1
|
Miao C, Huang Y, Zhang C, Wang X, Wang B, Zhou X, Song Y, Wu P, Chen ZS, Feng Y. Post-translational modifications in drug resistance. Drug Resist Updat 2025; 78:101173. [PMID: 39612546 DOI: 10.1016/j.drup.2024.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
Resistance to antitumor drugs, antimicrobial drugs, and antiviral drugs severely limits treatment effectiveness and cure rate of diseases. Protein post-translational modifications (PTMs) represented by glycosylation, ubiquitination, SUMOylation, acetylation, phosphorylation, palmitoylation, and lactylation are closely related to drug resistance. PTMs are typically achieved by adding sugar chains (glycosylation), small proteins (ubiquitination), lipids (palmitoylation), or functional groups (lactylation) to amino acid residues. These covalent additions are usually the results of signaling cascades and could be reversible, with the triggering mechanisms depending on the type of modifications. PTMs are involved in antitumor drug resistance, not only as inducers of drug resistance but also as targets for reversing drug resistance. Bacteria exhibit multiple PTMs-mediated antimicrobial drug resistance. PTMs allow viral proteins and host cell proteins to form complex interaction networks, inducing complex antiviral drug resistance. This review summarizes the important roles of PTMs in drug resistance, providing new ideas for exploring drug resistance mechanisms, developing new drug targets, and guiding treatment plans.
Collapse
Affiliation(s)
- Chenggui Miao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yurong Huang
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital, Jilin University, Changchun 130021, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Bing Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xinyue Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yingqiu Song
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhe-Sheng Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
2
|
Silva AD, Hwang J, Marciel MP, Bellis SL. The pro-inflammatory cytokines IL-1β and IL-6 promote upregulation of the ST6GAL1 sialyltransferase in pancreatic cancer cells. J Biol Chem 2024; 300:107752. [PMID: 39260693 PMCID: PMC11470512 DOI: 10.1016/j.jbc.2024.107752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
The ST6GAL1 sialyltransferase is overexpressed in multiple cancers, including pancreatic ductal adenocarcinoma (PDAC). ST6GAL1 adds an α2-6-linked sialic acid to N-glycosylated membrane receptors, which consequently modulates receptor structure and function. While many studies have investigated the effects of ST6GAL1 on cell phenotype, there is a dearth of knowledge regarding mechanisms that regulate ST6GAL1 expression. In the current study, we evaluated the regulation of ST6GAL1 by two pro-inflammatory cytokines, IL-1β and IL-6, which are abundant within the PDAC tumor microenvironment. Cytokine activity was monitored using the Suit-2 PDAC cell line and two Suit-2-derived metastatic subclones, S2-013 and S2-LM7AA. For all three cell models, treatment with IL-1β or IL-6 increased the expression of ST6GAL1 protein and mRNA. Specifically, IL-1β and IL-6 induced expression of the ST6GAL1 YZ mRNA isoform, which is driven by the P3 promoter. The ST6GAL1 H and X isoforms were not detected. Promoter reporter assays confirmed that IL-1β and IL-6 activated transcription from the P3 promoter. We then examined downstream signaling mechanisms. IL-1β is known to signal through the NFκB transcription factor, whereas IL-6 signals through the STAT3 transcription factor. CUT&RUN experiments revealed that IL-1β promoted the binding of NFκB to the ST6GAL1 P3 promoter, and IL-6 induced the binding of STAT3 to the P3 promoter. Finally, we determined that inhibitors of NFκB and STAT3 blocked the upregulation of ST6GAL1 stimulated by IL-1β and IL-6, respectively. Together, these results highlight a novel molecular pathway by which cytokines within the tumor microenvironment stimulate the upregulation of ST6GAL1 in PDAC cells.
Collapse
Affiliation(s)
- Austin D Silva
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
3
|
Sato S, Rancourt A, Satoh MS. Cell fate simulation reveals cancer cell features in the tumor microenvironment. J Biol Chem 2024; 300:107697. [PMID: 39173950 PMCID: PMC11419826 DOI: 10.1016/j.jbc.2024.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
To elucidate the dynamic evolution of cancer cell characteristics within the tumor microenvironment (TME), we developed an integrative approach combining single-cell tracking, cell fate simulation, and 3D TME modeling. We began our investigation by analyzing the spatiotemporal behavior of individual cancer cells in cultured pancreatic (MiaPaCa2) and cervical (HeLa) cancer cell lines, with a focus on the α2-6 sialic acid (α2-6Sia) modification on glycans, which is associated with cell stemness. Our findings revealed that MiaPaCa2 cells exhibited significantly higher levels of α2-6Sia modification, correlating with enhanced reproductive capabilities, whereas HeLa cells showed less prevalence of this modification. To accommodate the in vivo variability of α2-6Sia levels, we employed a cell fate simulation algorithm that digitally generates cell populations based on our observed data while varying the level of sialylation, thereby simulating cell growth patterns. Subsequently, we performed a 3D TME simulation with these deduced cell populations, considering the microenvironment that could impact cancer cell growth. Immune cell landscape information derived from 193 cervical and 172 pancreatic cancer cases was used to estimate the degree of the positive or negative impact. Our analysis suggests that the deduced cells generated based on the characteristics of MiaPaCa2 cells are less influenced by the immune cell landscape within the TME compared to those of HeLa cells, highlighting that the fate of cancer cells is shaped by both the surrounding immune landscape and the intrinsic characteristics of the cancer cells.
Collapse
Affiliation(s)
- Sachiko Sato
- Glycobiology and Bioimaging Laboratory of Research Center for Infectious Diseases and Axe of Infectious and Immunological Diseases, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada
| | - Ann Rancourt
- Glycobiology and Bioimaging Laboratory of Research Center for Infectious Diseases and Axe of Infectious and Immunological Diseases, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada; Laboratory of DNA Damage Responses and Bioimaging, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada
| | - Masahiko S Satoh
- Laboratory of DNA Damage Responses and Bioimaging, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada.
| |
Collapse
|
4
|
Goode EA, Orozco-Moreno M, Hodgson K, Nabilah A, Murali M, Peng Z, Merx J, Rossing E, Pijnenborg JFA, Boltje TJ, Wang N, Elliott DJ, Munkley J. Sialylation Inhibition Can Partially Revert Acquired Resistance to Enzalutamide in Prostate Cancer Cells. Cancers (Basel) 2024; 16:2953. [PMID: 39272811 PMCID: PMC11393965 DOI: 10.3390/cancers16172953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer is a lethal solid malignancy and a leading cause of cancer-related deaths in males worldwide. Treatments, including radical prostatectomy, radiotherapy, and hormone therapy, are available and have improved patient survival; however, recurrence remains a huge clinical challenge. Enzalutamide is a second-generation androgen receptor antagonist that is used to treat castrate-resistant prostate cancer. Among patients who initially respond to enzalutamide, virtually all acquire secondary resistance, and an improved understanding of the mechanisms involved is urgently needed. Aberrant glycosylation, and, in particular, alterations to sialylated glycans, have been reported as mediators of therapy resistance in cancer, but a link between tumour-associated glycans and resistance to therapy in prostate cancer has not yet been investigated. Here, using cell line models, we show that prostate cancer cells with acquired resistance to enzalutamide therapy have an upregulation of the sialyltransferase ST6 beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) and increased levels of α2,6-sialylated N-glycans. Furthermore, using the sialyltransferase inhibitor P-SiaFNEtoc, we discover that acquired resistance to enzalutamide can be partially reversed by combining enzalutamide therapy with sialic acid blockade. Our findings identify a potential role for ST6GAL1-mediated aberrant sialylation in acquired resistance to enzalutamide therapy for prostate cancer and suggest that sialic acid blockade in combination with enzalutamide may represent a novel therapeutic approach in patients with advanced disease. Our study also highlights the potential to bridge the fields of cancer biology and glycobiology to develop novel combination therapies for prostate cancer.
Collapse
Affiliation(s)
- Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Amirah Nabilah
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Meera Murali
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Ziqian Peng
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Jona Merx
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Emiel Rossing
- GlycoTherapeutics B.V., 6511 AJ Nijmegen, The Netherlands
| | | | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands
- GlycoTherapeutics B.V., 6511 AJ Nijmegen, The Netherlands
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield S10 2TN, UK
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester LE2 7LX, UK
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| |
Collapse
|
5
|
Irons EE, Sajina GC, Lau JT. Sialic acid in the regulation of blood cell production, differentiation and turnover. Immunology 2024; 172:517-532. [PMID: 38503445 PMCID: PMC11223974 DOI: 10.1111/imm.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Sialic acid is a unique sugar moiety that resides in the distal and most accessible position of the glycans on mammalian cell surface and extracellular glycoproteins and glycolipids. The potential for sialic acid to obscure underlying structures has long been postulated, but the means by which such structural changes directly affect biological processes continues to be elucidated. Here, we appraise the growing body of literature detailing the importance of sialic acid for the generation, differentiation, function and death of haematopoietic cells. We conclude that sialylation is a critical post-translational modification utilized in haematopoiesis to meet the dynamic needs of the organism by enforcing rapid changes in availability of lineage-specific cell types. Though long thought to be generated only cell-autonomously within the intracellular ER-Golgi secretory apparatus, emerging data also demonstrate previously unexpected diversity in the mechanisms of sialylation. Emphasis is afforded to the mechanism of extrinsic sialylation, whereby extracellular enzymes remodel cell surface and extracellular glycans, supported by charged sugar donor molecules from activated platelets.
Collapse
Affiliation(s)
| | | | - Joseph T.Y. Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203 USA
| |
Collapse
|
6
|
Isaji T, Gu J. Novel regulatory mechanisms of N-glycan sialylation: Implication of integrin and focal adhesion kinase in the regulation. Biochim Biophys Acta Gen Subj 2024; 1868:130617. [PMID: 38614280 DOI: 10.1016/j.bbagen.2024.130617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Sialylation of glycoproteins, including integrins, is crucial in various cancers and diseases such as immune disorders. These modifications significantly impact cellular functions and are associated with cancer progression. Sialylation, catalyzed by specific sialyltransferases (STs), has traditionally been considered to be regulated at the mRNA level. SCOPE OF REVIEW Recent research has expanded our understanding of sialylation, revealing ST activity changes beyond mRNA level variations. This includes insights into COPI vesicle formation and Golgi apparatus maintenance and identifying specific target proteins of STs that are not predictable through recombinant enzyme assays. MAJOR CONCLUSIONS This review summarizes that Golgi-associated pathways largely influence the regulation of STs. GOLPH3, GORAB, PI4K, and FAK have become critical elements in sialylation regulation. Some STs have been revealed to possess specificity for specific target proteins, suggesting the presence of additional, enzyme-specific regulatory mechanisms. GENERAL SIGNIFICANCE This study enhances our understanding of the molecular interplay in sialylation regulation, mainly focusing on the role of integrin and FAK. It proposes a bidirectional system where sialylations might influence integrins and vice versa. The diversity of STs and their specific linkages offer new perspectives in cancer research, potentially broadening our understanding of cellular mechanisms and opening avenues for new therapeutic approaches in targeting sialylation pathways.
Collapse
Affiliation(s)
- Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
7
|
Smithson M, Diffalha SA, Irwin RK, Williams G, McLeod MC, Somasundaram V, Bellis SL, Hardiman KM. ST6GAL1 is associated with poor response to chemoradiation in rectal cancer. Neoplasia 2024; 51:100984. [PMID: 38467087 PMCID: PMC11026834 DOI: 10.1016/j.neo.2024.100984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Colorectal cancer is the third most common cause of cancer death. Rectal cancer makes up a third of all colorectal cases. Treatment for locally advanced rectal cancer includes chemoradiation followed by surgery. We have previously identified ST6GAL1 as a cause of resistance to chemoradiation in vitro and hypothesized that it would be correlated with poor response in human derived models and human tissues. METHODS Five organoid models were created from primary human rectal cancers and ST6GAL1 was knocked down via lentivirus transduction in one model. ST6GAL1 and Cleaved Caspase-3 (CC3) were assessed after chemoradiation via immunostaining. A tissue microarray (TMA) was created from twenty-six patients who underwent chemoradiation and had pre- and post-treatment specimens of rectal adenocarcinoma available at our institution. Immunohistochemistry was performed for ST6GAL1 and percent positive cancer cell staining was assessed and correlation with pathological grade of response was measured. RESULTS Organoid models were treated with chemoradiation and both ST6GAL1 mRNA and protein significantly increased after treatment. The organoid model targeted with ST6GAL1 knockdown was found to have increased CC3 after treatment. In the tissue microarray, 42 percent of patient samples had an increase in percent tumor cell staining for ST6GAL1 after treatment. Post-treatment percent staining was associated with a worse grade of treatment response (p = 0.01) and increased staining post-treatment compared to pre-treatment was also associated with a worse response (p = 0.01). CONCLUSION ST6GAL1 is associated with resistance to treatment in human rectal cancer and knockdown in an organoid model abrogated resistance to apoptosis caused by chemoradiation.
