1
|
Schröder LC, Frank D, Müller OJ. Transcriptional Targeting Approaches in Cardiac Gene Transfer Using AAV Vectors. Pathogens 2023; 12:1301. [PMID: 38003766 PMCID: PMC10675517 DOI: 10.3390/pathogens12111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiac-targeted transgene delivery offers new treatment opportunities for cardiovascular diseases, which massively contribute to global mortality. Restricted gene transfer to cardiac tissue might protect extracardiac organs from potential side-effects. This could be mediated by using cis-regulatory elements, including promoters and enhancers that act on the transcriptional level. Here, we discuss examples of tissue-specific promoters for targeted transcription in myocytes, cardiomyocytes, and chamber-specific cardiomyocytes. Some promotors are induced at pathological states, suggesting a potential use as "induction-by-disease switches" in gene therapy. Recent developments have resulted in the identification of novel enhancer-elements that could further pave the way for future refinement of transcriptional targeting, for example, into the cardiac conduction system.
Collapse
Affiliation(s)
- Lena C. Schröder
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (L.C.S.); (D.F.)
| | - Derk Frank
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (L.C.S.); (D.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Oliver J. Müller
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (L.C.S.); (D.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| |
Collapse
|
2
|
Baksh SS, Pratt RE, Gomez J, Dzau VJ, Hodgkinson CP. A novel Cbx1, PurB, and Sp3 complex mediates long-term silencing of tissue- and lineage-specific genes. J Biol Chem 2022; 298:102053. [PMID: 35605661 PMCID: PMC9190063 DOI: 10.1016/j.jbc.2022.102053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
miRNA-based cellular fate reprogramming offers an opportunity to investigate the mechanisms of long-term gene silencing. To further understand how genes are silenced in a tissue-specific manner, we leveraged our miRNA-based method of reprogramming fibroblasts into cardiomyocytes. Through screening approaches, we identified three proteins that were downregulated during reprogramming of fibroblasts into cardiomyocytes: heterochromatin protein Cbx1, transcriptional activator protein PurB, and transcription factor Sp3. We show that knockdown of Cbx1, PurB, and Sp3 was sufficient to induce cardiomyocyte gene expression in fibroblasts. Similarly, gene editing to ablate Cbx1, PurB, and Sp3 expression induced fibroblasts to convert into cardiomyocytes in vivo. Furthermore, high-throughput DNA sequencing and coimmunoprecipitation experiments indicated that Cbx1, PurB, and Sp3 also bound together as a complex and were necessary to localize nucleosomes to cardiomyocyte genes on the chromosome. Finally, we found that the expression of these genes led to nucleosome modification via H3K27me3 (trimethylated histone-H3 lysine-27) deposition through an interaction with the polycomb repressive PRC2 complex. In summary, we conclude that Cbx1, PurB, and Sp3 control cell fate by actively repressing lineage-specific genes.
Collapse
|
3
|
Jeong D. Generation of Atrial-Specific Construct Using Sarcolipin Promoter-Associated CRM4 Enhancer. Methods Mol Biol 2022; 2573:115-132. [PMID: 36040590 DOI: 10.1007/978-1-0716-2707-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cardiac gene therapy has been hampered by off-target expression of gene of interest irrespective of variety of delivery methods. To overcome this issue, cardiac-specific promoters provide target tissue specificity, although expression is often debilitated compared to that of ubiquitous promoters. We have previously shown that sarcolipin promoter with an enhancer calsequestrin cis-regulatory module 4 (CRM4) combination has an improved atrial specificity. Moreover, it showed a minimal extra-atrial expression, which is a significant advantage for AAV9-mediated cardiac gene therapy. Therefore, it can be a useful tool to study and treat atrial-specific diseases such as atrial fibrillation. In this chapter, we introduce practical and simple methodology for atrial-specific gene therapy using sarcolipin promoter with an enhancer CRM4.
Collapse
Affiliation(s)
- Dongtak Jeong
- Department of Molecular & Life Science, College of Science and Convergence Technology, Hanyang University ERICA, Ansan, South Korea.
| |
Collapse
|
4
|
A selective cytotoxic adenovirus vector for concentration of pluripotent stem cells in human pluripotent stem cell-derived neural progenitor cells. Sci Rep 2021; 11:11407. [PMID: 34075124 PMCID: PMC8169681 DOI: 10.1038/s41598-021-90928-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/17/2021] [Indexed: 11/08/2022] Open
Abstract
Highly sensitive detection of residual undifferentiated pluripotent stem cells is essential for the quality and safety of cell-processed therapeutic products derived from human induced pluripotent stem cells (hiPSCs). We previously reported the generation of an adenovirus (Ad) vector and adeno-associated virus vectors that possess a suicide gene, inducible Caspase 9 (iCasp9), which makes it possible to sensitively detect undifferentiated hiPSCs in cultures of hiPSC-derived cardiomyocytes. In this study, we investigated whether these vectors also allow for detection of undifferentiated hiPSCs in preparations of hiPSC-derived neural progenitor cells (hiPSC-NPCs), which have been expected to treat neurological disorders. To detect undifferentiated hiPSCs, the expression of pluripotent stem cell markers was determined by immunostaining and flow cytometry. Using immortalized NPCs as a model, the Ad vector was identified to be the most efficient among the vectors tested in detecting undifferentiated hiPSCs. Moreover, we found that the Ad vector killed most hiPSC-NPCs in an iCasp9-dependent manner, enabling flow cytometry to detect undifferentiated hiPSCs intermingled at a lower concentration (0.002%) than reported previously (0.1%). These data indicate that the Ad vector selectively eliminates hiPSC-NPCs, thus allowing for sensitive detection of hiPSCs. This cytotoxic viral vector could contribute to ensuring the quality and safety of hiPSCs-NPCs for therapeutic use.
Collapse
|
5
|
Buscara L, Gross DA, Daniele N. Of rAAV and Men: From Genetic Neuromuscular Disorder Efficacy and Toxicity Preclinical Studies to Clinical Trials and Back. J Pers Med 2020; 10:E258. [PMID: 33260623 PMCID: PMC7768510 DOI: 10.3390/jpm10040258] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular disorders are a large group of rare pathologies characterised by skeletal muscle atrophy and weakness, with the common involvement of respiratory and/or cardiac muscles. These diseases lead to life-long motor deficiencies and specific organ failures, and are, in their worst-case scenarios, life threatening. Amongst other causes, they can be genetically inherited through mutations in more than 500 different genes. In the last 20 years, specific pharmacological treatments have been approved for human usage. However, these "à-la-carte" therapies cover only a very small portion of the clinical needs and are often partially efficient in alleviating the symptoms of the disease, even less so in curing it. Recombinant adeno-associated virus vector-mediated gene transfer is a more general strategy that could be adapted for a large majority of these diseases and has proved very efficient in rescuing the symptoms in many neuropathological animal models. On this solid ground, several clinical trials are currently being conducted with the whole-body delivery of the therapeutic vectors. This review recapitulates the state-of-the-art tools for neuron and muscle-targeted gene therapy, and summarises the main findings of the spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD) and X-linked myotubular myopathy (XLMTM) trials. Despite promising efficacy results, serious adverse events of various severities were observed in these trials. Possible leads for second-generation products are also discussed.
Collapse
Affiliation(s)
| | - David-Alexandre Gross
- Genethon, 91000 Evry, France; (L.B.); (D.-A.G.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | |
Collapse
|
6
|
Fu X, Liu Q, Li C, Li Y, Wang L. Cardiac Fibrosis and Cardiac Fibroblast Lineage-Tracing: Recent Advances. Front Physiol 2020; 11:416. [PMID: 32435205 PMCID: PMC7218116 DOI: 10.3389/fphys.2020.00416] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 01/18/2023] Open
Abstract
Cardiac fibrosis is a common pathological change associated with cardiac injuries and diseases. Even though the accumulation of collagens and other extracellular matrix (ECM) proteins may have some protective effects in certain situations, prolonged fibrosis usually negatively affects cardiac function and often leads to deleterious consequences. While the development of cardiac fibrosis involves several cell types, the major source of ECM proteins is cardiac fibroblast. The high plasticity of cardiac fibroblasts enables them to quickly change their behaviors in response to injury and transition between several differentiation states. However, the study of cardiac fibroblasts in vivo was very difficult due to the lack of specific research tools. The development of cardiac fibroblast lineage-tracing mouse lines has greatly promoted cardiac fibrosis research. In this article, we review the recent cardiac fibroblast lineage-tracing studies exploring the origin of cardiac fibroblasts and their complicated roles in cardiac fibrosis, and briefly discuss the translational potential of basic cardiac fibroblast researches.
