1
|
Eweje F, Ibrahim V, Shajii A, Walsh ML, Ahmad K, Alrefai A, Miyasato D, Davis JR, Ham H, Li K, Roehrl M, Haller CA, Liu DR, Chen J, Chaikof EL. Self-assembling protein nanoparticles for cytosolic delivery of nucleic acids and proteins. Nat Biotechnol 2025:10.1038/s41587-025-02664-2. [PMID: 40374955 DOI: 10.1038/s41587-025-02664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 04/01/2025] [Indexed: 05/18/2025]
Abstract
Intracellular delivery of biomacromolecules is hampered by low efficiency and cytotoxicity. Here we report the development of elastin-based nanoparticles for therapeutic delivery (ENTER), a recombinant elastin-like polypeptide (ELP)-based delivery system for effective cytosolic delivery of biomacromolecules in vitro and in vivo. Through iterative design, we developed fourth-generation ELPs fused to cationic endosomal escape peptides (EEPs) that self-assemble into pH-responsive micellar nanoparticles and enable cytosolic entry of cargo following endocytic uptake. In silico screening of α-helical peptide libraries led to the discovery of an EEP (EEP13) with 48% improved protein delivery efficiency versus a benchmark peptide. Our lead ELP-EEP13 showed similar or superior performance compared to lipid-based transfection reagents in the delivery of mRNA-encoded, DNA-encoded and protein-form Cre recombinase and CRISPR gene editors as well as short interfering RNAs to multiple cell lines and primary cell types. Intranasal administration of ELP-EEP13 combined with Cre protein achieved efficient editing of lung epithelial cells in reporter mice.
Collapse
Affiliation(s)
- Feyisayo Eweje
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT MD-PhD Program, Boston, MA, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Vanessa Ibrahim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aram Shajii
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michelle L Walsh
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT MD-PhD Program, Boston, MA, USA
| | - Kiran Ahmad
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Assma Alrefai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dominie Miyasato
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jessie R Davis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hyunok Ham
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Kaicheng Li
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Michael Roehrl
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
2
|
Nyame K, Xiong J, Alsohybe HN, de Jong APH, Peña IV, de Miguel R, Brummelkamp TR, Hartmann G, Nijman SMB, Raaben M, Simcox JA, Blomen VA, Abu-Remaileh M. PLA2G15 is a BMP hydrolase and its targeting ameliorates lysosomal disease. Nature 2025:10.1038/s41586-025-08942-y. [PMID: 40335701 DOI: 10.1038/s41586-025-08942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/25/2025] [Indexed: 05/09/2025]
Abstract
Lysosomes catabolize lipids and other biological molecules, maintaining cellular and organismal homeostasis. Bis(monoacylglycero)phosphate (BMP), a major lipid constituent of intralysosomal vesicles, stimulates lipid-degrading enzymes and is altered in various human conditions, including neurodegenerative diseases1,2. Although lysosomal BMP synthase was recently discovered3, the enzymes mediating BMP turnover remain elusive. Here we show that lysosomal phospholipase PLA2G15 is a physiological BMP hydrolase. We further demonstrate that the resistance of BMP to lysosomal hydrolysis arises from its unique sn2, sn2' esterification position and stereochemistry, as neither feature alone confers resistance. Purified PLA2G15 catabolizes most BMP species derived from cell and tissue lysosomes. Furthermore, PLA2G15 efficiently hydrolyses synthesized BMP stereoisomers with primary esters, challenging the long-held thought that BMP stereochemistry alone ensures resistance to acid phospholipases. Conversely, BMP with secondary esters and S,S stereoconfiguration is stable in vitro and requires acyl migration for hydrolysis in lysosomes. Consistent with our biochemical data, PLA2G15-deficient cells and tissues accumulate several BMP species, a phenotype reversible by supplementing wild-type PLA2G15 but not its inactive mutant. Targeting PLA2G15 reduces the cholesterol accumulation in fibroblasts of patients with Niemann-Pick disease type C1 and significantly ameliorates disease pathologies in Niemann-Pick disease type C1-deficient mice, leading to an extended lifespan. Our findings established the rules governing BMP stability in lysosomes and identified PLA2G15 as a lysosomal BMP hydrolase and a potential target for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Jian Xiong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA
| | - Hisham N Alsohybe
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA
| | | | - Isabelle V Peña