Collapse
Affiliation(s)
- Mary Smithson
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Al 35294, USA
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Al 35294, USA
| | - Regina K Irwin
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Al 35294, USA
| | - Gregory Williams
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Al 35294, USA
| | - M Chandler McLeod
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Al 35294, USA
| | - Vivek Somasundaram
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Al 35294, USA
| | - Susan L Bellis
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Al 35294, USA
| | - Karin M Hardiman
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Al 35294, USA; Department of Surgery, Birmingham Veterans Affairs Medical Center, Birmingham, Al 35294, USA.
| |
Collapse
|
8
|
Gu M, Liu Y, Xin P, Guo W, Zhao Z, Yang X, Ma R, Jiao T, Zheng W. Fundamental insights and molecular interactions in pancreatic cancer: Pathways to therapeutic approaches. Cancer Lett 2024; 588:216738. [PMID: 38401887 DOI: 10.1016/j.canlet.2024.216738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The gastrointestinal tract can be affected by a number of diseases that pancreatic cancer (PC) is a malignant manifestation of them. The prognosis of PC patients is unfavorable and because of their diagnosis at advanced stage, the treatment of this tumor is problematic. Owing to low survival rate, there is much interest towards understanding the molecular profile of PC in an attempt in developing more effective therapeutics. The conventional therapeutics for PC include surgery, chemotherapy and radiotherapy as well as emerging immunotherapy. However, PC is still incurable and more effort should be performed. The molecular landscape of PC is an underlying factor involved in increase in progression of tumor cells. In the presence review, the newest advances in understanding the molecular and biological events in PC are discussed. The dysregulation of molecular pathways including AMPK, MAPK, STAT3, Wnt/β-catenin and non-coding RNA transcripts has been suggested as a factor in development of tumorigenesis in PC. Moreover, cell death mechanisms such as apoptosis, autophagy, ferroptosis and necroptosis demonstrate abnormal levels. The EMT and glycolysis in PC cells enhance to ensure their metastasis and proliferation. Furthermore, such abnormal changes have been used to develop corresponding pharmacological and nanotechnological therapeutics for PC.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
9
|
Zhao Y, Li Y, He J, Li M, Yao X, Yang H, Luo Z, Luo P, Su M. Nanointegrative Glycoengineering-Activated Necroptosis of Triple Negative Breast Cancer Stem Cells Enables Self-Amplifiable Immunotherapy for Systemic Tumor Rejection. Adv Healthc Mater 2024; 13:e2303337. [PMID: 38154036 DOI: 10.1002/adhm.202303337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/26/2023] [Indexed: 12/30/2023]
Abstract
Triple-negative breast cancer stem cells (TCSCs) are considered as the origin of recurrence and relapse. It is difficult to kill not only for its resistance, but also the lacking of targetable molecules on membrane. Here, it is confirmed that ST6 β-galactoside alpha-2,6-sialyltransferase 1 (ST6Gal-1) is highly expressed in TCSCs that may be the key enzyme involved in glycoengineering via sialic acid (SA) metabolism. SA co-localizes with a microdomain on cell membrane termed as lipid rafts that enrich CSCs marker and necroptosis proteins mixed lineage kinase domain-like protein (MLKL), suggesting that TCSCs may be sensitive to necroptosis. Thus, the triacetylated N-azidoacetyl-d-mannosamine (Ac3ManNAz) is synthesized as the glycoengineering substrate and applied to introduce artificial azido receptors, dibenzocyclooctyne (DBCO)-modified liposome is used to deliver Compound 6i (C6), a receptor-interacting serine/threonine protein kinase 1(RIPL1)-RIP3K-mixed lineage kinase domain-like protein(MLKL) activator, to induce necroptosis. The pro-necroptosis effect is aggravated by nitric oxide (NO), which is released from NO-depot of cholesterol-NO integrated in DBCO-PEG-liposome@NO/C6 (DLip@NO/C6). Together with the immunogenicity of necroptosis that releases high mobility group box 1(HMGB1) of damage-associated molecular patterns, TCSCs are significantly killed in vitro and in vivo. The results suggest a promising strategy to improve the therapeutic effect on the non-targetable TCSCs with high expression of ST6Gal-1 via combination of glycoengineering and necroptosis induction.
Collapse
Affiliation(s)
- Youbo Zhao
- Center for Tissue Engineering and Stem Cell Research, Key Laboratory for Autoimmune Disease Research of Guizhou Province Education Department. School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Yanan Li
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Jing He
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, 550025, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Xuemei Yao
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Huocheng Yang
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, P. R. China
| | - Min Su
- Center for Tissue Engineering and Stem Cell Research, Key Laboratory for Autoimmune Disease Research of Guizhou Province Education Department. School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, P. R. China
| |
Collapse
|
10
|
Maimela PWM, Smith M, Nel AJM, Bernam SDP, Jonas EG, Blackburn JM. Humoral immunoprofiling identifies novel biomarkers and an immune suppressive autoantibody phenotype at the site of disease in pancreatic ductal adenocarcinoma. Front Oncol 2024; 14:1330419. [PMID: 38450186 PMCID: PMC10917065 DOI: 10.3389/fonc.2024.1330419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous cancer, with minimal response to therapeutic intervention and with 85% of cases diagnosed at an advanced stage due to lack of early symptoms, highlighting the importance of understanding PDAC immunology in greater detail. Here, we applied an immunoproteomic approach to investigate autoantibody responses against cancer-testis and tumor-associated antigens in PDAC using a high-throughput multiplexed protein microarray platform, comparing humoral immune responses in serum and at the site of disease in order to shed new light on immune responses in the tumor microenvironment. We simultaneously quantified serum or tissue IgG and IgA antibody isotypes and subclasses in a cohort of PDAC, disease control and healthy patients, observing inter alia that subclass utilization in tumor tissue samples was predominantly immune suppressive IgG4 and inflammatory IgA2, contrasting with predominant IgG3 and IgA1 subclass utilization in matched sera and implying local autoantibody production at the site of disease in an immune-tolerant environment. By comparison, serum autoantibody subclass profiling for the disease controls identified IgG4, IgG1, and IgA1 as the abundant subclasses. Combinatorial analysis of serum autoantibody responses identified panels of candidate biomarkers. The top IgG panel included ACVR2B, GAGE1, LEMD1, MAGEB1 and PAGE1 (sensitivity, specificity and AUC values of 0.933, 0.767 and 0.906). Conversely, the top IgA panel included AURKA, GAGE1, MAGEA10, PLEKHA5 and XAGE3aV1 (sensitivity, specificity, and AUC values of 1.000, 0.800, and 0.954). Assessment of antigen-specific serum autoantibody glycoforms revealed abundant sialylation on IgA in PDAC, consistent with an immune suppressive IgA response to disease.
Collapse
Affiliation(s)
- Pamela Winnie M. Maimela
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Muneerah Smith
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrew J. M. Nel
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Eduard G. Jonas
- Department of Surgery, Gastroenterology Unit, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Jonathan M. Blackburn
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Sengenics Corporation, Kuala Lumpur, Malaysia
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Pan J, Xie X, Sheng J, Ju C, Sun S, Cui F, Zhai W, Ming L. Construction and identification of lncRNA/circRNA-coregulated ceRNA networks in gemcitabine-resistant bladder carcinoma. Carcinogenesis 2023; 44:847-858. [PMID: 37787763 DOI: 10.1093/carcin/bgad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023] Open
Abstract
OBJECTIVES To explore the regulatory networks that underlie the development of chemoresistance in bladder cancer. METHODS We analyzed profiles of differentially expressed long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs) and messenger RNA (mRNAs) in gemcitabine-resistant/sensitive bladder cancer cells using next-generation sequencing data. RESULTS Hundreds of differentially expressed lncRNAs and miRNAs and thousands of circRNAs and mRNAs were identified. Bioinformatics analysis revealed the chromosomal localizations, classification and coexpression of mRNAs, as well as candidates for cis and trans regulation by lncRNAs. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed mRNAs and circRNAs indicated important functional roles of coregulated RNAs, thus establishing competing endogenous RNA (ceRNA) and protein-protein interactions networks that may underlie chemoresistance in bladder cancer. We demonstrated that lncRNA LINP1 can act as a ceRNA by inhibiting miR-193a-5p to increase TP73 expression; and that lncRNA ESRG and hsa_circ_0075881 can simultaneously bind miR-324-3p to increase ST6GAL1 expression. Modulation of ceRNA network components using ablation and overexpression approaches contributed to gemcitabine resistance in bladder cancer cells. CONCLUSIONS These results elucidate mechanisms by which lncRNAs and circRNAs coregulate the development of bladder cancer cell resistance to gemcitabine, thus laying the foundation for future research to identify biomarkers and disease targets.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Xiaojuan Xie
- Shaanxi Center for Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jinxiu Sheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Chenxi Ju
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Shuaijie Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Fangfang Cui
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Wen Zhai
- Department of Medical Genetics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, China
| |
Collapse
|
12
|
Jones RB, Silva AD, Ankenbauer KE, Britain CM, Chakraborty A, Brown JA, Ballinger SW, Bellis SL. Role of the ST6GAL1 sialyltransferase in regulating ovarian cancer cell metabolism. Glycobiology 2023; 33:626-636. [PMID: 37364046 PMCID: PMC10560082 DOI: 10.1093/glycob/cwad051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
The ST6GAL1 sialyltransferase, which adds α2-6-linked sialic acids to N-glycosylated proteins, is upregulated in many malignancies including ovarian cancer. Through its activity in sialylating select surface receptors, ST6GAL1 modulates intracellular signaling to regulate tumor cell phenotype. ST6GAL1 has previously been shown to act as a survival factor that protects cancer cells from cytotoxic stressors such as hypoxia. In the present study, we investigated a role for ST6GAL1 in tumor cell metabolism. ST6GAL1 was overexpressed (OE) in OV4 ovarian cancer cells, which have low endogenous ST6GAL1, or knocked-down (KD) in ID8 ovarian cancer cells, which have high endogenous ST6GAL1. OV4 and ID8 cells with modulated ST6GAL1 expression were grown under normoxic or hypoxic conditions, and metabolism was assessed using Seahorse technology. Results showed that cells with high ST6GAL1 expression maintained a higher rate of oxidative metabolism than control cells following treatment with the hypoxia mimetic, desferrioxamine (DFO). This enrichment was not due to an increase in mitochondrial number. Glycolytic metabolism was also increased in OV4 and ID8 cells with high ST6GAL1 expression, and these cells displayed greater activity of the glycolytic enzymes, hexokinase and phosphofructokinase. Metabolism maps were generated from the combined Seahorse data, which suggested that ST6GAL1 functions to enhance the overall metabolism of tumor cells. Finally, we determined that OV4 and ID8 cells with high ST6GAL1 expression were more invasive under conditions of hypoxia. Collectively, these results highlight the importance of sialylation in regulating the metabolic phenotype of ovarian cancer cells.
