1
|
Moon DO. NADPH Dynamics: Linking Insulin Resistance and β-Cells Ferroptosis in Diabetes Mellitus. Int J Mol Sci 2023; 25:342. [PMID: 38203517 PMCID: PMC10779351 DOI: 10.3390/ijms25010342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
This review offers an in-depth exploration of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) in metabolic health. It delves into how NADPH affects insulin secretion, influences insulin resistance, and plays a role in ferroptosis. NADPH, a critical cofactor in cellular antioxidant systems and lipid synthesis, plays a central role in maintaining metabolic homeostasis. In adipocytes and skeletal muscle, NADPH influences the pathophysiology of insulin resistance, a hallmark of metabolic disorders such as type 2 diabetes and obesity. The review explores the mechanisms by which NADPH contributes to or mitigates insulin resistance, including its role in lipid and reactive oxygen species (ROS) metabolism. Parallelly, the paper investigates the dual nature of NADPH in the context of pancreatic β-cell health, particularly in its relation to ferroptosis, an iron-dependent form of programmed cell death. While NADPH's antioxidative properties are crucial for preventing oxidative damage in β-cells, its involvement in lipid metabolism can potentiate ferroptotic pathways under certain pathological conditions. This complex relationship underscores the delicate balance of NADPH homeostasis in pancreatic health and diabetes pathogenesis. By integrating findings from recent studies, this review aims to illuminate the nuanced roles of NADPH in different tissues and its potential as a therapeutic target. Understanding these dynamics offers vital insights into the development of more effective strategies for managing insulin resistance and preserving pancreatic β-cell function, thereby advancing the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201 Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
2
|
Sun X, Li Q, Tang Y, Hu W, Chen G, An H, Huang D, Tong T, Zhang Y. Epigenetic activation of secretory phenotypes in senescence by the FOXQ1-SIRT4-GDH signaling. Cell Death Dis 2023; 14:481. [PMID: 37516739 PMCID: PMC10387070 DOI: 10.1038/s41419-023-06002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Although metabolic reprogramming is characterized as a hallmark of aging, implications of the crucial glutamate dehydrogenase (GDH) in human senescence remain poorly understood. Here, we report that GDH activity is significantly increased in aged mice and senescent human diploid fibroblasts. This enzymatic potentiation is associated with de-repression of GDH from its functionally suppressive ADP-ribosylation modification catalyzed by NAD-dependent ADP-ribosyltransferase/deacetylase SIRT4. A series of transcription analyses led to the identification of FOXQ1, a forkhead family transcription factor (TF), responsible for the maintenance of SIRT4 expression levels in juvenile cells. However, this metabolically balanced FOXQ1-SIRT4-GDH axis, is shifted in senescence with gradually decreasing expressions of FOXQ1 and SIRT4 and elevated GDH activity. Importantly, pharmaceutical inhibition of GDH suppresses the aberrantly activated transcription of IL-6 and IL-8, two major players in senescence-associated secretory phenotype (SASP), and this action is mechanistically associated with erasure of the repressive H3K9me3 (trimethylation of lysine 9 on histone H3) marks at IL-6 and IL-8 promoters, owing to the requirement of α-ketoglutaric acid (α-KG) from GDH-mediated glutamate dehydrogenase reaction as a cofactor for histone demethylation. In supplement with the phenotypic evidence from FOXQ1/SIRT4/GDH manipulations, these data support the integration of metabolism alterations and epigenetic regulation in driving senescence progression and highlight the FOXQ1-SIRT4-GDH axis as a novel druggable target for improving human longevity.