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA
| | | | - Thijn R Brummelkamp
- Scenic Biotech, Science Park 301, Amsterdam, The Netherlands
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Guido Hartmann
- Scenic Biotech, Science Park 301, Amsterdam, The Netherlands
| | | | - Matthijs Raaben
- Scenic Biotech, Science Park 301, Amsterdam, The Netherlands
| | - Judith A Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Abe A, Hinkovska-Galcheva V, Verma R, Shayman JA. Isomerization of bis(monoacylglycero)phosphate by acyl migration. J Lipid Res 2025; 66:100789. [PMID: 40164336 PMCID: PMC12056791 DOI: 10.1016/j.jlr.2025.100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025] Open
Abstract
Bis(monoacylglycero)phosphates (BMPs) are biologically functional acidic lipids present in late endosomes and lysosomes. We recently reported that lysosomal phospholipase A2 (LPLA2, PLA2G15), the lysosomal enzyme mediating BMP catabolism, degrades BMP isomers with distinct substrate specificity. Specifically, sn-(3-oleoyl-2-hydroxy)-glycerol-1-phospho-sn-1'-(3'-oleoyl-2'-hydroxy)-glycerol (S,S-(3,3'-diC18:1)-BMP) is a significantly better substrate for LPLA2 than S,S-(2,2'-diC18:1)-BMP. S,S-(2,2'-diC18:1)-BMP is generally considered the only biologically relevant BMP isomer. We investigated the isomerization of S,S-(2,2'-diC18:1)-BMP to (S,S-(3,3'-diC18:1)-BMP) in vitro and in cells. Thin-layer chromatography was used to distinguish S,S-(3,3'-diC18:1)-BMP from S,S-(2,2'-diC18:1)-BMP. S,S-(2,2'-diC18:1)-BMP/1,2-di-O-(9Z-octadecenyl)-sn-glycero-3-phosphocholine liposomes were incubated at varying pH in the presence or absence of test substances. First, we studied bovine serum albumin, which is known to promote isomerization of 1-acyl-2-lysophosphatidylcholine. The formation of S,S-(3,3'-diC18:1)-BMP in the presence of albumin increased in a time-dependent and albumin concentration-dependent manner under neutral conditions and was dependent on pH and the molar ratio of S,S-(2,2'-diC18:1)-BMP in liposomes. Treatment of isomeric products generated during isomerization reaction with sn-1,3-specific lipase produced both oleic acid but also lyso-phosphatidylglycerol, indicating that the conversion of S,S-(2,2'-diC18:1)-BMP to S,S-(3,3'-diC18:1)-BMP is preceded via S,S-(2,3'-diC18:1)-BMP. S,S-(3,3'-diC18:1)-BMP formed was preferentially degraded by LPLA2 over the S,S-(2,2'-diC18:1)-BMP. Proteins such as HSP70 and human serum albumin and metal ions such as Fe3+ and Zn2+ acted as cofactors promoting the isomerization of S,S-(2,2'-diC18:1)-BMP under neutral conditions. At baseline, RAW 264.7 cells showed nonnegligible amounts of sn-1,3-specific lipase-sensitive BMPs. However, lipase-sensitive BMPs were increased by exposure to chloroquine or NH4Cl, suggesting that cells undergo S,S-(2,2'-diacyl)-BMP isomerization upon alkalinization of intracellular acidic compartments.
Collapse
Affiliation(s)
- Akira Abe
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Rakesh Verma
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - James A Shayman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Mishra S, Chakraborty H. Dengue Virus Fusion Peptide Promotes Hemifusion Formation by Disordering the Interfacial Region of the Membrane. J Membr Biol 2025; 258:161-171. [PMID: 39825135 DOI: 10.1007/s00232-025-00336-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Membrane fusion is the first step in the infection process of the enveloped viruses. Enveloped viruses fuse either at the cell surface or enter the cell through endocytosis and transfer their internal genetic materials by fusing with the endosomal membrane at acidic pH. In this work, we have evaluated the effect of the Dengue virus fusion peptide (DENV FP) on the polyethylene glycol (PEG)-mediated lipid mixing of vesicles (hemifusion formation) at pH 5 and pH 7.4 with varying cholesterol concentrations. We have demonstrated that the DENV FP promotes hemifusion formation during the fusion of small unilamellar vesicles (SUVs) mainly at pH 5.0. Moreover, the fusion process demonstrates a strong correlation between fusogenicity and the amount of membrane cholesterol. We have further evaluated the partitioning ability of the peptide in three different membranes at pH 5.0 and pH 7.4. The fusogenic ability of the peptide at pH 5.0 is associated with the composition-dependent binding affinity of the peptide to the membrane. The depth-dependent fluorescence probes are used to evaluate membrane organization and dynamics utilizing steady-state and time-resolved fluorescence spectroscopic techniques. Our results show that the DENV FP promotes hemifusion formation by fluidizing the interfacial region of the membrane.
Collapse
Affiliation(s)
- Smruti Mishra
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India.