Collapse
Affiliation(s)
- Robert B Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| | - Austin D Silva
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| | - Colleen M Britain
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| | - Asmi Chakraborty
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| | - Jamelle A Brown
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| | - Scott W Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| |
Collapse
|
13
|
Cui J, Guo Y, Yin T, Gou S, Xiong J, Liang X, Lu C, Peng T. USP8 promotes gemcitabine resistance of pancreatic cancer via deubiquitinating and stabilizing Nrf2. Biomed Pharmacother 2023; 166:115359. [PMID: 37639742 DOI: 10.1016/j.biopha.2023.115359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Gemcitabine (Gem) is the first-line chemotherapy drug for pancreatic cancer, but the acquired chemoresistance also hinders its application. Therefore, research about Gem resistance plays a crucial role in enhancing the therapeutic effect of Gem. As a deubiquitinating enzyme, ubiquitin-specific protease 8 (USP8) was shown to play vital roles in the tumorigenesis processes of several cancers; however, the effect of USP8 on Gem resistance of pancreatic cancer still remains largely unknown. In the current study, we observed that the expression of USP8 was increased in pancreatic cancer patients, it is related to the recurrence of Gem chemotherapy, and USP8 expression could be induced by Gem application. Furthermore, USP8 was found to promote Gem resistance both in vivo and in vitro via regulating cell viability and apoptosis. Moreover, USP8 enhanced the activation of Nrf2 signaling which is dependent on its deubiquitinase ability. At last, we illustrated that USP8 interacted with Nrf2 directly and deubiquitinated K48-linked polyubiquitin chains from Nrf2, stabilizing the expression of Nrf2. In summary, the manuscript revealed the role of USP8 in Gem chemoresistance and suggested USP8 as a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Jing Cui
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yao Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shanmiao Gou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiongxin Xiong
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chong Lu
- Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tao Peng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
14
|
Sankaranarayanan NV, Sistla S, Nagarajan B, Chittum JE, Lau JTY, Desai UR. Computational studies on glycosaminoglycan recognition of sialyl transferases. Glycobiology 2023; 33:579-590. [PMID: 37171590 PMCID: PMC10426320 DOI: 10.1093/glycob/cwad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/13/2023] Open
Abstract
Despite decades of research, glycosaminoglycans (GAGs) have not been known to interact with sialyl transferases (STs). Using our in-house combinatorial virtual library screening (CVLS) technology, we studied seven human isoforms, including ST6GAL1, ST6GAL2, ST3GAL1, ST3GAL3, ST3GAL4, ST3GAL5, and ST3GAL6, and predicted that GAGs, especially heparan sulfate (HS), are likely to differentially bind to STs. Exhaustive CVLS and molecular dynamics studies suggested that the common hexasaccharide sequence of HS preferentially recognized ST6GAL1 in a site overlapping the binding site of the donor substrate CMP-Sia. Interestingly, CVLS did not ascribe any special role for the rare 3-O-sulfate modification of HS in ST6GAL1 recognition. The computational predictions were tested using spectrofluorimetric studies, which confirmed preferential recognition of HS over other GAGs. A classic chain length-dependent binding of GAGs to ST6GAL1 was observed with polymeric HS displaying a tight affinity of ~65 nM. Biophysical studies also confirmed a direct competition between CMP-Sia and an HS oligosaccharide and CS polysaccharide for binding to ST6GAL1. Overall, our novel observation that GAGs bind to ST6GAL1 with high affinity and compete with the donor substrate is likely to be important because modulation of sialylation of glycan substrates on cells has considerable physiological/pathological consequences. Our work also brings forth the possibility of developing GAG-based chemical probes of ST6GAL1.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry, Virginia Commonwealth University, Virginia 23298, Richmond, USA
- Drug Discovery and Development, Virginia Commonwealth University, Institute for Structural Biology, Virginia 23219, Richmond, USA
| | - Srinivas Sistla
- Department of Medicinal Chemistry, Virginia Commonwealth University, Virginia 23298, Richmond, USA
- Drug Discovery and Development, Virginia Commonwealth University, Institute for Structural Biology, Virginia 23219, Richmond, USA
| | - Balaji Nagarajan
- Department of Medicinal Chemistry, Virginia Commonwealth University, Virginia 23298, Richmond, USA
- Drug Discovery and Development, Virginia Commonwealth University, Institute for Structural Biology, Virginia 23219, Richmond, USA
| | - John E Chittum
- Department of Medicinal Chemistry, Virginia Commonwealth University, Virginia 23298, Richmond, USA
- Drug Discovery and Development, Virginia Commonwealth University, Institute for Structural Biology, Virginia 23219, Richmond, USA
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo 14263, NY, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry, Virginia Commonwealth University, Virginia 23298, Richmond, USA
- Drug Discovery and Development, Virginia Commonwealth University, Institute for Structural Biology, Virginia 23219, Richmond, USA
| |
Collapse
|
15
|
Xu S, Chen X, Fang J, Chu H, Fang S, Zeng L, Ma H, Zhang T, Chen Y, Wang T, Zhang X, Shen T, Zheng Y, Xu D, Lu Z, Pan Y, Liu Y. Comprehensive analysis of 33 human cancers reveals clinical implications and immunotherapeutic value of the solute carrier family 35 member A2. Front Immunol 2023; 14:1155182. [PMID: 37275857 PMCID: PMC10232969 DOI: 10.3389/fimmu.2023.1155182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Background Solute carrier family 35 member A2 (SLC35A2), which belongs to the SLC35 solute carrier family of human nucleoside sugar transporters, has shown regulatory roles in various tumors and neoplasms. However, the function of SLC35A2 across human cancers remains to be systematically assessed. Insights into the prediction ability of SLC35A2 in clinical practice and immunotherapy response remains limited. Materials and methods We obtained the gene expression and protein levels of SLC35A2 in a variety of tumors from Molecular Taxonomy of Breast Cancer International Consortium, The Cancer Genome Atlas, Gene Expression Omnibus, Chinese Glioma Genome Atlas, and Human Protein Atlas databases. The SLC35A2 level was validated by immunohistochemistry. The predictive value for prognosis was evaluated by Kaplan-Meier survival and Cox regression analyses. Correlations between SLC35A2 expression and DNA methylation, genetic alterations, tumor mutation burden (TMB), microsatellite instability (MSI), and tumor microenvironment were performed using Spearman's correlation analysis. The possible downstream pathways of SLC35A2 in different human cancers were explored using gene set variation analysis. The potential role of SLC35A2 in the tumor immune microenvironment was evaluated via EPIC, CIBERSORT, MCP-counter, CIBERSORT-ABS, quanTIseq, TIMER, and xCell algorithms. The difference in the immunotherapeutic response of SLC35A2 under different expression conditions was evaluated by the tumor immune dysfunction and exclusion (TIDE) score as well as four independent immunotherapy cohorts, which includes patients with bladder urothelial carcinoma (BLCA, N = 299), non-small cell lung cancer (NSCLC, N = 72 and N = 36) and skin cutaneous melanoma (SKCM, N = 25). Potential drugs were identified using the CellMiner database and molecular docking. Results SLC35A2 exhibited abnormally high or low expression in 23 cancers and was significantly associated with the prognosis. In various cancers, SLC35A2 expression and mammalian target of rapamycin complex 1 signaling were positively correlated. Multiple algorithmic immune infiltration analyses suggested an inverse relation between SLC35A2 expression and infiltrating immune cells, which includes CD4+T cells, CD8+T cells, B cells, and natural killer cells (NK) in various tumors. Furthermore, SLC35A2 expression was significantly correlated with pan-cancer immune checkpoints, TMB, MSI, and TIDE genes. SLC35A2 showed significant predictive value for the immunotherapy response of patients with diverse cancers. Two drugs, vismodegib and abiraterone, were identified, and the free binding energy of cytochrome P17 with abiraterone was higher than that of SLC35A2 with abiraterone. Conclusion Our study revealed that SLC35A2 is upregulated in 20 types of cancer, including lung adenocarcinoma (LUAD), breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), and lung squamous cell carcinoma (LUSC). The upregulated SLC35A2 in five cancer types indicates a poor prognosis. Furthermore, there was a positive correlation between the overexpression of SLC35A2 and reduced lymphocyte infiltration in 13 cancer types, including BRCA and COAD. Based on data from several clinical trials, patients with LUAD, LUSC, SKCM, and BLCA who exhibited high SLC35A2 expression may experience improved immunotherapy response. Therefore, SLC35A2 could be considered a potential predictive biomarker for the prognosis and immunotherapy efficacy of various tumors. Our study provides a theoretical basis for further investigating its prognostic and therapeutic potentials.
Collapse
Affiliation(s)
- Shengshan Xu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xiguang Chen
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jianxiong Fang
- Department of Urology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Hongyu Chu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Leli Zeng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Hansu Ma
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Tianzhi Zhang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yu Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Tao Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Tao Shen
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Youbin Zheng
- Department of Radiology, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, Guangdong, China
| | - Dongming Xu
- Department of Neurosurgery, The County Hospital of Qianguo, Songyuan, Jilin, China
| | - Zhuming Lu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Liu W, Huang X, Luo W, Liu X, Chen W. The Role of Paxillin Aberrant Expression in Cancer and Its Potential as a Target for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24098245. [PMID: 37175948 PMCID: PMC10179295 DOI: 10.3390/ijms24098245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Paxillin is a multi-domain adaptor protein. As an important member of focal adhesion (FA) and a participant in regulating cell movement, paxillin plays an important role in physiological processes such as nervous system development, embryonic development, and vascular development. However, increasing evidence suggests that paxillin is aberrantly expressed in many cancers. Many scholars have also recognized that the abnormal expression of paxillin is related to the prognosis, metastases, invasion, survival, angiogenesis, and other aspects of malignant tumors, suggesting that paxillin may be a potential cancer therapeutic target. Therefore, the study of how aberrant paxillin expression affects the process of tumorigenesis and metastasis will help to develop more efficacious antitumor drugs. Herein, we review the structure of paxillin and its function and expression in tumors, paying special attention to the multifaceted effects of paxillin on tumors, the mechanism of tumorigenesis and progression, and its potential role in tumor therapy. We also hope to provide a reference for the clinical prognosis and development of new tumor therapeutic targets.
Collapse
Affiliation(s)
- Weixian Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinxian Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Weizhao Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Weichun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
17
|
Chakraborty A, Perez M, Carroll JD, Antonopoulos A, Dell A, Ortega L, Mohammed NBB, Wells M, Staudinger C, Griswold A, Chandler KB, Marrero C, Jimenez R, Tani Y, Wilmott JS, Thompson JF, Wang W, Sackstein R, Scolyer RA, Murphy GF, Haslam SM, Dimitroff CJ. Hypoxia Controls the Glycome Signature and Galectin-8-Ligand Axis to Promote Protumorigenic Properties of Metastatic Melanoma. J Invest Dermatol 2023; 143:456-469.e8. [PMID: 36174713 PMCID: PMC10123958 DOI: 10.1016/j.jid.2022.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 01/14/2023]
Abstract
The prognosis for patients with metastatic melanoma (MM) involving distant organs is grim, and treatment resistance is potentiated by tumor-initiating cells (TICs) that thrive under hypoxia. MM cells, including TICs, express a unique glycome featuring i-linear poly-N-acetyllactosamines through the loss of I-branching enzyme, β1,6 N-acetylglucosaminyltransferase 2. Whether hypoxia instructs MM TIC development by modulating the glycome signature remains unknown. In this study, we explored hypoxia-dependent alterations in MM glycome‒associated genes and found that β1,6 N-acetylglucosaminyltransferase 2 was downregulated and a galectin (Gal)-8-ligand axis, involving both extracellular and cell-intrinsic Gal-8, was induced. Low β1,6 N-acetylglucosaminyltransferase 2 levels correlated with poor patient outcomes, and patient serum samples were elevated for Gal-8. Depressed β1,6 N-acetylglucosaminyltransferase 2 in MM cells upregulated TIC marker, NGFR/CD271, whereas loss of MM cell‒intrinsic Gal-8 markedly lowered NGFR and reduced TIC activity in vivo. Extracellular Gal-8 bound preferentially to i-linear poly-N-acetyllactosamines on N-glycans of the TIC marker and prometastatic molecule CD44, among other receptors, and activated prosurvival factor protein kinase B. This study reveals the importance of hypoxia governing the MM glycome by enforcing i-linear poly-N-acetyllactosamine and Gal-8 expression. This mechanistic investigation also uncovers glycome-dependent regulation of pro-MM factor, NGFR, implicating i-linear poly-N-acetyllactosamine and Gal-8 as biomarkers and therapeutic targets of MM.