Collapse
Affiliation(s)
- Xinpei Sun
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081, Beijing, China
| | - Yunyi Tang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Wanjin Hu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Gengyao Chen
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hongguang An
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Daoyuan Huang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Tanjun Tong
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yu Zhang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
3
|
Shum M, Segawa M, Gharakhanian R, Viñuela A, Wortham M, Baghdasarian S, Wolf DM, Sereda SB, Nocito L, Stiles L, Zhou Z, Gutierrez V, Sander M, Shirihai OS, Liesa M. Deletion of ABCB10 in beta-cells protects from high-fat diet induced insulin resistance. Mol Metab 2022; 55:101403. [PMID: 34823065 PMCID: PMC8689243 DOI: 10.1016/j.molmet.2021.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The contribution of beta-cell dysfunction to type 2 diabetes (T2D) is not restricted to insulinopenia in the late stages of the disease. Elevated fasting insulinemia in normoglycemic humans is a major factor predicting the onset of insulin resistance and T2D, demonstrating an early alteration of beta-cell function in T2D. Moreover, an early and chronic increase in fasting insulinemia contributes to insulin resistance in high-fat diet (HFD)-fed mice. However, whether there are genetic factors that promote beta-cell-initiated insulin resistance remains undefined. Human variants of the mitochondrial transporter ABCB10, which regulates redox by increasing bilirubin synthesis, have been associated with an elevated risk of T2D. The effects of T2D ABCB10 variants on ABCB10 expression and the actions of ABCB10 in beta-cells are unknown. METHODS The expression of beta-cell ABCB10 was analyzed in published transcriptome datasets from human beta-cells carrying the T2D-risk ABCB10 variant. Insulin sensitivity, beta-cell proliferation, and secretory function were measured in beta-cell-specific ABCB10 KO mice (Ins1Cre-Abcb10flox/flox). The short-term role of beta-cell ABCB10 activity on glucose-stimulated insulin secretion (GSIS) was determined in isolated islets. RESULTS Carrying the T2Drisk allele G of ABCB10 rs348330 variant was associated with increased ABCB10 expression in human beta-cells. Constitutive deletion of Abcb10 in beta-cells protected mice from hyperinsulinemia and insulin resistance by limiting HFD-induced beta-cell expansion. An early limitation in GSIS and H2O2-mediated signaling caused by elevated ABCB10 activity can initiate an over-compensatory expansion of beta-cell mass in response to HFD. Accordingly, increasing ABCB10 expression was sufficient to limit GSIS capacity. In health, ABCB10 protein was decreased during islet maturation, with maturation restricting beta-cell proliferation and elevating GSIS. Finally, ex-vivo and short-term deletion of ABCB10 in islets isolated from HFD-fed mice increased H2O2 and GSIS, which was reversed by bilirubin treatments. CONCLUSIONS Beta-cell ABCB10 is required for HFD to induce insulin resistance in mice by amplifying beta-cell mass expansion to maladaptive levels that cause fasting hyperinsulinemia.
Collapse
Affiliation(s)
- Michael Shum
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Department of Molecular Medicine, Faculty of Medicine, Universite Laval, Quebec City G1V 0A6, Canada.
| | - Mayuko Segawa
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Raffi Gharakhanian
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Ana Viñuela
- Bioscience Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Siyouneh Baghdasarian
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Dane M Wolf
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA, 02118, USA
| | - Samuel B Sereda
- Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA, 02118, USA
| | - Laura Nocito
- Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA, 02118, USA
| | - Linsey Stiles
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Zhiqiang Zhou
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Vincent Gutierrez
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Molecular and Cellular Integrative Physiology, UCLA, 612 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Orian S Shirihai
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Molecular and Cellular Integrative Physiology, UCLA, 612 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Marc Liesa
