that the oral administration group showed increased concentrations of 3-aminopropanoic acid (β-alanine), hypotaurine, dopamine, and biotin. In light of metabolomic analysis of these results, we indicate directions for further research.
Collapse
Affiliation(s)
- Mika Nishiuchi
- a Laboratory of Nutrition, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan.,b Department of Human Health and Nutrition , Shokei Gakuin University , Miyagi , Japan
| | - Kumiko Sakai
- c Institute for Research Promotion, Faculty of Medicine , Oita University , Oita , Japan
| | - Hiroyuki Tajima
- d Department of Human Psychology , Shokei Gakuin University , Natori , Japan
| | - Kazuo Katayama
- b Department of Human Health and Nutrition , Shokei Gakuin University , Miyagi , Japan
| | - Fumiko Kimura
- b Department of Human Health and Nutrition , Shokei Gakuin University , Miyagi , Japan
| | - Seiko Hoshi
- b Department of Human Health and Nutrition , Shokei Gakuin University , Miyagi , Japan
| | - Tomoko Goto
- e Department of Food and Nutritional Science , Miyagi Gakuin Women's University , Sendai , Japan
| | - Hitoshi Shirakawa
- a Laboratory of Nutrition, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Michio Komai
- a Laboratory of Nutrition, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
24
|
Andrade-Oliva MDLA, Aztatzi-Aguilar OG, García-Sierra F, De Vizcaya-Ruiz A, Arias-Montaño JA. Effect of in vivo exposure to ambient fine particles (PM 2.5) on the density of dopamine D 2-like receptors and dopamine-induced [ 35S]-GTPγS binding in rat prefrontal cortex and striatum membranes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:58-65. [PMID: 29660611 DOI: 10.1016/j.etap.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Male Sprague-Dawley rats (8-9 weeks-old) were exposed for three days (acute exposure) or eight weeks (subchronic exposure) to purified air or concentrated ambient fine particles, PM2.5 (≤2.5 μm; 15 to 18-fold of ambient air; 370-445 μg/m3). In membranes from rat prefrontal cortex (PFC) or striatum, the density and function of dopamine D2-like receptors (D2Rs) were assessed by [3H]-spiperone binding and dopamine-stimulated [35S]-GTPγS binding, respectively. Glial activation was evaluated by immunoperoxidase labeling of the glial fibrillary acidic protein (GFAP). In the PFC, no significant changes in D2R density or signaling were observed after the acute and subchronic exposure to PM2.5. In the striatum, acute exposure to PM2.5 decreased D2R density, with no effect on signaling efficacy, whereas subchronic exposure did not affect D2R density but reduced signaling efficacy. Both acute and subchronic exposure to PM2.5 induced reactive gliosis in the striatum but not in the PFC. These results indicate that exposure to PM2.5 induces astrocyte activation and alters striatal dopaminergic transmission.
Collapse
Affiliation(s)
- María-de-Los-Angeles Andrade-Oliva
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, México; Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, México
| | - Octavio-Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, México
| | - Francisco García-Sierra
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, México
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, México
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, México.