Collapse
Affiliation(s)
- Asmi Chakraborty
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Mariana Perez
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Jordan D Carroll
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | | | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Liettel Ortega
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Norhan B B Mohammed
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA; Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Michael Wells
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Caleb Staudinger
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Anthony Griswold
- John P. Hussman Institute for Human Genomics (HIHG), Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Kevin B Chandler
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Cristina Marrero
- Miami Cancer Institute, Baptist Health-South Florida, Miami, Florida, USA
| | - Ramon Jimenez
- Miami Cancer Institute, Baptist Health-South Florida, Miami, Florida, USA
| | - Yoshihiko Tani
- Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Wei Wang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachussetts, USA
| | - Robert Sackstein
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, Australia; Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charles J Dimitroff
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.
| |
Collapse
|
18
|
Zhang X, Xu CH, Mo J, Zheng XJ, Chen YF, Yang AQ, Zhang YH, Wang PY, Yuan X, Ye XS. Self-Assembled Core-Shell Nanoscale Coordination Polymer Nanoparticles Carrying a Sialyltransferase Inhibitor for Cancer Metastasis Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7713-7724. [PMID: 36728365 DOI: 10.1021/acsami.2c18601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Despite hypersialylation of cancer cells together with a significant upregulation of sialyltransferase (ST) activity contributes to the metastatic cascade at multiple levels, there are few dedicated tools to interfere with their expression. Although transition state-based ST inhibitors are well-established, they are not membrane permeable. To tackle this problem, herein, we design and construct long-circulating, self-assembled core-shell nanoscale coordination polymer (NCP) nanoparticles carrying a transition state-based ST inhibitor, which make the inhibitor transmembrane and potently strip diverse sialoglycans from various cancer cells. In the experimental lung metastasis and metastasis prevention models, the nanoparticle device (NCP/STI) significantly inhibits metastases formation without systemic toxicity. This strategy enables ST inhibitors to be applied to cells and animals by providing them with a well-designed nanodelivery system. Our work opens a new avenue to the development of transition state-based ST inhibitors and demonstrates that NCP/STI holds great promise in achieving metastases inhibition for multiple cancers.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Cheng-Hao Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Juan Mo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Yan-Fang Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - An-Qi Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Yi-Heng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Peng-Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| |
Collapse
|
19
|
Alldredge J, Kumar V, Nguyen J, Sanders BE, Gomez K, Jayachandran K, Zhang J, Schwarz J, Rahmatpanah F. Endogenous Retrovirus RNA Expression Differences between Race, Stage and HPV Status Offer Improved Prognostication among Women with Cervical Cancer. Int J Mol Sci 2023; 24:1492. [PMID: 36675007 PMCID: PMC9864224 DOI: 10.3390/ijms24021492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Endogenous human retroviruses (ERVs) are remnants of exogenous retroviruses that have integrated into the human genome. Using publicly available RNA-seq data from 63 cervical cancer patients, we investigated the expression of ERVs in cervical cancers. Four aspects of cervical cancer were investigated: patient ancestral background, tumor HPV type, tumor stage and patient survival. Between the racial subgroups, 74 ERVs were significantly differentially expressed, with Black Americans having 30 upregulated and 44 downregulated (including MER21C, HERV9-int, and HERVH-int) ERVs when compared to White Americans. We found that 3313 ERVs were differentially expressed between HPV subgroups, including MER41A, HERVH-int and HERVK9. There were 28 downregulated (including MLT1D and HERVH-int) and 61 upregulated (including MER41A) ERVs in locally advanced-stage compared to early-stage samples. Tissue microarrays of cervical cancer patients were used to investigate the protein expression of ERVs with protein coding potential (i.e., HERVK and ERV3). Significant differences in protein expression of ERV3 (p = 0.000905) were observed between early-stage and locally advanced-stage tumors. No significant differential expression at the protein level was found for HERVK7 (p = 0.243). We also investigated a prognostic model, supplementing a baseline prediction model using FIGO stage, age and HPV positivity with ERVs data. The expression levels of all ERVs in the HERVd were input into a Lasso-Cox proportional hazards model, developing a predictive 67-ERV panel. When ERVs expression levels were supplemented with the clinical data, a significant increase in prognostic power (p = 9.433 × 10-15) relative to that obtained with the clinical parameters alone (p = 0.06027) was observed. In summary, ERV RNA expression in cervical cancer tumors is significantly different among racial cohorts, HPV subgroups and disease stages. The combination of the expression of certain ERVs in cervical cancers with clinical factors significantly improved prognostication compared to clinical factors alone; therefore, ERVs may serve as future prognostic biomarkers and therapeutic targets. Novelty and Impact: When endogenous retroviral (ERV) expression signatures were combined with currently employed clinical prognosticators of relapse of cervical cancer, the combination outperformed prediction models based on clinical prognosticators alone. ERV expression signatures in tumor biopsies may therefore be useful to help identify patients at greater risk of recurrence. The novel ERV expression signatures or adjacent genes possibly impacted by ERV expression described here may also be targets for the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Jill Alldredge
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO 80045, USA
| | - Vinay Kumar
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - James Nguyen
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Brooke E. Sanders
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO 80045, USA
| | - Karina Gomez
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO 80045, USA
| | - Kay Jayachandran
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63108, USA
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Julie Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Farah Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
20
|
Nag S, Mandal A, Joshi A, Jain N, Srivastava RS, Singh S, Khattri A. Sialyltransferases and Neuraminidases: Potential Targets for Cancer Treatment. Diseases 2022; 10:diseases10040114. [PMID: 36547200 PMCID: PMC9777960 DOI: 10.3390/diseases10040114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Cancers are the leading cause of death, causing around 10 million deaths annually by 2020. The most common cancers are those affecting the breast, lungs, colon, and rectum. However, it has been noted that cancer metastasis is more lethal than just cancer incidence and accounts for more than 90% of cancer deaths. Thus, early detection and prevention of cancer metastasis have the capability to save millions of lives. Finding novel biomarkers and targets for screening, determination of prognosis, targeted therapies, etc., are ways of doing so. In this review, we propose various sialyltransferases and neuraminidases as potential therapeutic targets for the treatment of the most common cancers, along with a few rare ones, on the basis of existing experimental and in silico data. This compilation of available cancer studies aiming at sialyltransferases and neuraminidases will serve as a guide for scientists and researchers working on possible targets for various cancers and will also provide data about the existing drugs which inhibit the action of these enzymes.
Collapse
Affiliation(s)
- Sagorika Nag
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Abhimanyu Mandal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Aryaman Joshi
- Department of Chemical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravi Shanker Srivastava
- Department of Pharmacology, Career Institute of Medical Sciences & Hospital, Lucknow 226020, India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Arun Khattri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
- Correspondence: ; Tel.: +91-70-6811-1755
| |
Collapse
|
21
|
GC S, Tuy K, Rickenbacker L, Jones R, Chakraborty A, Miller CR, Beierle EA, Hanumanthu VS, Tran AN, Mobley JA, Bellis SL, Hjelmeland AB. α2,6 Sialylation mediated by ST6GAL1 promotes glioblastoma growth. JCI Insight 2022; 7:e158799. [PMID: 36345944 PMCID: PMC9675560 DOI: 10.1172/jci.insight.158799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
One of the least-investigated areas of brain pathology research is glycosylation, which is a critical regulator of cell surface protein structure and function. β-Galactoside α2,6-sialyltransferase (ST6GAL1) is the primary enzyme that α2,6 sialylates N-glycosylated proteins destined for the plasma membrane or secretion, thereby modulating cell signaling and behavior. We demonstrate a potentially novel, protumorigenic role for α2,6 sialylation and ST6GAL1 in the deadly brain tumor glioblastoma (GBM). GBM cells with high α2,6 sialylation exhibited increased in vitro growth and self-renewal capacity and decreased mouse survival when orthotopically injected. α2,6 Sialylation was regulated by ST6GAL1 in GBM, and ST6GAL1 was elevated in brain tumor-initiating cells (BTICs). Knockdown of ST6GAL1 in BTICs decreased in vitro growth, self-renewal capacity, and tumorigenic potential. ST6GAL1 regulates levels of the known BTIC regulators PDGF Receptor β (PDGFRB), Activated Leukocyte Cell Adhesion Molecule, and Neuropilin, which were confirmed to bind to a lectin-recognizing α2,6 sialic acid. Loss of ST6GAL1 was confirmed to decrease PDGFRB α2,6 sialylation, total protein levels, and the induction of phosphorylation by PDGF-BB. Thus, ST6GAL1-mediated α2,6 sialylation of a select subset of cell surface receptors, including PDGFRB, increases GBM growth.
Collapse
Affiliation(s)
- Sajina GC
- Department of Cell, Developmental and Integrative Biology
| | - Kaysaw Tuy
- Department of Cell, Developmental and Integrative Biology
| | | | - Robert Jones
- Department of Cell, Developmental and Integrative Biology
| | | | | | | | | | | | - James A. Mobley
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
22
|
Marciel MP, Haldar B, Hwang J, Bhalerao N, Bellis SL. Role of tumor cell sialylation in pancreatic cancer progression. Adv Cancer Res 2022; 157:123-155. [PMID: 36725107 PMCID: PMC11342334 DOI: 10.1016/bs.acr.2022.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies and is currently the third leading cause of cancer death. The aggressiveness of PDAC stems from late diagnosis, early metastasis, and poor efficacy of current chemotherapies. Thus, there is an urgent need for effective biomarkers for early detection of PDAC and development of new therapeutic strategies. It has long been known that cellular glycosylation is dysregulated in pancreatic cancer cells, however, tumor-associated glycans and their cognate glycosylating enzymes have received insufficient attention as potential clinical targets. Aberrant glycosylation affects a broad range of pathways that underpin tumor initiation, metastatic progression, and resistance to cancer treatment. One of the prevalent alterations in the cancer glycome is an enrichment in a select group of sialylated glycans including sialylated, branched N-glycans, sialyl Lewis antigens, and sialylated forms of truncated O-glycans such as the sialyl Tn antigen. These modifications affect the activity of numerous cell surface receptors, which collectively impart malignant characteristics typified by enhanced cell proliferation, migration, invasion and apoptosis-resistance. Additionally, sialic acids on tumor cells engage inhibitory Siglec receptors on immune cells to dampen anti-tumor immunity, further promoting cancer progression. The goal of this review is to summarize the predominant changes in sialylation occurring in pancreatic cancer, the biological functions of sialylated glycoproteins in cancer pathogenesis, and the emerging strategies for targeting sialoglycans and Siglec receptors in cancer therapeutics.
Collapse
Affiliation(s)
- Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barnita Haldar
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
23
|
GC S, Bellis SL, Hjelmeland AB. ST6Gal1: Oncogenic signaling pathways and targets. Front Mol Biosci 2022; 9:962908. [PMID: 36106023 PMCID: PMC9465715 DOI: 10.3389/fmolb.2022.962908] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Golgi-sialyltransferase ST6Gal1 (βgalactosidase α2,6 sialyltransferase 1), adds the negatively charged sugar, sialic acid, to the terminal galactose of N-glycosylated proteins. Upregulation of ST6Gal1 is observed in many malignancies, and a large body of research has determined that ST6Gal1-mediated α2,6 sialylation impacts cancer hallmarks. ST6Gal1 affects oncogenic behaviors including sustained proliferation, enhanced self-renewal, epithelial-to-mesenchymal transition, invasion, and chemoresistance. However, there are relatively few ST6GaL1 related signaling pathways that are well-established to mediate these biologies: greater delineation of specific targets and signaling mechanisms that are orchestrated by ST6Gal1 is needed. The aim of this review is to provide a summary of our current understanding of select oncogenic signaling pathways and targets affected by ST6Gal1.