Collapse
Affiliation(s)
- Xing Fu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Qianglin Liu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Chaoyang Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Yuxia Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Leshan Wang
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
7
|
Pironet A, Syam N, Vandewiele F, Van den Haute C, Kerselaers S, Pinto S, Vande Velde G, Gijsbers R, Vennekens R. AAV9-Mediated Overexpression of TRPM4 Increases the Incidence of Stress-Induced Ventricular Arrhythmias in Mice. Front Physiol 2019; 10:802. [PMID: 31316392 PMCID: PMC6610516 DOI: 10.3389/fphys.2019.00802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/06/2019] [Indexed: 11/13/2022] Open
Abstract
Ca2+ activated non-selective (CAN) cation channels have been described in cardiomyocytes since the advent of the patch clamp technique. It has been hypothesized that this type of ion channel contributes to the triggering of cardiac arrhythmias. TRPM4 is to date the only molecular candidate for a CAN cation channel in cardiomyocytes. Its significance for arrhythmogenesis in living animals remains, however, unclear. In this study, we have tested whether increased expression of wild-type (WT) TRPM4 augments the risk of arrhythmias in living mice. Overexpression of WT TRPM4 was achieved via tail vein injection of adeno-associated viral vector serotype 9 (AAV9) particles, which have been described to be relatively cardiac specific in mice. Subsequently, we performed ECG-measurements in freely moving mice to determine their in vivo cardiac phenotype. Though cardiac muscle was transduced with TRPM4 viral particles, the majority of viral particles accumulated in the liver. We did not observe any difference in arrhythmic incidents during baseline conditions. Instead, WT mice that overexpress TRPM4 were more vulnerable to develop premature ventricular ectopic beats during exercise-induced β-adrenergic stress. Conduction abnormalities were rare and not more frequent in transduced mice compare to WT mice. Taken together, we provide evidence that overexpression of TRPM4 increases the susceptibility of living mice to stress-induced arrhythmias.
Collapse
Affiliation(s)
- Andy Pironet
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ninda Syam
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frone Vandewiele
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Chris Van den Haute
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Sara Kerselaers
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Silvia Pinto
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Kono K, Sawada R, Kuroda T, Yasuda S, Matsuyama S, Matsuyama A, Mizuguchi H, Sato Y. Development of selective cytotoxic viral vectors for concentration of undifferentiated cells in cardiomyocytes derived from human induced pluripotent stem cells. Sci Rep 2019; 9:3630. [PMID: 30842516 PMCID: PMC6403330 DOI: 10.1038/s41598-018-36848-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/29/2018] [Indexed: 11/09/2022] Open
Abstract
Cell-processed therapeutic products (CTPs) derived from human pluripotent stem cells (hPSCs) have innovative applications in regenerative medicine. However, undifferentiated hPSCs possess tumorigenic potential; thus, sensitive methods for the detection of residual undifferentiated hPSCs are essential for the clinical use of hPSC-derived CTPs. The detection limit of the methods currently available is 1/105 (0.001%, undifferentiated hPSCs/differentiated cells) or more, which could be insufficient for the detection of residual hPSCs when CTPs contain more than 1 × 105 cells. In this study, we developed a novel approach to overcome this challenge, using adenovirus and adeno-associated virus (AdV and AAV)-based selective cytotoxic vectors. We constructed AdV and AAV vectors that possess a suicide gene, iCaspase 9 (iCasp9), regulated by the CMV promoter, which is dormant in hPSCs, for the selective expression of iCasp9 in differentiated cells. As expected, AdV/CMV-iCasp9 and AAV/CMV-iCasp9 exhibited cytotoxicity in cardiomyocytes but not in human induced pluripotent stem cells (hiPSCs). The vectors also induced apoptosis in hiPSC-derived cardiomyocytes, and the surviving cells exhibited higher levels of hPSC marker expression. These results indicate that the AdV- and AAV-based cytotoxic vectors concentrate cells expressing the undifferentiated cell markers in hiPSC-derived products and are promising biological tools for verifying the quality of CTPs.
Collapse
Affiliation(s)
- Ken Kono
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Rumi Sawada
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Takuya Kuroda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Satoko Matsuyama
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Hyogo, Japan
| | - Akifumi Matsuyama
- Department of Regenerative Medicine, School of Medicine, Fujita Health University, Aichi, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan.
- Department of Quality Assurance Science for Pharmaceuticals, Graduate School of Pharmaceutical Sciences, Nagoya City University, Aichi, Japan.
- Department of Cellular and Gene Therapy Products, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
- Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
9
|
Ambrosi CM, Sadananda G, Han JL, Entcheva E. Adeno-Associated Virus Mediated Gene Delivery: Implications for Scalable in vitro and in vivo Cardiac Optogenetic Models. Front Physiol 2019; 10:168. [PMID: 30890951 PMCID: PMC6412093 DOI: 10.3389/fphys.2019.00168] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAVs) provide advantages in long-term, cardiac-specific gene expression. However, AAV serotype specificity data is lacking in experimental models relevant to cardiac electrophysiology and cardiac optogenetics. We aimed to identify the optimal AAV serotype (1, 6, or 9) in pursuit of scalable rodent and human models using genetic modifications in cardiac electrophysiology and optogenetics, in particular, as well as to elucidate the mechanism of virus uptake. In vitro syncytia of primary neonatal rat ventricular cardiomyocytes (NRVMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were infected with AAVs 1, 6, and 9 containing the transgene for eGFP or channelrhodopsin-2 (ChR2) fused to mCherry. In vivo adult rats were intravenously injected with AAV1 and 9 containing ChR2-mCherry. Transgene expression profiles of rat and human cells in vitro revealed that AAV1 and 6 significantly outperformed AAV9. In contrast, systemic delivery of AAV9 in adult rat hearts yielded significantly higher levels of ChR2-mCherry expression and optogenetic responsiveness. We tracked the mechanism of virus uptake to purported receptor-mediators for AAV1/6 (cell surface sialic acid) and AAV9 (37/67 kDa laminin receptor, LamR). In vitro desialylation of NRVMs and hiPSC-CMs with neuraminidase (NM) significantly decreased AAV1,6-mediated gene expression, but interestingly, desialylation of hiPSC-CMs increased AAV9-mediated expression. In fact, only very high viral doses of AAV9-ChR2-mCherry, combined with NM treatment, yielded consistent optogenetic responsiveness in hiPSC-CMs. Differences between the in vitro and in vivo performance of AAV9 could be correlated to robust LamR expression in the intact heart (neonatal rat hearts as well as adult human and rat hearts), but no expression in vitro in cultured cells (primary rat cells and hiPS-CMs). The dynamic nature of LamR expression and its dependence on environmental factors was further corroborated in intact adult human ventricular tissue. The combined transgene expression and cell surface receptor data may explain the preferential efficiency of AAV1/6 in vitro and AAV9 in vivo for cardiac delivery and mechanistic knowledge of their action can help guide cardiac optogenetic efforts. More broadly, these findings are relevant to future efforts in gene therapy for cardiac electrophysiology abnormalities in vivo as well as for genetic modifications of cardiomyocytes by viral means in vitro applications such as disease modeling or high-throughput drug testing.
Collapse
Affiliation(s)
- Christina M Ambrosi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States.,Department of Biomedical Engineering, George Washington University, Washington, DC, United States
| | - Gouri Sadananda
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Julie L Han
- Department of Biomedical Engineering, George Washington University, Washington, DC, United States
| | - Emilia Entcheva
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States.,Department of Biomedical Engineering, George Washington University, Washington, DC, United States
| |
Collapse
|
10
|
Bera A, Sen D. Promise of adeno-associated virus as a gene therapy vector for cardiovascular diseases. Heart Fail Rev 2017; 22:795-823. [DOI: 10.1007/s10741-017-9622-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Chen Q, Zhai H, Li X, Ma Y, Chen B, Liu F, Lai H, Xie J, He C, Luo J, Gao J, Yang Y. Recombinant adeno-associated virus serotype 9 in a mouse model of atherosclerosis: Determination of the optimal expression time in vivo. Mol Med Rep 2017; 15:2090-2096. [PMID: 28260093 PMCID: PMC5364991 DOI: 10.3892/mmr.2017.6235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/23/2016] [Indexed: 01/18/2023] Open
Abstract
Adeno-associated virus 9 (AAV9) has been identified as one of the optimal gene transduction carriers for gene therapy. The aim of the present study was to determine the gene transfection efficiency and safety of an AAV9 vector produced using a recombinant baculovirus (rBac)‑based system. AAV9‑cytomegalovirus (CMV)-green fluorescent protein was produced using an rBac system and the resulting vector particles were injected intravenously into mice. Animals were sacrificed at 14, 21, 28, 35, 60, 90 and 120 days following injection. GFP expression in aortic vasculature and aortic plaques in C57/6B and apolipoprotein E‑/‑ mice was analyzed by fluorescence imaging and western blotting. In vivo analyses of biological markers of liver and heart damage, and renal function, as well as in vitro terminal deoxynucleotidyl transferase dUTP nick end labeling analysis were used to determine the toxicity of the AAV9 carrier. The findings of the present study demonstrated that AAV9 viral vectors packaged using the rBac system functioned appropriately in arteriosclerosis plaques. The CMV promoter significantly induced GFP expression in the vascular plaque in a time-dependent manner. AAV9‑CMV viral particles did not lead to heart, liver or renal damage and no change in apoptotic rate was identified. These findings indicated that AAV9-CMV may be effectively and safely used to transfect genes into atherosclerotic plaques.