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Molecular and Cellular Integrative Physiology, UCLA, 612 Charles E. Young Dr., Los Angeles, CA 90095, USA; Molecular Biology Institute at UCLA, 611 Charles E. Young Dr., Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Díaz-Catalán D, Alcarraz-Vizán G, Castaño C, de Pablo S, Rodríguez-Comas J, Fernández-Pérez A, Vallejo M, Ramírez S, Claret M, Parrizas M, Novials A, Servitja JM. BACE2 suppression in mice aggravates the adverse metabolic consequences of an obesogenic diet. Mol Metab 2021; 53:101251. [PMID: 34015524 PMCID: PMC8190493 DOI: 10.1016/j.molmet.2021.101251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/16/2021] [Accepted: 05/09/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Pancreatic β-cell dysfunction is a central feature in the pathogenesis of type 2 diabetes (T2D). Accumulating evidence indicates that β-site APP-cleaving enzyme 2 (BACE2) inhibition exerts a beneficial effect on β-cells in different models of T2D. Thus, targeting BACE2 may represent a potential therapeutic strategy for the treatment of this disease. Here, we aimed to investigate the effects of BACE2 suppression on glucose homeostasis in a model of diet-induced obesity. METHODS BACE2 knock-out (BKO) and wild-type (WT) mice were fed with a high-fat diet (HFD) for 2 or 16 weeks. Body weight, food intake, respiratory exchange ratio, locomotor activity, and energy expenditure were determined. Glucose homeostasis was evaluated by glucose and insulin tolerance tests. β-cell proliferation was assessed by Ki67-positive nuclei, and β-cell function was determined by measuring glucose-stimulated insulin secretion. Leptin sensitivity was evaluated by quantifying food intake and body weight after an intraperitoneal leptin injection. Neuropeptide gene expression and insulin signaling in the mediobasal hypothalamus were determined by qPCR and Akt phosphorylation, respectively. RESULTS After 16 weeks of HFD feeding, BKO mice exhibited an exacerbated body weight gain and hyperphagia, in comparison to WT littermates. Glucose tolerance was similar in both groups, whereas HFD-induced hyperinsulinemia, insulin resistance, and β-cell expansion were more pronounced in BKO mice. In turn, leptin-induced food intake inhibition and hypothalamic insulin signaling were impaired in BKO mice, regardless of the diet, in accordance with deregulation of the expression of hypothalamic neuropeptide genes. Importantly, BKO mice already showed increased β-cell proliferation and glucose-stimulated insulin secretion with respect to WT littermates after two weeks of HFD feeding, before the onset of obesity. CONCLUSIONS Collectively, these results reveal that BACE2 suppression in an obesogenic setting leads to exacerbated body weight gain, hyperinsulinemia, and insulin resistance. Thus, we conclude that inhibition of BACE2 may aggravate the adverse metabolic effects associated with obesity.
Collapse
Affiliation(s)
- Daniela Díaz-Catalán
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Gema Alcarraz-Vizán
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Carlos Castaño
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Sara de Pablo
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Júlia Rodríguez-Comas
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Fernández-Pérez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, Madrid, Spain
| | - Mario Vallejo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara Ramírez
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Claret
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Marcelina Parrizas
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Anna Novials
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| | - Joan-Marc Servitja
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
5
|
Kalwat MA, Scheuner D, Rodrigues-dos-Santos K, Eizirik DL, Cobb MH. The Pancreatic ß-cell Response to Secretory Demands and Adaption to Stress. Endocrinology 2021; 162:bqab173. [PMID: 34407177 PMCID: PMC8459449 DOI: 10.1210/endocr/bqab173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic β cells dedicate much of their protein translation capacity to producing insulin to maintain glucose homeostasis. In response to increased secretory demand, β cells can compensate by increasing insulin production capability even in the face of protracted peripheral insulin resistance. The ability to amplify insulin secretion in response to hyperglycemia is a critical facet of β-cell function, and the exact mechanisms by which this occurs have been studied for decades. To adapt to the constant and fast-changing demands for insulin production, β cells use the unfolded protein response of the endoplasmic reticulum. Failure of these compensatory mechanisms contributes to both type 1 and 2 diabetes. Additionally, studies in which β cells are "rested" by reducing endogenous insulin demand have shown promise as a therapeutic strategy that could be applied more broadly. Here, we review recent findings in β cells pertaining to the metabolic amplifying pathway, the unfolded protein response, and potential advances in therapeutics based on β-cell rest.
