1
|
Rao AK, Syed F, Lee TJ, Umanzor GU, Bodle J. Falling From Laughing: Laughing Gas-Induced Subacute Combined Degeneration From Nitrous Oxide. Cureus 2024; 16:e62138. [PMID: 38993425 PMCID: PMC11238261 DOI: 10.7759/cureus.62138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Laughing gas is becoming increasingly popular as a recreational drug of choice, particularly among young adults. Nitrous oxide, the toxic component of laughing gas, can cause neuronal injury when used in high doses. Through multiple mechanisms, nitrous oxide leads to B12 depletion and subsequent demyelination, particularly in the spinal cord. Here, we present the case of a 27-year-old female who presented with ataxia and was found to have laughing gas-induced subacute combined degeneration from nitrous oxide. After aggressive vitamin B12 repletion and laughing gas cessation for three months, the patient improved.
Collapse
Affiliation(s)
- Abhinav K Rao
- Internal Medicine, Trident Medical Center, Charleston, USA
| | - Fahim Syed
- Internal Medicine, Trident Medical Center, Charleston, USA
| | - Thomas J Lee
- Internal Medicine, Rutgers University New Jersey Medical School, Newark, USA
| | | | | |
Collapse
|
2
|
Yap S, Lamireau D, Feillet F, Ruiz Gomez A, Davison J, Tangeraas T, Giordano V. Real-World Experience of Carglumic Acid for Methylmalonic and Propionic Acidurias: An Interim Analysis of the Multicentre Observational PROTECT Study. Drugs R D 2024; 24:69-80. [PMID: 38198106 PMCID: PMC11035519 DOI: 10.1007/s40268-023-00449-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Methylmalonic aciduria (MMA) and propionic aciduria (PA) are organic acidurias characterised by the accumulation of toxic metabolites and hyperammonaemia related to secondary N-acetylglutamate deficiency. Carglumic acid, a synthetic analogue of N-acetylglutamate, decreases ammonia levels by restoring the functioning of the urea cycle. However, there are limited data available on the long-term safety and effectiveness of carglumic acid. Here, we present an interim analysis of the ongoing, long-term, prospective, observational PROTECT study (NCT04176523), which is investigating the long-term use of carglumic acid in children and adults with MMA and PA. METHODS Individuals with MMA or PA from France, Germany, Italy, Norway, Spain, Sweden and the UK who have received at least 1 year of carglumic acid treatment as part of their usual care are eligible for inclusion. The primary objective is the number and duration of acute metabolic decompensation events with hyperammonaemia (ammonia level >159 µmol/L during a patient's first month of life or >60 µmol/L thereafter, with an increased lactate level [> 1.8 mmol/L] and/or acidosis [pH < 7.35]) before and after treatment with carglumic acid. Peak plasma ammonia levels during the last decompensation event before and the first decompensation event after carglumic acid initiation, and the annualised rate of decompensation events before and after treatment initiation are also being assessed. Secondary objectives include the duration of hospital stay associated with decompensation events. Data are being collected at approximately 12 months' and 18 months' follow-up. RESULTS Of the patients currently enrolled in the PROTECT study, data from ten available patients with MMA (n = 4) and PA (n = 6) were analysed. The patients had received carglumic acid for 14-77 (mean 36) months. Carglumic acid reduced the median peak ammonia level of the total patient population from 250 µmol/L (range 97-2569) before treatment to 103 µmol/L (range 97-171) after treatment. The annualised rate of acute metabolic decompensations with hyperammonaemia was reduced by a median of - 41% (range - 100% to + 60%) after treatment with carglumic acid. Of the five patients who experienced a decompensation event before treatment and for whom a post-treatment rate could be calculated, the annualised decompensation event rate was lower after carglumic acid treatment in four patients. The mean duration of hospital inpatient stay during decompensation events was shorter after than before carglumic acid treatment initiation in four of five patients for whom length of stay could be calculated. CONCLUSIONS In this group of patients with MMA and PA, treatment with carglumic acid for at least 1 year reduced peak plasma ammonia levels in the total patient population and reduced the frequency of metabolic decompensation events, as well as the duration of inpatient stay due to metabolic decompensations in a subset of patients. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT04176523. Registered 25 November, 2019, retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04176523 .
Collapse
Affiliation(s)
- Sufin Yap
- Department of Inherited Metabolic Diseases, Sheffield Children's Hospital, Western Bank, Sheffield, S10 2TH, UK.
| | - Delphine Lamireau
- Hopital Des Enfants, CHU de Bordeaux-GH Pellegrin, Bordeaux Cedex, France
| | - Francois Feillet
- CHU de Nancy, Hopitaux de Brabois, Vandoeuvre-les-Nancy Cedex, France
| | | | | | - Trine Tangeraas
- Department of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
3
|
Tejero J, Lazure F, Gomes AP. Methylmalonic acid in aging and disease. Trends Endocrinol Metab 2024; 35:188-200. [PMID: 38030482 PMCID: PMC10939937 DOI: 10.1016/j.tem.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Metabolic byproducts have conventionally been disregarded as waste products without functions. In this opinion article, we bring to light the multifaceted role of methylmalonic acid (MMA), a byproduct of the propionate metabolism pathway mostly commonly known as a clinical biomarker of vitamin B12 deficiency. MMA is normally present at low levels in the body, but increased levels can come from different sources, such as vitamin B12 deficiency, genetic mutations in enzymes related to the propionate pathway, the gut microbiota, and aggressive cancers. Here, we describe the diverse metabolic and signaling functions of MMA and discuss the consequences of increased MMA levels, such as during the aging process, for several age-related human pathologies.
Collapse
Affiliation(s)
- Joanne Tejero
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Felicia Lazure
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
4
|
Lucienne M, Gerlini R, Rathkolb B, Calzada-Wack J, Forny P, Wueest S, Kaech A, Traversi F, Forny M, Bürer C, Aguilar-Pimentel A, Irmler M, Beckers J, Sauer S, Kölker S, Dewulf JP, Bommer GT, Hoces D, Gailus-Durner V, Fuchs H, Rozman J, Froese DS, Baumgartner MR, de Angelis MH. Insights into energy balance dysregulation from a mouse model of methylmalonic aciduria. Hum Mol Genet 2023; 32:2717-2734. [PMID: 37369025 PMCID: PMC10460489 DOI: 10.1093/hmg/ddad100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Inherited disorders of mitochondrial metabolism, including isolated methylmalonic aciduria, present unique challenges to energetic homeostasis by disrupting energy-producing pathways. To better understand global responses to energy shortage, we investigated a hemizygous mouse model of methylmalonyl-CoA mutase (Mmut)-type methylmalonic aciduria. We found Mmut mutant mice to have reduced appetite, energy expenditure and body mass compared with littermate controls, along with a relative reduction in lean mass but increase in fat mass. Brown adipose tissue showed a process of whitening, in line with lower body surface temperature and lesser ability to cope with cold challenge. Mutant mice had dysregulated plasma glucose, delayed glucose clearance and a lesser ability to regulate energy sources when switching from the fed to fasted state, while liver investigations indicated metabolite accumulation and altered expression of peroxisome proliferator-activated receptor and Fgf21-controlled pathways. Together, these shed light on the mechanisms and adaptations behind energy imbalance in methylmalonic aciduria and provide insight into metabolic responses to chronic energy shortage, which may have important implications for disease understanding and patient management.
Collapse
Affiliation(s)
- Marie Lucienne
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- radiz – Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Raffaele Gerlini
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Patrick Forny
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology and Children’s Research Center, University Children's Hospital, University of Zurich, 8032 Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Florian Traversi
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Merima Forny
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Céline Bürer
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sven Sauer
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Joseph P Dewulf
- Department of Biochemistry, de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
- Department of Laboratory Medicine, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Guido T Bommer
- Department of Biochemistry, de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
| | - Daniel Hoces
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Rozman
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - D Sean Froese
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- radiz – Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- radiz – Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
5
|
Costa RT, Santos MB, Alberto-Silva C, Carrettiero DC, Ribeiro CAJ. Methylmalonic Acid Impairs Cell Respiration and Glutamate Uptake in C6 Rat Glioma Cells: Implications for Methylmalonic Acidemia. Cell Mol Neurobiol 2023; 43:1163-1180. [PMID: 35674974 DOI: 10.1007/s10571-022-01236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
Methylmalonic acidemia is an organic acidemia caused by deficient activity of L-methylmalonyl-CoA mutase or its cofactor cyanocobalamin and it is biochemically characterized by an accumulation of methylmalonic acid (MMA) in tissue and body fluids of patients. The main clinical manifestations of this disease are neurological and observable symptoms during metabolic decompensation are encephalopathy, cerebral atrophy, coma, and seizures, which commonly appear in newborns. This study aimed to investigate the toxic effects of MMA in a glial cell line presenting astrocytic features. Astroglial C6 cells were exposed to MMA (0.1-10 mM) for 24 or 48 h and cell metabolic viability, glucose consumption, and oxygen consumption rate, as well as glutamate uptake and ATP content were analyzed. The possible preventive effects of bezafibrate were also evaluated. MMA significantly reduced cell metabolic viability after 48-h period and increased glucose consumption during the same period of incubation. Regarding the energy homeostasis, MMA significantly reduced respiratory parameters of cells after 48-h exposure, indicating that cell metabolism is compromised at resting and reserve capacity state, which might influence the cell capacity to meet energetic demands. Glutamate uptake and ATP content were also compromised after exposure to MMA, which can be influenced energy metabolism impairment, affecting the functionality of the astroglial cells. Our findings suggest that these effects could be involved in the pathophysiology of neurological dysfunction of this disease. Methylmalonic acid compromises mitochondrial functioning leading to reduced ATP production and reduces glutamate uptake by C6 astroglial cells.
Collapse
Affiliation(s)
- Renata T Costa
- Centro de Ciências Naturais E Humanas (CCNH), UFABC - Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| | - Marcella B Santos
- Centro de Ciências Naturais E Humanas (CCNH), UFABC - Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| | - Carlos Alberto-Silva
- Centro de Ciências Naturais E Humanas (CCNH), UFABC - Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| | - Daniel C Carrettiero
- Centro de Ciências Naturais E Humanas (CCNH), UFABC - Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| | - César A J Ribeiro
- Centro de Ciências Naturais E Humanas (CCNH), UFABC - Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo, SP, CEP 09606-045, Brazil.
| |
Collapse
|
6
|
Chen T, Gao Y, Zhang S, Wang Y, Sui C, Yang L. Methylmalonic acidemia: Neurodevelopment and neuroimaging. Front Neurosci 2023; 17:1110942. [PMID: 36777632 PMCID: PMC9909197 DOI: 10.3389/fnins.2023.1110942] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Methylmalonic acidemia (MMA) is a genetic disease of abnormal organic acid metabolism, which is one of the important factors affecting the survival rate and quality of life of newborns or infants. Early detection and diagnosis are particularly important. The diagnosis of MMA mainly depends on clinical symptoms, newborn screening, biochemical detection, gene sequencing and neuroimaging diagnosis. The accumulation of methylmalonic acid and other metabolites in the body of patients causes brain tissue damage, which can manifest as various degrees of intellectual disability and severe neurological dysfunction. Neuroimaging examination has important clinical significance in the diagnosis and prognosis of MMA. This review mainly reviews the etiology, pathogenesis, and nervous system development, especially the neuroimaging features of MMA.
Collapse
Affiliation(s)
- Tao Chen
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yian Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shengdong Zhang
- Department of Radiology, Shandong Yinan People’s Hospital, Linyi, Shandong, China
| | - Yuanyuan Wang
- Department of Radiology, Binzhou Medical University, Yantai, Shandong, China
| | - Chaofan Sui
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Linfeng Yang
- Department of Radiology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Linfeng Yang,
| |
Collapse
|
7
|
Mechanisms Involved in the Neurotoxicity and Abuse Liability of Nitrous Oxide: A Narrative Review. Int J Mol Sci 2022; 23:ijms232314747. [PMID: 36499072 PMCID: PMC9738214 DOI: 10.3390/ijms232314747] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The recreational use of nitrous oxide (N2O) has increased over the years. At the same time, more N2O intoxications are presented to hospitals. The incidental use of N2O is relatively harmless, but heavy, frequent and chronic use comes with considerable health risks. Most importantly, N2O can inactivate the co-factor cobalamin, which, in turn, leads to paresthesia's, partial paralysis and generalized demyelinating polyneuropathy. In some patients, these disorders are irreversible. Several metabolic cascades have been identified by which N2O can cause harmful effects. Because these effects mostly occur after prolonged use, it raises the question of whether N2O has addictive properties, explaining its prolonged and frequent use at high dose. Several lines of evidence for N2O's dependence liability can be found in the literature, but the underlying mechanism of action remains controversial. N2O interacts with the opioid system, but N2O also acts as an N-methyl-D-aspartate (NMDA) receptor antagonist, by which it can cause dopamine disinhibition. In this narrative review, we provide a detailed description of animal and human evidence for N2O-induced abuse/dependence and for N2O-induced neurotoxicity.