Collapse
Affiliation(s)
- Qingjie Chen
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hui Zhai
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xiaomei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yitong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Bangdang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, Xinjiang 830054, P.R. China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, Xinjiang 830054, P.R. China
| | - Hongmei Lai
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Jia Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Chunhui He
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Junyi Luo
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Jing Gao
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yining Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
12
|
Geisler A, Fechner H. MicroRNA-regulated viral vectors for gene therapy. World J Exp Med 2016; 6:37-54. [PMID: 27226955 PMCID: PMC4873559 DOI: 10.5493/wjem.v6.i2.37] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/02/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023] Open
Abstract
Safe and effective gene therapy approaches require targeted tissue-specific transfer of a therapeutic transgene. Besides traditional approaches, such as transcriptional and transductional targeting, microRNA-dependent post-transcriptional suppression of transgene expression has been emerging as powerful new technology to increase the specificity of vector-mediated transgene expression. MicroRNAs are small non-coding RNAs and often expressed in a tissue-, lineage-, activation- or differentiation-specific pattern. They typically regulate gene expression by binding to imperfectly complementary sequences in the 3' untranslated region (UTR) of the mRNA. To control exogenous transgene expression, tandem repeats of artificial microRNA target sites are usually incorporated into the 3' UTR of the transgene expression cassette, leading to subsequent degradation of transgene mRNA in cells expressing the corresponding microRNA. This targeting strategy, first shown for lentiviral vectors in antigen presenting cells, has now been used for tissue-specific expression of vector-encoded therapeutic transgenes, to reduce immune response against the transgene, to control virus tropism for oncolytic virotherapy, to increase safety of live attenuated virus vaccines and to identify and select cell subsets for pluripotent stem cell therapies, respectively. This review provides an introduction into the technical mechanism underlying microRNA-regulation, highlights new developments in this field and gives an overview of applications of microRNA-regulated viral vectors for cardiac, suicide gene cancer and hematopoietic stem cell therapy, as well as for treatment of neurological and eye diseases.
Collapse
|
13
|
Chen BD, He CH, Chen XC, Pan S, Liu F, Ma X, Li XM, Gai MT, Tao J, Ma YT, Yang YN, Gao XM. Targeting transgene to the heart and liver with AAV9 by different promoters. Clin Exp Pharmacol Physiol 2015; 42:1108-17. [PMID: 26173818 DOI: 10.1111/1440-1681.12453] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Bang-Dang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease; Clinical Medical Research Institute; Urumqi China
| | - Chun-Hui He
- Xinjiang Key Laboratory of Cardiovascular Disease; Clinical Medical Research Institute; Urumqi China
- Department of Cardiology; First Affiliated Hospital of Xinjiang Medical University; Urumqi China
| | - Xiao-Cui Chen
- Xinjiang Key Laboratory of Cardiovascular Disease; Clinical Medical Research Institute; Urumqi China
| | - Shuo Pan
- Department of Cardiology; First Affiliated Hospital of Xinjiang Medical University; Urumqi China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease; Clinical Medical Research Institute; Urumqi China
| | - Xiang Ma
- Department of Cardiology; First Affiliated Hospital of Xinjiang Medical University; Urumqi China
| | - Xiao-Mei Li
- Department of Cardiology; First Affiliated Hospital of Xinjiang Medical University; Urumqi China
| | - Min-Tao Gai
- Xinjiang Key Laboratory of Cardiovascular Disease; Clinical Medical Research Institute; Urumqi China
| | - Jing Tao
- Department of Cardiology; First Affiliated Hospital of Xinjiang Medical University; Urumqi China
| | - Yi-Tong Ma
- Xinjiang Key Laboratory of Cardiovascular Disease; Clinical Medical Research Institute; Urumqi China
- Department of Cardiology; First Affiliated Hospital of Xinjiang Medical University; Urumqi China
| | - Yi-Ning Yang
- Xinjiang Key Laboratory of Cardiovascular Disease; Clinical Medical Research Institute; Urumqi China
| | - Xiao-Ming Gao
- Xinjiang Key Laboratory of Cardiovascular Disease; Clinical Medical Research Institute; Urumqi China
- Baker IDI Heart and Diabetes Institute; Melbourne Australia
| |
Collapse
|
14
|
Bajgelman MC, Dos Santos L, Silva GJJ, Nakamuta J, Sirvente RA, Chaves M, Krieger JE, Strauss BE. Preservation of cardiac function in left ventricle cardiac hypertrophy using an AAV vector which provides VEGF-A expression in response to p53. Virology 2014; 476:106-114. [PMID: 25543961 DOI: 10.1016/j.virol.2014.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/18/2014] [Accepted: 12/04/2014] [Indexed: 01/19/2023]
Abstract
Here we present the application of our adeno-associated virus (AAV2) vector where transgene expression is driven by a synthetic, p53-responsive promoter, termed PG, used to supply human vascular endothelial growth factor-A165 (VEGF-A). Thus, p53 is harnessed to promote the beneficial expression of VEGF-A encoded by the AAVPG vector, bypassing the negative effect of p53 on HIF-1α which occurs during cardiac hypertrophy. Wistar rats were submitted to pressure overload induced by thoracic aorta coarctation (TAC) with or without concomitant gene therapy (intramuscular delivery in the left ventricle). After 12 weeks, rats receiving AAVPG-VEGF gene therapy were compared to those that did not, revealing significantly improved cardiac function under hemodynamic stress, lack of fibrosis and reversal of capillary rarefaction. With these functional assays, we have demonstrated that application of the AAVPG-VEGF vector under physiologic conditions known to stimulate p53 resulted in the preservation of cardiac performance.
Collapse
Affiliation(s)
- Marcio C Bajgelman
- Viral Vector Laboratory, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Leonardo Dos Santos
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Gustavo J J Silva
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Juliana Nakamuta
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Raquel A Sirvente
- Hypertension Unit, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Marcio Chaves
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil.
| |
Collapse
|
15
|
Asokan A, Samulski RJ. An emerging adeno-associated viral vector pipeline for cardiac gene therapy. Hum Gene Ther 2013; 24:906-13. [PMID: 24164238 PMCID: PMC3815036 DOI: 10.1089/hum.2013.2515] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The naturally occurring adeno-associated virus (AAV) isolates display diverse tissue tropisms in different hosts. Robust cardiac transduction in particular has been reported for certain AAV strains. Successful applications of these AAV strains in preclinical and clinical settings with a focus on treating cardiovascular disease continue to be reported. At the same time, these studies have highlighted challenges such as cross-species variability in AAV tropism, transduction efficiency, and immunity. Continued progress in our understanding of AAV capsid structure and biology has provided the rationale for designing improved vectors that can possibly address these concerns. The current report provides an overview of cardiotropic AAV, existing gaps in our knowledge, and newly engineered AAV strains that are viable candidates for the cardiac gene therapy clinic.
Collapse
Affiliation(s)
- Aravind Asokan
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
| | - R. Jude Samulski
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
| |
Collapse
|
16
|
Piras BA, O’Connor DM, French BA. Systemic delivery of shRNA by AAV9 provides highly efficient knockdown of ubiquitously expressed GFP in mouse heart, but not liver. PLoS One 2013; 8:e75894. [PMID: 24086659 PMCID: PMC3782464 DOI: 10.1371/journal.pone.0075894] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/17/2013] [Indexed: 01/09/2023] Open
Abstract
AAV9 is a powerful gene delivery vehicle capable of providing long-term gene expression in a variety of cell types, particularly cardiomyocytes. The use of AAV-delivery for RNA interference is an intense area of research, but a comprehensive analysis of knockdown in cardiac and liver tissues after systemic delivery of AAV9 has yet to be reported. We sought to address this question by using AAV9 to deliver a short-hairpin RNA targeting the enhanced green fluorescent protein (GFP) in transgenic mice that constitutively overexpress GFP in all tissues. The expression cassette was initially tested in vitro and we demonstrated a 61% reduction in mRNA and a 90% reduction in GFP protein in dual-transfected 293 cells. Next, the expression cassette was packaged as single-stranded genomes in AAV9 capsids to test cardiac GFP knockdown with several doses ranging from 1.8×10(10) to 1.8×10(11) viral genomes per mouse and a dose-dependent response was obtained. We then analyzed GFP expression in both heart and liver after delivery of 4.4×10(11) viral genomes per mouse. We found that while cardiac knockdown was highly efficient, with a 77% reduction in GFP mRNA and a 71% reduction in protein versus control-treated mice, there was no change in liver expression. This was despite a 4.5-fold greater number of viral genomes in the liver than in the heart. This study demonstrates that single-stranded AAV9 vectors expressing shRNA can be used to achieve highly efficient cardiac-selective knockdown of GFP expression that is sustained for at least 7 weeks after the systemic injection of 8 day old mice, with no change in liver expression and no evidence of liver damage despite high viral genome presence in the liver.