| |
Collapse
|
5
|
Nyame K, Xiong J, Alsohybe HN, de Jong AP, Peña IV, de Miguel R, Brummelkamp TR, Hartmann G, Nijman SMB, Raaben M, Simcox JA, Blomen VA, Abu-Remaileh M. PLA2G15 is a Lysosomal BMP Hydrolase and its Targeting Ameliorates Lysosomal Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.07.597919. [PMID: 38895439 PMCID: PMC11185675 DOI: 10.1101/2024.06.07.597919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Lysosomes catabolize lipids and other biological molecules, a function essential for cellular and organismal homeostasis. Key to lipid catabolism in the lysosome is bis(monoacylglycero)phosphate (BMP), a major lipid constituent of intralysosomal vesicles and a stimulator of lipid-degrading enzymes. BMP levels are altered in a broad spectrum of human conditions, including neurodegenerative diseases. While a lysosomal BMP synthase was recently discovered, the enzymes that mediate BMP turnover has remained elusive. Here we show that the lysosomal phospholipase PLA2G15 is a physiological BMP hydrolase. We further demonstrate that BMP's resistance to hydrolysis in the lysosome is conferred by the combination of its unique sn2, sn2' esterification position and stereochemistry, as neither feature alone is sufficient to provide this resistance. Purified PLA2G15 catabolizes most BMP species derived from cell and tissue lysosomes under acidic conditions. Furthermore, PLA2G15 catalytic activity against synthesized BMP stereoisomers with primary esters was comparable to its canonical substrates challenging the long-held thought that BMP's unique stereochemistry is sufficient to confer resistance to acid phospholipases. Conversely, BMP with secondary esters and S,S stereoconfiguration is intrinsically stable in vitro and requires acyl migration for hydrolysis in lysosomes. Consistent with our biochemical data, PLA2G15-deficient cells and tissues accumulate multiple BMP species, a phenotype reversible by supplementing wildtype PLA2G15 but not its catalytically dead mutant. In addition, targeting PLA2G15 to increase BMP reverses the cholesterol phenotype in Niemann Pick Disease Type C (NPC1) patient fibroblasts and significantly ameliorates disease pathologies in NPC1-deficient mice leading to extended lifespan. Our findings establish the rules that govern the stability of BMP in the lysosome and identify PLA2G15 as a lysosomal BMP hydrolase and a potential target for therapeutic intervention in neurodegenerative diseases.
Collapse
|
6
|
Karbanová J, Thamm K, Fargeas CA, Deniz IA, Lorico A, Corbeil D. Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133? J Nanobiotechnology 2025; 23:61. [PMID: 39881297 PMCID: PMC11776279 DOI: 10.1186/s12951-025-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy. Based on their cellular origin EVs can vary considerably in composition and diameter. Cell biological studies on mammalian prominin-1, a cholesterol-binding membrane glycoprotein, have helped to reveal new donor membranes as sources of EVs. For instance, small EVs can originate from microvilli and primary cilia, while large EVs might be produced by transient structures such as retracting cellular extremities of cancer cells during the mitotic rounding process, and the midbody at the end of cytokinesis. Here, we will highlight the various subcellular origins of prominin-1+ EVs, also called prominosomes, and the potential mechanism(s) regulating their formation. We will further discuss the molecular and cellular characteristics of prominin-1, notably those that have a direct effect on the release of prominin-1+ EVs, a process that might be directly implicated in donor cell reprogramming of stem and cancer stem cells. Prominin-1+ EVs also mediate intercellular communication during embryonic development and adult homeostasis in healthy individuals, while disseminating biological information during diseases.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Kristina Thamm
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- denovoMATRIX GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
7
|
Birtles D, Lee J. Exploring the influence of anionic lipids in the host cell membrane on viral fusion. Biochem Soc Trans 2024; 52:2593-2602. [PMID: 39700018 PMCID: PMC11668307 DOI: 10.1042/bst20240833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Membrane fusion is an essential component of the viral lifecycle that allows the delivery of the genetic information of the virus into the host cell. Specialized viral glycoproteins exist on the surface of mature virions where they facilitate fusion through significant conformational changes, ultimately bringing opposing membranes into proximity until they eventually coalesce. This process can be positively influenced by a number of specific cellular factors such as pH, enzymatic cleavage, divalent ions, and the composition of the host cell membrane. In this review, we have summarized how anionic lipids have come to be involved in viral fusion and how the endosomal resident anionic lipid BMP has become increasingly implicated as an important cofactor for those viruses that fuse via the endocytic pathway.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| |
Collapse
|
8
|
Qu Q, Chen Y, Wang Y, Wang W, Long S, Yang HY, Wu J, Li M, Tian X, Wei X, Liu YH, Xu S, Xiong J, Yang C, Wu Z, Huang X, Xie C, Wu Y, Xu Z, Zhang C, Zhang B, Feng JW, Chen J, Feng Y, Fang H, Lin L, Xie ZK, Sun B, Tian H, Yu Y, Piao HL, Xie XS, Deng X, Zhang CS, Lin SC. Lithocholic acid binds TULP3 to activate sirtuins and AMPK to slow down ageing. Nature 2024:10.1038/s41586-024-08348-2. [PMID: 39695235 DOI: 10.1038/s41586-024-08348-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Lithocholic acid (LCA) is accumulated in mammals during calorie restriction and it can activate AMP-activated protein kinase (AMPK) to slow down ageing1. However, the molecular details of how LCA activates AMPK and induces these biological effects are unclear. Here we show that LCA enhances the activity of sirtuins to deacetylate and subsequently inhibit vacuolar H+-ATPase (v-ATPase), which leads to AMPK activation through the lysosomal glucose-sensing pathway. Proteomics analyses of proteins that co-immunoprecipitated with sirtuin 1 (SIRT1) identified TUB-like protein 3 (TULP3), a sirtuin-interacting protein2, as a LCA receptor. In detail, LCA-bound TULP3 allosterically activates sirtuins, which then deacetylate the V1E1 subunit of v-ATPase on residues K52, K99 and K191. Muscle-specific expression of a V1E1 mutant (3KR), which mimics the deacetylated state, strongly activates AMPK and rejuvenates muscles in aged mice. In nematodes and flies, LCA depends on the TULP3 homologues tub-1 and ktub, respectively, to activate AMPK and extend lifespan and healthspan. Our study demonstrates that activation of the TULP3-sirtuin-v-ATPase-AMPK pathway by LCA reproduces the benefits of calorie restriction.