Collapse
Affiliation(s)
| | | | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
24
|
Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. J Exp Med 2022; 219:e20211505. [PMID: 35522218 PMCID: PMC9086500 DOI: 10.1084/jem.20211505] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the deadliest cancers and is projected to soon be the second leading cause of cancer death. Median survival of PDA patients is 6-10 mo, with the majority of diagnoses occurring at later, metastatic stages that are refractory to treatment and accompanied by worsening prognoses. Glycosylation is one of the most common types of post-translational modifications. The complex landscape of glycosylation produces an extensive repertoire of glycan moieties, glycoproteins, and glycolipids, thus adding a dynamic and tunable level of intra- and intercellular signaling regulation. Aberrant glycosylation is a feature of cancer progression and influences a broad range of signaling pathways to promote disease onset and progression. However, despite being so common, the functional consequences of altered glycosylation and their potential as therapeutic targets remain poorly understood and vastly understudied in the context of PDA. In this review, the functionality of glycans as they contribute to hallmarks of PDA are highlighted as active regulators of disease onset, tumor progression, metastatic capability, therapeutic resistance, and remodeling of the tumor immune microenvironment. A deeper understanding of the functional consequences of altered glycosylation will facilitate future hypothesis-driven studies and identify novel therapeutic strategies in PDA.
Collapse
Affiliation(s)
| | | | - Jasper Hsu
- Salk Institute for Biological Studies, La Jolla, CA
| | | |
Collapse
|
25
|
Irons EE, Cortes Gomez E, Andersen VL, Lau JTY. Bacterial colonization and TH17 immunity are shaped by intestinal sialylation in neonatal mice. Glycobiology 2022; 32:414-428. [PMID: 35157771 PMCID: PMC9022908 DOI: 10.1093/glycob/cwac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/10/2022] [Accepted: 01/30/2022] [Indexed: 11/14/2022] Open
Abstract
Interactions between the neonate host and its gut microbiome are central to the development of a healthy immune system. However, the mechanisms by which animals alter early colonization of microbiota for their benefit remain unclear. Here, we investigated the role of early-life expression of the α2,6-sialyltransferase ST6GAL1 in microbiome phylogeny and mucosal immunity. Fecal, upper respiratory, and oral microbiomes of pups expressing or lacking St6gal1 were analyzed by 16S rRNA sequencing. At weaning, the fecal microbiome of St6gal1-KO mice had reduced Clostridiodes, Coprobacillus, and Adlercreutzia, but increased Helicobacter and Bilophila. Pooled fecal microbiomes from syngeneic donors were transferred to antibiotic-treated wild-type mice, before analysis of recipient mucosal immune responses by flow cytometry, RT-qPCR, microscopy, and ELISA. Transfer of St6gal1-KO microbiome induced a mucosal Th17 response, with expression of T-bet and IL-17, and IL-22-dependent gut lengthening. Early life intestinal sialylation was characterized by RT-qPCR, immunoblot, microscopy, and sialyltransferase enzyme assays in genetic mouse models at rest or with glucocorticoid receptor modulators. St6gal1 expression was greatest in the duodenum, where it was mediated by the P1 promoter and efficiently inhibited by dexamethasone. Our data show that the inability to produce α2,6-sialyl ligands contributes to microbiome-dependent Th17 inflammation, highlighting a pathway by which the intestinal glycosylation regulates mucosal immunity.
Collapse
Affiliation(s)
- Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Valerie L Andersen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| |
Collapse
|
26
|
Xu S, Liu Y, Ma H, Fang S, Wei S, Li X, Lu Z, Zheng Y, Liu T, Zhu X, Xu D, Pan Y. A Novel Signature Integrated of Immunoglobulin, Glycosylation and Anti-Viral Genes to Predict Prognosis for Breast Cancer. Front Genet 2022; 13:834731. [PMID: 35432482 PMCID: PMC9011196 DOI: 10.3389/fgene.2022.834731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Aberrant glycosylation is significantly related to the occurrence, progression, metastasis, and drug resistance of tumors. It is essential to identify glycosylation and related genes with prognostic value for breast cancer. Objective: We aimed to construct and validate a prognostic model based on glycosylation and related genes, and further investigate its prognosis values in validation set and external independent cohorts. Materials and Methods: The transcriptome and clinical data of breast cancer patients were downloaded from The Cancer Genome Atlas (TCGA, n = 1072), Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, n = 1451), and GSE2741 (n = 120). Glycosylation-related genes were downloaded from the Genecards website. Differentially expressed glycosylation-related geneswere identified by comparing the tumor tissues with the adjacent tissues. The TCGA data were randomly divided into training set and validation set in a 1:1 ratio for further analysis. The glycosylation risk-scoring prognosis model was constructed by univariate and multivariate Cox regression analysis, followed by confirmation in TCGA validation, METABRIC, and GEO datasets. Gene set enrichment analysis (GSEA) and Gene ontology analysis for identifying the affected pathways in the high- and low-risk groups were performed. Results: We attained 1072 breast cancer samples from the TCGA database and 786 glycosylation genes from the Genecards website. A signature contains immunoglobulin, glycosylation and anti-viral related genes was constructed to separate BRCA patients into two risk groups. Low-risk patients had better overall survival than high-risk patients (p < 0.001). A nomogram was constructed with risk scores and clinical characteristics. The area under time-dependent ROC curve reached 0.764 at 1 year, 0.744 at 3 years, and 0.765 at 5 years in the training set. Subgroup analysis showed differences in OS between the high- and low-risk patients in different subgroups. Moreover, the risk score was confirmed as an independent prognostic indicator of BRCA patients and was potentially correlated with immunotherapy response and drug sensitivity. Conclusion: We identified a novel signature integrated of immunoglobulin (IGHA2), glycosylation-related (SLC35A2) and anti-viral gene (BST2) that was an independent prognostic indicator for BRCA patients. The risk-scoring model could be used for predicting prognosis and immunotherapy in BRCA, thus providing a powerful instrument for combating BRCA.
Collapse
Affiliation(s)
- Shengshan Xu
- Department of Thoracic Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yuchen Liu, ; Dongming Xu, ; Yihang Pan,
| | - Hansu Ma
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shoupeng Wei
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoping Li
- Department of Breast, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Zhuming Lu
- Department of Thoracic Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Youbin Zheng
- Department of Radiology, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China
| | - Tong Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China
| | - Xiaojian Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dongming Xu
- Department of Neurosurgery, The Country Hospital of Qianguo, Songyuan, China
- *Correspondence: Yuchen Liu, ; Dongming Xu, ; Yihang Pan,
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yuchen Liu, ; Dongming Xu, ; Yihang Pan,
| |
Collapse
|
27
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
28
|
Smithson M, Irwin R, Williams G, Alexander KL, Smythies LE, Nearing M, McLeod MC, Al Diffalha S, Bellis SL, Hardiman KM. Sialyltransferase ST6GAL-1 mediates resistance to chemoradiation in rectal cancer. J Biol Chem 2022; 298:101594. [PMID: 35041825 PMCID: PMC8857646 DOI: 10.1016/j.jbc.2022.101594] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Locally advanced rectal cancer is typically treated with chemoradiotherapy followed by surgery. Most patients do not display a complete response to chemoradiotherapy, but resistance mechanisms are poorly understood. ST6GAL-1 is a sialyltransferase that adds the negatively charged sugar, sialic acid (Sia), to cell surface proteins in the Golgi, altering their function. We therefore hypothesized that ST6GAL-1 could mediate resistance to chemoradiation in rectal cancer by inhibiting apoptosis. Patient-derived xenograft and organoid models of rectal cancer and rectal cancer cell lines were assessed for ST6GAL-1 protein with and without chemoradiation treatment. ST6GAL-1 mRNA was assessed in untreated human rectal adenocarcinoma by PCR assays. Samples were further assessed by Western blotting, Caspase-Glo apoptosis assays, and colony formation assays. The presence of functional ST6GAL-1 was assessed via flow cytometry using the Sambucus nigra lectin, which specifically binds cell surface α2,6-linked Sia, and via lectin precipitation. In patient-derived xenograft models of rectal cancer, we found that ST6GAL-1 protein was increased after chemoradiation in a subset of samples. Rectal cancer cell lines demonstrated increased ST6GAL-1 protein and cell surface Sia after chemoradiation. ST6GAL-1 was also increased in rectal cancer organoids after treatment. ST6GAL-1 knockdown in rectal cancer cell lines resulted in increased apoptosis and decreased survival after treatment. We concluded that ST6GAL-1 promotes resistance to chemoradiotherapy by inhibiting apoptosis in rectal cancer cell lines. More research will be needed to further elucidate the importance and mechanism of ST6GAL-1-mediated resistance.
Collapse
Affiliation(s)
- Mary Smithson
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Regina Irwin
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregory Williams
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Katie L Alexander
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lesley E Smythies
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marie Nearing
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - M Chandler McLeod
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Susan L Bellis
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Karin M Hardiman
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Surgery, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
29
|
Resistance to cisplatin in human lung adenocarcinoma cells: effects on the glycophenotype and epithelial to mesenchymal transition markers. Glycoconj J 2022; 39:247-259. [DOI: 10.1007/s10719-022-10042-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
|
30
|
Bui S, Mejia I, Díaz B, Wang Y. Adaptation of the Golgi Apparatus in Cancer Cell Invasion and Metastasis. Front Cell Dev Biol 2021; 9:806482. [PMID: 34957124 PMCID: PMC8703019 DOI: 10.3389/fcell.2021.806482] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus plays a central role in normal cell physiology by promoting cell survival, facilitating proliferation, and enabling cell-cell communication and migration. These roles are partially mediated by well-known Golgi functions, including post-translational modifications, lipid biosynthesis, intracellular trafficking, and protein secretion. In addition, accumulating evidence indicates that the Golgi plays a critical role in sensing and integrating external and internal cues to promote cellular homeostasis. Indeed, the unique structure of the mammalian Golgi can be fine-tuned to adapt different Golgi functions to specific cellular needs. This is particularly relevant in the context of cancer, where unrestrained proliferation and aberrant survival and migration increase the demands in Golgi functions, as well as the need for Golgi-dependent sensing and adaptation to intrinsic and extrinsic stressors. Here, we review and discuss current understanding of how the structure and function of the Golgi apparatus is influenced by oncogenic transformation, and how this adaptation may facilitate cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Isabel Mejia
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Begoña Díaz
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| |
Collapse
|
31
|
Hugonnet M, Singh P, Haas Q, von Gunten S. The Distinct Roles of Sialyltransferases in Cancer Biology and Onco-Immunology. Front Immunol 2021; 12:799861. [PMID: 34975914 PMCID: PMC8718907 DOI: 10.3389/fimmu.2021.799861] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant glycosylation is a key feature of malignant transformation. Hypersialylation, the enhanced expression of sialic acid-terminated glycoconjugates on the cell surface, has been linked to immune evasion and metastatic spread, eventually by interaction with sialoglycan-binding lectins, including Siglecs and selectins. The biosynthesis of tumor-associated sialoglycans involves sialyltransferases, which are differentially expressed in cancer cells. In this review article, we provide an overview of the twenty human sialyltransferases and their roles in cancer biology and immunity. A better understanding of the individual contribution of select sialyltransferases to the tumor sialome may lead to more personalized strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Marjolaine Hugonnet
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Pushpita Singh
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Quentin Haas
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Kurz E, Chen S, Vucic E, Baptiste G, Loomis C, Agrawal P, Hajdu C, Bar-Sagi D, Mahal LK. Integrated Systems Analysis of the Murine and Human Pancreatic Cancer Glycomes Reveals a Tumor-Promoting Role for ST6GAL1. Mol Cell Proteomics 2021; 20:100160. [PMID: 34634466 PMCID: PMC8604807 DOI: 10.1016/j.mcpro.2021.100160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States. Glycans, such as carbohydrate antigen 19-9, are biomarkers of PDAC and are emerging as important modulators of cancer phenotypes. Herein, we used a systems-based approach integrating glycomic analysis of the well-established KC mouse, which models early events in transformation, and analysis of samples from human pancreatic cancer patients to identify glycans with potential roles in cancer formation. We observed both common and distinct patterns of glycosylation in pancreatic cancer across species. Common alterations included increased levels of α-2,3-sialic acid and α-2,6-sialic acid, bisecting GlcNAc and poly-N-acetyllactosamine. However, core fucose, which was increased in human PDAC, was not seen in the mouse, indicating that not all human glycomic changes are observed in the KC mouse model. In silico analysis of bulk and single-cell sequencing data identified ST6 beta-galactoside alpha-2,6-sialyltransferase 1, which underlies α-2,6-sialic acid, as overexpressed in human PDAC, concordant with histological data showing higher levels of this enzyme at the earliest stages. To test whether ST6 beta-galactoside alpha-2,6-sialyltransferase 1 promotes pancreatic cancer, we created a novel mouse in which a pancreas-specific genetic deletion of this enzyme overlays the KC mouse model. The analysis of our new model showed delayed cancer formation and a significant reduction in fibrosis. Our results highlight the importance of a strategic systems approach to identifying glycans whose functions can be modeled in mouse, a crucial step in the development of therapeutics targeting glycosylation in pancreatic cancer.