Collapse
Affiliation(s)
- Bryan A. Piras
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel M. O’Connor
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Brent A. French
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Radiology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Medicine/Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
17
|
Konkalmatt PR, Beyers RJ, O'Connor DM, Xu Y, Seaman ME, French BA. Cardiac-selective expression of extracellular superoxide dismutase after systemic injection of adeno-associated virus 9 protects the heart against post-myocardial infarction left ventricular remodeling. Circ Cardiovasc Imaging 2013; 6:478-86. [PMID: 23536266 DOI: 10.1161/circimaging.112.000320] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac magnetic resonance imaging has not been used previously to document the attenuation of left ventricular (LV) remodeling after systemic gene delivery. We hypothesized that targeted expression of extracellular superoxide dismutase (EcSOD) via the cardiac troponin-T promoter would protect the mouse heart against both myocardial infarction (MI) and subsequent LV remodeling. METHODS AND RESULTS Using reporter genes, we first compared the specificity, time course, magnitude, and distribution of gene expression from adeno-associated virus (AAV) 1, 2, 6, 8, and 9 after intravenous injection. The troponin-T promoter restricted gene expression largely to the heart for all AAV serotypes tested. AAV1, 6, 8, and 9 provided early-onset gene expression that approached steady-state levels within 2 weeks. Gene expression was highest with AAV9, which required only 3.15×10(11) viral genomes per mouse to achieve an 84% transduction rate. AAV9-mediated, cardiac-selective gene expression elevated EcSOD enzyme activity in heart by 5.6-fold (P=0.015), which helped protect the heart against both acute MI and subsequent LV remodeling. In acute MI, infarct size in EcSOD-treated mice was reduced by 40% compared with controls (P=0.035). In addition, we found that cardiac-selective expression of EcSOD increased myocardial capillary fractional area and decreased neutrophil infiltration after MI. In a separate study of LV remodeling, after a 60-minute coronary occlusion, cardiac magnetic resonance imaging revealed that LV volumes at days 7 and 28 post-MI were significantly lower in the EcSOD group compared with controls. CONCLUSIONS Cardiac-selective expression of EcSOD from the cardiac troponin-T promoter after systemic administration of AAV9 provides significant protection against both acute MI and LV remodeling.
Collapse
Affiliation(s)
- Prasad R Konkalmatt
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | | | | | | | | | | |
Collapse
|
18
|
Steele DF, Dou Y, Fedida D. Biolistic transfection of freshly isolated adult ventricular myocytes. Methods Mol Biol 2013; 940:145-55. [PMID: 23104340 DOI: 10.1007/978-1-62703-110-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transfection of mammalian cells has long been an extremely powerful approach for the study of the effects of specific gene expression on cell function. Until recently, however, this approach has been unavailable for the study of gene function in adult cardiac myocytes. Here, an adaptation of the biolistic method to the transfection of adult cardiac myocytes is described. DNA is precipitated onto gold particles in the absence of PVP and the particles are biolistically delivered to freshly isolated adult rat cardiomyocytes via a Bio-Rad Helios System gene gun. The myocytes are cultured in the absence of bovine serum albumin and expression of the introduced genes, in phenotypically intact myocytes, is robust within 12-24 h.
Collapse
Affiliation(s)
- David F Steele
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
19
|
Wang J, Wang Q, Watson LJ, Jones SP, Epstein PN. Cardiac overexpression of 8-oxoguanine DNA glycosylase 1 protects mitochondrial DNA and reduces cardiac fibrosis following transaortic constriction. Am J Physiol Heart Circ Physiol 2011; 301:H2073-80. [PMID: 21873502 DOI: 10.1152/ajpheart.00157.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiac failure is associated with increased levels of oxidized DNA, especially mitochondrial (mtDNA). It is not known if oxidized mtDNA contributes to cardiac dysfunction. To test if protection of mtDNA can reduce cardiac injury, we produced transgenic mice with cardiomyocyte-specific overexpression of the DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1) isoform 2a. In one line of mice, the transgene increased OGG1 activity by 115% in mitochondria and by 28% in nuclei. OGG1 transgenic mice demonstrated significantly lower cardiac mitochondrial levels of the DNA guanine oxidation product 7,8-dihydro-8-oxoguanine (8-oxo-dG) under basal conditions, after doxorubicin administration, or after transaortic constriction (TAC), but the transgene produced no detectable reduction in nuclear 8-oxo-dG content. OGG1 mice were tested for protection from the cardiac effects of TAC 13 wk after surgery. Compared with FVB-TAC mice, hearts from OGG1-TAC mice had lower levels of β-myosin heavy chain mRNA but they did not display significant differences in the ratio of heart weight to tibia length or protection of cardiac function measured by echocardiography. The principle benefit of OGG1 overexpression was a significant decrease in TAC-induced cardiac fibrosis. This protection was indicated by reduced Sirius red staining on OGG1 cardiac sections and by significantly decreased induction of collagen 1 and 3 mRNA expression in OGG1 hearts after TAC surgery. These results provide a new model to assess the damaging cardiac effects of 8-oxo-dG formation and suggest that increased repair of 8-oxo-dG in mtDNA decreases cardiac pathology.
Collapse
Affiliation(s)
- Jianxun Wang
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
20
|
AAV vectors for cardiac gene transfer: experimental tools and clinical opportunities. Mol Ther 2011; 19:1582-90. [PMID: 21792180 DOI: 10.1038/mt.2011.124] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Since the first demonstration of in vivo gene transfer into myocardium there have been a series of advancements that have driven the evolution of cardiac gene delivery from an experimental tool into a therapy currently at the threshold of becoming a viable clinical option. Innovative methods have been established to address practical challenges related to tissue-type specificity, choice of delivery vehicle, potency of the delivered material, and delivery route. Most importantly for therapeutic purposes, these strategies are being thoroughly tested to ensure safety of the delivery system and the delivered genetic material. This review focuses on the development of recombinant adeno-associated virus (rAAV) as one of the most valuable cardiac gene transfer agents available today. Various forms of rAAV have been used to deliver "pre-event" cardiac protection and to temper the severity of hypertrophy, cardiac ischemia, or infarct size. Adeno-associated virus (AAV) vectors have also been functional delivery tools for cardiac gene expression knockdown studies and successfully improving the cardiac aspects of several metabolic and neuromuscular diseases. Viral capsid manipulations along with the development of tissue-specific and regulated promoters have greatly increased the utility of rAAV-mediated gene transfer. Important clinical studies are currently underway to evaluate AAV-based cardiac gene delivery in humans.
Collapse
|
21
|
Prasad KMR, Smith RS, Xu Y, French BA. A single direct injection into the left ventricular wall of an adeno-associated virus 9 (AAV9) vector expressing extracellular superoxide dismutase from the cardiac troponin-T promoter protects mice against myocardial infarction. J Gene Med 2011; 13:333-41. [PMID: 21674736 PMCID: PMC3984922 DOI: 10.1002/jgm.1576] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Localized administration of a highly efficient gene delivery system in combination with a cardiac-selective promoter may provide a favorable biosafety profile in clinical applications such as coronary artery bypass graft surgery, where regions of myocardium can be readily injected to protect them against the potential threat of future ischemic events. METHODS Adeno-associated virus (AAV) vectors expressing luciferase or enhanced green fluorescent protein (eGFP) packaged into AAV serotypes 1, 2, 6, 8 and 9 were injected into the left ventricular (LV) wall of adult mice to determine the time course, magnitude and distribution of gene expression. An AAV9 vector expressing extracellular superoxide dismutase (EcSOD) from the cardiac troponin T (cTnT) promoter was then directly injected into the LV wall of adult mice. Myocardial infarction was induced 4 weeks after injection and infarct size was determined by triphenyltetrazolium chloride and phthalo blue staining. RESULTS Serotypes AAV 9, 8, 1 and 6 provided early onset of gene expression in the heart with minimal extra-cardiac gene expression. AAV9 provided the highest magnitude of gene expression. Immunostaining for eGFP showed expression spanning the anterior to posterior walls from the mid ventricle to the apex. A single direct injection of the AAV9 vector bearing EcSOD ( n = 5) decreased the mean infarct size by 50% compared to the eGFP control group (n = 8) (44 ± 7% versus 22 ± 5%; p = 0.04). CONCLUSIONS AAV serotype 9 is highly efficient for cardiac gene delivery, as evidenced by early onset and high-level gene expression. AAV9-mediated, cardiac selective overexpression of EcSOD from the cTnT promoter significantly reduced infarct size in mice.
Collapse
Affiliation(s)
- Konkal-Matt R Prasad
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | | | | | | |
Collapse
|
22
|
Sen S, Merchan J, Dean J, Ii M, Gavin M, Silver M, Tkebuchava T, Yoon YS, Rasko JEJ, Aikawa R. Autologous transplantation of endothelial progenitor cells genetically modified by adeno-associated viral vector delivering insulin-like growth factor-1 gene after myocardial infarction. Hum Gene Ther 2011; 21:1327-34. [PMID: 20497036 DOI: 10.1089/hum.2010.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The regenerative potential of bone marrow-derived endothelial progenitor cells (EPCs) has been adapted for the treatment of myocardial and limb ischemia via ex vivo expansion. We sought to enhance EPC function by the efficient genetic modification of EPCs in a rat model of myocardial infarction. Peripheral blood EPCs were expanded and transduced, using adeno-associated virus (AAV). AAV-mediated EPC transduction efficacy was 23 ± 1.2%, which was improved by 4.0- to 7.2-fold after pretreatment with the tyrosine kinase inhibitor genistein. Adult rats (n = 7 in each group) underwent myocardial infarction by left anterior descending coronary artery occlusion, and received autologous EPCs transduced by AAV-IGF-1 or AAV-lacZ into the periinfarct area. Echocardiography demonstrated that cardiac function in the IGF-1-EPC group was significantly improved compared with the lacZ-EPC control group 12 weeks after myocardial infarction. In addition, IGF-1-expressing EPCs led to reduced cardiac apoptosis, increased cardiomyocyte proliferation, and increased numbers of capillaries in the periinfarct area. AAV expression was limited to the targeted heart region only. Pretreatment with genistein markedly improved AAV transduction of EPCs. IGF-1-expressing EPCs exhibit favorable cell-protective effects with tissue-limited expression in rat heart postinfarction.