Collapse
Affiliation(s)
- Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Weiche Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shating Long
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Heng-Ye Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shengrong Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chunyan Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhenhua Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xi Huang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zheni Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jin-Wei Feng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yuanji Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Liyun Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Z K Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Beibei Sun
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yong Yu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiao-Song Xie
- McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
9
|
Villalaín J. Localization, aggregation, and interaction of glycyrrhizic acid with the plasma membrane. J Biomol Struct Dyn 2024:1-11. [PMID: 39601256 DOI: 10.1080/07391102.2024.2434037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/07/2024] [Indexed: 11/29/2024]
Abstract
Glycyrrhizic acid (GLA) is the most important bioactive constituent of licorize root and exhibits antiviral, antimicrobial, anti-oxidant, anti-inflammatory, anti-allergic, and antitumor activities. GLA has an amphiphilic nature consisting of two hydrophilic and one hydrophobic part, and its mechanism of action could be mediated by its incorporation into the membrane. Furthermore, GLA presents two different forms, protonated (GLA) and deprotonated (GLAD), and has been suggested that their location inside the membrane could be different. Since GLA could be a source against many types of diseases, we have localized the GLA molecule in the presence of a complex membrane and established the detailed interactions of GLA with lipids using all-atom molecular dynamics. Our outcomes sustain that GLA/GLAD tend to locate amid the CHOL oxygen atom and the phospholipid phosphates, preferably perpendicular to the membrane surface, increasing membrane fluidity. Interestingly, GLA and GLAD tend to be surrounded by specific phospholipids, different for each type of molecule. Outstandingly, both GLA and GLAD tend to spontaneously associate in solution forming aggregates, precluding them from inserting into the membrane and, therefore, interacting with it. Consequently, some of the biological properties of GLA/GLAD could be credited to the alteration of the membrane biophysical properties by interacting with specific lipids. However, the formation of an aggregate in solution could hinder its bioactive properties and should be considered a suited vehicle when prepared to be used in biological or clinical assays.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad 'Miguel Hernández', Elche-Alicante, Spain
| |
Collapse
|
10
|
Singh S, Dransfeld UE, Ambaw YA, Lopez-Scarim J, Farese RV, Walther TC. PLD3 and PLD4 synthesize S,S-BMP, a key phospholipid enabling lipid degradation in lysosomes. Cell 2024; 187:6820-6834.e24. [PMID: 39423811 PMCID: PMC12055030 DOI: 10.1016/j.cell.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/07/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Bis(monoacylglycero)phosphate (BMP) is an abundant lysosomal phospholipid required for degradation of lipids, particularly gangliosides. Alterations in BMP levels are associated with neurodegenerative diseases. Unlike typical glycerophospholipids, lysosomal BMP has two chiral glycerol carbons in the S (rather than the R) stereo-conformation, protecting it from lysosomal degradation. How this unusual and yet crucial S,S-stereochemistry is achieved is unknown. Here, we report that phospholipases D3 and D4 (PLD3 and PLD4) synthesize lysosomal S,S-BMP, with either enzyme catalyzing the critical glycerol stereo-inversion reaction in vitro. Deletion of PLD3 or PLD4 markedly reduced BMP levels in cells or in murine tissues where either enzyme is highly expressed (brain for PLD3; spleen for PLD4), leading to gangliosidosis and lysosomal abnormalities. PLD3 mutants associated with neurodegenerative diseases, including risk of Alzheimer's disease, diminished PLD3 catalytic activity. We conclude that PLD3/4 enzymes synthesize lysosomal S,S-BMP, a crucial lipid for maintaining brain health.
Collapse
Affiliation(s)
- Shubham Singh
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Ulrich E Dransfeld
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yohannes A Ambaw
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Joshua Lopez-Scarim
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Robert V Farese
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA.
| | - Tobias C Walther
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
11
|
Bulfon D, Breithofer J, Grabner GF, Fawzy N, Pirchheim A, Wolinski H, Kolb D, Hartig L, Tischitz M, Zitta C, Bramerdorfer G, Lass A, Taschler U, Kratky D, Greimel P, Zimmermann R. Functionally overlapping intra- and extralysosomal pathways promote bis(monoacylglycero)phosphate synthesis in mammalian cells. Nat Commun 2024; 15:9937. [PMID: 39548099 PMCID: PMC11568333 DOI: 10.1038/s41467-024-54213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
Bis(monoacylglycero)phosphate (BMP) is a major phospholipid constituent of intralumenal membranes in late endosomes/lysosomes, where it regulates the degradation and sorting of lipid cargo. Recent observations suggest that the Batten disease-associated protein CLN5 functions as lysosomal BMP synthase. Here, we show that transacylation reactions catalyzed by cytosolic and secreted enzymes enhance BMP synthesis independently of CLN5. The transacylases identified in this study are capable of acylating the precursor lipid phosphatidylglycerol (PG), generating acyl-PG, which is subsequently hydrolyzed to BMP. Extracellularly, acyl-PG and BMP are generated by endothelial lipase in cooperation with other serum enzymes of the pancreatic lipase family. The intracellular acylation of PG is catalyzed by several members of the cytosolic phospholipase A2 group IV (PLA2G4) family. Overexpression of secreted or cytosolic transacylases was sufficient to correct BMP deficiency in HEK293 cells lacking CLN5. Collectively, our observations suggest that functionally overlapping pathways promote BMP synthesis in mammalian cells.