Collapse
Affiliation(s)
- Emma Kurz
- Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Shuhui Chen
- Department of Chemistry, Biomedical Research Institute, New York University, New York, New York, USA
| | - Emily Vucic
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York, USA
| | - Gillian Baptiste
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Cynthia Loomis
- Office of Science and Research, NYU Grossman School of Medicine, New York, New York, USA
| | - Praveen Agrawal
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Cristina Hajdu
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York, USA.
| | - Lara K Mahal
- Department of Chemistry, Biomedical Research Institute, New York University, New York, New York, USA.
| |
Collapse
|
33
|
Punch PR, Irons EE, Manhardt CT, Marathe H, Lau JTY. The sialyltransferase ST6GAL1 protects against radiation-induced gastrointestinal damage. Glycobiology 2021; 30:446-453. [PMID: 31897489 DOI: 10.1093/glycob/cwz108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
High-dose irradiation poses extreme risk of mortality from acute damage to the hematopoietic compartment and gastrointestinal tract. While bone marrow transplantation can reestablish the hematopoietic compartment, a more imminent risk of death is posed by gastrointestinal acute radiation syndrome (GI-ARS), for which there are no FDA-approved medical countermeasures. Although the mechanisms dictating the severity of GI-ARS remain incompletely understood, sialylation by ST6GAL1 has been shown to protect against radiation-induced apoptosis in vitro. Here, we used a C57BL/6 St6gal1-KO mouse model to investigate the contribution of ST6GAL1 to susceptibility to total body irradiation in vivo. Twelve gray total body ionizing γ-irradiation (TBI) followed by bone marrow transplant is not lethal to wild-type mice, but St6gal1-KO counterparts succumbed within 7 d. Both St6gal1-KO and wild-type animals exhibited damage to the GI epithelium, diarrhea and weight loss, but these symptoms became progressively more severe in the St6gal1-KO animals while wild-type counterparts showed signs of recovery by 120 h after TBI. Increased apoptosis in the GI tracts of St6gal1-KO mice and the absence of regenerative crypts were also observed. Together, these observations highlight an important role for ST6GAL1 in protection and recovery from GI-ARS in vivo.
Collapse
Affiliation(s)
- Patrick R Punch
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Eric E Irons
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Charles T Manhardt
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Himangi Marathe
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Joseph T Y Lau
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
34
|
Dujardin P, Baginska AK, Urban S, Grüner BM. Unraveling Tumor Heterogeneity by Using DNA Barcoding Technologies to Develop Personalized Treatment Strategies in Advanced-Stage PDAC. Cancers (Basel) 2021; 13:4187. [PMID: 34439341 PMCID: PMC8394487 DOI: 10.3390/cancers13164187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/14/2022] Open
Abstract
Tumor heterogeneity is a hallmark of many solid tumors, including pancreatic ductal adenocarcinoma (PDAC), and an inherent consequence of the clonal evolution of cancers. As such, it is considered the underlying concept of many characteristics of the disease, including the ability to metastasize, adapt to different microenvironments, and to develop therapy resistance. Undoubtedly, the high mortality of PDAC can be attributed to a high extent to these properties. Despite its apparent importance, studying tumor heterogeneity has been a challenging task, mainly due to its complexity and lack of appropriate methods. However, in recent years molecular DNA barcoding has emerged as a sophisticated tool that allows mapping of individual cells or subpopulations in a cell pool to study heterogeneity and thus devise new personalized treatment strategies. In this review, we provide an overview of genetic and non-genetic inter- and intra-tumor heterogeneity and its impact on (personalized) treatment strategies in PDAC and address how DNA barcoding technologies work and can be applied to study this clinically highly relevant question.
Collapse
Affiliation(s)
- Philip Dujardin
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen at the University Duisburg-Essen, 45147 Essen, Germany
| | - Anna K Baginska
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen at the University Duisburg-Essen, 45147 Essen, Germany
| | - Sebastian Urban
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen at the University Duisburg-Essen, 45147 Essen, Germany
| | - Barbara M Grüner
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen at the University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, 45147 Essen, Germany
| |
Collapse
|
35
|
Cao L, Zhou Y, Li X, Lin S, Tan Z, Guan F. Integrating transcriptomics, proteomics, glycomics and glycoproteomics to characterize paclitaxel resistance in breast cancer cells. J Proteomics 2021; 243:104266. [PMID: 34000456 DOI: 10.1016/j.jprot.2021.104266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022]
Abstract
Chemoresistance is a major factor driving breast cancer (BC) relapse and the high rates of cancer-related deaths. Aberrant levels of glycans are closely correlated with chemoresistance. The essential functions of glycans in chemoresistance is not systematically studied. In this study, an integrated strategy with a combination of transcriptomics, proteomics, glycomics and glycoproteomics was applied to explore the dysregulation of glycogenes, glycan structures and glycoproteins in chemoresistance of breast cancer cells. In paclitaxel (PTX) resistant MCF7 cells, 19 differentially expressed N-glycan-related proteins were identified, of which MGAT4A was the most significantly down-regulated, consistent with decrease in MGAT4A expression at mRNA level in PTX treated BC cells. Glycomic analysis consistently revealed suppressed levels of multi-antennary branching structures using MALDI-TOF/TOF-MS and lectin microarray. Several target glycoproteins bearing suppressed levels of multi-antennary branching structures were identified, and ERK signaling pathway was strongly suppressed in PTX resistant MCF7 cells. Our findings demonstrated the aberrant levels of multi-antennary branching structures and their target glycoproteins on PTX resistance. Systematically integrative multi-omic analysis is expected to facilitate the discovery of the aberrant glycosyltransferases, N-glycosylation and glycoproteins in tumor progression and chemoresistance. SIGNIFICANCE: An integrated strategy with a combination of transcriptomics, proteomics, glycomics and glycoproteomics is crucial to understand the association between glycans and chemoresistance in BC. In this multi-omic analysis, we identified unique glycan-related protein, glycan and glycoprotein signatures defining PTX chemoresistance in BC. This study might provide valuable information to understand molecular mechanisms underlying chemoresistance in BC.
Collapse
Affiliation(s)
- Lin Cao
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China
| | - Yue Zhou
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China; The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an 710069, PR China
| | - Shuai Lin
- Department of Oncology, The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zengqi Tan
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China
| | - Feng Guan
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
36
|
Aberrant Sialylation in Cancer: Biomarker and Potential Target for Therapeutic Intervention? Cancers (Basel) 2021; 13:cancers13092014. [PMID: 33921986 PMCID: PMC8122436 DOI: 10.3390/cancers13092014] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Sialylation is a post-translational modification that consists in the addition of sialic acid to growing glycan chains on glycoproteins and glycolipids. Aberrant sialylation is an established hallmark of several types of cancer, including breast, ovarian, pancreatic, prostate, colorectal and lung cancers, melanoma and hepatocellular carcinoma. Hypersialylation can be the effect of increased activity of sialyltransferases and results in an excess of negatively charged sialic acid on the surface of cancer cells. Sialic acid accumulation contributes to tumor progression by several paths, including stimulation of tumor invasion and migration, and enhancing immune evasion and tumor cell survival. In this review we explore the mechanisms by which sialyltransferases promote cancer progression. In addition, we provide insights into the possible use of sialyltransferases as biomarkers for cancer and summarize findings on the development of sialyltransferase inhibitors as potential anti-cancer treatments. Abstract Sialylation is an integral part of cellular function, governing many biological processes including cellular recognition, adhesion, molecular trafficking, signal transduction and endocytosis. Sialylation is controlled by the levels and the activities of sialyltransferases on glycoproteins and lipids. Altered gene expression of these enzymes in cancer yields to cancer-specific alterations of glycoprotein sialylation. Mounting evidence indicate that hypersialylation is closely associated with cancer progression and metastatic spread, and can be of prognostic significance in human cancer. Aberrant sialylation is not only a result of cancer, but also a driver of malignant phenotype, directly impacting key processes such as tumor cell dissociation and invasion, cell-cell and cell-matrix interactions, angiogenesis, resistance to apoptosis, and evasion of immune destruction. In this review we provide insights on the impact of sialylation in tumor progression, and outline the possible application of sialyltransferases as cancer biomarkers. We also summarize the most promising findings on the development of sialyltransferase inhibitors as potential anti-cancer treatments.
Collapse
|
37
|
Wang T, Sun Y, Xiong Z, Wu J, Ding X, Guo X, Shao Y. Association of ST6GAL1 and CYP19A1 polymorphisms in the 3'-UTR with astrocytoma risk and prognosis in a Chinese Han population. BMC Cancer 2021; 21:391. [PMID: 33836687 PMCID: PMC8034180 DOI: 10.1186/s12885-021-08110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background Astrocytoma is a common type of central nervous system tumor. In this study, we investigated the correlation between ST6GAL1 and CYP19A1 polymorphisms and the risk and prognosis of astrocytoma. Methods A total of 365 astrocytoma patients and 379 healthy controls were genotyped using the Agena MassARRAY system. The correlation between ST6GAL1 and CYP19A1 variants and astrocytoma risk was calculated using logistic regression. The survival rate of patients with astrocytoma was analyzed to evaluate prognosis. Results We found that the ST6GAL1-rs2239611 significantly decreased the risk of astrocytoma in the codominant model (p = 0.044) and dominant model (p = 0.049). In stratified analyses, CYP19A1-rs2255192 might be associated with a higher risk of astrocytoma among the low-grade subgroup under recessive (p = 0.034) and additive (p = 0.030) models. However, CYP19A1-rs4646 had a risk-decreasing effect on the high-grade subgroup in the codominant model (p = 0.044). The results of Cox regression analysis showed that the CYP19A1-rs2239611 and -rs1042757 polymorphisms were significantly correlated with the prognosis of astrocytoma. Conclusion Our results suggest that ST6GAL1 and CYP19A1 genes may be a potential biomarker of genetic susceptibility and prognosis to astrocytoma in the Chinese Han population. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08110-1.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Xiaoying Ding
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoye Guo
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuan Shao
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 YanTa West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
38
|
Perez M, Chakraborty A, Lau LS, Mohammed NBB, Dimitroff CJ. Melanoma-associated glycosyltransferase GCNT2 as an emerging biomarker and therapeutic target. Br J Dermatol 2021; 185:294-301. [PMID: 33660254 DOI: 10.1111/bjd.19891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2021] [Indexed: 12/17/2022]
Abstract
In metastatic melanoma, with a dismal survival rate and propensity for treatment resistance and recurrence, it is critical to establish biomarkers that better predict treatment response and disease severity. The melanoma glycome, composed of complex carbohydrates termed glycans, is an under-investigated area of research, although it is gaining momentum in the cancer biomarker and therapeutics field. Novel findings suggest that glycans play a major role in influencing melanoma progression and could be exploited for prognosticating metastatic activity and/or as therapeutic targets. In this review, we discuss the role of aberrant glycosylation, particularly the specialized function of β1,6 N-acetylglucosaminyltransferase 2 (GCNT2), in melanoma pathogenesis and summarize mechanisms of GCNT2 regulation to illuminate its potential as a predictive marker and therapeutic target.