| |
Collapse
|
25
|
Herborg F, Andreassen TF, Berlin F, Loland CJ, Gether U. Neuropsychiatric disease-associated genetic variants of the dopamine transporter display heterogeneous molecular phenotypes. J Biol Chem 2018; 293:7250-7262. [PMID: 29559554 DOI: 10.1074/jbc.ra118.001753] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Genetic factors are known to significantly contribute to the etiology of psychiatric diseases such as attention deficit hyperactivity disorder (ADHD) and autism spectrum and bipolar disorders, but the underlying molecular processes remain largely elusive. The dopamine transporter (DAT) has received continuous attention as a potential risk factor for psychiatric disease, as it is critical for dopamine homeostasis and serves as principal target for ADHD medications. Constrain metrics for the DAT-encoding gene, solute carrier family 6 member 3 (SLC6A3), indicate that missense mutations are under strong negative selection, pointing to pathophysiological outcomes when DAT function is compromised. Here, we systematically characterized six rare genetic variants of DAT (I312F, T356M, D421N, A559V, E602G, and R615C) identified in patients with neuropsychiatric disorders. We evaluated dopamine uptake and ligand interactions, along with ion coordination and electrophysiological properties, to elucidate functional phenotypes, and applied Zn2+ exposure and a substituted cysteine-accessibility approach to identify shared structural changes. Three variants (I312F, T356M, and D421N) exhibited impaired dopamine uptake associated with changes in ligand binding, ion coordination, and distinct conformational disturbances. Remarkably, we found that all three variants displayed gain-of-function electrophysiological phenotypes. I312F mediated an increased uncoupled anion conductance previously suggested to modulate neuronal excitability. T356M and D421N both mediated a cocaine-sensitive leakage of cations, which for T356M was potentiated by Zn2+, concurrent with partial functional rescue. Collectively, our findings support that gain of disruptive functions due to missense mutations in SLC6A3 may be key to understanding how dopaminergic dyshomeostasis arises in heterozygous carriers.
Collapse
Affiliation(s)
- Freja Herborg
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute-Maersk Tower 07.05, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Thorvald F Andreassen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute-Maersk Tower 07.05, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Frida Berlin
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute-Maersk Tower 07.05, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Claus J Loland
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute-Maersk Tower 07.05, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute-Maersk Tower 07.05, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
26
|
Asjad HMM, Kasture A, El-Kasaby A, Sackel M, Hummel T, Freissmuth M, Sucic S. Pharmacochaperoning in a Drosophila model system rescues human dopamine transporter variants associated with infantile/juvenile parkinsonism. J Biol Chem 2017; 292:19250-19265. [PMID: 28972153 PMCID: PMC5702666 DOI: 10.1074/jbc.m117.797092] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
Point mutations in the gene encoding the human dopamine transporter (hDAT, SLC6A3) cause a syndrome of infantile/juvenile dystonia and parkinsonism. To unravel the molecular mechanism underlying these disorders and investigate possible pharmacological therapies, here we examined 13 disease-causing DAT mutants that were retained in the endoplasmic reticulum when heterologously expressed in HEK293 cells. In three of these mutants, i.e. hDAT-V158F, hDAT-G327R, and hDAT-L368Q, the folding deficit was remedied with the pharmacochaperone noribogaine or the heat shock protein 70 (HSP70) inhibitor pifithrin-μ such that endoplasmic reticulum export of and radioligand binding and substrate uptake by these DAT mutants were restored. In Drosophila melanogaster, DAT deficiency results in reduced sleep. We therefore exploited the power of targeted transgene expression of mutant hDAT in Drosophila to explore whether these hDAT mutants could also be pharmacologically rescued in an intact organism. Noribogaine or pifithrin-μ treatment supported hDAT delivery to the presynaptic terminals of dopaminergic neurons and restored sleep to normal length in DAT-deficient (fumin) Drosophila lines expressing hDAT-V158F or hDAT-G327R. In contrast, expression of hDAT-L368Q in the Drosophila DAT mutant background caused developmental lethality, indicating a toxic action not remedied by pharmacochaperoning. Our observations identified those mutations most likely amenable to pharmacological rescue in the affected children. In addition, our findings also highlight the challenges of translating insights from pharmacochaperoning in cell culture to the clinical situation. Because of the evolutionary conservation in dopaminergic neurotransmission between Drosophila and people, pharmacochaperoning of DAT in D. melanogaster may allow us to bridge that gap.