Collapse
Grants
- Funding: this work was supported by SFB Lipid hydrolysis (10.55776/F73, D.K., R.Z.), 10.55776/P28533 (R.Z.), 10.55776/P35532 (R.Z.), the doctoral program doc-fund “Molecular Metabolism” 10.55776/DOC50 funded by the Austrian Science Fund FWF, Field of Excellence BioHealth – University of Graz, Graz, Austria, Province of Styria, City of Graz, BioTechMed-Graz, and NAWI Graz, and the Glycolipidologue Program of RIKEN (P.G.). For open access purposes, the authors have applied a CC BY public copyright license to any author accepted manuscript version arising from this submission
Collapse
Affiliation(s)
- Dominik Bulfon
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Gernot F Grabner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Nermeen Fawzy
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Dagmar Kolb
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Lennart Hartig
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martin Tischitz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Clara Zitta
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Peter Greimel
- Laboratory for Cell Function Dynamics, Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
12
|
Deng S, Liu TA, Ilnytska O, Allada T, Fomina A, Lin N, Petukhova VZ, Pathmasiri KC, Chinthapally K, Blagg BSJ, Ashfeld BL, Cologna SM, Storch J. Molecular determinants of phospholipid treatment to reduce intracellular cholesterol accumulation in NPC1 deficiency. J Biol Chem 2024; 300:107889. [PMID: 39395801 PMCID: PMC11650715 DOI: 10.1016/j.jbc.2024.107889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024] Open
Abstract
Niemann-Pick type C (NPC) disease, caused by mutations in the NPC1 or NPC2 genes, leads to abnormal intracellular cholesterol accumulation in late endosomes/lysosomes. Exogenous enrichment with lysobisphosphatidic acid (LBPA), also known as bis-monoacylglycerol phosphate, either directly or via the LBPA precursor phosphatidylglycerol (PG), has been investigated as a therapeutic intervention to reduce cholesterol accumulation in NPC disease. Here, we report the effects of stereoisomer configuration and acyl chain composition of LBPA on cholesterol clearance in NPC1-deficient cells. We find that S,R, S,S, and S,R LBPA stereoisomers behaved similarly, with all 3 compounds leading to comparable reductions in filipin staining in two NPC1-deficient human fibroblast cell lines. Examination of several LBPA molecular species containing one or two monounsaturated or polyunsaturated acyl chains showed that all LBPA species containing one 18:1 chain significantly reduced cholesterol accumulation, whereas the shorter chain species di-14:0 LBPA had little effect on cholesterol clearance in NPC1-deficient cells. Since cholesterol accumulation in NPC1-deficient cells can also be cleared by PG incubation, we used nonhydrolyzable PG analogs to determine whether conversion to LBPA is required for sterol clearance, or whether PG itself is effective. The results showed that nonhydrolyzable PG species were not appreciably converted to LBPA and showed virtually no cholesterol clearance efficacy in NPC1-deficient cells, supporting the notion that LBPA is the active agent promoting late endosome/lysosome cholesterol clearance. Overall these studies are helping to define the molecular requirements for potential therapeutic use of LBPA as an option for addressing NPC disease.
Collapse
Affiliation(s)
- Shikun Deng
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ting-Ann Liu
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Olga Ilnytska
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - Tamara Allada
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Angelina Fomina
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Nancy Lin
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | - Kiran Chinthapally
- Warren Center for Drug Discovery and Development, and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian S J Blagg
- Warren Center for Drug Discovery and Development, and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brandon L Ashfeld
- Warren Center for Drug Discovery and Development, and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
13
|
Shekunov EV, Efimova SS, Kever LV, Ishmanov TF, Ostroumova OS. Lipid Selectivity of Membrane Action of the Fragments of Fusion Peptides of Marburg and Ebola Viruses. Int J Mol Sci 2024; 25:9901. [PMID: 39337389 PMCID: PMC11432738 DOI: 10.3390/ijms25189901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The life cycle of Ebola and Marburg viruses includes a step of the virion envelope fusion with the cell membrane. Here, we analyzed whether the fusion of liposome membranes under the action of fragments of fusion peptides of Ebola and Marburg viruses depends on the composition of lipid vesicles. A fluorescence assay and electron microscopy were used to quantify the fusogenic activity of the virus fusion peptides and to identify the lipid determinants affecting membrane merging. Differential scanning calorimetry of lipid phase transitions revealed alterations in the physical properties of the lipid matrix produced by virus fusion peptides. Additionally, we found that plant polyphenols, quercetin, and myricetin inhibited vesicle fusion induced by the Marburg virus fusion peptide.