Collapse
|
8
|
Ramon C, Traversi F, Bürer C, Froese DS, Stelling J. Cellular and computational models reveal environmental and metabolic interactions in MMUT-type methylmalonic aciduria. J Inherit Metab Dis 2022; 46:421-435. [PMID: 36371683 DOI: 10.1002/jimd.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
Abstract
Methylmalonyl-coenzyme A (CoA) mutase (MMUT)-type methylmalonic aciduria is a rare inherited metabolic disease caused by the loss of function of the MMUT enzyme. Patients develop symptoms resembling those of primary mitochondrial disorders, but the underlying causes of mitochondrial dysfunction remain unclear. Here, we examined environmental and genetic interactions in MMUT deficiency using a combination of computational modeling and cellular models to decipher pathways interacting with MMUT. Immortalized fibroblast (hTERT BJ5ta) MMUT-KO (MUTKO) clones displayed a mild mitochondrial impairment in standard glucose-based medium, but they did not to show increased reliance on respiratory metabolism nor reduced growth or viability. Consistently, our modeling predicted MUTKO specific growth phenotypes only for lower extracellular glutamine concentrations. Indeed, two of three MMUT-deficient BJ5ta cell lines showed a reduced viability in glutamine-free medium. Further, growth on 183 different carbon and nitrogen substrates identified increased NADH (nicotinamide adenine dinucleotide) metabolism of BJ5ta and HEK293 MUTKO cells compared with controls on purine- and glutamine-based substrates. With this knowledge, our modeling predicted 13 reactions interacting with MMUT that potentiate an effect on growth, primarily those of secondary oxidation of propionyl-CoA, oxidative phosphorylation and oxygen diffusion. Of these, we validated 3-hydroxyisobutytyl-CoA hydrolase (HIBCH) in the secondary propionyl-CoA oxidation pathway. Altogether, these results suggest compensation for the loss of MMUT function by increasing anaplerosis through glutamine or by diverting flux away from MMUT through the secondary propionyl-CoA oxidation pathway, which may have therapeutic relevance.
Collapse
Affiliation(s)
- Charlotte Ramon
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Florian Traversi
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Céline Bürer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| |
Collapse
|
9
|
Wang X, Li W, Xiang M. Increased serum methylmalonic acid levels were associated with the presence of cardiovascular diseases. Front Cardiovasc Med 2022; 9:966543. [PMID: 36299874 PMCID: PMC9588910 DOI: 10.3389/fcvm.2022.966543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Functional vitamin B12 deficiency is common in cardiovascular diseases (CVDs), such as heart failure and myocardial infarction. Methylmalonic acid (MMA) is a specific and sensitive marker of vitamin B12 deficiency. However, there are scarce data in regard to the relationship between MMA and CVDs. Materials and methods In this cross-sectional study, we analyzed data of 5,313 adult participants of the National Health and Nutrition Examination Survey (NHANES) 2013-2014. Associations between MMA and other variables were assessed with linear regression models. Univariable and multivariable logistic regression models were employed to explore the association between MMA and CVDs. Results The weighted prevalence of CVDs was 8.8% in the general population of the USA. Higher MMA levels were found in participants with CVDs (p < 0.001). Linear regression models revealed positive associations between serum MMA level and age (p < 0.001), glycohemoglobin (p = 0.023), fasting glucose (p = 0.044), mean cell volume (p = 0.038), and hypertension (p = 0.003). In the multivariable logistic model adjusting for age, gender, ethnicity, smoking, hypertension, glycohemoglobin, body mass index (BMI), low-density lipoprotein-cholesterol (LDL-C), renal dysfunction and vitamin B12, serum MMA (adjusted odds ratio, 3.08; 95% confidence interval: 1.63-5.81, p = 0.002, per ln nmol/L increment) was associated with CVDs. Conclusion Our study demonstrated that elevated serum MMA levels were independently associated with the presence of CVDs and may be used to predict the occurrence of CVDs.
Collapse
|
10
|
Ge Y, Zadeh M, Mohamadzadeh M. Vitamin B12 Regulates the Transcriptional, Metabolic, and Epigenetic Programing in Human Ileal Epithelial Cells. Nutrients 2022; 14:nu14142825. [PMID: 35889782 PMCID: PMC9321803 DOI: 10.3390/nu14142825] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/22/2022] Open
Abstract
Vitamin B12 (VB12) is a micronutrient that is essential for DNA synthesis and cellular energy production. We recently demonstrated that VB12 oral supplementation coordinates ileal epithelial cells (iECs) and gut microbiota functions to resist pathogen colonization in mice, but it remains unclear whether VB12 directly modulates the cellular homeostasis of iECs derived from humans. Here, we integrated transcriptomic, metabolomic, and epigenomic analyses to identify VB12-dependent molecular and metabolic pathways in human iEC microtissue cultures. RNA sequencing (RNA-seq) revealed that VB12 notably activated genes involved in fatty acid metabolism and epithelial cell proliferation while suppressing inflammatory responses in human iECs. Untargeted metabolite profiling demonstrated that VB12 facilitated the biosynthesis of amino acids and methyl groups, particularly S-adenosylmethionine (SAM), and supported the function of the mitochondrial carnitine shuttle and TCA cycle. Further, genome-wide DNA methylation analysis illuminated a critical role of VB12 in sustaining cellular methylation programs, leading to differential CpG methylation of genes associated with intestinal barrier function and cell proliferation. Together, these findings suggest an essential involvement of VB12 in directing the fatty acid and mitochondrial metabolisms and reconfiguring the epigenome of human iECs to potentially support cellular oxygen utilization and cell proliferation.
Collapse
|
11
|
Ge Y, Zadeh M, Mohamadzadeh M. Vitamin B12 coordinates ileal epithelial cell and microbiota functions to resist Salmonella infection in mice. J Exp Med 2022; 219:e20220057. [PMID: 35674742 PMCID: PMC9184849 DOI: 10.1084/jem.20220057] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Deprivation of vitamin B12 (VB12) is linked to various diseases, but the underlying mechanisms in disease progression are poorly understood. Using multiomic approaches, we elucidated the responses of ileal epithelial cells (iECs) and gut microbiome to VB12 dietary restriction. Here, VB12 deficiency impaired the transcriptional and metabolic programming of iECs and reduced epithelial mitochondrial respiration and carnitine shuttling during intestinal Salmonella Typhimurium (STm) infection. Fecal microbial and untargeted metabolomic profiling identified marked changes related to VB12 deficiency, including reductions of metabolites potentially activating mitochondrial β-oxidation in iECs and short-chain fatty acids (SCFAs). Depletion of SCFA-producing microbes by streptomycin treatment decreased the VB12-dependent STm protection. Moreover, compromised mitochondrial function of iECs correlated with declined cell capability to utilize oxygen, leading to uncontrolled oxygen-dependent STm expansion in VB12-deficient mice. Our findings uncovered previously unrecognized mechanisms through which VB12 coordinates ileal epithelial mitochondrial homeostasis and gut microbiota to regulate epithelial oxygenation, resulting in the control of aerobic STm infection.
Collapse
Affiliation(s)
- Yong Ge
- Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL
| | - Mojgan Zadeh
- Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL
| | - Mansour Mohamadzadeh
- Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL
| |
Collapse
|
12
|
Lee N, Kim D. Toxic Metabolites and Inborn Errors of Amino Acid Metabolism: What One Informs about the Other. Metabolites 2022; 12:metabo12060527. [PMID: 35736461 PMCID: PMC9231173 DOI: 10.3390/metabo12060527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
In inborn errors of metabolism, such as amino acid breakdown disorders, loss of function mutations in metabolic enzymes within the catabolism pathway lead to an accumulation of the catabolic intermediate that is the substrate of the mutated enzyme. In patients of such disorders, dietarily restricting the amino acid(s) to prevent the formation of these catabolic intermediates has a therapeutic or even entirely preventative effect. This demonstrates that the pathology is due to a toxic accumulation of enzyme substrates rather than the loss of downstream products. Here, we provide an overview of amino acid metabolic disorders from the perspective of the ‘toxic metabolites’ themselves, including their mechanism of toxicity and whether they are involved in the pathology of other disease contexts as well. In the research literature, there is often evidence that such metabolites play a contributing role in multiple other nonhereditary (and more common) disease conditions, and these studies can provide important mechanistic insights into understanding the metabolite-induced pathology of the inborn disorder. Furthermore, therapeutic strategies developed for the inborn disorder may be applicable to these nonhereditary disease conditions, as they involve the same toxic metabolite. We provide an in-depth illustration of this cross-informing concept in two metabolic disorders, methylmalonic acidemia and hyperammonemia, where the pathological metabolites methylmalonic acid and ammonia are implicated in other disease contexts, such as aging, neurodegeneration, and cancer, and thus there are opportunities to apply mechanistic or therapeutic insights from one disease context towards the other. Additionally, we expand our scope to other metabolic disorders, such as homocystinuria and nonketotic hyperglycinemia, to propose how these concepts can be applied broadly across different inborn errors of metabolism and various nonhereditary disease conditions.
Collapse
|
13
|
The Regulation and Characterization of Mitochondrial-Derived Methylmalonic Acid in Mitochondrial Dysfunction and Oxidative Stress: From Basic Research to Clinical Practice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7043883. [PMID: 35656023 PMCID: PMC9155905 DOI: 10.1155/2022/7043883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 01/11/2023]
Abstract
Methylmalonic acid (MMA) can act as a diagnosis of hereditary methylmalonic acidemia and assess the status of vitamin B12. Moreover, as a new potential biomarker, it has been widely reported to be associated with the progression and prognosis of chronic diseases such as cardiovascular events, renal insufficiency, cognitive impairment, and cancer. MMA accumulation may cause oxidative stress and impair mitochondrial function, disrupt cellular energy metabolism, and trigger cell death. This review primarily focuses on the mechanisms and epidemiology or progression in the clinical study on MMA.
Collapse
|
14
|
Dobrowolski SF, Phua YL, Sudano C, Spridik K, Zinn PO, Wang Y, Bharathi S, Vockley J, Goetzman E. Comparative metabolomics in the Pah enu2 classical PKU mouse identifies cerebral energy pathway disruption and oxidative stress. Mol Genet Metab 2022; 136:38-45. [PMID: 35367142 PMCID: PMC9759961 DOI: 10.1016/j.ymgme.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/06/2023]
Abstract
Classical phenylketonuria (PKU, OMIM 261600) owes to hepatic deficiency of phenylalanine hydroxylase (PAH) that enzymatically converts phenylalanine (Phe) to tyrosine (Tyr). PKU neurologic phenotypes include impaired brain development, decreased myelination, early onset mental retardation, seizures, and late-onset features (neuropsychiatric, Parkinsonism). Phe over-representation is systemic; however, tissue response to hyperphenylalaninemia is not consistent. To characterize hyperphenylalaninemia tissue response, metabolomics was applied to Pahenu2 classical PKU mouse blood, liver, and brain. In blood and liver over-represented analytes were principally Phe, Phe catabolites, and Phe-related analytes (Phe-conjugates, Phe-containing dipeptides). In addition to Phe and Phe-related analytes, the metabolomic profile of Pahenu2 brain tissue evidenced oxidative stress responses and energy dysregulation. Glutathione and homocarnosine anti-oxidative responses are apparent Pahenu2 brain. Oxidative stress in Pahenu2 brain was further evidenced by increased reactive oxygen species. Pahenu2 brain presents an increased NADH/NAD ratio suggesting respiratory chain complex 1 dysfunction. Respirometry in Pahenu2 brain mitochondria functionally confirmed reduced respiratory chain activity with an attenuated response to pyruvate substrate. Glycolysis pathway analytes are over-represented in Pahenu2 brain tissue. PKU pathologies owe to liver metabolic deficiency; yet, Pahenu2 liver tissue shows neither energy disruption nor anti-oxidative response. Unique aspects of metabolomic homeostasis in PKU brain tissue along with increased reactive oxygen species and respiratory chain deficit provide insight to neurologic disease mechanisms. While some elements of assumed, long standing PKU neuropathology are enforced by metabolomic data (e.g. reduced tryptophan and serotonin representation), energy dysregulation and tissue oxidative stress expand mechanisms underlying neuropathology.
Collapse
Affiliation(s)
- Steven F Dobrowolski
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States of America.
| | - Yu Leng Phua
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States of America
| | - Cayla Sudano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States of America
| | - Kayla Spridik
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States of America
| | - Pascal O Zinn
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States of America
| | - Yudong Wang
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States of America
| | - Sivakama Bharathi
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States of America
| | - Jerry Vockley
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States of America
| | - Eric Goetzman
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States of America
| |
Collapse
|
15
|
Physical and Neurological Development of a Girl Born to a Mother with Methylmalonic Acidemia and Kidney Transplantation and Review of the Literature. CHILDREN 2021; 8:children8111013. [PMID: 34828726 PMCID: PMC8619094 DOI: 10.3390/children8111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022]
Abstract
Background: actual literature suggests that children of methylmalonic acidemia patients are mostly healthy, but data are only partial, especially regarding long-term outcome. Therefore, our aim was to evaluate the possible long-term neurological effects of fetal exposure to high levels of methylmalonic acid in a child of a renal transplant recipient. Methods: we retrospectively evaluated the clinical and neurological records of a girl whose mother is a kidney transplant recipient affected by methylmalonic acidemia. Subsequently, we compared our results with the ones already published. Results: the girl’s weight and stature were within the normal range in the first years of life but, starting from 4 years of age, she became progressively overweight. Regarding the neurodevelopment aspects, for the first time we performed a complete and seriated neuropsychological evaluation, highlighting a mild but significant weakness in the verbal domain, with a worsening trend at three-year revaluation. Conclusions: since children of MMA patients are exposed to methylmalonic acid, the efforts of the physicians caring for these children should be directed on careful evaluation of growth, prevention of obesity and regular neurological examination together with structured neuropsychological tests to achieve a better insight in possible complications of pregnancy in patients suffering from this condition.