Collapse
Affiliation(s)
- Michael A Kalwat
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Donalyn Scheuner
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | | | - Decio L Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
6
|
Zhang AM, Wellberg EA, Kopp JL, Johnson JD. Hyperinsulinemia in Obesity, Inflammation, and Cancer. Diabetes Metab J 2021; 45:285-311. [PMID: 33775061 PMCID: PMC8164941 DOI: 10.4093/dmj.2020.0250] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
The relative insufficiency of insulin secretion and/or insulin action causes diabetes. However, obesity and type 2 diabetes mellitus can be associated with an absolute increase in circulating insulin, a state known as hyperinsulinemia. Studies are beginning to elucidate the cause-effect relationships between hyperinsulinemia and numerous consequences of metabolic dysfunctions. Here, we review recent evidence demonstrating that hyperinsulinemia may play a role in inflammation, aging and development of cancers. In this review, we will focus on the consequences and mechanisms of excess insulin production and action, placing recent findings that have challenged dogma in the context of the existing body of literature. Where relevant, we elaborate on the role of specific signal transduction components in the actions of insulin and consequences of chronic hyperinsulinemia. By discussing the involvement of hyperinsulinemia in various metabolic and other chronic diseases, we may identify more effective therapeutics or lifestyle interventions for preventing or treating obesity, diabetes and cancer. We also seek to identify pertinent questions that are ripe for future investigation.
Collapse
Affiliation(s)
- Anni M.Y. Zhang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth A. Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Janel L. Kopp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Wang Q, DU J, Liu F. Changes of Serum Adiponectin and Glycated Albumin Levels in Gestational Diabetes Mellitus Patients and Their Relationship with Insulin Resistance. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:1252-1261. [PMID: 33083291 PMCID: PMC7548504 DOI: 10.18502/ijph.v49i7.3578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: We aimed to investigate the changes of serum adiponectin and glycated albumin (GA) levels in gestational diabetes mellitus patients and their relationship with insulin resistance. Methods: Overall, 137 pregnant women were enrolled from Jinan City People's Hospital, Laiwu District, China from Jan 2015 to Jun 2018. Among them, 71 pregnant women with gestational diabetes mellitus were examined as diabetes group, and 66 normal pregnant women as normal pregnant women group. In addition, 58 normal non-pregnant women of childbearing age who were examined in our hospital during the same period were selected as a control group. The serum adiponectin and GA levels of the three groups were compared, and the relationship between serum adiponectin, GA levels and insulin resistance was analyzed. Results: The serum adiponectin level of pregnant women in gestational diabetes mellitus (GDM) group was significantly lower than that of normal pregnant women and control group (P=0.031, P=0.027). The serum GA level of pregnant women in GDM group was significantly higher than that of normal pregnant women and control group (P<0.001). Pearson correlation analysis showed that GA was positively correlated with Fasting plasma glucose (FPG), Fasting insulin (FINS) and Insulin resistance index(HOMA-IR) levels (P<0.001), while adiponectin was negatively correlated with FPG FINS and HOMA-IR levels (P<0.001). Conclusion: Abnormal levels of serum GA and adiponectin are closely related to insulin resistance in patients with gestational diabetes mellitus. Detection of serum GA and adiponectin levels can diagnose gestational diabetes mellitus quickly and effectively.
Collapse
Affiliation(s)
- Qingju Wang
- Department of General Medicine, Jinan City People's Hospital, Jinan, China
| | - Juan DU
- Department of General Medicine, Jinan City People's Hospital, Jinan, China
| | - Fenglian Liu
- Department of General Medicine, Jinan City People's Hospital, Jinan, China
| |
Collapse
|
8
|
Brun T, Jiménez-Sánchez C, Madsen JGS, Hadadi N, Duhamel D, Bartley C, Oberhauser L, Trajkovski M, Mandrup S, Maechler P. AMPK Profiling in Rodent and Human Pancreatic Beta-Cells under Nutrient-Rich Metabolic Stress. Int J Mol Sci 2020; 21:ijms21113982. [PMID: 32492936 PMCID: PMC7312098 DOI: 10.3390/ijms21113982] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic exposure of pancreatic β-cells to elevated nutrient levels impairs their function and potentially induces apoptosis. Like in other cell types, AMPK is activated in β-cells under conditions of nutrient deprivation, while little is known on AMPK responses to metabolic stresses. Here, we first reviewed recent studies on the role of AMPK activation in β-cells. Then, we investigated the expression profile of AMPK pathways in β-cells following metabolic stresses. INS-1E β-cells and human islets were exposed for 3 days to glucose (5.5–25 mM), palmitate or oleate (0.4 mM), and fructose (5.5 mM). Following these treatments, we analyzed transcript levels of INS-1E β-cells by qRT-PCR and of human islets by RNA-Seq; with a special focus on AMPK-associated genes, such as the AMPK catalytic subunits α1 (Prkaa1) and α2 (Prkaa2). AMPKα and pAMPKα were also evaluated at the protein level by immunoblotting. Chronic exposure to the different metabolic stresses, known to alter glucose-stimulated insulin secretion, did not change AMPK expression, either in insulinoma cells or in human islets. Expression profile of the six AMPK subunits was marginally modified by the different diabetogenic conditions. However, the expression of some upstream kinases and downstream AMPK targets, including K-ATP channel subunits, exhibited stress-specific signatures. Interestingly, at the protein level, chronic fructose treatment favored fasting-like phenotype in human islets, as witnessed by AMPK activation. Collectively, previously published and present data indicate that, in the β-cell, AMPK activation might be implicated in the pre-diabetic state, potentially as a protective mechanism.