Collapse
Affiliation(s)
- M Perez
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - A Chakraborty
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - L S Lau
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - N B B Mohammed
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - C J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
39
|
Britain CM, Bhalerao N, Silva AD, Chakraborty A, Buchsbaum DJ, Crowley MR, Crossman DK, Edwards YJK, Bellis SL. Glycosyltransferase ST6Gal-I promotes the epithelial to mesenchymal transition in pancreatic cancer cells. J Biol Chem 2021; 296:100034. [PMID: 33148698 PMCID: PMC7949065 DOI: 10.1074/jbc.ra120.014126] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/05/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
ST6Gal-I, an enzyme upregulated in numerous malignancies, adds α2-6-linked sialic acids to select membrane receptors, thereby modulating receptor signaling and cell phenotype. In this study, we investigated ST6Gal-I's role in epithelial to mesenchymal transition (EMT) using the Suit2 pancreatic cancer cell line, which has low endogenous ST6Gal-I and limited metastatic potential, along with two metastatic Suit2-derived subclones, S2-013 and S2-LM7AA, which have upregulated ST6Gal-I. RNA-Seq results suggested that the metastatic subclones had greater activation of EMT-related gene networks than parental Suit2 cells, and forced overexpression of ST6Gal-I in the Suit2 line was sufficient to activate EMT pathways. Accordingly, we evaluated expression of EMT markers and cell invasiveness (a key phenotypic feature of EMT) in Suit2 cells with or without ST6Gal-I overexpression, as well as S2-013 and S2-LM7AA cells with or without ST6Gal-I knockdown. Cells with high ST6Gal-I expression displayed enrichment in mesenchymal markers (N-cadherin, slug, snail, fibronectin) and cell invasiveness, relative to ST6Gal-I-low cells. Contrarily, epithelial markers (E-cadherin, occludin) were suppressed in ST6Gal-I-high cells. To gain mechanistic insight into ST6Gal-I's role in EMT, we examined the activity of epidermal growth factor receptor (EGFR), a known EMT driver. ST6Gal-I-high cells had greater α2-6 sialylation and activation of EGFR than ST6Gal-I-low cells. The EGFR inhibitor, erlotinib, neutralized ST6Gal-I-dependent differences in EGFR activation, mesenchymal marker expression, and invasiveness in Suit2 and S2-LM7AA, but not S2-013, lines. Collectively, these results advance our understanding of ST6Gal-I's tumor-promoting function by highlighting a role for ST6Gal-I in EMT, which may be mediated, at least in part, by α2-6-sialylated EGFR.
Collapse
Affiliation(s)
- Colleen M Britain
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nikita Bhalerao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Austin D Silva
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Asmi Chakraborty
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael R Crowley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yvonne J K Edwards
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Susan L Bellis
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
40
|
Fu CW, Tsai HE, Chen WS, Chang TT, Chen CL, Hsiao PW, Li WS. Sialyltransferase Inhibitors Suppress Breast Cancer Metastasis. J Med Chem 2020; 64:527-542. [PMID: 33371679 DOI: 10.1021/acs.jmedchem.0c01477] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report the synthesis and evaluation of a series of cell-permeable and N- versus O-selective sialyltransferase inhibitors. Inhibitor design entailed the functionalization of lithocholic acid at C(3) and at the cyclopentane ring side chain. Among the series, FCW34 and FCW66 were shown to inhibit MDA-MB-231 cell migration as effectively as ST3GALIII-gene knockdown did. FCW34 was shown to inhibit tumor growth, reduce angiogenesis, and delay cancer cell metastasis in animal models. Furthermore, FCW34 inhibited vessel development and suppressed angiogenic activity in transgenic zebrafish models. Our results provide clear evidence that FCW34-induced sialyltransferase inhibition reduces cancer cell metastasis by decreasing N-glycan sialylation, thus altering the regulation of talin/integrin/FAK/paxillin and integrin/NFκB signaling pathways.
Collapse
Affiliation(s)
- Chih-Wei Fu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Central University, Taoyuan City 320, Taiwan
| | - Han-En Tsai
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Sheng Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Central University, Taoyuan City 320, Taiwan
| | - Tzu-Ting Chang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Ling Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Shan Li
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.,Ph.D Program in Biotechnology Research and Development, Taipei Medical University, Taipei 110, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Chemistry, College of Science, Tamkang University, New Taipei City 251, Taiwan
| |
Collapse
|
41
|
Dorsett KA, Marciel MP, Hwang J, Ankenbauer KE, Bhalerao N, Bellis SL. Regulation of ST6GAL1 sialyltransferase expression in cancer cells. Glycobiology 2020; 31:530-539. [PMID: 33320246 DOI: 10.1093/glycob/cwaa110] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
The ST6GAL1 sialyltransferase, which adds α2-6 linked sialic acids to N-glycosylated proteins, is overexpressed in a wide range of human malignancies. Recent studies have established the importance of ST6GAL1 in promoting tumor cell behaviors such as invasion, resistance to cell stress and chemoresistance. Furthermore, ST6GAL1 activity has been implicated in imparting cancer stem cell characteristics. However, despite the burgeoning interest in the role of ST6GAL1 in the phenotypic features of tumor cells, insufficient attention has been paid to the molecular mechanisms responsible for ST6GAL1 upregulation during neoplastic transformation. Evidence suggests that these mechanisms are multifactorial, encompassing genetic, epigenetic, transcriptional and posttranslational regulation. The purpose of this review is to summarize current knowledge regarding the molecular events that drive enriched ST6GAL1 expression in cancer cells.
Collapse
Affiliation(s)
- Kaitlyn A Dorsett
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
42
|
Myojin Y, Kodama T, Maesaka K, Motooka D, Sato Y, Tanaka S, Abe Y, Ohkawa K, Mita E, Hayashi Y, Hikita H, Sakamori R, Tatsumi T, Taguchi A, Eguchi H, Takehara T. ST6GAL1 Is a Novel Serum Biomarker for Lenvatinib-Susceptible FGF19-Driven Hepatocellular Carcinoma. Clin Cancer Res 2020; 27:1150-1161. [PMID: 33288659 DOI: 10.1158/1078-0432.ccr-20-3382] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is characterized by high intertumor heterogeneity of genetic drivers. Two multitarget tyrosine kinase inhibitors (TKI), lenvatinib and sorafenib, are used as standard-of-care chemotherapeutics in patients with advanced HCC, but a stratification strategy has not been established because of a lack of efficacious biomarkers. Therefore, we sought biomarkers that indicate lenvatinib-susceptible HCC. EXPERIMENTAL DESIGN We performed genetic screening of HCC driver genes involved in TKI susceptibility using a novel HCC mouse model in which tumor diversity of genetic drivers was recapitulated. A biomarker candidate was evaluated in human HCC cell lines. Secreted proteins from HCC cells were then screened using mass spectrometry. Serum and tumor levels of the biomarker candidates were analyzed for their association and prediction of overall survival in patients with HCC. RESULTS We found that lenvatinib selectively eliminated FGF19-expressing tumors, whereas sorafenib eliminated MET- and NRAS-expressing tumors. FGF19 levels and lenvatinib susceptibility were correlated in HCC cell lines, and FGF19 inhibition eliminated lenvatinib susceptibility. Lenvatinib-resistant HCC cell lines, generated by long-term exposure to lenvatinib, showed FGF19 downregulation but were resensitized to lenvatinib by FGF19 reexpression. Thus, FGF19 is a tumor biomarker of lenvatinib-susceptible HCC. Proteome and secretome analyses identified ST6GAL1 as a tumor-derived secreted protein positively regulated by FGF19 in HCC cells. Serum ST6GAL1 levels were positively correlated with tumor FGF19 expression in patients with surgically resected HCC. Among patients with serum ST6GAL1-high HCC who underwent TKI therapy, lenvatinib therapy showed significantly better survival than sorafenib. CONCLUSIONS Serum ST6GAL may be a novel biomarker that identifies lenvatinib-susceptible FGF19-driven HCC.
Collapse
Affiliation(s)
- Yuta Myojin
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuki Maesaka
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yu Sato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Tanaka
- Department of Gastroenterology and Hepatology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yuichi Abe
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kazuyoshi Ohkawa
- Department of Gastroenterology and Hepatology, Osaka International Cancer Institute, Osaka, Japan
| | - Eiji Mita
- Department of Gastroenterology and Hepatology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan.,Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
43
|
Cisneros-Ramírez D, Martínez-Laguna Y, Martínez-Morales P, Aguilar-Lemarroy A, Jave-Suárez LF, Santos-López G, Reyes-Leyva J, Vallejo-Ruiz V. Glycogene expression profiles from a HaCaT cell line stably transfected with HPV16 E5 oncogene. Mol Med Rep 2020; 22:5444-5453. [PMID: 33174037 PMCID: PMC7647045 DOI: 10.3892/mmr.2020.11630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022] Open
Abstract
The altered expression of glycan antigens has been reported during cervix transformation, demonstrating increased mRNA levels of certain glycogenes. Human papillomavirus (HPV) is the aetiological agent of cervical cancer. High risk HPV E5 is considered an oncogene and has been implicated in cell transformation. E6 and E7 HPV oncoproteins modify the expression of certain glycogenes. The role of the E5 HPV protein in glycogene expression changes has not yet been reported. The aim of the present study was to determine the effects of HPV16 E5 oncoprotein on glycogene expression. For these, a microarray assay was performed using the HaCaT cell line and altered glycogenes were identified. The mRNA levels of certain glycogenes were determined via reverse transcription-quantitative PCR (RT-qPCR). Using in silico analysis, the present study identified that glycosylation pathways were altered by E5. Microarray analysis revealed alterations in certain glycogenes, including the upregulation of ST6GAL1, ST3GAL3, CHST2 and MANBA, and the downregulation of UGT2B15, GALNT11, NDST2 and UGT1A10. Increased mRNA levels were confirmed via RT-qPCR for sialyltransferases genes. Additionally, in silico analysis was performed to identify glycosylation networks altered in the presence of the E5 oncoprotein. The analysis revealed that E5 could modify glycan sialylation, the N-glycosylation pathway, keratan sulfate and glycosaminoglycan synthesis. To the best of our knowledge, the current study was the first to determine the role of the HPV16 E5 oncoprotein in glycogene expression changes. The results indicated that increased sialyltransferase mRNA levels reported in pre-malignant and malignant cervical tissues could be the result of E5 oncoprotein expression. The results provide a possible role of HPV infection on glycosylation changes reported during cervix transformation.