Collapse
|
16
|
Targetable Pathways for Alleviating Mitochondrial Dysfunction in Neurodegeneration of Metabolic and Non-Metabolic Diseases. Int J Mol Sci 2021; 22:ijms222111444. [PMID: 34768878 PMCID: PMC8583882 DOI: 10.3390/ijms222111444] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
Many neurodegenerative and inherited metabolic diseases frequently compromise nervous system function, and mitochondrial dysfunction and oxidative stress have been implicated as key events leading to neurodegeneration. Mitochondria are essential for neuronal function; however, these organelles are major sources of endogenous reactive oxygen species and are vulnerable targets for oxidative stress-induced damage. The brain is very susceptible to oxidative damage due to its high metabolic demand and low antioxidant defence systems, therefore minimal imbalances in the redox state can result in an oxidative environment that favours tissue damage and activates neuroinflammatory processes. Mitochondrial-associated molecular pathways are often compromised in the pathophysiology of neurodegeneration, including the parkin/PINK1, Nrf2, PGC1α, and PPARγ pathways. Impairments to these signalling pathways consequently effect the removal of dysfunctional mitochondria, which has been suggested as contributing to the development of neurodegeneration. Mitochondrial dysfunction prevention has become an attractive therapeutic target, and there are several molecular pathways that can be pharmacologically targeted to remove damaged mitochondria by inducing mitochondrial biogenesis or mitophagy, as well as increasing the antioxidant capacity of the brain, in order to alleviate mitochondrial dysfunction and prevent the development and progression of neurodegeneration in these disorders. Compounds such as natural polyphenolic compounds, bioactive quinones, and Nrf2 activators have been reported in the literature as novel therapeutic candidates capable of targeting defective mitochondrial pathways in order to improve mitochondrial function and reduce the severity of neurodegeneration in these disorders.
Collapse
|
17
|
da Costa RT, dos Santos MB, Silva ICS, de Almeida RP, Teruel MS, Carrettiero DC, Ribeiro CAJ. Methylmalonic Acid Compromises Respiration and Reduces the Expression of Differentiation Markers of SH-SY5Y Human Neuroblastoma Cells. ACS Chem Neurosci 2021; 12:2608-2618. [PMID: 34191487 DOI: 10.1021/acschemneuro.1c00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Methylmalonic acidemia is a rare metabolic disorder caused by the deficient activity of l-methylmalonyl-CoA mutase or its cofactor 5-deoxyadenosylcobalamin and is characterized by accumulation of methylmalonic acid (MMA) and alternative metabolites. The brain is one of the most affected tissues and neurologic symptoms, characterized by seizures, mental retardation, psychomotor abnormalities, and coma, commonly appear in newborns. The molecular mechanisms of neuropathogenesis in methylmalonic acidemia are still poorly understood, specifically regarding the impairments in neuronal development, maturation, and differentiation. In this study, we investigated the effects of MMA in both undifferentiated and differentiated phenotypes of SH-SY5Y human neuroblastoma cells. We observed an increase in glucose consumption and reduction in respiratory parameters of both undifferentiated and differentiated cells after exposition to MMA, suggesting that differentiated cells are slightly more prone to perturbations in respiratory parameters by MMA than undifferentiated cells. Next, we performed qPCR of mature neuronal-specific gene markers and measured mitochondrial functioning to evaluate the role of MMA during differentiation. Our results showed that MMA impairs the respiratory parameters only at the late stage of differentiation and downregulates the transcriptional gene profile of mature neuronal markers neuron-specific enolase (ENO2) and synaptophysin (SYP). Altogether, our findings point out important changes observed during neuronal maturation and energetic stress vulnerability that can play a role in the neurological clinical symptoms at the newborn period and reveal important molecular mechanisms that could help the screening of targets to new approaches in the therapies of this disease.
Collapse
Affiliation(s)
- Renata T. da Costa
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Marcella B. dos Santos
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Izabel C. S. Silva
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Raquel P. de Almeida
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Marcela S. Teruel
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Daniel C. Carrettiero
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - César A. J. Ribeiro
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| |
Collapse
|
18
|
Dobrowolski SF, Phua YL, Sudano C, Spridik K, Zinn PO, Wang Y, Bharathi S, Vockley J, Goetzman E. Phenylalanine hydroxylase deficient phenylketonuria comparative metabolomics identifies energy pathway disruption and oxidative stress. Mol Genet Metab 2021:S1096-7192(21)00686-7. [PMID: 33846068 DOI: 10.1016/j.ymgme.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 11/15/2022]
Abstract
Classical phenylketonuria (PKU, OMIM 261600) owes to hepatic deficiency of phenylalanine hydroxylase (PAH) that enzymatically converts phenylalanine (Phe) to tyrosine (Tyr). PKU neurologic phenotypes include impaired brain development, decreased myelination, early onset mental retardation, seizures, and late-onset features (neuropsychiatric, Parkinsonism). PAH deficiency leads to systemic hyperphenylalaninemia; however, the impact of Phe varies between tissues. To characterize tissue response to hyperphenylalaninemia, metabolomics was applied to tissue from therapy noncompliant classical PKU patients (blood, liver), the Pahenu2 classical PKU mouse (blood, liver, brain) and the PAH deficient pig (blood, liver, brain, cerebrospinal fluid). In blood, liver, and CSF from both patients and animal models over-represented analytes were principally Phe, Phe catabolites, and Phe-related analytes (conjugates, Phe-containing dipeptides). In addition to Phe and Phe-related analytes, the metabolomic profile of PKU brain tissue (mouse, pig) evidenced oxidative stress responses and energy dysregulation. In Pahenu2 and PKU pig brain tissues, anti-oxidative response by glutathione and homocarnosine is apparent. Oxidative stress in Pahenu2 brain was further demonstrated by increased reactive oxygen species. In Pahenu2 and PKU pig brain, an increased NADH/NAD ratio suggests a respiratory chain dysfunction. Respirometry in PKU brain mitochondria (mouse, pig) functionally confirmed reduced respiratory chain activity. Glycolysis pathway analytes are over-represented in PKU brain tissue (mouse, pig). PKU pathologies owe to liver metabolic deficiency; yet, PKU liver tissue (mouse, pig, human) shows neither energy disruption nor anti-oxidative response. Unique aspects of metabolomic homeostasis in PKU brain tissue along with increased reactive oxygen species and respiratory chain deficit provide insight to neurologic disease mechanisms. While some elements of assumed, long standing PKU neuropathology are enforced by metabolomic data (e.g. reduced tryptophan and serotonin representation), energy dysregulation and tissue oxidative stress expand mechanisms underlying neuropathology.
Collapse
Affiliation(s)
- Steven F Dobrowolski
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States.
| | - Yu Leng Phua
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Cayla Sudano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Kayla Spridik
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Pascal O Zinn
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Yudong Wang
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Sivakama Bharathi
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Jerry Vockley
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Eric Goetzman
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| |
Collapse
|
19
|
Dimitrov B, Molema F, Williams M, Schmiesing J, Mühlhausen C, Baumgartner MR, Schumann A, Kölker S. Organic acidurias: Major gaps, new challenges, and a yet unfulfilled promise. J Inherit Metab Dis 2021; 44:9-21. [PMID: 32412122 DOI: 10.1002/jimd.12254] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Organic acidurias (OADs) comprise a biochemically defined group of inherited metabolic diseases. Increasing awareness, reliable diagnostic work-up, newborn screening programs for some OADs, optimized neonatal and intensive care, and the development of evidence-based recommendations have improved neonatal survival and short-term outcome of affected individuals. However, chronic progression of organ dysfunction in an aging patient population cannot be reliably prevented with traditional therapeutic measures. Evidence is increasing that disease progression might be best explained by mitochondrial dysfunction. Previous studies have demonstrated that some toxic metabolites target mitochondrial proteins inducing synergistic bioenergetic impairment. Although these potentially reversible mechanisms help to understand the development of acute metabolic decompensations during catabolic state, they currently cannot completely explain disease progression with age. Recent studies identified unbalanced autophagy as a novel mechanism in the renal pathology of methylmalonic aciduria, resulting in impaired quality control of organelles, mitochondrial aging and, subsequently, progressive organ dysfunction. In addition, the discovery of post-translational short-chain lysine acylation of histones and mitochondrial enzymes helps to understand how intracellular key metabolites modulate gene expression and enzyme function. While acylation is considered an important mechanism for metabolic adaptation, the chronic accumulation of potential substrates of short-chain lysine acylation in inherited metabolic diseases might exert the opposite effect, in the long run. Recently, changed glutarylation patterns of mitochondrial proteins have been demonstrated in glutaric aciduria type 1. These new insights might bridge the gap between natural history and pathophysiology in OADs, and their exploitation for the development of targeted therapies seems promising.
Collapse
Affiliation(s)
- Bianca Dimitrov
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jessica Schmiesing
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chris Mühlhausen
- Department of Pediatrics and Adolescent Medicine, University Medical Centre Göttingen, Göttingen, Germany
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Anke Schumann
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital of Freiburg, Freiburg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Wajner M, Vargas CR, Amaral AU. Disruption of mitochondrial functions and oxidative stress contribute to neurologic dysfunction in organic acidurias. Arch Biochem Biophys 2020; 696:108646. [PMID: 33098870 DOI: 10.1016/j.abb.2020.108646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
Organic acidurias (OADs) are inherited disorders of amino acid metabolism biochemically characterized by accumulation of short-chain carboxylic acids in tissues and biological fluids of the affected patients and clinically by predominant neurological manifestations. Some of these disorders are amenable to treatment, which significantly decreases mortality and morbidity, but it is still ineffective to prevent long-term neurologic and systemic complications. Although pathogenesis of OADs is still poorly established, recent human and animal data, such as lactic acidosis, mitochondrial morphological alterations, decreased activities of respiratory chain complexes and altered parameters of oxidative stress, found in tissues from patients and from genetic mice models with these diseases indicate that disruption of critical mitochondrial functions and oxidative stress play an important role in their pathophysiology. Furthermore, organic acids that accumulate in the most prevalent OADs were shown to compromise bioenergetics, by decreasing ATP synthesis, mitochondrial membrane potential, reducing equivalent content and calcium retention capacity, besides inducing mitochondrial swelling, reactive oxygen and nitrogen species generation and apoptosis. It is therefore presumed that secondary mitochondrial dysfunction and oxidative stress caused by major metabolites accumulating in OADs contribute to tissue damage in these pathologies.
Collapse
Affiliation(s)
- Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| |
Collapse
|
21
|
Proctor EC, Turton N, Boan EJ, Bennett E, Philips S, Heaton RA, Hargreaves IP. The Effect of Methylmalonic Acid Treatment on Human Neuronal Cell Coenzyme Q 10 Status and Mitochondrial Function. Int J Mol Sci 2020; 21:E9137. [PMID: 33266298 PMCID: PMC7730949 DOI: 10.3390/ijms21239137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
Methylmalonic acidemia is an inborn metabolic disease of propionate catabolism, biochemically characterized by accumulation of methylmalonic acid (MMA) to millimolar concentrations in tissues and body fluids. However, MMA's role in the pathophysiology of the disorder and its status as a "toxic intermediate" is unclear, despite evidence for its ability to compromise antioxidant defenses and induce mitochondrial dysfunction. Coenzyme Q10 (CoQ10) is a prominent electron carrier in the mitochondrial respiratory chain (MRC) and a lipid-soluble antioxidant which has been reported to be deficient in patient-derived fibroblasts and renal tissue from an animal model of the disease. However, at present, it is uncertain which factors are responsible for inducing this CoQ10 deficiency or the effect of this deficit in CoQ10 status on mitochondrial function. Therefore, in this study, we investigated the potential of MMA, the principal metabolite that accumulates in methylmalonic acidemia, to induce a cellular CoQ10 deficiency. In view of the severe neurological presentation of patients with this condition, human neuroblastoma SH-SY5Y cells were used as a neuronal cell model for this investigation. Following treatment with pathological concentrations of MMA (>0.5 mM), we found a significant (p = 0.0087) ~75% reduction in neuronal cell CoQ10 status together with a significant (p = 0.0099) decrease in MRC complex II-III activity at higher concentrations (>2 mM). The deficits in neuronal CoQ10 status and MRC complex II-III activity were associated with a loss of cell viability. However, no significant impairment of mitochondrial membrane potential (ΔΨm) was detectable. These findings indicate the potential of pathological concentrations of MMA to induce a neuronal cell CoQ10 deficiency with an associated loss of MRC complex II-III activity. However, in the absence of an impairment of ΔΨm, the contribution this potential deficit in cellular CoQ10 status makes towards the disease pathophysiology methylmalonic acidemia has yet to be fully elucidated.