Collapse
Affiliation(s)
- Thierry Brun
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
| | - Cecilia Jiménez-Sánchez
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
| | - Jesper Grud Skat Madsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (J.G.S.M.); (S.M.)
| | - Noushin Hadadi
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
| | - Dominique Duhamel
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
| | - Clarissa Bartley
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
| | - Lucie Oberhauser
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
| | - Susanne Mandrup
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (J.G.S.M.); (S.M.)
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
- Correspondence:
| |
Collapse
|
9
|
Yan Z, Shyr ZA, Fortunato M, Welscher A, Alisio M, Martino M, Finck BN, Conway H, Remedi MS. High-fat-diet-induced remission of diabetes in a subset of K ATP -GOF insulin-secretory-deficient mice. Diabetes Obes Metab 2018; 20:2574-2584. [PMID: 29896801 PMCID: PMC6407888 DOI: 10.1111/dom.13423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023]
Abstract
AIMS To examine the effects of a high-fat-diet (HFD) on monogenic neonatal diabetes, without the confounding effects of compensatory hyperinsulinaemia. METHODS Mice expressing KATP channel gain-of-function (KATP -GOF) mutations, which models human neonatal diabetes, were fed an HFD. RESULTS Surprisingly, KATP -GOF mice exhibited resistance to HFD-induced obesity, accompanied by markedly divergent blood glucose control, with some KATP -GOF mice showing persistent diabetes (KATP -GOF-non-remitter [NR] mice) and others showing remission of diabetes (KATP -GOF-remitter [R] mice). Compared with the severely diabetic and insulin-resistant KATP -GOF-NR mice, HFD-fed KATP -GOF-R mice had lower blood glucose, improved insulin sensitivity, and increased circulating plasma insulin and glucagon-like peptide-1 concentrations. Strikingly, while HFD-fed KATP -GOF-NR mice showed increased food intake and decreased physical activity, reduced whole body fat mass and increased plasma lipids, KATP -GOF-R mice showed similar features to those of control littermates. Importantly, KATP -GOF-R mice had restored insulin content and β-cell mass compared with the marked loss observed in both HFD-fed KATP -GOF-NR and chow-fed KATP -GOF mice. CONCLUSION Together, our results suggest that restriction of dietary carbohydrates and caloric replacement by fat can induce metabolic changes that are beneficial in reducing glucotoxicity and secondary consequences of diabetes in a mouse model of insulin-secretory deficiency.
Collapse
Affiliation(s)
- Zihan Yan
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Zeenat A. Shyr
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Manuela Fortunato
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Alecia Welscher
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Mariana Alisio
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Michael Martino
- Department of Medicine, Division of Geriatrics and Nutritional Science, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Brian N. Finck
- Department of Medicine, Division of Geriatrics and Nutritional Science, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Hannah Conway
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Maria S. Remedi
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| |
Collapse
|
10
|
Page MM, Johnson JD. Mild Suppression of Hyperinsulinemia to Treat Obesity and Insulin Resistance. Trends Endocrinol Metab 2018; 29:389-399. [PMID: 29665988 DOI: 10.1016/j.tem.2018.03.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022]
Abstract
Insulin plays roles in lipid uptake, lipolysis, and lipogenesis, in addition to controlling blood glucose levels. Excessive circulating insulin is associated with adipose tissue expansion and obesity, yet a causal role for hyperinsulinemia in the development of mammalian obesity has proven controversial, with many researchers suggesting it as a consequence of insulin resistance. Recently, evidence that specifically reducing hyperinsulinemia can prevent and reverse obesity in animal models has been presented. Our experiments, and others in this field, question the current dogma that hyperinsulinemia is a response to obesity and/or insulin resistance. In this review, we discuss preclinical evidence in the context of the broader literature and speculate on the possibility of clinical translation of alternative approaches for treating obesity.