Collapse
Affiliation(s)
- Sabyasachi Sen
- Cardiovascular Research, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Prasad KMR, Xu Y, Yang Z, Acton ST, French BA. Robust cardiomyocyte-specific gene expression following systemic injection of AAV: in vivo gene delivery follows a Poisson distribution. Gene Ther 2010; 18:43-52. [PMID: 20703310 PMCID: PMC2988989 DOI: 10.1038/gt.2010.105] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Newly-isolated serotypes of AAV readily cross the endothelial barrier to provide efficient transgene delivery throughout the body. However, tissue-specific expression is preferred in most experimental studies and gene therapy protocols. Previous efforts to restrict gene expression to the myocardium often relied on direct injection into heart muscle or intracoronary perfusion. Here, we report an AAV vector system employing the cardiac troponin T promoter (cTnT). Using luciferase and eGFP, the efficiency and specificity of cardiac reporter gene expression using AAV serotype capsids: AAV-1, 2, 6, 8 or 9 were tested after systemic administration to 1 week old mice. Luciferase assays showed that the cTnT promoter worked in combination with each of the AAV serotype capsids to provide cardiomyocyte-specific gene expression, but AAV-9 followed closely by AAV-8 was the most efficient. AAV9-mediated gene expression from the cTnT promoter was 640-fold greater in the heart compared to the next highest tissue (liver). eGFP fluorescence indicated a transduction efficiency of 96% using AAV-9 at a dose of only 3.15×1010 viral particles per mouse. Moreover, the intensity of cardiomyocyte eGFP fluorescence measured on a cell-by-cell basis revealed that AAV-mediated gene expression in the heart can be modeled as a Poisson distribution; requiring an average of nearly two vector genomes per cell to attain an 85% transduction efficiency.
Collapse
Affiliation(s)
- K-M R Prasad
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | | | | | | | | |
Collapse
|
24
|
Delivery of gene and cellular therapies for heart disease. J Cardiovasc Transl Res 2010; 3:417-26. [PMID: 20559776 DOI: 10.1007/s12265-010-9190-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/22/2010] [Indexed: 12/30/2022]
Abstract
Although there has been considerable interest in the utilization of gene and cellular therapy for heart disease in recent years, there remain critical questions prior to widespread promotion of therapy, and key among these issues is the delivery method used for both gene therapy and cellular therapy. Much of the failure of gene and cellular therapy can be explained by the biological therapy itself; however, certainly there is a critical role played by the delivery technique, in particular, those that have been adapted from routine clinical use such as intravenous and intracoronary injection. Development of novel techniques to deliver gene and cellular therapy has ensued with some preclinical and even clinical success, though questions regarding safety, invasiveness, and repeatability remain. Here, we review techniques for gene and cellular therapy delivery, both existing and adapted techniques, and novel techniques that have emerged recently at promoting improved efficacy of therapy without the cost of systemic distribution. We also highlight key issues that need to be addressed to improve the chances of success of delivery techniques to enhance therapeutic benefit.
Collapse
|
25
|
Dou Y, Balse E, Dehghani Zadeh A, Wang T, Goonasekara CL, Noble GP, Eldstrom J, Steele DF, Hatem SN, Fedida D. Normal targeting of a tagged Kv1.5 channel acutely transfected into fresh adult cardiac myocytes by a biolistic method. Am J Physiol Cell Physiol 2010; 298:C1343-52. [PMID: 20357183 DOI: 10.1152/ajpcell.00005.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transfection of cardiac myocytes is difficult, and so most of the data regarding the regulation of trafficking and targeting of cardiac ion channels have been obtained using heterologous expression systems. Here we apply the fast biolistic transfection procedure to adult cardiomyocytes to show that biolistically introduced exogenous voltage-gated potassium channel, Kv1.5, is functional and, like endogenous Kv1.5, localizes to the intercalated disc, where it is expressed at the surface of that structure. Transfection efficiency averages 28.2 +/- 5.7% of surviving myocytes at 24 h postbombardment. Ventricular myocytes transfected with a tagged Kv1.5 exhibit an increased sustained current component that is approximately 40% sensitive to 100 microM 4-aminopyridine and which is absent in myocytes transfected with a fluorescent protein-encoding construct alone. Kv1.5 deletion mutations known to reduce the surface expression of the channel in heterologous cells similarly reduce the surface expression in transfected ventricular myocytes, although targeting to the intercalated disc per se is generally unaffected by both NH(2)- and COOH-terminal deletion mutants. Expressed current levels in wild-type Kv1.5, Kv1.5DeltaSH3(1), Kv1.5DeltaN209, and Kv1.5DeltaN135 mutants were well correlated with apparent surface expression of the channel at the intercalated disc. Our results conclusively demonstrate functionality of channels present at the intercalated disc in native myocytes and identify determinants of trafficking and surface targeting in intact cells. Clearly, biolistic transfection of adult cardiac myocytes will be a valuable method to study the regulation of surface expression of channels in their native environment.
Collapse
Affiliation(s)
- Ying Dou
- Department of Anesthesiology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dean J, Plante J, Huggins GS, Snyder RO, Aikawa R. Role of cyclic AMP-dependent kinase response element-binding protein in recombinant adeno-associated virus-mediated transduction of heart muscle cells. Hum Gene Ther 2009; 20:1005-12. [PMID: 19499975 DOI: 10.1089/hum.2009.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors represent a promising approach to gene delivery for clinical use. Published data indicate that rAAV vector genomes persist in vivo as episomal chromatin in the skeletal muscle of nonhuman primates. In this study, we assessed the interconnection between the transcription factor cyclic AMP response element-binding protein (CREB) and recombinant AAV serotype 2 vector genomes after transduction in vitro and in vivo. rAAV-mediated myocyte transduction was potently blocked in the hearts of mice expressing CREB-S133A, which is a CREB-S133A dominant-negative mutant. Isoproterenol, a strong CREB activator, prominently increased rAAV transduction and the increase was abrogated by silencing the CREB gene with small interfering RNA. In addition, rAAV infection of muscle cells mildly but significantly induced CREB protein phosphorylation at serine-133, and was capable of stimulating CREB-dependent transcription from a reporter plasmid. Using chromatin immunoprecipitation and immunoblotting assays, both CREB and p300 were found to physically associate with two different rAAV genomes. Accordingly, CREB/p300 appears to have a role in rAAV transduction to establish active vector transcription in heart muscle cells.
Collapse
Affiliation(s)
- Jarrod Dean
- Department of Cardiovascular Research, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | | | | | | | | |
Collapse
|
27
|
Dobrucki LW, Tsutsumi Y, Kalinowski L, Dean J, Gavin M, Sen S, Mendizabal M, Sinusas AJ, Aikawa R. Analysis of angiogenesis induced by local IGF-1 expression after myocardial infarction using microSPECT-CT imaging. J Mol Cell Cardiol 2009; 48:1071-9. [PMID: 19850049 DOI: 10.1016/j.yjmcc.2009.10.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/12/2009] [Accepted: 10/12/2009] [Indexed: 12/27/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) has been found to exert favorable effects on angiogenesis in prior animal studies. This study explored the long-term effect of IGF-1 on angiogenesis using microSPECT-CT in infarcted rat hearts after delivering human IGF-1 gene by adeno-associated virus (AAV). Myocardial infarction (MI) was induced in Sprague-Dawley rats by ligation of the proximal anterior coronary artery and a total of 10(11) AAV-CMV-lacZ (control) or IGF-1 vectors were injected around the peri-infarct area. IGF-1 expression by AAV stably transduced heart muscle for up to 16 weeks post-MI and immunohistochemistry revealed a remarkable increase in capillary density. A (99m)Tc-labeled RGD peptide (NC100692, GE Healthcare) was used to assess temporal and regional alpha(v) integrin activation. Rats were injected with NC100692 followed by (201)Tl chloride and in vivo microSPECT-CT imaging was performed. After imaging, hearts were excised and cut for quantitative gamma-well counting (GWC). NC100692 retention was significantly increased in hypoperfused regions of both lacZ and IGF-1 rats at 4 and 16 weeks post-MI. Significantly higher activation of alpha(v) integrin was observed in IGF-1 rats at 4 weeks after treatment compared with control group, although the activation was lower in the IGF-1 group at 16 weeks. Local IGF-1 gene delivery by AAV can render a sustained transduction and improve cardiac function post-MI. IGF-1 expression contributes to enhanced alpha(v) integrin activation which is linked to angiogenesis. MicroSPECT-CT imaging with (99m)Tc-NC100692 and quantitative GWC successfully assessed differences in alpha(v) integrin activation between IGF-1-treated and control animals post-MI.