Collapse
Affiliation(s)
- Emma C. Proctor
- Department of Biochemistry, University of Warwick, Coventry CV4 7AL, UK;
| | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (N.T.); (E.J.B.); (E.B.); (R.A.H.)
| | - Elle Jo Boan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (N.T.); (E.J.B.); (E.B.); (R.A.H.)
| | - Emily Bennett
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (N.T.); (E.J.B.); (E.B.); (R.A.H.)
| | - Suzannah Philips
- Department of Clinical Biochemistry, The Royal Liverpool University Hospital, Royal Liverpool and Broadgreen NHS Trust, Prescot Street, Liverpool L7 8XP, UK;
| | - Robert A. Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (N.T.); (E.J.B.); (E.B.); (R.A.H.)
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (N.T.); (E.J.B.); (E.B.); (R.A.H.)
| |
Collapse
|
22
|
Portela JL, Bianchini MC, Roos DH, de Ávila DS, Puntel RL. Caffeic acid and caffeine attenuate toxicity associated with malonic or methylmalonic acid exposure in Drosophila melanogaster. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:227-240. [DOI: 10.1007/s00210-020-01974-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
|
23
|
Chern T, Achilleos A, Tong X, Hsu CW, Wong L, Poché RA. Mouse models to study the pathophysiology of combined methylmalonic acidemia and homocystinuria, cblC type. Dev Biol 2020; 468:1-13. [PMID: 32941884 DOI: 10.1016/j.ydbio.2020.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Combined methylmalonic acidemia and homocystinuria, cblC type, is the most common inherited disorder of cobalamin metabolism and is characterized by severe fetal developmental defects primarily impacting the central nervous system, hematopoietic system, and heart. CblC was previously shown to be due to mutations in the MMACHC gene, which encodes a protein thought to function in intracellular cobalamin trafficking and biosynthesis of adenosylcobalamin (AdoCbl) and methylcobalamin (MeCbl). These coenzymes are required for the production of succinyl-CoA and methionine, respectively. However, it is currently unclear whether additional roles for MMACHC exist outside of cobalamin metabolism. Furthermore, due to a lack of sufficient animal models, the exact pathophysiology of cblC remains unknown. Here, we report the generation and characterization of two new mouse models to study the role of MMACHC in vivo. CRISPR/Cas9 genome editing was used to develop a Mmachc floxed allele (Mmachcflox/flox), which we validated as a conditional null. For a gain-of-function approach, we generated a transgenic mouse line that over-expresses functional Mmachc (Mmachc-OE+/tg) capable of rescuing Mmachc homozygous mutant lethality. Surprisingly, our data also suggest that these mice may exhibit a partially penetrant maternal-effect rescue, which might have implications for in utero therapeutic interventions to treat cblC. Both the Mmachcflox/flox and Mmachc-OE+/tg mouse models will be valuable resources for understanding the biological roles of MMACHC in a variety of tissue contexts and allow for deeper understanding of the pathophysiology of cblC.
Collapse
Affiliation(s)
- Tiffany Chern
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Annita Achilleos
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuefei Tong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leeyean Wong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Didiasova M, Banning A, Brennenstuhl H, Jung-Klawitter S, Cinquemani C, Opladen T, Tikkanen R. Succinic Semialdehyde Dehydrogenase Deficiency: An Update. Cells 2020; 9:cells9020477. [PMID: 32093054 PMCID: PMC7072817 DOI: 10.3390/cells9020477] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADH-D) is a genetic disorder that results from the aberrant metabolism of the neurotransmitter γ-amino butyric acid (GABA). The disease is caused by impaired activity of the mitochondrial enzyme succinic semialdehyde dehydrogenase. SSADH-D manifests as varying degrees of mental retardation, autism, ataxia, and epileptic seizures, but the clinical picture is highly heterogeneous. So far, there is no approved curative therapy for this disease. In this review, we briefly summarize the molecular genetics of SSADH-D, the past and ongoing clinical trials, and the emerging features of the molecular pathogenesis, including redox imbalance and mitochondrial dysfunction. The main aim of this review is to discuss the potential of further therapy approaches that have so far not been tested in SSADH-D, such as pharmacological chaperones, read-through drugs, and gene therapy. Special attention will also be paid to elucidating the role of patient advocacy organizations in facilitating research and in the communication between researchers and patients.
Collapse
Affiliation(s)
- Miroslava Didiasova
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (M.D.); (A.B.)
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (M.D.); (A.B.)
| | - Heiko Brennenstuhl
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (H.B.); (S.J.-K.); (T.O.)
| | - Sabine Jung-Klawitter
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (H.B.); (S.J.-K.); (T.O.)
| | | | - Thomas Opladen
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (H.B.); (S.J.-K.); (T.O.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (M.D.); (A.B.)
- Correspondence: ; Tel.: +49-641-9947-420
| |
Collapse
|
25
|
Pavlov CS, Damulin IV, Shulpekova YO, Andreev EA. Neurological disorders in vitamin B12 deficiency. TERAPEVT ARKH 2019; 91:122-129. [PMID: 31094486 DOI: 10.26442/00403660.2019.04.000116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review discusses thesteps of vitamin B12 metabolism and its role in maintaining of neurological functions. The term "vitamin B12 (cobalamin)" refers to several substances (cobalamins) of a very similar structure. Cobalamin enters the body with animal products. On the peripherу cobalamin circulates only in binding with proteins transcobalamin I and II (complex cobalamin-transcobalamin II is designated as "holotranscobalamin"). Holotranscobalamin is absorbed by different cells, whereas transcobalamin I-binded vitamin B12 - only by liver and kidneys. Two forms of cobalamin were identified as coenzymes of cellular reactions which are methylcobalamin (in cytoplasm) and hydroxyadenosylcobalamin (in mitochondria). The main causes of cobalamin deficiency are related to inadequate intake of animal products, autoimmune gastritis, pancreatic insufficiency, terminal ileum disease, syndrome of intestinal bacterial overgrowth. Relative deficiency may be seen in excessive binding of vitamin B12 to transcobalamin I. Cobalamin deficiency most significantly affects functions of blood, nervous system and inflammatory response. Anemia occurs in 13-15% of cases; macrocytosis is an early sign. The average size of neutrophils and monocytes is the most sensitive marker of megaloblastic hematopoiesis. The demands in vitamin B12 are particularly high in nervous tissue. Hypovitaminosis is accompanied by pathological lesions both in white and gray brain matter. Several types of neurological manifestations are described: subacute combined degeneration of spinal cord (funicular myelinosis), sensomotor polyneuropathy, optic nerve neuropathy, cognitive disorders. The whole range of neuropsychiatric disorders with vitamin B12 deficiency has not been studied well enough. Due to certain diagnostic difficulties they are often regarded as "cryptogenic", "reactive", "vascular» origin. Normal or decreased total plasma cobalamin level could not a reliable marker of vitamin deficiency. In difficult cases the content of holotranscobalamin, methylmalonic acid / homocysteine, and folate in the blood serum should be investigated besides carefully analysis of clinical manifestations.
Collapse
Affiliation(s)
- Ch S Pavlov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - I V Damulin
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Yu O Shulpekova
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - E A Andreev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
26
|
Manoli I, Sysol JR, Epping MW, Li L, Wang C, Sloan JL, Pass A, Gagné J, Ktena YP, Li L, Trivedi NS, Ouattara B, Zerfas PM, Hoffmann V, Abu-Asab M, Tsokos MG, Kleiner DE, Garone C, Cusmano-Ozog K, Enns GM, Vernon HJ, Andersson HC, Grunewald S, Elkahloun AG, Girard CL, Schnermann J, DiMauro S, Andres-Mateos E, Vandenberghe LH, Chandler RJ, Venditti CP. FGF21 underlies a hormetic response to metabolic stress in methylmalonic acidemia. JCI Insight 2018; 3:124351. [PMID: 30518688 DOI: 10.1172/jci.insight.124351] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Methylmalonic acidemia (MMA), an organic acidemia characterized by metabolic instability and multiorgan complications, is most frequently caused by mutations in methylmalonyl-CoA mutase (MUT). To define the metabolic adaptations in MMA in acute and chronic settings, we studied a mouse model generated by transgenic expression of Mut in the muscle. Mut-/-;TgINS-MCK-Mut mice accurately replicate the hepatorenal mitochondriopathy and growth failure seen in severely affected patients and were used to characterize the response to fasting. The hepatic transcriptome in MMA mice was characterized by the chronic activation of stress-related pathways and an aberrant fasting response when compared with controls. A key metabolic regulator, Fgf21, emerged as a significantly dysregulated transcript in mice and was subsequently studied in a large patient cohort. The concentration of plasma FGF21 in MMA patients correlated with disease subtype, growth indices, and markers of mitochondrial dysfunction but was not affected by renal disease. Restoration of liver Mut activity, by transgenesis and liver-directed gene therapy in mice or liver transplantation in patients, drastically reduced plasma FGF21 and was associated with improved outcomes. Our studies identify mitocellular hormesis as a hepatic adaptation to metabolic stress in MMA and define FGF21 as a highly predictive disease biomarker.
Collapse
Affiliation(s)
- Irini Manoli
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Justin R Sysol
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Madeline W Epping
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Lina Li
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Cindy Wang
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Jennifer L Sloan
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Alexandra Pass
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Jack Gagné
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Yiouli P Ktena
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Lingli Li
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Niraj S Trivedi
- Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Bazoumana Ouattara
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada.,Péléforo Gbon Coulibaly University, Korhogo, Ivory Coast
| | | | | | - Mones Abu-Asab
- Ultrastructural Pathology Section, Center for Cancer Research, NIH, Bethesda, Maryland, USA
| | - Maria G Tsokos
- Ultrastructural Pathology Section, Center for Cancer Research, NIH, Bethesda, Maryland, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Caterina Garone
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | - Gregory M Enns
- Division of Medical Genetics, Stanford University, Stanford, California, USA
| | - Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hans C Andersson
- Hayward Genetics Center, Tulane University Medical School, New Orleans, Louisiana, USA
| | - Stephanie Grunewald
- Department of Pediatric Metabolic Medicine, Great Ormond Street Hospital for Children Foundation Trust, Institute of Child Health, UCL, London, United Kingdom
| | - Abdel G Elkahloun
- Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Christiane L Girard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Jurgen Schnermann
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Randy J Chandler
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Charles P Venditti
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Tuncel AT, Boy N, Morath MA, Hörster F, Mütze U, Kölker S. Organic acidurias in adults: late complications and management. J Inherit Metab Dis 2018; 41:765-776. [PMID: 29335813 DOI: 10.1007/s10545-017-0135-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/05/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022]
Abstract
Organic acidurias (synonym, organic acid disorders, OADs) are a heterogenous group of inherited metabolic diseases delineated with the implementation of gas chromatography/mass spectrometry in metabolic laboratories starting in the 1960s and 1970s. Biochemically, OADs are characterized by accumulation of mono-, di- and/or tricarboxylic acids ("organic acids") and corresponding coenzyme A, carnitine and/or glycine esters, some of which are considered toxic at high concentrations. Clinically, disease onset is variable, however, affected individuals may already present during the newborn period with life-threatening acute metabolic crises and acute multi-organ failure. Tandem mass spectrometry-based newborn screening programmes, in particular for isovaleric aciduria and glutaric aciduria type 1, have significantly reduced diagnostic delay. Dietary treatment with low protein intake or reduced intake of the precursor amino acid(s), carnitine supplementation, cofactor treatment (in responsive patients) and nonadsorbable antibiotics is commonly used for maintenance treatment. Emergency treatment options with high carbohydrate/glucose intake, pharmacological and extracorporeal detoxification of accumulating toxic metabolites for intensified therapy during threatening episodes exist. Diagnostic and therapeutic measures have improved survival and overall outcome in individuals with OADs. However, it has become increasingly evident that the manifestation of late disease complications cannot be reliably predicted and prevented. Conventional metabolic treatment often fails to prevent irreversible organ dysfunction with increasing age, even if patients are considered to be "metabolically stable". This has challenged our understanding of OADs and has elicited the discussion on optimized therapy, including (early) organ transplantation, and long-term care.