Collapse
Affiliation(s)
- Melissa M Page
- Life Sciences Institute Diabetes Research Group and the Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada; Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - James D Johnson
- Life Sciences Institute Diabetes Research Group and the Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada. https://twitter.com/JimJohnsonSci
| |
Collapse
|
11
|
Page MM, Skovsø S, Cen H, Chiu AP, Dionne DA, Hutchinson DF, Lim GE, Szabat M, Flibotte S, Sinha S, Nislow C, Rodrigues B, Johnson JD. Reducing insulin via conditional partial gene ablation in adults reverses diet-induced weight gain. FASEB J 2018; 32:1196-1206. [PMID: 29122848 PMCID: PMC5892722 DOI: 10.1096/fj.201700518r] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Excess circulating insulin is associated with obesity in humans and in animal models. However, the physiologic causality of hyperinsulinemia in adult obesity has rightfully been questioned because of the absence of clear evidence that weight loss can be induced by acutely reversing diet-induced hyperinsulinemia. Herein, we describe the consequences of inducible, partial insulin gene deletion in a mouse model in which animals have already been made obese by consuming a high-fat diet. A modest reduction in insulin production/secretion was sufficient to cause significant weight loss within 5 wk, with a specific effect on visceral adipose tissue. This result was associated with a reduction in the protein abundance of the lipodystrophy gene polymerase I and transcript release factor ( Ptrf; Cavin) in gonadal adipose tissue. RNAseq analysis showed that reduced insulin and weight loss also associated with a signature of reduced innate immunity. This study demonstrates that changes in circulating insulin that are too fine to adversely affect glucose homeostasis nonetheless exert control over adiposity.-Page, M. M., Skovsø, S., Cen, H., Chiu, A. P., Dionne, D. A., Hutchinson, D. F., Lim, G. E., Szabat, M., Flibotte, S., Sinha, S., Nislow, C., Rodrigues, B., Johnson, J. D. Reducing insulin via conditional partial gene ablation in adults reverses diet-induced weight gain.
Collapse
Affiliation(s)
- Melissa M Page
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Søs Skovsø
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haoning Cen
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy P Chiu
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Derek A Dionne
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daria F Hutchinson
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gareth E Lim
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marta Szabat
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sunita Sinha
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Maechler P. Glutamate pathways of the beta-cell and the control of insulin secretion. Diabetes Res Clin Pract 2017; 131:149-153. [PMID: 28743063 DOI: 10.1016/j.diabres.2017.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/04/2017] [Indexed: 11/29/2022]
Abstract
Pancreatic beta-cells secrete insulin in response to circulating glucose, thereby maintaining euglycemia. Inside the beta-cell, glucose is transformed into intracellular signals stimulating exocytosis. While calcium is an obligatory messenger, this ion is not sufficient to promote the full secretory response. Accordingly, glucose metabolism produces the additive factor glutamate that participates to an amplifying pathway of the calcium signal. Although intracellular glutamate potentiates insulin secretion, extracellular glutamate may activate ionotropic receptors. As a consequence of such activation, insulin exocytosis is slowed down. Therefore, for the beta-cell glutamate is a double-edged sword, an amplifying pathway and a negative feedback, illustrating the principle of homeostasis.