Collapse
Affiliation(s)
- Egor V Shekunov
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Svetlana S Efimova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Lyudmila V Kever
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Tagir F Ishmanov
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Olga S Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| |
Collapse
|
14
|
Villalaín J. Bisphenol F and Bisphenol S in a Complex Biomembrane: Comparison with Bisphenol A. J Xenobiot 2024; 14:1201-1220. [PMID: 39311147 PMCID: PMC11417855 DOI: 10.3390/jox14030068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024] Open
Abstract
Bisphenols are a group of endocrine-disrupting chemicals used worldwide for the production of plastics and resins. Bisphenol A (BPA), the main bisphenol, exhibits many unwanted effects. BPA has, currently, been replaced with bisphenol F (BPF) and bisphenol S (BPS) in many applications in the hope that these molecules have a lesser effect on metabolism than BPA. Since bisphenols tend to partition into the lipid phase, their place of choice would be the cellular membrane. In this paper, I carried out molecular dynamics simulations to compare the localization and interactions of BPA, BPF, and BPS in a complex membrane. This study suggests that bisphenols tend to be placed at the membrane interface, they have no preferred orientation inside the membrane, they can be in the monomer or aggregated state, and they affect the biophysical properties of the membrane lipids. The properties of bisphenols can be attributed, at least in part, to their membranotropic effects and to the modulation of the biophysical membrane properties. The data support that both BPF and BPS, behaving in the same way in the membrane as BPA and with the same capacity to accumulate in the biological membrane, are not safe alternatives to BPA.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202 Elche, Alicante, Spain
| |
Collapse
|
15
|
Villalaín J. Location and interaction of idebenone and mitoquinone in a membrane similar to the inner mitochondrial membrane. Comparison with ubiquinone 10. Free Radic Biol Med 2024; 222:211-222. [PMID: 38908803 DOI: 10.1016/j.freeradbiomed.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Oxygen is essential for aerobic life on earth but it is also the origin of harmful reactive oxygen species (ROS). Ubiquinone is par excellence the endogenous cellular antioxidant, but a very hydrophobic one. Because of that, other molecules have been envisaged, such as idebenone (IDE) and mitoquinone (MTQ), molecules having the same redox active benzoquinone moiety but higher solubility. We have used molecular dynamics to determine the location and interaction of these molecules, both in their oxidized and reduced forms, with membrane lipids in a membrane similar to that of the mitochondria. Both IDE and reduced IDE (IDOL) are situated near the membrane interface, whereas both MTQ and reduced MTQ (MTQOL) locate in a position adjacent to the phospholipid hydrocarbon chains. The quinone moieties of both ubiquinone 10 (UQ10) and reduced UQ10 (UQOL10) in contraposition to the same moieties of IDE, IDOL, MTQ and MTQOL, located near the membrane interphase, whereas the isoprenoid chains remained at the middle of the hydrocarbon chains. These molecules do not aggregate and their functional quinone moieties are located in the membrane at different depths but near the hydrophobic phospholipid chains whereby protecting them from ROS harmful effects.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202, Elche, Alicante, Spain.
| |
Collapse
|
16
|
Kamano S, Ozawa D, Ikenaka K, Nagai Y. Role of Lipids in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2024; 25:8935. [PMID: 39201619 PMCID: PMC11354291 DOI: 10.3390/ijms25168935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Aggregation of α-synuclein (αSyn) and its accumulation as Lewy bodies play a central role in the pathogenesis of Parkinson's disease (PD). However, the mechanism by which αSyn aggregates in the brain remains unclear. Biochemical studies have demonstrated that αSyn interacts with lipids, and these interactions affect the aggregation process of αSyn. Furthermore, genetic studies have identified mutations in lipid metabolism-associated genes such as glucocerebrosidase 1 (GBA1) and synaptojanin 1 (SYNJ1) in sporadic and familial forms of PD, respectively. In this review, we focus on the role of lipids in triggering αSyn aggregation in the pathogenesis of PD and propose the possibility of modulating the interaction of lipids with αSyn as a potential therapy for PD.