Collapse
Affiliation(s)
- Ali Tunç Tuncel
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Nikolas Boy
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Marina A Morath
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Friederike Hörster
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Ulrike Mütze
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| |
Collapse
|
28
|
Remacle N, Forny P, Cudré-Cung HP, Gonzalez-Melo M, do Vale-Pereira S, Henry H, Teav T, Gallart-Ayala H, Braissant O, Baumgartner M, Ballhausen D. New in vitro model derived from brain-specific Mut-/- mice confirms cerebral ammonium accumulation in methylmalonic aciduria. Mol Genet Metab 2018; 124:266-277. [PMID: 29934063 DOI: 10.1016/j.ymgme.2018.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Methylmalonic aciduria (MMAuria) is an inborn error of metabolism leading to neurological deterioration. In this study, we used 3D organotypic brain cell cultures derived from embryos of a brain-specific Mut-/- (brain KO) mouse to investigate mechanisms leading to brain damage. We challenged our in vitro model by a catabolic stress (temperature shift). RESULTS Typical metabolites for MMAuria as well as a massive NH4+ increase were found in the media of brain KO cultures. We investigated different pathways of intracerebral NH4+ production and found increased expression of glutaminase 2 and diminished expression of GDH1 in Mut-/- aggregates. While all brain cell types appeared affected in their morphological development in Mut-/- aggregates, the most pronounced effects were observed on astrocytes showing swollen fibers and cell bodies. Inhibited axonal elongation and delayed myelination of oligodendrocytes were also noted. Most effects were even more pronounced after 48 h at 39 °C. Microglia activation and an increased apoptosis rate suggested degeneration of Mut-/- brain cells. NH4+ accumulation might be the trigger for all observed alterations. We also found a generalized increase of chemokine concentrations in Mut-/- culture media at an early developmental stage followed by a decrease at a later stage. CONCLUSION We proved for the first time that Mut-/- brain cells are indeed able to produce the characteristic metabolites of MMAuria. We confirmed significant NH4+ accumulation in culture media of Mut-/- aggregates, suggesting that intracellular NH4+ concentrations might even be higher, gave first clues on the mechanisms leading to NH4+ accumulation in Mut-/- brain cells, and showed the involvement of neuroinflammatory processes in the neuropathophysiology of MMAuria.
Collapse
Affiliation(s)
- Noémie Remacle
- Center of Molecular Diseases, Lausanne University Hospital, Lausanne 1011, Switzerland.
| | - Patrick Forny
- Division of Metabolism, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Hong-Phuc Cudré-Cung
- Center of Molecular Diseases, Lausanne University Hospital, Lausanne 1011, Switzerland.
| | - Mary Gonzalez-Melo
- Center of Molecular Diseases, Lausanne University Hospital, Lausanne 1011, Switzerland.
| | - Sónia do Vale-Pereira
- Center of Molecular Diseases, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Hugues Henry
- Service of Clinical Chemistry, Lausanne University Hospital, Lausanne 1011, Switzerland.
| | - Tony Teav
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1011, Switzerland.
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1011, Switzerland.
| | - Olivier Braissant
- Service of Clinical Chemistry, Lausanne University Hospital, Lausanne 1011, Switzerland.
| | - Matthias Baumgartner
- Division of Metabolism, University Children's Hospital Zurich, Zurich 8032, Switzerland.
| | - Diana Ballhausen
- Center of Molecular Diseases, Lausanne University Hospital, Lausanne 1011, Switzerland.
| |
Collapse
|
29
|
Liao Y, Hu R, Wang Z, Peng Q, Dong X, Zhang X, Zou H, Pu Q, Xue B, Wang L. Metabolomics Profiling of Serum and Urine in Three Beef Cattle Breeds Revealed Different Levels of Tolerance to Heat Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6926-6935. [PMID: 29905066 DOI: 10.1021/acs.jafc.8b01794] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study was to determine differences in the global metabolic profiles of serum and urine of Xuanhan yellow cattle, Simmental crossbred cattle (Simmental × Xuanhan yellow cattle), and cattle-yaks (Jersey × Maiwa yak) under heat stress (temperature-humidity index remained above 80 for 1 week). A total of 55 different metabolites associated with the three breeds were identified in the serum and urine samples by gas chromatography-mass spectrometry. The metabolic adaptations to heat stress are heterogeneous. Cattle-yaks mobilize a greater amount of body protein to release glucogenic amino acids to supply energy, whereas the tricarboxylic acid cycle is inhibited. Simmental crossbred cattle mobilize a greater amount of body fat to use free fatty acids as an energy source. In comparison with Simmental crossbred cattle and cattle-yaks, Xuanhan yellow cattle have higher glycolytic activity and possess a stronger antioxidant defense system and are, in conclusion, more adapted to hot and humid environments.
Collapse
Affiliation(s)
- Yupeng Liao
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Rui Hu
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Quanhui Peng
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Xianwen Dong
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Xiangfei Zhang
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Huawei Zou
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Qijian Pu
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Bai Xue
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| | - Lizhi Wang
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production , Sichuan Agricultural University , Chengdu , Sichuan 611130 , China
| |
Collapse
|
30
|
den Dekker HT, Jaddoe VWV, Reiss IK, de Jongste JC, Duijts L. Maternal folic acid use during pregnancy, methylenetetrahydrofolate reductase gene polymorphism, and child's lung function and asthma. Clin Exp Allergy 2017; 48:175-185. [PMID: 29117460 DOI: 10.1111/cea.13056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 09/18/2017] [Accepted: 10/14/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Folic acid supplement use during pregnancy might affect childhood respiratory health, potentially mediated by methylenetetrahydrofolate reductase polymorphism C677T (MTHFR-C677T) carriership. OBJECTIVES We examined the associations of maternal folic acid supplement use and folate, vitamin B12 and homocysteine concentrations during pregnancy with childhood lung function and asthma. METHODS This study was embedded in a population-based prospective cohort study among 5653 children. Folic acid supplement use was assessed by questionnaires. Folate, vitamin B12 and homocysteine plasma concentrations were measured in early pregnancy and at birth. At age 10 years, forced expiratory volume in 1 second (FEV1 ), forced vital capacity (FVC), FEV1 /FVC, forced expiratory flow between 25% and 75% (FEF25-75 ), at 75% of FVC (FEF75 ), and asthma were examined. RESULTS Maternal folic acid supplement use during pregnancy was associated with higher childhood FEV1 and FVC and with a lower FEV1 /FVC, compared with no folic acid supplement use. Among mothers carrying MTHFR-C677T variants, preconceptional start of folic acid supplement use was associated with lower FEV1 /FVC (-0.17 [-0.32, -0.02]) and FEF25-75 (-0.24 [-0.40, -0.07]). Among children carrying MTHFR-C677T wild-type, a higher vitamin B12 level at birth was associated with a lower FEV1 (-0.07 [-0.12, -0.01]) and FVC (-0.09 [-0.15, -0.04]). Folate and homocysteine concentrations were not consistently associated with lower childhood lung function or asthma. CONCLUSIONS Preconceptional start of maternal folic acid supplement use and higher vitamin B12 concentrations at birth might adversely affect childhood lung function depending on MTHFR-C677T carriership. The clinical implications need to be evaluated.
Collapse
Affiliation(s)
- H T den Dekker
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - V W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - I K Reiss
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J C de Jongste
- Department of Pediatrics, Division of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - L Duijts
- Department of Pediatrics, Division of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Stepien KM, Heaton R, Rankin S, Murphy A, Bentley J, Sexton D, Hargreaves IP. Evidence of Oxidative Stress and Secondary Mitochondrial Dysfunction in Metabolic and Non-Metabolic Disorders. J Clin Med 2017; 6:E71. [PMID: 28753922 PMCID: PMC5532579 DOI: 10.3390/jcm6070071] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial dysfunction and oxidative stress have been implicated in the pathogenesis of a number of diseases and conditions. Oxidative stress occurs once the antioxidant defenses of the body become overwhelmed and are no longer able to detoxify reactive oxygen species (ROS). The ROS can then go unchallenged and are able to cause oxidative damage to cellular lipids, DNA and proteins, which will eventually result in cellular and organ dysfunction. Although not always the primary cause of disease, mitochondrial dysfunction as a secondary consequence disease of pathophysiology can result in increased ROS generation together with an impairment in cellular energy status. Mitochondrial dysfunction may result from either free radical-induced oxidative damage or direct impairment by the toxic metabolites which accumulate in certain metabolic diseases. In view of the importance of cellular antioxidant status, a number of therapeutic strategies have been employed in disorders associated with oxidative stress with a view to neutralising the ROS and reactive nitrogen species implicated in disease pathophysiology. Although successful in some cases, these adjunct therapies have yet to be incorporated into the clinical management of patients. The purpose of this review is to highlight the emerging evidence of oxidative stress, secondary mitochondrial dysfunction and antioxidant treatment efficacy in metabolic and non-metabolic diseases in which there is a current interest in these parameters.
Collapse
Affiliation(s)
- Karolina M Stepien
- The Mark Holland Metabolic Unit Salford Royal NHS Foundation Trust Stott Lane, Salford M6 8HD, UK.
| | - Robert Heaton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK.
| | - Scott Rankin
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK.
| | - Alex Murphy
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK.
| | - James Bentley
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK.
| | - Darren Sexton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK.
| | - Iain P Hargreaves
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK.
| |
Collapse
|
32
|
Gabbi P, Ribeiro LR, Jessié Martins G, Cardoso AS, Haupental F, Rodrigues FS, Machado AK, Sperotto Brum J, Medeiros Frescura Duarte MM, Schetinger MRC, da Cruz IBM, Flávia Furian A, Oliveira MS, Dos Santos ARS, Royes LFF, Fighera MR, de Freitas ML. Methylmalonate Induces Inflammatory and Apoptotic Potential: A Link to Glial Activation and Neurological Dysfunction. J Neuropathol Exp Neurol 2017; 76:160-178. [PMID: 28395089 DOI: 10.1093/jnen/nlw121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methylmalonic acid (MMA) accumulates in tissues in methylmalonic acidemia, a heterogeneous group of inherited childhood diseases characterized by neurological dysfunction, oxidative stress and neuroinflammation; it is associated with degeneration of striatal neurons and cerebral cortical atrophy. It is presently unknown, however, whether transient exposure to MMA in the neonatal period is sufficient to trigger inflammatory and apoptotic processes that lead to brain structural damage. Here, newborn mice were given a single intracerebroventricular dose of MMA at 12 hours after birth. Maze testing of 21- and 40-day-old mice showed that MMA-injected animals exhibited deficit in the working memory test but not in the reference test. MMA-injected mice showed increased levels of the reactive oxygen species marker 2',7'-dichlorofluorescein diacetate, tumor necrosis factor, interleukin-1β, caspases 1, 3, and 8, and increased acetylcholinesterase activity in the cortex, hippocampus and striatum. This was associated with increased astrocyte and microglial immunoreactivity in all brain regions. These findings suggest that transient exposure to MMA may alter the redox state and cause neuroinflammatory/apoptotic processes and glial activation during critical periods of brain development. Similar processes may underlie brain dysfunction and cognitive impairment in patients with methylmalonic acidemia.
Collapse
Affiliation(s)
- Patricia Gabbi
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,Centro, de Departamento Neuropsiquiatria; de Ciências da Saúde, UFSM
| | - Leandro Rodrigo Ribeiro
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM
| | | | - Alexandra Seide Cardoso
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,Centro, de Departamento Neuropsiquiatria; de Ciências da Saúde, UFSM
| | - Fernanda Haupental
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,Centro, de Departamento Neuropsiquiatria; de Ciências da Saúde, UFSM
| | - Fernanda Silva Rodrigues
- Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,Centro, de Departamento Neuropsiquiatria; de Ciências da Saúde, UFSM.,de Programa Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica
| | - Alencar Kolinski Machado
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde
| | | | | | | | | | - Ana Flávia Furian
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde
| | - Mauro Schneider Oliveira
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde
| | - Adair Roberto Soares Dos Santos
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,de Programa Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica.,Universidade Federal de Santa Catarina, Centro, de Programa Pós-graduação em Neurociências, de Ciências Biológicas
| | - Luiz Fernando Freire Royes
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,de Programa Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica
| | - Michele Rechia Fighera
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,Centro, de Departamento Neuropsiquiatria; de Ciências da Saúde, UFSM.,de Programa Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica
| | | |
Collapse
|
33
|
Enns GM, Cowan TM. Glutathione as a Redox Biomarker in Mitochondrial Disease-Implications for Therapy. J Clin Med 2017; 6:jcm6050050. [PMID: 28467362 PMCID: PMC5447941 DOI: 10.3390/jcm6050050] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 01/01/2023] Open
Abstract
Technical advances in the ability to measure mitochondrial dysfunction are providing new insights into mitochondrial disease pathogenesis, along with new tools to objectively evaluate the clinical status of mitochondrial disease patients. Glutathione (l-ϒ-glutamyl-l-cysteinylglycine) is the most abundant intracellular thiol, and the intracellular redox state, as reflected by levels of oxidized (GSSG) and reduced (GSH) glutathione, as well as the GSH/GSSG ratio, is considered to be an important indication of cellular health. The ability to quantify mitochondrial dysfunction in an affected patient will not only help with routine care, but also improve rational clinical trial design aimed at developing new therapies. Indeed, because multiple disorders have been associated with either primary or secondary deficiency of the mitochondrial electron transport chain and redox imbalance, developing mitochondrial therapies that have the potential to improve the intracellular glutathione status has been a focus of several clinical trials over the past few years. This review will also discuss potential therapies to increase intracellular glutathione with a focus on EPI-743 (α-tocotrienol quinone), a compound that appears to have the ability to modulate the activity of oxidoreductases, in particular NAD(P)H:quinone oxidoreductase 1.