Collapse
Affiliation(s)
- Lawrence W Dobrucki
- Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8017, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pacak CA, Sakai Y, Thattaliyath BD, Mah CS, Byrne BJ. Tissue specific promoters improve specificity of AAV9 mediated transgene expression following intra-vascular gene delivery in neonatal mice. GENETIC VACCINES AND THERAPY 2008; 6:13. [PMID: 18811960 PMCID: PMC2557000 DOI: 10.1186/1479-0556-6-13] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 09/23/2008] [Indexed: 01/11/2023]
Abstract
The AAV9 capsid displays a high natural affinity for the heart following a single intravenous (IV) administration in both newborn and adult mice. It also results in substantial albeit relatively lower expression levels in many other tissues. To increase the overall safety of this gene delivery method we sought to identify which one of a group of promoters is able to confer the highest level of cardiac specific expression and concurrently, which is able to provide a broad biodistribution of expression across both cardiac and skeletal muscle. The in vivo behavior of five different promoters was compared: CMV, desmin (Des), alpha-myosin heavy chain (α-MHC), myosin light chain 2 (MLC-2) and cardiac troponin C (cTnC). Following IV administration to newborn mice, LacZ expression was measured by enzyme activity assays. Results showed that rAAV2/9-mediated gene delivery using the α-MHC promoter is effective for focal transgene expression in the heart and the Des promoter is highly suitable for achieving gene expression in cardiac and skeletal muscle following systemic vector administration. Importantly, these promoters provide an added layer of control over transgene activity following systemic gene delivery.
Collapse
Affiliation(s)
- Christina A Pacak
- Powell Gene Therapy Center, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0266, USA
| | - Yoshihisa Sakai
- Powell Gene Therapy Center, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0266, USA
| | - Bijoy D Thattaliyath
- Powell Gene Therapy Center, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0266, USA
| | - Cathryn S Mah
- Powell Gene Therapy Center, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0266, USA
| | - Barry J Byrne
- Powell Gene Therapy Center, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0266, USA
| |
Collapse
|
29
|
Müller OJ, Ksienzyk J, Katus HA. Gene-therapy delivery strategies in cardiology. Future Cardiol 2008; 4:135-50. [DOI: 10.2217/14796678.4.2.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Clinical gene-therapy approaches in cardiology have not fulfilled their promise in randomized, controlled trials, so far, despite striking effects in preclinical models. Lack of clinical success appears not to be related to an unexpected low potency of the therapeutic factors itself in humans, but has rather been attributed to limitations of the vector systems used to transfer the DNA, as well as application modes of the vector itself. Therefore, novel delivery strategies are required with increased efficiency and increased specificity. Recent improvements of vectors using targeting approaches in addition to the development of novel application strategies for cardiac or vascular gene transfer will improve gene delivery in future clinical approaches.
Collapse
Affiliation(s)
- Oliver J Müller
- University Hospital Heidelberg, Internal Medicine III, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Jan Ksienzyk
- University Hospital Heidelberg, Internal Medicine III, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hugo A Katus
- University Hospital Heidelberg, Internal Medicine III, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
30
|
Van Vliet KM, Blouin V, Brument N, Agbandje-McKenna M, Snyder RO. The role of the adeno-associated virus capsid in gene transfer. Methods Mol Biol 2008; 437:51-91. [PMID: 18369962 PMCID: PMC7120696 DOI: 10.1007/978-1-59745-210-6_2] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adeno-associated virus (AAV) is one of the most promising viral gene transfer vectors that has been shown to effect long-term gene expression and disease correction with low toxicity in animal models, and is well tolerated in human clinical trials. The surface of the AAV capsid is an essential component that is involved in cell binding, internalization, and trafficking within the targeted cell. Prior to developing a gene therapy strategy that utilizes AAV, the serotype should be carefully considered since each capsid exhibits a unique tissue tropism and transduction efficiency. Several approaches have been undertaken in an effort to target AAV vectors to specific cell types, including utilizing natural serotypes that target a desired cellular receptor, producing pseudotyped vectors, and engineering chimeric and mosaic AAV capsids. These capsid modifications are being incorporated into vector production and purification methods that provide for the ability to scale-up the manufacturing process to support human clinical trials. Protocols for small-scale and large-scale production of AAV, as well as assays to characterize the final vector product, are presented here. The structures of AAV2, AAV4, and AAV5 have been solved by X-ray crystallography or cryo-electron microscopy (cryo-EM), and provide a basis for rational vector design in developing customized capsids for specific targeting of AAV vectors. The capsid of AAV has been shown to be remarkably stable, which is a desirable characteristic for a gene therapy vector; however, recently it has been shown that the AAV serotypes exhibit differential susceptibility to proteases. The capsid fragmentation pattern when exposed to various proteases, as well as the susceptibility of the serotypes to a series of proteases, provides a unique fingerprint for each serotype that can be used for capsid identity validation. In addition to serotype identification, protease susceptibility can also be utilized to study dynamic structural changes that must occur for the AAV capsid to perform its various functions during the virus life cycle. The use of proteases for structural studies in solution complements the crystal structural studies of the virus. A generic protocol based on proteolysis for AAV serotype identification is provided here.
Collapse
Affiliation(s)
- Kim M Van Vliet
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
31
|
Spira D, Stypmann J, Tobin DJ, Petermann I, Mayer C, Hagemann S, Vasiljeva O, Günther T, Schüle R, Peters C, Reinheckel T. Cell type-specific functions of the lysosomal protease cathepsin L in the heart. J Biol Chem 2007; 282:37045-52. [PMID: 17942402 DOI: 10.1074/jbc.m703447200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficiency of the lysosomal cysteine protease cathepsin L (Ctsl) in mice results in a phenotype affecting multiple tissues, including thymus, epidermis, and hair follicles, and in the heart develops as a progressive dilated cardiomyopathy (DCM). To understand the role of Ctsl in the maintenance of regular heart morphology and function, it is critical to determine whether the DCM in Ctsl-/- mice is primarily because of the lack of Ctsl expression and activity in the cardiomyocytes or is caused by the additional extracardiac pathologies. Cardiomyocyte-specific expression of Ctsl in Ctsl-/- mice, using an alpha-myosin heavy chain promoter-Ctsl transgene, results in improved cardiac contraction, normal mRNA expression of atrionatriuretic peptide, normal heart weight, and regular ultrastructure of cardiomyocytes. Epithelial expression of cathepsin L2 (CTSL2) by a K14 promoter-CTSL2-transgene resulted in rescue of the Ctsl-/- hair loss phenotype. In these mice, cardiac atrionatriuretic peptide expression and end systolic heart dimensions were also significantly attenuated. However, cardiac contraction was not improved, and increased heart weight as well as the typical changes in lysosomal ultrastructure of Ctsl-/- hearts persisted. Myocardial fibrosis was detected in all Ctsl-/- mice irrespective of transgene-mediated cardiac Ctsl expression or extracardiac CTSL2 expression. Expression of collagen 1 was not enhanced in Ctsl-/- hearts, but a reduced collagenolytic activity suggests a role for Ctsl in collagen turnover by cardiac fibroblasts. We conclude that the DCM of Ctsl-/- mice is primarily caused by absence of the protease in cardiomyocytes, whereas the complex gross phenotype of Ctsl-deficient mice, i.e. the fur defect, results in additional stress to the heart.
Collapse
Affiliation(s)
- Daniel Spira
- Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gupta M, Sueblinvong V, Gupta MP. The single-strand DNA/RNA-binding protein, Purbeta, regulates serum response factor (SRF)-mediated cardiac muscle gene expression. Can J Physiol Pharmacol 2007; 85:349-59. [PMID: 17612644 DOI: 10.1139/y07-009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Single-strand DNA-binding proteins, Puralpha and Purbeta, play a role in cell growth and differentiation by modulating both transcriptional and translational controls of gene expression. We have previously characterized binding of Puralpha and Purbeta proteins to a purine-rich negative regulatory (PNR) element of the rat cardiac alpha-myosin heavy chain (MHC) gene that controls cardiac muscle specificity. In this study we investigated the role of upstream sequences of the alpha-MHC promoter in Purbeta-mediated gene repression. In the transient transfection analysis overexpression of Purbeta revealed a negative regulatory effect on serum response factor (SRF)-dependent alpha-MHC and alpha-skeletal actin expression in muscle cell background. Contrary, in nonmuscle cells, Purbeta showed no repressive effect. The results obtained from gel-shift assays demonstrated a sequence specific competitive binding of Purbeta to the minus strand of the SRF-binding, CArG box sequences of different muscle genes, but not to the SRF-binding, SRE sequences of the c-fos gene. These element-specific associations of Purbeta with muscle CArG boxes may, in part, explain why muscle gene expression is downregulated in disease states in which Purbeta levels are elevated. This data also provide a mechanistic distinction between muscle CArG boxes and nonmuscle serum response element (SRE) sequences in terms of their affinity to bind to SRF and their ability to regulate cell-specific gene expression.