Collapse
Grants
- 24H00630 Ministry of Education, Culture, Sports, Science and Technology
- 21H02840 Ministry of Education, Culture, Sports, Science and Technology
- 17K19658 Ministry of Education, Culture, Sports, Science and Technology
- 20H05927 Ministry of Education, Culture, Sports, Science and Technology
- JP16ek0109018 Japan Agency for Medical Research and Development
- JP19ek0109222 Japan Agency for Medical Research and Development
- 30-3 National Center of Neurology and Psychiatry
- 30-9 National Center of Neurology and Psychiatry
- 3-9 National Center of Neurology and Psychiatry
- 6-9 National Center of Neurology and Psychiatry
Collapse
Affiliation(s)
- Shumpei Kamano
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
| | - Daisaku Ozawa
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan;
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
- Life Science Research Institute, Kindai University, Osaka-Sayama 589-8511, Osaka, Japan
| |
Collapse
|
17
|
Robinson BP, Bass NR, Bhakt P, Spiliotis ET. Septin-coated microtubules promote maturation of multivesicular bodies by inhibiting their motility. J Cell Biol 2024; 223:e202308049. [PMID: 38668767 PMCID: PMC11046855 DOI: 10.1083/jcb.202308049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
The microtubule cytoskeleton consists of microtubule subsets with distinct compositions of microtubule-associated proteins, which instruct the position and traffic of subcellular organelles. In the endocytic pathway, these microtubule-associated cues are poorly understood. Here, we report that in MDCK cells, endosomes with multivesicular body (MVB) and late endosome (LE) markers localize preferentially to microtubules coated with septin GTPases. Compared with early endosomes, CD63-containing MVBs/LEs are largely immotile on septin-coated microtubules. In vitro reconstitution assays revealed that the motility of isolated GFP-CD63 endosomes is directly inhibited by microtubule-associated septins. Quantification of CD63-positive endosomes containing the early endosome antigen (EEA1), the Rab7 effector and dynein adaptor RILP or Rab27a, showed that intermediary EEA1- and RILP-positive GFP-CD63 preferentially associate with septin-coated microtubules. Septin knockdown enhanced GFP-CD63 motility and decreased the percentage of CD63-positive MVBs/LEs with lysobiphosphatidic acid without impacting the fraction of EEA1-positive CD63. These results suggest that MVB maturation involves immobilization on septin-coated microtubules, which may facilitate multivesiculation and/or organelle-organelle contacts.
Collapse
Affiliation(s)
| | - Naomi R. Bass
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Priyanka Bhakt
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Elias T. Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
18
|
Abe A, Hinkovska-Galcheva V, Bouchev P, Bouley R, Shayman JA. The role of lysosomal phospholipase A2 in the catabolism of bis(monoacylglycerol)phosphate and association with phospholipidosis. J Lipid Res 2024; 65:100574. [PMID: 38857781 PMCID: PMC11277439 DOI: 10.1016/j.jlr.2024.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Bis(monoacylglycerol)phosphate (BMP) is an acidic glycerophospholipid localized to late endosomes and lysosomes. However, the metabolism of BMP is poorly understood. Because many drugs that cause phospholipidosis inhibit lysosomal phospholipase A2 (LPLA2, PLA2G15, LYPLA3) activity, we investigated whether this enzyme has a role in BMPcatabolism. The incubation of recombinant human LPLA2 (hLPLA2) and liposomes containing the naturally occurring BMP (sn-(2-oleoyl-3-hydroxy)-glycerol-1-phospho-sn-1'-(2'-oleoyl-3'-hydroxy)-glycerol (S,S-(2,2',C18:1)-BMP) resulted in the deacylation of this BMP isomer. The deacylation rate was 70 times lower than that of dioleoyl phosphatidylglycerol (DOPG), an isomer and precursor of BMP. The release rates of oleic acid from DOPG and four BMP stereoisomers by LPLA2 differed. The rank order of the rates of hydrolysis were DOPG>S,S-(3,3',C18:1)-BMP>R,S-(3,1',C18:1)-BMP>R,R-(1,1',C18:1)>S,S-(2,2')-BMP. The cationic amphiphilic drug amiodarone (AMD) inhibited the deacylation of DOPG and BMP isomers by hLPLA2 in a concentration-dependent manner. Under these experimental conditions, the IC50s of amiodarone-induced inhibition of the four BMP isomers and DOPG were less than 20 μM and approximately 30 μM, respectively. BMP accumulation was observed in AMD-treated RAW 264.7 cells. The accumulated BMP was significantly reduced by exogenous treatment of cells with active recombinant hLPLA2 but not with diisopropylfluorophosphate-inactivated recombinant hLPLA2. Finally, a series of cationic amphiphilic drugs known to cause phospholipidosis were screened for inhibition of LPLA2 activity as measured by either the transacylation or fatty acid hydrolysis of BMP or phosphatidylcholine as substrates. Fifteen compounds demonstrated significant inhibition with IC50s ranging from 6.8 to 63.3 μM. These results indicate that LPLA2 degrades BMP isomers with different substrate specificities under acidic conditions and may be the key enzyme associated with BMP accumulation in drug-induced phospholipidosis.