Collapse
Affiliation(s)
- Gregory M Enns
- Departments of Pediatrics and Pathology, Stanford University, 300 Pasteur Drive, H-315, Stanford, CA 94005-5208, USA.
| | - Tina M Cowan
- Departments of Pediatrics and Pathology, Stanford University, 300 Pasteur Drive, H-315, Stanford, CA 94005-5208, USA.
| |
Collapse
|
34
|
Melling N, Rashed M, Schroeder C, Hube-Magg C, Kluth M, Lang D, Simon R, Möller-Koop C, Steurer S, Sauter G, Jacobsen F, Büscheck F, Wittmer C, Clauditz T, Krech T, Tsourlakis MC, Minner S, Huland H, Graefen M, Budäus L, Thederan I, Salomon G, Schlomm T, Wilczak W. High-Level γ-Glutamyl-Hydrolase (GGH) Expression is Linked to Poor Prognosis in ERG Negative Prostate Cancer. Int J Mol Sci 2017; 18:ijms18020286. [PMID: 28146062 PMCID: PMC5343822 DOI: 10.3390/ijms18020286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
γ-glutamyl-hydrolase (GGH) is a ubiquitously-expressed enzyme that regulates intracellular folate metabolism for cell proliferation, DNA synthesis, and repair. Employing GGH immunohistochemistry on a tissue microarray with 12,427 prostate cancers, we found that GGH expression was negative to low in normal prostate epithelium, whereas 88.3% of our 10,562 interpretable cancers showed GGH expression. GGH staining was considered as low intensity in 49.6% and as high intensity in 38.6% of cancers. High GGH expression was linked to the TMPRSS2:ERG-fusion positive subset of cancers (p < 0.0001), advanced pathological tumor stage, and high Gleason grade (p < 0.0001 each). Further analysis revealed that these associations were merely driven by the subset of ERG-negative cancers, High GGH expression was weakly linked to early biochemical recurrence in ERG negative cancers (p < 0.0001) and independent from established histo-pathological parameters. Moreover, GGH expression was linked to features of genetic instability, including presence of recurrent deletions at 3p, 5q, 6q, and 10q (PTEN, p ≤ 0.01 each), as well as to accelerated cell proliferation as measured by Ki67 immunohistochemistry (p < 0.0001). In conclusion, the results of our study identify GGH as an ERG subtype specific molecular marker with modest prognostic relevance, which may have clinical relevance if analyzed in combination with other molecular markers.
Collapse
Affiliation(s)
- Nathaniel Melling
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Masoud Rashed
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Cornelia Schroeder
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Dagmar Lang
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | | | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Lars Budäus
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Imke Thederan
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Georg Salomon
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
- Department of Urology, Section for translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| |
Collapse
|
35
|
Abstract
The three essential branched-chain amino acids (BCAAs), leucine, isoleucine and valine, share the first enzymatic steps in their metabolic pathways, including a reversible transamination followed by an irreversible oxidative decarboxylation to coenzyme-A derivatives. The respective oxidative pathways subsequently diverge and at the final steps yield acetyl- and/or propionyl-CoA that enter the Krebs cycle. Many disorders in these pathways are diagnosed through expanded newborn screening by tandem mass spectrometry. Maple syrup urine disease (MSUD) is the only disorder of the group that is associated with elevated body fluid levels of the BCAAs. Due to the irreversible oxidative decarboxylation step distal enzymatic blocks in the pathways do not result in the accumulation of amino acids, but rather to CoA-activated small carboxylic acids identified by gas chromatography mass spectrometry analysis of urine and are therefore classified as organic acidurias. Disorders in these pathways can present with a neonatal onset severe-, or chronic intermittent- or progressive forms. Metabolic instability and increased morbidity and mortality are shared between inborn errors in the BCAA pathways, while treatment options remain limited, comprised mainly of dietary management and in some cases solid organ transplantation.
Collapse
Affiliation(s)
- I Manoli
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - C P Venditti
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
36
|
Villani GRD, Gallo G, Scolamiero E, Salvatore F, Ruoppolo M. “Classical organic acidurias”: diagnosis and pathogenesis. Clin Exp Med 2016; 17:305-323. [DOI: 10.1007/s10238-016-0435-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
|
37
|
Cudré-Cung HP, Zavadakova P, do Vale-Pereira S, Remacle N, Henry H, Ivanisevic J, Tavel D, Braissant O, Ballhausen D. Ammonium accumulation is a primary effect of 2-methylcitrate exposure in an in vitro model for brain damage in methylmalonic aciduria. Mol Genet Metab 2016; 119:57-67. [PMID: 27599447 DOI: 10.1016/j.ymgme.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 01/09/2023]
Abstract
Using 3D organotypic rat brain cell cultures in aggregates we recently identified 2-methylcitrate (2-MCA) as the main toxic metabolite for developing brain cells in methylmalonic aciduria. Exposure to 2-MCA triggered morphological changes and apoptosis of brain cells. This was accompanied by increased ammonium and decreased glutamine levels. However, the sequence and causal relationship between these phenomena remained unclear. To understand the sequence and time course of pathogenic events, we exposed 3D rat brain cell aggregates to different concentrations of 2-MCA (0.1, 0.33 and 1.0mM) from day in vitro (DIV) 11 to 14. Aggregates were harvested at different time points from DIV 12 to 19. We compared the effects of a single dose of 1mM 2-MCA administered on DIV 11 to the effects of repeated doses of 1mM 2-MCA. Pan-caspase inhibitors Z-VAD FMK or Q-VD-OPh were used to block apoptosis. Ammonium accumulation in the culture medium started within few hours after the first 2-MCA exposure. Morphological changes of the developing brain cells were already visible after 17h. The highest rate of cleaved caspase-3 was observed after 72h. A dose-response relationship was observed for all effects. Surprisingly, a single dose of 1mM 2-MCA was sufficient to induce all of the biochemical and morphological changes in this model. 2-MCA-induced ammonium accumulation and morphological changes were not prevented by concomitant treatment of the cultures with pan-caspase inhibitors Z-VAD FMK or Q-VD-OPh: ammonium increased rapidly after a single 1mM 2-MCA administration even after apoptosis blockade. We conclude that following exposure to 2-MCA, ammonium production in brain cell cultures is an early phenomenon, preceding cell degeneration and apoptosis, and may actually be the cause of the other changes observed. The fact that a single dose of 1mM 2-MCA is sufficient to induce deleterious effects over several days highlights the potential damaging effects of even short-lasting metabolic decompensations in children affected by methylmalonic aciduria.
Collapse
Affiliation(s)
| | - Petra Zavadakova
- Center of Molecular Diseases, Lausanne University Hospital, Switzerland
| | | | - Noémie Remacle
- Center of Molecular Diseases, Lausanne University Hospital, Switzerland
| | - Hugues Henry
- Biomedicine, Innovation & Development, Lausanne University Hospital, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Research Platform, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Denise Tavel
- Department of Physiology, Lausanne University, Switzerland
| | | | - Diana Ballhausen
- Center of Molecular Diseases, Lausanne University Hospital, Switzerland.
| |
Collapse
|
38
|
Forny P, Schumann A, Mustedanagic M, Mathis D, Wulf MA, Nägele N, Langhans CD, Zhakupova A, Heeren J, Scheja L, Fingerhut R, Peters HL, Hornemann T, Thony B, Kölker S, Burda P, Froese DS, Devuyst O, Baumgartner MR. Novel Mouse Models of Methylmalonic Aciduria Recapitulate Phenotypic Traits with a Genetic Dosage Effect. J Biol Chem 2016; 291:20563-73. [PMID: 27519416 DOI: 10.1074/jbc.m116.747717] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 12/30/2022] Open
Abstract
Methylmalonic aciduria (MMAuria), caused by deficiency of methylmalonyl-CoA mutase (MUT), usually presents in the newborn period with failure to thrive and metabolic crisis leading to coma or even death. Survivors remain at risk of metabolic decompensations and severe long term complications, notably renal failure and neurological impairment. We generated clinically relevant mouse models of MMAuria using a constitutive Mut knock-in (KI) allele based on the p.Met700Lys patient mutation, used homozygously (KI/KI) or combined with a knockout allele (KO/KI), to study biochemical and clinical MMAuria disease aspects. Transgenic Mut(ki/ki) and Mut(ko/ki) mice survive post-weaning, show failure to thrive, and show increased methylmalonic acid, propionylcarnitine, odd chain fatty acids, and sphingoid bases, a new potential biomarker of MMAuria. Consistent with genetic dosage, Mut(ko/ki) mice have lower Mut activity, are smaller, and show higher metabolite levels than Mut(ki/ki) mice. Further, Mut(ko/ki) mice exhibit manifestations of kidney and brain damage, including increased plasma urea, impaired diuresis, elevated biomarkers, and changes in brain weight. On a high protein diet, mutant mice display disease exacerbation, including elevated blood ammonia, and catastrophic weight loss, which, in Mut(ki/ki) mice, is rescued by hydroxocobalamin treatment. This study expands knowledge of MMAuria, introduces the discovery of new biomarkers, and constitutes the first in vivo proof of principle of cobalamin treatment in mut-type MMAuria.
Collapse
Affiliation(s)
- Patrick Forny
- From the Division of Metabolism, the Children's Research Center, the radiz-Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006 Zurich, Switzerland, the Zurich Center for Integrative Human Physiology
| | - Anke Schumann
- From the Division of Metabolism, the Children's Research Center, the radiz-Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006 Zurich, Switzerland, the Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| | | | - Déborah Mathis
- the Division of Clinical Chemistry and Biochemistry, and
| | | | - Nadine Nägele
- the Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Claus-Dieter Langhans
- the Division of Child Neurology and Inherited Metabolic Diseases, University Children's Hospital, 69120 Heidelberg, Germany
| | - Assem Zhakupova
- Institute of Clinical Chemistry, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Joerg Heeren
- the Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany, and
| | - Ludger Scheja
- the Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany, and
| | - Ralph Fingerhut
- the Children's Research Center, the Swiss Newborn Screening Laboratory, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Heidi L Peters
- the Murdoch Children's Research Institute, Metabolic Research, Parkville, Victoria 3052, Australia
| | - Thorsten Hornemann
- the radiz-Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006 Zurich, Switzerland, Institute of Clinical Chemistry, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Beat Thony
- From the Division of Metabolism, the Children's Research Center
| | - Stefan Kölker
- the Division of Child Neurology and Inherited Metabolic Diseases, University Children's Hospital, 69120 Heidelberg, Germany
| | - Patricie Burda
- From the Division of Metabolism, the Children's Research Center
| | - D Sean Froese
- From the Division of Metabolism, the Children's Research Center, the radiz-Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006 Zurich, Switzerland
| | - Olivier Devuyst
- the radiz-Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006 Zurich, Switzerland, the Zurich Center for Integrative Human Physiology, the Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Matthias R Baumgartner
- From the Division of Metabolism, the Children's Research Center, the radiz-Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006 Zurich, Switzerland, the Zurich Center for Integrative Human Physiology,
| |
Collapse
|
39
|
Amaral AU, Cecatto C, Castilho RF, Wajner M. 2-Methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria. J Neurochem 2016; 137:62-75. [PMID: 26800654 DOI: 10.1111/jnc.13544] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/08/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023]
Abstract
Accumulation of 2-methylcitric acid (2MCA) is observed in methylmalonic and propionic acidemias, which are clinically characterized by severe neurological symptoms. The exact pathogenetic mechanisms of brain abnormalities in these diseases are poorly established and very little has been reported on the role of 2MCA. In the present work we found that 2MCA markedly inhibited ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate, with a less significant inhibition in pyruvate plus malate respiring mitochondria. However, no alterations occurred when α-ketoglutarate or succinate was used as respiratory substrates, suggesting a defect on glutamate oxidative metabolism. It was also observed that 2MCA decreased ATP formation in glutamate plus malate or pyruvate plus malate-supported mitochondria. Furthermore, 2MCA inhibited glutamate dehydrogenase activity at concentrations as low as 0.5 mM. Kinetic studies revealed that this inhibitory effect was competitive in relation to glutamate. In contrast, assays of osmotic swelling in non-respiring mitochondria suggested that 2MCA did not significantly impair mitochondrial glutamate transport. Finally, 2MCA provoked a significant decrease in mitochondrial membrane potential and induced swelling in Ca(2+)-loaded mitochondria supported by different substrates. These effects were totally prevented by cyclosporine A plus ADP or ruthenium red, indicating induction of mitochondrial permeability transition. Taken together, our data strongly indicate that 2MCA behaves as a potent inhibitor of glutamate oxidation by inhibiting glutamate dehydrogenase activity and as a permeability transition inducer, disturbing mitochondrial energy homeostasis. We presume that 2MCA-induced mitochondrial deleterious effects may contribute to the pathogenesis of brain damage in patients affected by methylmalonic and propionic acidemias. We propose that brain glutamate oxidation is disturbed by 2-methylcitric acid (2MCA), which accumulates in tissues from patients with propionic and methylmalonic acidemias because of a competitive inhibition of glutamate dehydrogenase (GDH) activity. 2MCA also induced mitochondrial permeability transition (PT) and decreased ATP generation in brain mitochondria. We believe that these pathomechanisms may be involved in the neurological dysfunction of these diseases.