Collapse
Affiliation(s)
- Madhu Gupta
- The Heart Institute for Children, Hope Children's Hospital, 11800 Southwest Highway, Palos Heights, IL 60463, and the Department of Pediatrics, Rush University Medical Center, Chicago, IL 60602, USA.
| | | | | |
Collapse
|
33
|
Gupta MP. Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. J Mol Cell Cardiol 2007; 43:388-403. [PMID: 17720186 PMCID: PMC2701247 DOI: 10.1016/j.yjmcc.2007.07.045] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 06/25/2007] [Accepted: 07/10/2007] [Indexed: 12/18/2022]
Abstract
Myosin is a molecular motor, which interacts with actin to convert the energy from ATP hydrolysis into mechanical work. In cardiac myocytes, two myosin isoforms are expressed and their relative distribution changes in different developmental and pathophysiologic conditions of the heart. It has been realized for a long time that a shift in myosin isoforms plays a major role in regulating myocardial contractile activity. With the recent evidence implicating that alteration in myosin isoform ratio may be eventually beneficial for the treatment of a stressed heart, a new interest has developed to find out ways of controlling the myosin isoform shift. This article reviews the published data describing the role of myosin isoforms in the heart and highlighting the importance of various factors shown to influence myosin isofrom shift during physiology and disease states of the heart.
Collapse
Affiliation(s)
- Mahesh P Gupta
- Department of Surgery, Basic Science Division, MC5040, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
34
|
Freire G, Ocampo C, Ilbawi N, Griffin AJ, Gupta M. Overt expression of AP-1 reduces alpha myosin heavy chain expression and contributes to heart failure from chronic volume overload. J Mol Cell Cardiol 2007; 43:465-78. [PMID: 17720185 DOI: 10.1016/j.yjmcc.2007.07.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/26/2007] [Accepted: 07/11/2007] [Indexed: 11/22/2022]
Abstract
Reduced expression of alpha-MHC plays a significant role in cardiac contractile dysfunction from hemodynamic overload. Previously, Pur proteins and YY1 have been shown to play a role in alpha-MHC repression during heart failure induced by pressure overload and by spontaneous hypertension, respectively. This was not observed in volume-overload-induced heart failure, suggesting additional regulatory mechanisms for alpha-MHC repression. The present study was performed to identify volume overload responsive transcription factors involved in alpha-MHC gene regulation. DNA binding activity of several transcription factors was evaluated in a functionally characterized rat model of heart failure induced by aorto-caval shunt. After 10 weeks of shunt, severe LV dilatation and reduced LV function were accompanied by increased expression of ANF and beta-MHC, and decreased expression of alpha-MHC. This was associated with dramatic (10-fold) activation of AP-1 together with increased expression of c-fos and c-jun. AP-1 activation was not observed following 4 weeks of shunt when cardiac function was preserved. In cultured cardiomyocytes, induction of AP-1 by PMA attenuated alpha-MHC mRNA by 60%. Transient transfection assays mapped PMA responsive sequence to -582 to -588 bp of alpha-MHC promoter. Deletion or mutation of these nucleotides had minimal effect on basal promoter activity but played a dominant role in PMA-mediated repression of alpha-MHC promoter activity. Over-expression of c-fos and c-jun in cardiomyocytes inhibited alpha-MHC promoter activity in a concentration dependent manner. Data suggest a repressive role of AP-1 in alpha-MHC expression and its possible involvement in the transition from compensatory hypertrophy to heart failure in chronic volume overload.
Collapse
Affiliation(s)
- Grace Freire
- The Heart Institute for Children, Advocate Hope Children's Hospital, Oak Lawn, IL, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Gene transfer for the therapeutic modulation of cardiovascular diseases is an expanding area of gene therapy. During the last decade several approaches have been designed for the treatment of hyperlipidemias, post-angioplasty restenosis, hypertension, and heart failure, and for protection of vascular by-pass grafts and promotion of therapeutic angiogenesis. Adenoviruses (Ads) and adeno-associated viruses (AAVs) are currently the most efficient vectors for delivering therapeutic genes into the cardiovascular system. Gene transfer using local gene delivery techniques have been shown to be superior to less-targeted intra-arterial or intra-venous applications. To date, no gene therapy drugs have been approved for clinical use in cardiovascular applications. In preclinical studies of therapeutic angiogenesis, various growth factors such as vascular endothelial growth factors (VEGFs) and fibroblast growth factors (FGFs), have shown positive results. Gene therapy also appears to have potential clinical applications in improving the patency of vascular grafts and in treating heart failure. Post-angioplasty restenosis, hypertension, and hyperlipidemias (excluding homozygotic familial hypercholesterolemia) can usually be managed satisfactorily by conventional approaches, and are therefore less favored areas for gene therapy. The development of technologies that can ensure long-term, targeted, and regulated gene transfer, and a careful selection of target patient populations, will be very important for the progress of cardiovascular gene therapy in clinical applications.
Collapse
Affiliation(s)
- Tuomas T Rissanen
- 1Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, Kuopio University, Kuopio, Finland
| | | |
Collapse
|
36
|
Wang Y, Huang F, Cai R, Qian C, Liu X. Targeting strategies for adeno-associated viral vector. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0260-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Prasad KMR, Xu Y, Yang Z, Toufektsian MC, Berr SS, French BA. Topoisomerase Inhibition Accelerates Gene Expression after Adeno-associated Virus-mediated Gene Transfer to the Mammalian Heart. Mol Ther 2007; 15:764-771. [PMID: 28192703 DOI: 10.1038/sj.mt.6300071] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 10/26/2006] [Indexed: 01/29/2023] Open
Abstract
Utility of adeno-associated virus 2 (AAV2) vectors for cardiac gene therapy is limited by the prolonged lag phase before maximal gene expression. Topoisomerase inhibition can induce AAV2-mediated gene expression in vivo, but with variable success in different tissues. In this study, we demonstrate that topoisomerase inhibition can accelerate AAV2-mediated gene expression in the mouse heart. We used an AAV2 vector expressing firefly luciferase and monitored expression kinetics using non-invasive bioluminescence imaging. In the group receiving vector alone, cardiac luciferase activity was evident from week 2 onward and increased progressively to reach a steady plateau by 9 weeks postinjection. In the group receiving vector and camptothecine (CPT), luciferase expression was evident from days 2 to 4 onward and increased rapidly to reach a steady plateau by 3-4 weeks postinjection, nearly three times faster than in the absence of CPT (P<0.05). Southern blot analysis of AAV2 genomes in cardiac tissue showed rapid conversion of the AAV2 genome from its single-stranded to double-stranded form in CPT-treated mice. Non-invasive determinations of luciferase expression correlated well with in vitro luciferase assays. Direct injection of the AAV2 vector and long-term luciferase gene expression had no detectable effects on normal cardiac function as assessed by magnetic resonance imaging.
Collapse
Affiliation(s)
- Konkal-Matt R Prasad
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Yaqin Xu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Zequan Yang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | - Stuart S Berr
- Department of Radiology, University of Virginia, Charlottesville, Virginia, USA
| | - Brent A French
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA; Department of Radiology, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
38
|
Xu P, Li SY, Li Q, Ren J, Van Kirk EA, Murdoch WJ, Radosz M, Shen Y. Biodegradable cationic polyester as an efficient carrier for gene delivery to neonatal cardiomyocytes. Biotechnol Bioeng 2006; 95:893-903. [PMID: 17001632 DOI: 10.1002/bit.21036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Viral-mediated gene delivery has been explored for the treatment and protection of cardiomyocytes, but so far there is only one report using cationic polymer for gene delivery to cardiomyocytes in spite of many advantages of polymer-mediated gene delivery. In this study, a cationic poly(beta-amino ester) (PDMA) with a degradable backbone and cleavable side chains was synthesized by Michael addition reaction. The toxicity of PDMA to neonatal mouse cardiomyocytes (NMCMs) was significantly lower than that of polyethyleneimine (PEI). PDMA formed stable polyplexes with pEGFP. The dissociation of the polyplexes could be triggered by PDMA degradation, and the dissociation time was tunable via the polymer/pEGFP ratio. In vitro transfection showed that PDMA was an effective and low toxic gene delivery carrier for NMCMs. The PDMA/pEGFP polyplexes transfected EGFP gene to NMCMs with about 28% efficiency and caused little death. In contrast, a significant portion of cardiomyocytes cultured with PEI/pEGFP died.