Collapse
Affiliation(s)
- Pierre Maechler
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.
| |
Collapse
|
13
|
Abstract
Pancreatic islet β cells secrete insulin in response to nutrient secretagogues, like glucose, dependent on calcium influx and nutrient metabolism. One of the most intriguing qualities of β cells is their ability to use metabolism to amplify the amount of secreted insulin independent of further alterations in intracellular calcium. Many years studying this amplifying process have shaped our current understanding of β cell stimulus-secretion coupling; yet, the exact mechanisms of amplification have been elusive. Recent studies utilizing metabolomics, computational modeling, and animal models have progressed our understanding of the metabolic amplifying pathway of insulin secretion from the β cell. New approaches will be discussed which offer in-roads to a more complete model of β cell function. The development of β cell therapeutics may be aided by such a model, facilitating the targeting of aspects of the metabolic amplifying pathway which are unique to the β cell.
Collapse
Affiliation(s)
- Michael A Kalwat
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
14
|
The Glutamate Dehydrogenase Pathway and Its Roles in Cell and Tissue Biology in Health and Disease. BIOLOGY 2017; 6:biology6010011. [PMID: 28208702 PMCID: PMC5372004 DOI: 10.3390/biology6010011] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 02/07/2023]
Abstract
Glutamate dehydrogenase (GDH) is a hexameric enzyme that catalyzes the reversible conversion of glutamate to α-ketoglutarate and ammonia while reducing NAD(P)⁺ to NAD(P)H. It is found in all living organisms serving both catabolic and anabolic reactions. In mammalian tissues, oxidative deamination of glutamate via GDH generates α-ketoglutarate, which is metabolized by the Krebs cycle, leading to the synthesis of ATP. In addition, the GDH pathway is linked to diverse cellular processes, including ammonia metabolism, acid-base equilibrium, redox homeostasis (via formation of fumarate), lipid biosynthesis (via oxidative generation of citrate), and lactate production. While most mammals possess a single GDH1 protein (hGDH1 in the human) that is highly expressed in the liver, humans and other primates have acquired, via duplication, an hGDH2 isoenzyme with distinct functional properties and tissue expression profile. The novel hGDH2 underwent rapid evolutionary adaptation, acquiring unique properties that enable enhanced enzyme function under conditions inhibitory to its ancestor hGDH1. These are thought to provide a biological advantage to humans with hGDH2 evolution occurring concomitantly with human brain development. hGDH2 is co-expressed with hGDH1 in human brain, kidney, testis and steroidogenic organs, but not in the liver. In human cerebral cortex, hGDH1 and hGDH2 are expressed in astrocytes, the cells responsible for removing and metabolizing transmitter glutamate, and for supplying neurons with glutamine and lactate. In human testis, hGDH2 (but not hGDH1) is densely expressed in the Sertoli cells, known to provide the spermatids with lactate and other nutrients. In steroid producing cells, hGDH1/2 is thought to generate reducing equivalents (NADPH) in the mitochondria for the biosynthesis of steroidal hormones. Lastly, up-regulation of hGDH1/2 expression occurs in cancer, permitting neoplastic cells to utilize glutamine/glutamate for their growth. In addition, deregulation of hGDH1/2 is implicated in the pathogenesis of several human disorders.
Collapse
|
15
|
Pournourmohammadi S, Grimaldi M, Stridh MH, Lavallard V, Waagepetersen HS, Wollheim CB, Maechler P. Epigallocatechin-3-gallate (EGCG) activates AMPK through the inhibition of glutamate dehydrogenase in muscle and pancreatic ß-cells: A potential beneficial effect in the pre-diabetic state? Int J Biochem Cell Biol 2017; 88:220-225. [PMID: 28137482 DOI: 10.1016/j.biocel.2017.01.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/19/2017] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
Glucose homeostasis is determined by insulin secretion from the ß-cells in pancreatic islets and by glucose uptake in skeletal muscle and other insulin target tissues. While glutamate dehydrogenase (GDH) senses mitochondrial energy supply and regulates insulin secretion, its role in the muscle has not been elucidated. Here we investigated the possible interplay between GDH and the cytosolic energy sensing enzyme 5'-AMP kinase (AMPK), in both isolated islets and myotubes from mice and humans. The green tea polyphenol epigallocatechin-3-gallate (EGCG) was used to inhibit GDH. Insulin secretion was reduced by EGCG upon glucose stimulation and blocked in response to glutamine combined with the allosteric GDH activator BCH (2-aminobicyclo-[2,2,1] heptane-2-carboxylic acid). Insulin secretion was similarly decreased in islets of mice with ß-cell-targeted deletion of GDH (ßGlud1-/-). EGCG did not further reduce insulin secretion in the mutant islets, validating its specificity. In human islets, EGCG attenuated both basal and nutrient-stimulated insulin secretion. Glutamine/BCH-induced lowering of AMPK phosphorylation did not operate in ßGlud1-/- islets and was similarly prevented by EGCG in control islets, while high glucose systematically inactivated AMPK. In mouse C2C12 myotubes, like in islets, the inhibition of AMPK following GDH activation with glutamine/BCH was reversed by EGCG. Stimulation of GDH in primary human myotubes caused lowering of insulin-induced 2-deoxy-glucose uptake, partially counteracted by EGCG. Thus, mitochondrial energy provision through anaplerotic input via GDH influences the activity of the cytosolic energy sensor AMPK. EGCG may be useful in obesity by resensitizing insulin-resistant muscle while blunting hypersecretion of insulin in hypermetabolic states.