Collapse
Affiliation(s)
- Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane Cecatto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roger Frigério Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Porto Alegre, RS, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
40
|
Siswanto O, Smeall K, Watson T, Donnelly-Vanderloo M, O'Connor C, Foley N, Madill J. Examining the Association between Vitamin B12 Deficiency and Dementia in High-Risk Hospitalized Patients. J Nutr Health Aging 2015; 19:1003-8. [PMID: 26624211 DOI: 10.1007/s12603-015-0660-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To explore the association between vitamin B12 deficiency and dementia in patients at high risk for vitamin B12 deficiency. DESIGN Chart review. SETTING Emergency, critical care/ trauma, neurology, medicine, and rehabilitation units of two hospitals in Southwestern Ontario, Canada. PARTICIPANTS Adult patients (n = 666) admitted from 2010 to 2012. Data collection included: reason for admission, gender, age, clinical signs and symptoms of B12 deficiency, serum B12 concentration, and B12 supplementation. Patients with dementia were identified based on their medication profile and medical history. Vitamin B12 deficiency (pmol/L) was defined as serum B12 concentration <148; marginal deficiency: ≥148-220 and adequate >220. Comparisons between B12-deficient patients with and without dementia were examined using parametric and non-parametric tests. RESULTS Serum B12 values were available for 60% (399/666) of the patients, of whom 4% (16/399) were B12-deficient and 14% (57/399) were marginally deficient. Patients with dementia were not more likely to be B12-deficient or marginally deficient [21% (26/121)] compared to those with no dementia [17% (47/278), p=0.27)]. Based on documentation, 34% (25/73) of the B12-deficient and marginally-deficient patients did not receive B12 supplementation, of whom 40% (10/25) had dementia. CONCLUSION In this sample of patients, there was no association between B12 deficiency and dementia. However, appropriate B12 screening protocols are necessary for high risk patient to identify deficiency and then receive B12 supplementation as needed.
Collapse
Affiliation(s)
- O Siswanto
- J Madill, Brescia University College, London ON, N6G1H2, Canada.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kölker S, Garcia-Cazorla A, Valayannopoulos V, Lund AM, Burlina AB, Sykut-Cegielska J, Wijburg FA, Teles EL, Zeman J, Dionisi-Vici C, Barić I, Karall D, Augoustides-Savvopoulou P, Aksglaede L, Arnoux JB, Avram P, Baumgartner MR, Blasco-Alonso J, Chabrol B, Chakrapani A, Chapman K, I Saladelafont EC, Couce ML, de Meirleir L, Dobbelaere D, Dvorakova V, Furlan F, Gleich F, Gradowska W, Grünewald S, Jalan A, Häberle J, Haege G, Lachmann R, Laemmle A, Langereis E, de Lonlay P, Martinelli D, Matsumoto S, Mühlhausen C, de Baulny HO, Ortez C, Peña-Quintana L, Ramadža DP, Rodrigues E, Scholl-Bürgi S, Sokal E, Staufner C, Summar ML, Thompson N, Vara R, Pinera IV, Walter JH, Williams M, Burgard P. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 1: the initial presentation. J Inherit Metab Dis 2015; 38:1041-57. [PMID: 25875215 DOI: 10.1007/s10545-015-9839-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND The clinical presentation of patients with organic acidurias (OAD) and urea cycle disorders (UCD) is variable; symptoms are often non-specific. AIMS/METHODS To improve the knowledge about OAD and UCD the E-IMD consortium established a web-based patient registry. RESULTS We registered 795 patients with OAD (n = 452) and UCD (n = 343), with ornithine transcarbamylase (OTC) deficiency (n = 196), glutaric aciduria type 1 (GA1; n = 150) and methylmalonic aciduria (MMA; n = 149) being the most frequent diseases. Overall, 548 patients (69 %) were symptomatic. The majority of them (n = 463) presented with acute metabolic crisis during (n = 220) or after the newborn period (n = 243) frequently demonstrating impaired consciousness, vomiting and/or muscular hypotonia. Neonatal onset of symptoms was most frequent in argininosuccinic synthetase and lyase deficiency and carbamylphosphate 1 synthetase deficiency, unexpectedly low in male OTC deficiency, and least frequently in GA1 and female OTC deficiency. For patients with MMA, propionic aciduria (PA) and OTC deficiency (male and female), hyperammonemia was more severe in metabolic crises during than after the newborn period, whereas metabolic acidosis tended to be more severe in MMA and PA patients with late onset of symptoms. Symptomatic patients without metabolic crises (n = 94) often presented with a movement disorder, mental retardation, epilepsy and psychiatric disorders (the latter in UCD only). CONCLUSIONS The initial presentation varies widely in OAD and UCD patients. This is a challenge for rapid diagnosis and early start of treatment. Patients with a sepsis-like neonatal crisis and those with late-onset of symptoms are both at risk of delayed or missed diagnosis.
Collapse
Affiliation(s)
- Stefan Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | | | - Vassili Valayannopoulos
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alberto B Burlina
- U.O.C. Malattie Metaboliche Ereditarie, Azienda Ospedaliera di Padova, Padova, Italy
| | | | - Frits A Wijburg
- Department of Pediatrics, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Elisa Leão Teles
- Unidade de Doenças Metabólicas, Serviço de Pediatria, Hospital de S. João, EPE, Porto, Portugal
| | - Jiri Zeman
- First Faculty of Medicine, Charles University and General University of Prague, Prague, Czech Republic
| | - Carlo Dionisi-Vici
- U.O.C. Patologia Metabolica, Ospedale Pediatrico Bambino Gésu, Rome, Italy
| | - Ivo Barić
- School of Medicine, University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Daniela Karall
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Lise Aksglaede
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jean-Baptiste Arnoux
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Paula Avram
- Institute of Mother and Child Care "Alfred Rusescu", Bucharest, Romania
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | | | - Brigitte Chabrol
- Centre de Référence des Maladies Héréditaires du Métabolisme, Service de Neurologie, Hôpital d'Enfants, CHU Timone, Marseilles, France
| | - Anupam Chakrapani
- Birmingham Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Kimberly Chapman
- Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | | | - Maria L Couce
- Metabolic Unit, Department of Pediatrics, Hospital Clinico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Dries Dobbelaere
- Centre de Référence des Maladies Héréditaires du Métabolisme de l'Enfant et de l'Adulte, Hôpital Jeanne de Flandre, Lille, France
| | - Veronika Dvorakova
- First Faculty of Medicine, Charles University and General University of Prague, Prague, Czech Republic
| | - Francesca Furlan
- U.O.C. Malattie Metaboliche Ereditarie, Azienda Ospedaliera di Padova, Padova, Italy
| | - Florian Gleich
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Wanda Gradowska
- Department of Laboratory Diagnostics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Stephanie Grünewald
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Anil Jalan
- N.I.R.M.A.N., Om Rachna Society, Vashi, Navi Mumbai, Mumbai, India
| | - Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | - Gisela Haege
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Robin Lachmann
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Alexander Laemmle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | - Eveline Langereis
- Department of Pediatrics, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Pascale de Lonlay
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Diego Martinelli
- U.O.C. Patologia Metabolica, Ospedale Pediatrico Bambino Gésu, Rome, Italy
| | - Shirou Matsumoto
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto City, Japan
| | - Chris Mühlhausen
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Carlos Ortez
- Servicio de Neurologia and CIBERER, ISCIII, Hospital San Joan de Deu, Barcelona, Spain
| | - Luis Peña-Quintana
- Hospital Universitario Materno-Infantil de Canarias, Unit of Pediatric Gastroenterology, Hepatology and Nutrition, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Esmeralda Rodrigues
- Unidade de Doenças Metabólicas, Serviço de Pediatria, Hospital de S. João, EPE, Porto, Portugal
| | - Sabine Scholl-Bürgi
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Etienne Sokal
- Service Gastroentérologie and Hépatologie Pédiatrique, Cliniques Universitaires St Luc, Université Catholique de Louvain, Bruxelles, Belgium
| | - Christian Staufner
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Marshall L Summar
- Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Nicholas Thompson
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Roshni Vara
- Evelina Children's Hospital, St Thomas' Hospital, London, UK
| | | | - John H Walter
- Manchester Academic Health Science Centre, Willink Biochemical Genetics Unit, Genetic Medicine, University of Manchester, Manchester, UK
| | - Monique Williams
- Erasmus MC-Sophia Kinderziekenhuis, Erasmus Universiteit Rotterdam, Rotterdam, Netherlands
| | - Peter Burgard
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| |
Collapse
|
42
|
Ruppert T, Schumann A, Gröne HJ, Okun JG, Kölker S, Morath MA, Sauer SW. Molecular and biochemical alterations in tubular epithelial cells of patients with isolated methylmalonic aciduria. Hum Mol Genet 2015; 24:7049-59. [PMID: 26420839 DOI: 10.1093/hmg/ddv405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/22/2015] [Indexed: 12/23/2022] Open
Abstract
Methylmalonic acidurias (MMAurias) are a group of inherited disorders in the catabolism of branched-chain amino acids, odd-chain fatty acids and cholesterol caused by complete or partial deficiency of methylmalonyl-CoA mutase (mut(0) and mut(-) subtype respectively) and by defects in the metabolism of its cofactor 5'-deoxyadenosylcobalamin (cblA, cblB or cblD variant 2 type). A long-term complication found in patients with mut(0) and cblB variant is chronic tubulointerstitial nephritis. The underlying pathomechanism has remained unknown. We established an in vitro model of tubular epithelial cells from patient urine (hTEC; 9 controls, 5 mut(0), 1 cblB). In all human tubular epithelial cell (hTEC) lines we found specific tubular markers (AQP1, UMOD, AQP2). Patient cells showed disturbance of energy metabolism in glycolysis, mitochondrial respiratory chain and Krebs cycle in concert with increased reactive oxygen species (ROS) formation. Electron micrographs indicated increased autophagosome production and endoplasmic reticulum stress, which was supported by positive acridine orange staining and elevated levels of LC3 II, P62 and pIRE1. Screening mTOR signaling revealed a release of inhibition of autophagy. Patient hTEC produced and secreted elevated amounts of the pro-inflammatory cytokine IL8, which was highly correlated with the acridine orange staining. Summarizing, hTEC of MMAuria patients are characterized by disturbed energy metabolism and ROS production that lead to increased autophagy and IL8 secretion.
Collapse
Affiliation(s)
- T Ruppert
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - A Schumann
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany, Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland, Institute of Physiology, Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland and
| | - H J Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J G Okun
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - S Kölker
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - M A Morath
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - S W Sauer
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany,
| |
Collapse
|
43
|
Haegler P, Grünig D, Berger B, Krähenbühl S, Bouitbir J. Impaired mitochondrial function in HepG2 cells treated with hydroxy-cobalamin[c-lactam]: A cell model for idiosyncratic toxicity. Toxicology 2015. [PMID: 26219506 DOI: 10.1016/j.tox.2015.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The vitamin B12 analog hydroxy-cobalamin[c-lactam] (HCCL) impairs mitochondrial protein synthesis and the function of the electron transport chain. Our goal was to establish an in vitro model for mitochondrial dysfunction in human hepatoma cells (HepG2), which can be used to investigate hepatotoxicity of idiosyncratic mitochondrial toxicants. For that, HepG2 cells were treated with HCCL, which inhibits the function of methylmalonyl-CoA mutase and impairs mitochondrial protein synthesis. Secondary, cells were incubated with propionate that served as source of propionyl-CoA, a percursor of methylmalonyl-CoA. Dose-finding experiments were conducted to evaluate the optimal dose and treatment time of HCCL and propionate for experiments on mitochondrial function. 50 μM HCCL was cytotoxic after exposure of HepG2 cells for 2d and 10 and 50 μM HCCL enhanced the cytotoxicity of 100 or 1000 μM propionate. Co-treatment with HCCL (10 μM) and propionate (1000 μM) dissipated the mitochondrial membrane potential and impaired the activity of enzyme complex IV of the electron transport chain. Treatment with HCCL decreased the mRNA content of mitochondrially encoded proteins, whereas the mtDNA content remained unchanged. We observed mitochondrial ROS accumulation and decreased mitochondrial SOD2 expression. Moreover, electron microscopy showed mitochondrial swelling. Finally, HepG2 cells pretreated with a non-cytotoxic combination of HCCL (10 μM) and propionate (100 μM) were more sensitive to the mitochondrial toxicants dronedarone, benzbromarone, and ketoconazole than untreated cells. In conclusion, we established and characterized a cell model, which could be used for testing drugs with idiosyncratic mitochondrial toxicity.