Collapse
Affiliation(s)
- Denisse Cisneros-Ramírez
- Laboratory of Molecular Biology, East Biomedical Research Center, Mexican Institute of Social Security, Metepec 74360, Mexico
| | - Ygnacio Martínez-Laguna
- Research Center of Microbiological Sciences, Institute of Sciences, Meritorious Autonomous University of Puebla, Puebla 72592, Mexico
| | - Patricia Martínez-Morales
- Consejo Nacional de Ciencia y Tecnología-Centro de Investigación Biomédica de Oriente, Metepec 74360, Mexico
| | - Adriana Aguilar-Lemarroy
- West Biomedical Research Center, Mexican Institute of Social Security, Guadalajara 44290, Mexico
| | - Luis Felipe Jave-Suárez
- West Biomedical Research Center, Mexican Institute of Social Security, Guadalajara 44290, Mexico
| | - Gerardo Santos-López
- Laboratory of Molecular Biology, East Biomedical Research Center, Mexican Institute of Social Security, Metepec 74360, Mexico
| | - Julio Reyes-Leyva
- Laboratory of Molecular Biology, East Biomedical Research Center, Mexican Institute of Social Security, Metepec 74360, Mexico
| | - Verónica Vallejo-Ruiz
- Laboratory of Molecular Biology, East Biomedical Research Center, Mexican Institute of Social Security, Metepec 74360, Mexico
| |
Collapse
|
44
|
Alexander KL, Serrano CA, Chakraborty A, Nearing M, Council LN, Riquelme A, Garrido M, Bellis SL, Smythies LE, Smith PD. Modulation of glycosyltransferase ST6Gal-I in gastric cancer-derived organoids disrupts homeostatic epithelial cell turnover. J Biol Chem 2020; 295:14153-14163. [PMID: 32763973 DOI: 10.1074/jbc.ra120.014887] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Programmed cell death promotes homeostatic cell turnover in the epithelium but is dysregulated in cancer. The glycosyltransferase ST6Gal-I is known to block homeostatic apoptosis through α2,6-linked sialylation of the death receptor TNFR1 in many cell types. However, its role has not been investigated in gastric epithelial cells or gastric tumorigenesis. We determined that human gastric antral epithelium rarely expressed ST6Gal-I, but the number of ST6Gal-I-expressing epithelial cells increased significantly with advancing premalignancy leading to cancer. The mRNA expression levels of ST6GAL-I and SOX9 in human gastric epithelial cells correlated positively with one another through the premalignancy cascade, indicating that increased epithelial cell expression of ST6Gal-I is associated with premalignant progression. To determine the functional impact of increased ST6Gal-I, we generated human gastric antral organoids from epithelial stem cells and differentiated epithelial monolayers from gastric organoids. Gastric epithelial stem cells strongly expressed ST6Gal-I, suggesting a novel biomarker of stemness. In contrast, organoid-derived epithelial monolayers expressed markedly reduced ST6Gal-I and underwent TNF-induced, caspase-mediated apoptosis, consistent with homeostasis. Conversely, epithelial monolayers generated from gastric cancer stem cells retained high levels of ST6Gal-I and resisted TNF-induced apoptosis, supporting prolonged survival. Protection from TNF-induced apoptosis depended on ST6Gal-I overexpression, because forced ST6Gal-I overexpression in normal gastric stem cell-differentiated monolayers inhibited TNF-induced apoptosis, and cleavage of α2,6-linked sialic acids from gastric cancer organoid-derived monolayers restored susceptibility to TNF-induced apoptosis. These findings implicate up-regulated ST6Gal-I expression in blocking homeostatic epithelial cell apoptosis in gastric cancer pathogenesis, suggesting a mechanism for prolonged epithelioid tumor cell survival.
Collapse
Affiliation(s)
- Katie L Alexander
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Carolina A Serrano
- Departments of Pediatric Gastroenterology and Nutrition, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Asmi Chakraborty
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marie Nearing
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Leona N Council
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arnoldo Riquelme
- Department of Gastroenterologys, Pontificia Universidad Catolica de Chile, Santiago, Chile.,Department Health Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Marcelo Garrido
- Department of Oncology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Susan L Bellis
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lesley E Smythies
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Phillip D Smith
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
45
|
Ahmed AA, Marchetti C, Ohnmacht SA, Neidle S. A G-quadruplex-binding compound shows potent activity in human gemcitabine-resistant pancreatic cancer cells. Sci Rep 2020; 10:12192. [PMID: 32699225 PMCID: PMC7376204 DOI: 10.1038/s41598-020-68944-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Gemcitabine is a drug of choice in the treatment of human pancreatic cancer. Chemo-resistance to this drug is common and has been attributed to a variety of distinct mechanisms, involving > 100 genes. A recently developed small-molecule G-quadruplex ligand, the trisubstituted naphthalene diimide compound CM03, has previously been shown to have equivalent potency to gemcitabine in the pancreatic cancer cell line MIA PaCa-2. We report here on cell lines of increased resistance to gemcitabine that have been generated from this line, with the most resistant having 1,000-fold reduced sensitivity to gemcitabine. These resistant lines retain nM sensitivity to CM03. The molecular basis for the retention of potency by this G-quadruplex ligand has been examined using whole transcriptome data analysis with RNA-seq. This has revealed that the pattern of pathways down regulated by CM03 in the parental MIA PaCa-2 cell line is largely unaffected in the gemcitabine-resistant line. The analysis has also shown that the expression patterns of numerous genes involved in gemcitabine sensitivity are down regulated in the resistant line upon CM03 treatment. These results are supportive of the concept that G-quadruplex small molecules such as CM03 have potential for clinical use in the treatment of gemcitabine-resistant human pancreatic cancer.
Collapse
Affiliation(s)
- Ahmed Abdullah Ahmed
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Chiara Marchetti
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Stephan A Ohnmacht
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
46
|
Zhang W, Yang Z, Gao X, Wu Q. Advances in the discovery of novel biomarkers for cancer: spotlight on protein N-glycosylation. Biomark Med 2020; 14:1031-1045. [PMID: 32940073 DOI: 10.2217/bmm-2020-0185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Progress on glycosylation and tumor markers has not been extensively reported. Glycosylation plays an important part in post-translational modification. Previous research on glycosylation-modified biomarkers has lagged behind due to insufficient understanding of glycosylation-related regulations. However, some new methods and ideas illustrated in recent research may provide new inspirations in the field. This article aims to review current advances in revealing relationship between tumors and abnormal N-glycosylation and discuss leading-edge applications of N-glycosylation in developing novel tumor biomarkers.
Collapse
Affiliation(s)
- Wenyao Zhang
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Zhiping Yang
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Xiaoliang Gao
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Qiong Wu
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
- Department of Clinical Nutrition, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| |
Collapse
|
47
|
Montgomery AP, Dobie C, Szabo R, Hallam L, Ranson M, Yu H, Skropeta D. Design, synthesis and evaluation of carbamate-linked uridyl-based inhibitors of human ST6Gal I. Bioorg Med Chem 2020; 28:115561. [PMID: 32616185 DOI: 10.1016/j.bmc.2020.115561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/14/2020] [Accepted: 05/16/2020] [Indexed: 12/22/2022]
Abstract
Sialic acid at the terminus of cell surface glycoconjugates is a critical element in cell-cell recognition, receptor binding and immune responses. Sialyltransferases (ST), the enzymes responsible for the biosynthesis of sialylated glycans are highly upregulated in cancer and the resulting hypersialylation of the tumour cell surface correlates strongly with tumour growth, metastasis and drug resistance. Inhibitors of human STs, in particular human ST6Gal I, are thus expected to be valuable chemical tools for the discovery of novel anticancer drugs. Herein, we report on the computationally-guided design and development of uridine-based inhibitors that replace the charged phosphodiester linker of known ST inhibitors with a neutral carbamate to improve pharmacokinetic properties and synthetic accessibility. A series of 24 carbamate-linked uridyl-based compounds were synthesised by coupling aryl and hetaryl α-hydroxyphosphonates with a 5'-amino-5'-deoxyuridine fragment. The inhibitory activities of the newly synthesised compounds against recombinant human ST6Gal I were determined using a luminescent microplate assay, and five promising inhibitors with Ki's ranging from 1 to 20 µM were identified. These results show that carbamate-linked uridyl-based compounds are a potential new class of readily accessible, non-cytotoxic ST inhibitors to be further explored.
Collapse
Affiliation(s)
- Andrew P Montgomery
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Christopher Dobie
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rémi Szabo
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Laura Hallam
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Marie Ranson
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Haibo Yu
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Danielle Skropeta
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
48
|
Chakraborty A, Dimitroff CJ. Cancer immunotherapy needs to learn how to stick to its guns. J Clin Invest 2020; 129:5089-5091. [PMID: 31710312 DOI: 10.1172/jci133415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cancer immunotherapy and its budding effectiveness at improving patient outcomes has revitalized our hope to fight cancer in a logical and safe manner. Immunotherapeutic approaches to reengage the immune system have largely focused on reversing immune checkpoint inhibitor pathways, which suppress the antitumor response. Although these approaches have generated much excitement, they still lack absolute success. Interestingly, newly described host-tumor sugar chains (glycosylations) and glycosylation-binding proteins (lectins) play key roles in evading the immune system to determine cancer progression. In this issue of the JCI, Nambiar et al. used patient head and neck tumors and a mouse model system to investigate the role of galactose-binding lectin 1 (Gal1) in immunotherapy resistance. The authors demonstrated that Gal1 can affect immune checkpoint inhibitor therapy by increasing immune checkpoint molecules and immunosuppressive signaling in the tumor. Notably, these results suggest that targeting a tumor's glycobiological state will improve treatment efficacy.
Collapse
|
49
|
Sliker BH, Goetz BT, Barnes R, King H, Maurer HC, Olive KP, Solheim JC. HLA-B influences integrin beta-1 expression and pancreatic cancer cell migration. Exp Cell Res 2020; 390:111960. [PMID: 32194036 PMCID: PMC7182497 DOI: 10.1016/j.yexcr.2020.111960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/22/2022]
Abstract
Human leukocyte antigen (HLA) class I molecules present antigenic peptides to cytotoxic T cells, causing lysis of malignant cells. Transplantation biology studies have implicated HLA class I molecules in cell migration, but there has been little evidence presented that they influence cancer cell migration, a contributing factor in metastasis. In this study, we examined the effect of HLA-B on pancreatic cancer cell migration. HLA-B siRNA transfection increased the migration of the S2-013 pancreatic cancer cells but, in contrast, reduced migration of the PANC-1 and MIA PaCa-2 pancreatic cancer cell lines. Integrin molecules have previously been implicated in the upregulation of pancreatic cancer cell migration, and knockdown of HLA-B in S2-013 cells heightened the expression of integrin beta 1 (ITGB1), but in the PANC-1 and MIA PaCa-2 cells HLA-B knockdown diminished ITGB1 expression. A transmembrane sequence in an S2-013 HLA-B heavy chain matches a corresponding sequence in HLA-B in the BxPC-3 pancreatic cancer cell line, and knockdown of BxPC-3 HLA-B mimics the effect of S2-013 HLA-B knockdown on migration. In total, our findings indicate that HLA-B influences the expression of ITGB1 in pancreatic cancer cells, with concurrent distinctions in transmembrane sequences and effects on the migration of the cells.
Collapse
Affiliation(s)
- Bailee H Sliker
- Eppley Institute for Research in Cancer and Allied Diseases and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin T Goetz
- Eppley Institute for Research in Cancer and Allied Diseases and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Raina Barnes
- Eppley Institute for Research in Cancer and Allied Diseases and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hannah King
- Eppley Institute for Research in Cancer and Allied Diseases and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - H Carlo Maurer
- Columbia University Department of Medicine and the Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Kenneth P Olive
- Columbia University Department of Medicine and the Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Joyce C Solheim
- Eppley Institute for Research in Cancer and Allied Diseases and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
50
|
Venturi G, Gomes Ferreira I, Pucci M, Ferracin M, Malagolini N, Chiricolo M, Dall'Olio F. Impact of sialyltransferase ST6GAL1 overexpression on different colon cancer cell types. Glycobiology 2020; 29:684-695. [PMID: 31317190 DOI: 10.1093/glycob/cwz053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer-associated glycan structures can be both tumor markers and engines of disease progression. The structure Siaα2,6Galβ1,4GlcNAc (Sia6LacNAc), synthesized by sialyltransferase ST6GAL1, is a cancer-associated glycan. Although ST6GAL1/Sia6LacNAc are often overexpressed in colorectal cancer (CRC), their biological and clinical significance remains unclear. To get insights into the clinical relevance of ST6GAL1 expression in CRC, we interrogated The Cancer Genome Atlas with mRNA expression data of hundreds of clinically characterized CRC and normal samples. We found an association of low ST6GAL1 expression with microsatellite instability (MSI), BRAF mutations and mucinous phenotype but not with stage, response to therapy and survival. To investigate the impact of ST6GAL1 expression in experimental systems, we analyzed the transcriptome and the phenotype of the CRC cell lines SW948 and SW48 after retroviral transduction with ST6GAL1 cDNA. The two cell lines display the two main pathways of CRC transformation: chromosomal instability and MSI, respectively. Constitutive ST6GAL1 expression induced much deeper transcriptomic changes in SW948 than in SW48 and affected different genes in the two cell lines. ST6GAL1 expression affected differentially the tyrosine phosphorylation induced by hepatocyte growth factor, the ability to grow in soft agar, to heal a scratch wound and to invade Matrigel in the two cell lines. These results indicate that the altered expression of a cancer-associated glycosyltransferase impacts the gene expression profile, as well as the phenotype, although in a cancer subtype-specific manner.
Collapse
Affiliation(s)
- Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| |
Collapse
|