Collapse
Affiliation(s)
- Peisheng Xu
- Soft Materials Laboratory, Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kusano K, Tsutsumi Y, Dean J, Gavin M, Ma H, Silver M, Thorne T, Zhu Y, Losordo DW, Aikawa R. Long-term stable expression of human growth hormone by rAAV promotes myocardial protection post-myocardial infarction. J Mol Cell Cardiol 2006; 42:390-9. [PMID: 17174322 DOI: 10.1016/j.yjmcc.2006.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 10/12/2006] [Accepted: 10/25/2006] [Indexed: 11/24/2022]
Abstract
Recombinant adeno-associated virus (rAAV)-based gene therapy represents a promising approach for the treatment of heart diseases. It has been shown that growth hormone (GH) exerts a favorable effect on cardiovascular function in clinical and animal studies. This study explores a chronic stage after myocardial infarction and the potential therapeutic effects of delivering a human GH gene by rAAV following coronary artery ligation in Sprague-Dawley rats. rAAV vectors stably transduced heart muscle for up to 22 weeks after myocardial infarction (MI). Overexpression of GH via rAAV vectors significantly improved not only cardiac function but also LV pathologic remodeling was attenuated post-MI compared to the control rAAV-lacZ injected group. rAAV-mediated expression of GH also resulted in a significant induction of several angiogenic genes such as eNOS, VEGF and bFGF in rat hearts. Immunohistochemistry revealed an increase in capillary density and proliferation of cells and a decrease in the number of TUNEL-positive cardiomyocytes in the rAAV-GH group. Based on these data, we conclude that rAAV-mediated GH delivery can render a long-term transduction in the infarcted heart and improve cardiac function through promoting angiogenesis and proliferation of cells and protecting cardiomyocytes from ischemia-induced apoptosis.
Collapse
Affiliation(s)
- Kengo Kusano
- Cardiovascular Research, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, 736 Cambridge St., Boston, MA 02135, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Controlling Adenoviral Gene Transfer in Heart by Catheter-Based Coronary Perfusion. Gene Ther 2006. [DOI: 10.1016/b978-044452806-3/50005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Kaspar BK, Roth DM, Lai NC, Drumm JD, Erickson DA, McKirnan MD, Hammond HK. Myocardial gene transfer and long-term expression following intracoronary delivery of adeno-associated virus. J Gene Med 2005; 7:316-24. [PMID: 15515115 DOI: 10.1002/jgm.665] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adeno-associated viral vectors (AAV) can direct long-term gene expression in post-mitotic cells. Previous studies have established that long-term cardiac gene transfer results from intramuscular injection into the heart. Cardiac gene transfer after direct intracoronary delivery of AAV in vivo, however, has been minimal in degree, and indirect intracoronary delivery, an approach used in an increasing number of studies, appears to be receiving more attention. To determine the utility of indirect intracoronary gene transfer of AAV, we used aortic and pulmonary artery cross clamping followed by proximal aortic injection of AAV encoding enhanced green fluorescent protein (AAV.EGFP) at 10(11) DNase resistant particles (drp; high-performance liquid chromatography (HPLC)-purified) per rat. Gene expression was quantified by fluorescent microscopy at four time points up to 1 year after vector delivery, revealing 20-32% transmural gene expression in the left ventricle at each time point. Histological analysis revealed little or no inflammatory response and levels of transgene expression were low in liver and undetectable in lung. In subsequent studies in pigs, direct intracoronary delivery into the left circumflex coronary artery of AAV.EGFP (2.64-5.28 x 10(13) drp; HPLC-purified) resulted in gene expression in 3 of 4 pigs 8 weeks following injection with no inflammatory response in the heart. PCR analysis confirmed AAV vector presence in the left circumflex perfusion bed. These data indicate that intracoronary delivery of AAV vector is associated with transgene expression in the heart, providing a means to obtain long-term expression of therapeutic genes.
Collapse
Affiliation(s)
- Brian K Kaspar
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Pachori AS, Melo LG, Zhang L, Loda M, Pratt RE, Dzau VJ. Potential for germ line transmission after intramyocardial gene delivery by adeno-associated virus. Biochem Biophys Res Commun 2004; 313:528-33. [PMID: 14697221 DOI: 10.1016/j.bbrc.2003.11.140] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intramyocardial injection of adeno-associated virus (AAV) has been shown to be an effective strategy for cardiac gene delivery. This approach leads to long-term gene expression in the heart, offering the possibility of chronic gene therapy. However, the long-term safety of this approach with regard to vector bio-distribution and extracardiac transgene expression has not been evaluated. To examine these issues, 8-week-old male Sprague-Dawley rats were injected intramyocardially with either 4x10(11) particles of AAV-2-lacZ or saline at five locations in the anterioposterior apical region of the left ventricle. Animals were sacrificed at 3 and 6 months after gene transfer, tissues were harvested and analyzed for lacZ expression by semi-quantitative RT-PCR and beta-galactosidase activity using X-gal staining. We observed high level of transgene expression in the myocardium at 3 months after gene transfer, which persisted up to 6 months of follow-up. Also, significantly we detected lacZ expression and beta-galactosidase activity in extracardiac tissues such as liver, kidney, and testes at 6 months. More significantly, late transgene expression was detected in cellular elements of the seminiferous tubule, including Sertoli cells and spermatogonia like cells. These data demonstrate the efficacy of AAV-2 delivery for long-term myocardial gene therapy, but raise concerns about the possibility of ectopic transgene expression and germ cell line infection.
Collapse
Affiliation(s)
- Alok S Pachori
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
43
|
Gupta M, Sueblinvong V, Raman J, Jeevanandam V, Gupta MP. Single-stranded DNA-binding proteins PURalpha and PURbeta bind to a purine-rich negative regulatory element of the alpha-myosin heavy chain gene and control transcriptional and translational regulation of the gene expression. Implications in the repression of alpha-myosin heavy chain during heart failure. J Biol Chem 2003; 278:44935-48. [PMID: 12933792 DOI: 10.1074/jbc.m307696200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The alpha-myosin heavy chain is a principal molecule of the thick filament of the sarcomere, expressed primarily in cardiac myocytes. The mechanism for its cardiac-restricted expression is not yet fully understood. We previously identified a purine-rich negative regulatory (PNR) element in the first intron of the gene, which is essential for its cardiac-specific expression (Gupta, M., Zak, R., Libermann, T. A., and Gupta, M. P. (1998) Mol. Cell. Biol. 18, 7243-7258). In this study we cloned and characterized muscle and non-muscle factors that bind to this element. We show that two single-stranded DNA-binding proteins of the PUR family, PURalpha and PURbeta, which are derived from cardiac myocytes, bind to the plus strand of the PNR element. In functional assays, PURalpha and PURbeta repressed alpha-myosin heavy chain (alpha-MHC) gene expression in the presence of upstream regulatory sequences of the gene. However, from HeLa cells an Ets family of protein, Ets-related protein (ERP), binds to double-stranded PNR element. The ERP.PNR complex inhibited the activity of the basal transcription complex from homologous as well as heterologous promoters in a PNR position-independent manner, suggesting that ERP acts as a silencer of alpha-MHC gene expression in non-muscle cells. We also show that PUR proteins are capable of binding to alpha-MHC mRNA and attenuate its translational efficiency. Furthermore, we show robust expression of PUR proteins in failing hearts where alpha-MHC mRNA levels are suppressed. Together, these results reveal that (i) PUR proteins participate in transcriptional as well as translational regulation of alpha-MHC expression in cardiac myocytes and (ii) ERP may be involved in cardiac-restricted expression of the alpha-MHC gene by preventing its expression in non-muscle cells.
Collapse
Affiliation(s)
- Madhu Gupta
- Hope Children's Hospital, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
44
|
Bicknell KA, Surry EL, Brooks G. Targeting the cell cycle machinery for the treatment of cardiovascular disease. J Pharm Pharmacol 2003; 55:571-91. [PMID: 12831500 DOI: 10.1211/002235703765344487] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cardiovascular disease represents a major clinical problem affecting a significant proportion of the world's population and remains the main cause of death in the UK. The majority of therapies currently available for the treatment of cardiovascular disease do not cure the problem but merely treat the symptoms. Furthermore, many cardioactive drugs have serious side effects and have narrow therapeutic windows that can limit their usefulness in the clinic. Thus, the development of more selective and highly effective therapeutic strategies that could cure specific cardiovascular diseases would be of enormous benefit both to the patient and to those countries where healthcare systems are responsible for an increasing number of patients. In this review, we discuss the evidence that suggests that targeting the cell cycle machinery in cardiovascular cells provides a novel strategy for the treatment of certain cardiovascular diseases. Those cell cycle molecules that are important for regulating terminal differentiation of cardiac myocytes and whether they can be targeted to reinitiate cell division and myocardial repair will be discussed as will the molecules that control vascular smooth muscle cell (VSMC) and endothelial cell proliferation in disorders such as atherosclerosis and restenosis. The main approaches currently used to target the cell cycle machinery in cardiovascular disease have employed gene therapy techniques. We will overview the different methods and routes of gene delivery to the cardiovascular system and describe possible future drug therapies for these disorders. Although the majority of the published data comes from animal studies, there are several instances where potential therapies have moved into the clinical setting with promising results.
Collapse
Affiliation(s)
- Katrina A Bicknell
- Cardiovascular Research Group, School of Animal and Microbial Sciences, The University of Reading, PO Box 228, Whiteknights, Reading, Berkshire, RG6 6AJ, UK
| | | | | |
Collapse
|
45
|
|
46
|
Nicklin SA, Baker AH. Development of targeted viral vectors for cardiovascular gene therapy. GENETIC ENGINEERING 2003; 25:15-49. [PMID: 15260232 DOI: 10.1007/978-1-4615-0073-5_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Stuart A Nicklin
- British Heart Foundation Blood Pressure Group, Division of Cardiovascular and Medical Sciences, University of Glasgow, Western Infirmary, Glasgow G11 6NT, UK
| | | |
Collapse
|