Collapse
Affiliation(s)
- Shirin Pournourmohammadi
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1 rue Michel-Servet, 1206 Geneva, Switzerland; Faculty Diabetes Center, University of Geneva Medical Center, 1 rue Michel-Servet, 1206 Geneva, Switzerland
| | - Mariagrazia Grimaldi
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1 rue Michel-Servet, 1206 Geneva, Switzerland; Faculty Diabetes Center, University of Geneva Medical Center, 1 rue Michel-Servet, 1206 Geneva, Switzerland
| | - Malin H Stridh
- Department of Drug Design and Pharmacotherapy, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark
| | - Vanessa Lavallard
- Faculty Diabetes Center, University of Geneva Medical Center, 1 rue Michel-Servet, 1206 Geneva, Switzerland; Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacotherapy, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark
| | - Claes B Wollheim
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1 rue Michel-Servet, 1206 Geneva, Switzerland; Faculty Diabetes Center, University of Geneva Medical Center, 1 rue Michel-Servet, 1206 Geneva, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1 rue Michel-Servet, 1206 Geneva, Switzerland; Faculty Diabetes Center, University of Geneva Medical Center, 1 rue Michel-Servet, 1206 Geneva, Switzerland.
| |
Collapse
|
16
|
Kalwat MA, Wichaidit C, Nava Garcia AY, McCoy MK, McGlynn K, Hwang IH, MacMillan JB, Posner BA, Cobb MH. Insulin promoter-driven Gaussia luciferase-based insulin secretion biosensor assay for discovery of β-cell glucose-sensing pathways. ACS Sens 2016; 1:1208-1212. [PMID: 27819058 DOI: 10.1021/acssensors.6b00433] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High throughput screening of insulin secretion is intractable with current methods. We developed a secreted insulin-luciferase system (Ins-GLuc) in β cells that is rapid, inexpensive, and amenable to 96- and 384-well formats. We treated stable Ins-GLuc-expressing MIN6 cells overnight with 6298 marine natural product fractions. The cells were then washed to remove media and chemicals, followed by stimulation with glucose in the diazoxide paradigm. These conditions allowed the discovery of many insulin secretion suppressors and potentiators. The mechanisms of action of these natural products must be long-lasting given the continuance of secretory phenotypes in the absence of chemical treatment. We anticipate that these natural products and their target pathways will lead to a greater understanding of glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Michael A. Kalwat
- Department of Phamacology and ‡Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75235, United States
| | - Chonlarat Wichaidit
- Department of Phamacology and ‡Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75235, United States
| | - Alejandra Y. Nava Garcia
- Department of Phamacology and ‡Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75235, United States
| | - Melissa K. McCoy
- Department of Phamacology and ‡Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75235, United States
| | - Kathleen McGlynn
- Department of Phamacology and ‡Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75235, United States
| | - In Hyun Hwang
- Department of Phamacology and ‡Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75235, United States
| | - John B. MacMillan
- Department of Phamacology and ‡Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75235, United States
| | - Bruce A. Posner
- Department of Phamacology and ‡Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75235, United States
| | - Melanie H. Cobb
- Department of Phamacology and ‡Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75235, United States
| |
Collapse
|