Collapse
Affiliation(s)
- H M Mazhar Asjad
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Ameya Kasture
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Ali El-Kasaby
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Michael Sackel
- the Department of Neurobiology, University of Vienna, A-1090 Vienna, Austria
| | - Thomas Hummel
- the Department of Neurobiology, University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Sonja Sucic
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| |
Collapse
|
27
|
Li Y, Mayer FP, Hasenhuetl PS, Burtscher V, Schicker K, Sitte HH, Freissmuth M, Sandtner W. Occupancy of the Zinc-binding Site by Transition Metals Decreases the Substrate Affinity of the Human Dopamine Transporter by an Allosteric Mechanism. J Biol Chem 2017; 292:4235-4243. [PMID: 28096460 PMCID: PMC5354487 DOI: 10.1074/jbc.m116.760140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/16/2016] [Indexed: 11/06/2022] Open
Abstract
The human dopamine transporter (DAT) has a tetrahedral Zn2+-binding site. Zn2+-binding sites are also recognized by other first-row transition metals. Excessive accumulation of manganese or of copper can lead to parkinsonism because of dopamine deficiency. Accordingly, we examined the effect of Mn2+, Co2+, Ni2+, and Cu2+ on transport-associated currents through DAT and DAT-H193K, a mutant with a disrupted Zn2+-binding site. All transition metals except Mn2+ modulated the transport cycle of wild-type DAT with affinities in the low micromolar range. In this concentration range, they were devoid of any action on DAT-H193K. The active transition metals reduced the affinity of DAT for dopamine. The affinity shift was most pronounced for Cu2+, followed by Ni2+ and Zn2+ (= Co2+). The extent of the affinity shift and the reciprocal effect of substrate on metal affinity accounted for the different modes of action: Ni2+ and Cu2+ uniformly stimulated and inhibited, respectively, the substrate-induced steady-state currents through DAT. In contrast, Zn2+ elicited biphasic effects on transport, i.e. stimulation at 1 μm and inhibition at 10 μm. A kinetic model that posited preferential binding of transition metal ions to the outward-facing apo state of DAT and a reciprocal interaction of dopamine and transition metals recapitulated all experimental findings. Allosteric activation of DAT via the Zn2+-binding site may be of interest to restore transport in loss-of-function mutants.
Collapse
Affiliation(s)
- Yang Li
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Felix P Mayer
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Peter S Hasenhuetl
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Verena Burtscher
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Klaus Schicker
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Harald H Sitte
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Michael Freissmuth
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Walter Sandtner
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| |
Collapse
|
28
|
Freissmuth M, Stockner T, Sucic S. SLC6 Transporter Folding Diseases and Pharmacochaperoning. Handb Exp Pharmacol 2017; 245:249-270. [PMID: 29086036 DOI: 10.1007/164_2017_71] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human genome encodes 19 genes of the solute carrier 6 (SLC6) family; non-synonymous changes in the coding sequence give rise to mutated transporters, which are misfolded and thus cause diseases in the affected individuals. Prominent examples include mutations in the transporters for dopamine (DAT, SLC6A3), for creatine (CT1, SLC6A8), and for glycine (GlyT2, SLC6A5), which result in infantile dystonia, mental retardation, and hyperekplexia, respectively. Thus, there is an obvious unmet medical need to identify compounds, which can remedy the folding deficit. The pharmacological correction of folding defects was originally explored in mutants of the serotonin transporter (SERT, SLC6A4), which were created to study the COPII-dependent export from the endoplasmic reticulum. This led to the serendipitous discovery of the pharmacochaperoning action of ibogaine. Ibogaine and its metabolite noribogaine also rescue several disease-relevant mutants of DAT. Because the pharmacology of DAT and SERT is exceptionally rich, it is not surprising that additional compounds have been identified, which rescue folding-deficient mutants. These compounds are not only of interest for restoring DAT function in the affected children. They are also likely to serve as useful tools to interrogate the folding trajectory of the transporter. This is likely to initiate a virtuous cycle: if the principles underlying folding of SLC6 transporters are understood, the design of pharmacochaperones ought to be facilitated.