Collapse
Affiliation(s)
- Patrizia Haegler
- Division of Clinical Pharmacology & Toxicology, University Hospital, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - David Grünig
- Division of Clinical Pharmacology & Toxicology, University Hospital, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Benjamin Berger
- Division of Clinical Pharmacology & Toxicology, University Hospital, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland; Swiss Centre of Applied Human Toxicology, SCAHT, Switzerland.
| | - Jamal Bouitbir
- Division of Clinical Pharmacology & Toxicology, University Hospital, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland; Swiss Centre of Applied Human Toxicology, SCAHT, Switzerland
| |
Collapse
|
44
|
Martinez Alvarez L, Jameson E, Parry NRA, Lloyd C, Ashworth JL. Optic neuropathy in methylmalonic acidemia and propionic acidemia. Br J Ophthalmol 2015. [PMID: 26209586 DOI: 10.1136/bjophthalmol-2015-306798] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Methylmalonic acidemia (MMA) and propionic acidemia (PA) are rare hereditary disorders of protein metabolism, manifesting early in life with ketoacidosis and encephalopathy and often resulting in chronic complications. Optic neuropathy (ON) has been increasingly recognised in both conditions, mostly through isolated case reports or small cases series. We here report the clinical features and visual outcomes of a case series of paediatric patients with a diagnosis of MMA or PA. METHODS Retrospective observational case series. A database of patients attending the Willink Biochemical Genetics unit in Manchester was interrogated. Fifty-three patients had a diagnosis of either isolated MMA or PA, of which 12 had been referred for ophthalmic review. RESULTS Seven patients had clinical findings compatible with ON. Visual outcomes in these patients were poor, with slow clinical progression or stability over time in five cases with follow-up. Presentation was acute in a context of metabolic crisis in two of the cases. Four patients with ON had electrodiagnostics showing absent pattern evoked potentials, with one showing a preserved flash response. All four showed marked attenuation of the dark-adapted electroretinogram with better preservation of the light-adapted response. CONCLUSIONS Our study suggests that ON is under-reported in patients with MMA and PA. Clinical presentation can be acute or insidious, and episodes of acute metabolic decompensation appear to trigger visual loss. Photoreceptor involvement may coexist. Active clinical surveillance of affected patients is important as comorbidities and cognitive impairment may delay diagnosis.
Collapse
Affiliation(s)
- Lidia Martinez Alvarez
- Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Elisabeth Jameson
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Neil R A Parry
- Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK Faculty of Medical and Human Sciences, Centre for Ophthalmology and Vision Sciences, Institute of Human Development, University of Manchester, Manchester, UK
| | - Chris Lloyd
- Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK Faculty of Medical and Human Sciences, Centre for Ophthalmology and Vision Sciences, Institute of Human Development, University of Manchester, Manchester, UK
| | - Jane L Ashworth
- Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK Faculty of Medical and Human Sciences, Centre for Ophthalmology and Vision Sciences, Institute of Human Development, University of Manchester, Manchester, UK
| |
Collapse
|
45
|
Tuncel AT, Ruppert T, Wang BT, Okun JG, Kölker S, Morath MA, Sauer SW. Maleic Acid--but Not Structurally Related Methylmalonic Acid--Interrupts Energy Metabolism by Impaired Calcium Homeostasis. PLoS One 2015; 10:e0128770. [PMID: 26086473 PMCID: PMC4473014 DOI: 10.1371/journal.pone.0128770] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 04/30/2015] [Indexed: 12/26/2022] Open
Abstract
Maleic acid (MA) has been shown to induce Fanconi syndrome via disturbance of renal energy homeostasis, though the underlying pathomechanism is still under debate. Our study aimed to examine the pathomechanism underlying maleic acid-induced nephrotoxicity. Methylmalonic acid (MMA) is structurally similar to MA and accumulates in patients affected with methymalonic aciduria, a defect in the degradation of branched-chain amino acids, odd-chain fatty acids and cholesterol, which is associated with the development of tubulointerstitial nephritis resulting in chronic renal failure. We therefore used MMA application as a control experiment in our study and stressed hPTECs with MA and MMA to further validate the specificity of our findings. MMA did not show any toxic effects on proximal tubule cells, whereas maleic acid induced concentration-dependent and time-dependent cell death shown by increased lactate dehydrogenase release as well as ethidium homodimer and calcein acetoxymethyl ester staining. The toxic effect of MA was blocked by administration of single amino acids, in particular L-alanine and L-glutamate. MA application further resulted in severe impairment of cellular energy homeostasis on the level of glycolysis, respiratory chain, and citric acid cycle resulting in ATP depletion. As underlying mechanism we could identify disturbance of calcium homeostasis. MA toxicity was critically dependent on calcium levels in culture medium and blocked by the extra- and intracellular calcium chelators EGTA and BAPTA-AM respectively. Moreover, MA-induced cell death was associated with activation of calcium-dependent calpain proteases. In summary, our study shows a comprehensive pathomechanistic concept for MA-induced dysfunction and damage of human proximal tubule cells.
Collapse
Affiliation(s)
- Ali Tunç Tuncel
- Department of General Pediatrics, Division of Inborn Metabolic Diseases, University Children’s Hospital, Heidelberg, Germany
- * E-mail:
| | - Thorsten Ruppert
- Department of General Pediatrics, Division of Inborn Metabolic Diseases, University Children’s Hospital, Heidelberg, Germany
| | - Bei-Tzu Wang
- Department of General Pediatrics, Division of Inborn Metabolic Diseases, University Children’s Hospital, Heidelberg, Germany
| | - Jürgen Günther Okun
- Department of General Pediatrics, Division of Inborn Metabolic Diseases, University Children’s Hospital, Heidelberg, Germany
| | - Stefan Kölker
- Department of General Pediatrics, Division of Inborn Metabolic Diseases, University Children’s Hospital, Heidelberg, Germany
| | - Marina Alexandra Morath
- Department of General Pediatrics, Division of Inborn Metabolic Diseases, University Children’s Hospital, Heidelberg, Germany
| | - Sven Wolfgang Sauer
- Department of General Pediatrics, Division of Inborn Metabolic Diseases, University Children’s Hospital, Heidelberg, Germany
| |
Collapse
|
46
|
Zellweger syndrome and secondary mitochondrial myopathy. Eur J Pediatr 2015; 174:557-63. [PMID: 25287621 DOI: 10.1007/s00431-014-2431-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
Defects in peroxisomes such as those associated with Zellweger syndrome (ZS) can influence diverse intracellular metabolic pathways, including mitochondrial functioning. We report on an 8-month-old female infant and a 6-month-old female infant with typical clinical, radiological and laboratory features of Zellweger syndrome; light microscopic and ultrastructural evidence of mitochondrial pathology in their muscle biopsies; and homozygous pathogenic mutations of the PEX16 gene (c.460 + 5G > A) and the PEX 12 gene (c.888_889 del p.Leu297Thrfs*12), respectively. Additionally, mitochondrial respiratory chain enzymology analysis in the first girl showed a mildly low activity in complexes II-III and IV. We also review five children previously reported in the literature with a presumptive diagnosis of ZS and additional mitochondrial findings in their muscle biopsies. In conclusion, this is the first study of patients with a molecularly confirmed peroxisomal disorder with features of a concomitant mitochondrial myopathy and underscores the role of secondary mitochondrial dysfunction in Zellweger syndrome, potentially contributing to the clinical phenotype.
Collapse
|
47
|
Sauer SW, Opp S, Komatsuzaki S, Blank AE, Mittelbronn M, Burgard P, Koeller DM, Okun JG, Kölker S. Multifactorial modulation of susceptibility to l-lysine in an animal model of glutaric aciduria type I. Biochim Biophys Acta Mol Basis Dis 2015; 1852:768-77. [PMID: 25558815 DOI: 10.1016/j.bbadis.2014.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/16/2014] [Accepted: 12/27/2014] [Indexed: 01/05/2023]
Abstract
Glutaric aciduria type I is an inherited defect in L-lysine, L-hydroxylysine and L-tryptophan degradation caused by deficiency of glutaryl-CoA dehydrogenase (GCDH). The majority of untreated patients presents with accumulation of neurotoxic metabolites - glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) - and striatal injury. Gcdh(-/-) mice display elevated levels of GA and 3-OH-GA but do not spontaneously develop striatal lesions. L-lysine-enriched diets (appr. 235 mg/d) were suggested to induce a neurological phenotype similar to affected patients. In our hands 93% of mice stressed according to the published protocol remained asymptomatic. To understand the underlying mechanism, we modified their genetic background (F1 C57BL6/Jx129/SvCrl) and increased the daily oral L-lysine supply (235-433 mg). We identified three modulating factors, (1) gender, (2) genetic background, and (3) amount of L-lysine. Male mice displayed higher vulnerability and inbreeding for more than two generations as well as elevating L-lysine supply increased the diet-induced mortality rate (up to 89%). Onset of first symptoms leads to strongly reduced intake of food and, thus, L-lysine suggesting a threshold for toxic metabolite production to induce neurological disease. GA and 3-OH-GA tissue concentrations did not correlate with dietary L-lysine supply but differed between symptomatic and asymptomatic mice. Cerebral activities of glyceraldehyde 3-phosphate dehydrogenase, 2-oxoglutarate dehydrogenase complex, and aconitase were decreased. Symptomatic mice did not develop striatal lesions or intracerebral hemorrhages. We found severe spongiosis in the hippocampus of Gcdh(-/-) mice which was independent of dietary L-lysine supply. In conclusion, the L-lysine-induced pathology in Gcdh(-/-) mice depends on genetic and dietary parameters.
Collapse
Affiliation(s)
- Sven W Sauer
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Silvana Opp
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Shoko Komatsuzaki
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Anna-Eva Blank
- Institute of Neurology (Edinger Institute), Goethe-University Frankfurt, D-60528 Frankfurt/Main, Germany
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), Goethe-University Frankfurt, D-60528 Frankfurt/Main, Germany
| | - Peter Burgard
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - D M Koeller
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Jürgen G Okun
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Stefan Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Wilnai Y, Enns GM, Niemi AK, Higgins J, Vogel H. Abnormal hepatocellular mitochondria in methylmalonic acidemia. Ultrastruct Pathol 2014; 38:309-14. [PMID: 24933007 DOI: 10.3109/01913123.2014.921657] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Methylmalonic acidemia (MMA) is one of the most frequently encountered forms of branched-chain organic acidemias. Biochemical abnormalities seen in some MMA patients, such as lactic acidemia and increased tricarboxylic acid cycle intermediate excretion, suggest mitochondrial dysfunction. In order to investigate the possibility of mitochondrial involvement in MMA, we examined liver tissue for evidence of mitochondrial ultrastructural abnormalities. Five explanted livers obtained from MMA mut(0) patients undergoing liver transplantation were biopsied. All patients had previous episodes of metabolic acidosis, lactic acidemia, ketonuria, and hyperammonemia. All biopsies revealed a striking mitochondriopathy by electron microscopy. Mitochondria were markedly variable in size, shape, and conformation of cristae. The inner matrix appeared to be greatly expanded and the cristae were diminutive and disconnected. No crystalloid inclusions were noted. This series clearly documents extensive mitochondrial ultrastructure abnormalities in liver samples from MMA patients undergoing transplantation, providing pathological evidence for mitochondrial dysfunction in the pathophysiology of MMA mut(0). Considering the trend to abnormally large mitochondria, the metabolic effects of MMA may restrict mitochondrial fission or promote fusion. The correlation between mitochondrial dysfunction and morphological abnormalities in MMA may provide insights for better understanding and monitoring of optimized or novel therapeutic strategies.
Collapse
Affiliation(s)
- Yael Wilnai
- Department of Pediatrics, Division of Medical Genetics, Lucile Packard Children's Hospital, Stanford University Medical Center , Palo Alto, CA , USA and
| | | | | | | | | |
Collapse
|
49
|
Sharma S, Litonjua A. Asthma, allergy, and responses to methyl donor supplements and nutrients. J Allergy Clin Immunol 2014; 133:1246-54. [PMID: 24360248 PMCID: PMC4004707 DOI: 10.1016/j.jaci.2013.10.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 01/14/2023]
Abstract
After a brief period of stabilization, recent data have shown that the prevalence of asthma and allergic diseases continues to increase. Atopic diseases are major public health problems resulting in significant disability and resource use globally. Although environmental factors influence the development of atopic disease, dietary changes might partially explain the high burden of atopic disease. Potential mechanisms through which diet is suspected to effect asthma and allergy susceptibility are through epigenetic changes, including DNA methylation. Dietary methyl donors are important in the one-carbon metabolic pathway that is essential for DNA methylation. Findings from both observational studies and interventional trials of dietary methyl donor supplementation on the development and treatment of asthma and allergy have produced mixed results. Although issues related to the differences in study design partially explain the heterogeneous results, 2 other issues have been largely overlooked in these studies. First, these nutrients affect one of many pathways and occur in many of the same foods. Second, it is now becoming clear that the human intestinal microbiome is involved in the metabolism and production of the B vitamins and other methyl donor nutrients. Future studies will need to account for both the interrelationships between these nutrients and the effects of the microbiome.
Collapse
Affiliation(s)
- Sunita Sharma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Mass.
| | - Augusto Litonjua
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Mass
| |
Collapse
|
50
|
Evidence of redox imbalance in a patient with succinic semialdehyde dehydrogenase deficiency. Mol Genet Metab Rep 2014; 1:129-132. [PMID: 27896081 PMCID: PMC5121295 DOI: 10.1016/j.ymgmr.2014.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 11/24/2022] Open
Abstract
The pathophysiology of succinic semialdehyde dehydrogenase (SSADH) deficiency is not completely understood. Oxidative stress, mitochondrial pathology, and low reduced glutathione levels have been demonstrated in mice, but no studies have been reported in humans. We report on a patient with SSADH deficiency in whom we found low levels of blood reduced glutathione (GSH), and elevations of dicarboxylic acids in urine, suggestive of possible redox imbalance and/or mitochondrial dysfunction. Thus, targeting the oxidative stress axis may be a potential therapeutic approach if our findings are confirmed in other patients.
Collapse
|