Collapse
Affiliation(s)
- Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Thomas Stockner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Zhen J, Reith MEA. Impact of disruption of secondary binding site S2 on dopamine transporter function. J Neurochem 2016; 138:694-9. [PMID: 27315582 DOI: 10.1111/jnc.13704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 11/30/2022]
Abstract
The structures of the leucine transporter, drosophila dopamine transporter, and human serotonin transporter show a secondary binding site (designated S2 ) for drugs and substrate in the extracellular vestibule toward the membrane exterior in relation to the primary substrate recognition site (S1 ). The present experiments are aimed at disrupting S2 by mutating Asp476 and Ile159 to Ala. Both mutants displayed a profound decrease in [(3) H]DA uptake compared with wild-type associated with a reduced turnover rate kcat . This was not caused by a conformational bias as the mutants responded to Zn(2+) (10 μM) similarly as WT. The dopamine transporters with either the D476A or I159A mutation both displayed a higher Ki for dopamine for the inhibition of [3H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane binding than did the WT transporter, in accordance with an allosteric interaction between the S1 and S2 sites. The results provide evidence in favor of a general applicability of the two-site allosteric model of the Javitch/Weinstein group from LeuT to dopamine transporter and possibly other monoamine transporters. X-ray structures of transporters closely related to the dopamine (DA) transporter show a secondary binding site S2 in the extracellular vestibule proximal to the primary binding site S1 which is closely linked to one of the Na(+) binding sites. This work examines the relationship between S2 and S1 sites. We found that S2 site impairment severely reduced DA transport and allosterically reduced S1 site affinity for the cocaine analog [(3) H]CFT. Our results are the first to lend direct support for the application of the two-site allosteric model, advanced for bacterial LeuT, to the human DA transporter. The model states that, after binding of the first DA molecule (DA1 ) to the primary S1 site (along with Na(+) ), binding of a second DA (DA2 ) to the S2 site triggers, through an allosteric interaction, the release of DA1 and Na(+) into the cytoplasm.
Collapse
Affiliation(s)
- Juan Zhen
- Department of Psychiatry, New York University School of Medicine, New York City, New York, USA
| | - Maarten E A Reith
- Department of Psychiatry, New York University School of Medicine, New York City, New York, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York City, New York, USA
| |
Collapse
|
30
|
Tanui R, Tao Z, Silverstein N, Kanner B, Grewer C. Electrogenic Steps Associated with Substrate Binding to the Neuronal Glutamate Transporter EAAC1. J Biol Chem 2016; 291:11852-64. [PMID: 27044739 DOI: 10.1074/jbc.m116.722470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 12/13/2022] Open
Abstract
Glutamate transporters actively take up glutamate into the cell, driven by the co-transport of sodium ions down their transmembrane concentration gradient. It was proposed that glutamate binds to its binding site and is subsequently transported across the membrane in the negatively charged form. With the glutamate binding site being located partially within the membrane domain, the possibility has to be considered that glutamate binding is dependent on the transmembrane potential and, thus, is electrogenic. Experiments presented in this report test this possibility. Rapid application of glutamate to the wild-type glutamate transporter subtype EAAC1 (excitatory amino acid carrier 1) through photo-release from caged glutamate generated a transient inward current, as expected for the electrogenic inward movement of co-transported Na(+) In contrast, glutamate application to a transporter with the mutation A334E induced transient outward current, consistent with movement of negatively charged glutamate into its binding site within the dielectric of the membrane. These results are in agreement with electrostatic calculations, predicting a valence for glutamate binding of -0.27. Control experiments further validate and rule out other possible explanations for the transient outward current. Electrogenic glutamate binding can be isolated in the mutant glutamate transporter because reactions, such as glutamate translocation and/or Na(+) binding to the glutamate-bound state, are inhibited by the A334E substitution. Electrogenic glutamate binding has to be considered together with other voltage-dependent partial reactions to cooperatively determine the voltage dependence of steady-state glutamate uptake and glutamate buffering at the synapse.
Collapse
Affiliation(s)
- Rose Tanui
- From the Department of Chemistry Binghamton University, Binghamton, New York 13902 and
| | - Zhen Tao
- From the Department of Chemistry Binghamton University, Binghamton, New York 13902 and
| | - Nechama Silverstein
- the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Baruch Kanner
- the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Christof Grewer
- From the Department of Chemistry Binghamton University, Binghamton, New York 13902 and
| |
Collapse
|