Collapse
Affiliation(s)
- Akira Abe
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Philip Bouchev
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Renee Bouley
- Department of Chemistry and Biochemistry, The Ohio State University at Marion, Marion, OH, USA
| | - James A Shayman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Parolini I, Degrassi M, Spadaro F, Caponnetto F, Fecchi K, Mastantuono S, Zhouyiyuan X, Demple B, Cesselli D, Tell G. Intraluminal vesicle trafficking is involved in the secretion of base excision repair protein APE1. FEBS J 2024; 291:2849-2875. [PMID: 38401056 DOI: 10.1111/febs.17088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/24/2023] [Accepted: 01/31/2024] [Indexed: 02/26/2024]
Abstract
The apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is an essential enzyme of the base excision repair pathway of non-distorting DNA lesions. In response to genotoxic treatments, APE1 is highly secreted (sAPE1) in association with small-extracellular vesicles (EVs). Interestingly, its presence in the serum of patients with hepatocellular or non-small-cell-lung cancers may represent a prognostic biomarker. The mechanism driving APE1 to associate with EVs is unknown, but is of paramount importance in better understanding the biological roles of sAPE1. Because APE1 lacks an endoplasmic reticulum-targeting signal peptide, it can be secreted through an unconventional protein secretion endoplasmic reticulum-Golgi-independent pathway, which includes an endosome-based secretion of intraluminal vesicles, mediated by multivesicular bodies (MVBs). Using HeLa and A549 cell lines, we investigated the role of endosomal sorting complex required for transport protein pathways (either-dependent or -independent) in the constitutive or trichostatin A-induced secretion of sAPE1, by means of manumycin A and GW 4869 treatments. Through an in-depth biochemical analysis of late-endosomes (LEs) and early-endosomes (EEs), we observed that the distribution of APE1 on density gradient corresponded to that of LE-CD63, LE-Rab7, EE-EEA1 and EE-Rab 5. Interestingly, the secretion of sAPE1, induced by cisplatin genotoxic stress, involved an autophagy-based unconventional secretion requiring MVBs. The present study enlightens the central role played by MVBs in the secretion of sAPE1 under various stimuli, and offers new perspectives in understanding the biological relevance of sAPE1 in cancer cells.
Collapse
Affiliation(s)
- Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Italy
| | - Monica Degrassi
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Italy
| | - Francesca Spadaro
- Core Facilities - Confocal Microscopy Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Caponnetto
- Department of Medicine, University of Udine, Italy
- Institute of Pathology, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Katia Fecchi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Mastantuono
- Department of Medicine, University of Udine, Italy
- Institute of Pathology, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Xue Zhouyiyuan
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Bruce Demple
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Daniela Cesselli
- Department of Medicine, University of Udine, Italy
- Institute of Pathology, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Italy
| |
Collapse
|
20
|
Desai N, Rana D, Salave S, Benival D, Khunt D, Prajapati BG. Achieving Endo/Lysosomal Escape Using Smart Nanosystems for Efficient Cellular Delivery. Molecules 2024; 29:3131. [PMID: 38999083 PMCID: PMC11243486 DOI: 10.3390/molecules29133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The delivery of therapeutic agents faces significant hurdles posed by the endo-lysosomal pathway, a bottleneck that hampers clinical effectiveness. This comprehensive review addresses the urgent need to enhance cellular delivery mechanisms to overcome these obstacles. It focuses on the potential of smart nanomaterials, delving into their unique characteristics and mechanisms in detail. Special attention is given to their ability to strategically evade endosomal entrapment, thereby enhancing therapeutic efficacy. The manuscript thoroughly examines assays crucial for understanding endosomal escape and cellular uptake dynamics. By analyzing various assessment methods, we offer nuanced insights into these investigative approaches' multifaceted aspects. We meticulously analyze the use of smart nanocarriers, exploring diverse mechanisms such as pore formation, proton sponge effects, membrane destabilization, photochemical disruption, and the strategic use of endosomal escape agents. Each mechanism's effectiveness and potential application in mitigating endosomal entrapment are scrutinized. This paper provides a critical overview of the current landscape, emphasizing the need for advanced delivery systems to navigate the complexities of cellular uptake. Importantly, it underscores the transformative role of smart nanomaterials in revolutionizing cellular delivery strategies, leading to a paradigm shift towards improved therapeutic outcomes.
Collapse
Affiliation(s)
- Nimeet Desai
- Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India;
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (D.B.)
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (D.B.)
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (D.B.)
| | - Dignesh Khunt
- School of Pharmacy, Gujarat Technological University, Gandhinagar 382027, Gujarat, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
21
|
Giudice J, Brauer DD, Zoltek M, Vázquez Maldonado AL, Kelly M, Schepartz A. Requirements for efficient endosomal escape by designed mini-proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588336. [PMID: 38617268 PMCID: PMC11014610 DOI: 10.1101/2024.04.05.588336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
ZF5.3 is a compact, rationally designed mini-protein that escapes efficiently from the endosomes of multiple cell types. Despite its small size (27 amino acids), ZF5.3 can be isolated intact from the cytosol of treated cells and guides multiple classes of proteins into the cytosol and/or nucleus. In the best cases, delivery efficiencies reach or exceed 50% to establish nuclear or cytosolic concentrations of 500 nM or higher. But other than the requirement for unfoldable cargo and an intact HOPS complex, there is little known about how ZF5.3 traverses the limiting endocytic membrane. Here we delineate the attributes of ZF5.3 that enable efficient endosomal escape. We confirm that ZF5.3 is stable at pH values between 5.5 and 7.5, with no evidence of unfolding even at temperatures as high as 95 °C. The high-resolution NMR structure of ZF5.3 at pH 5.5, also reported here, shows a canonical p zinc-finger fold with the penta-arg motif integrated seamlessly into the C-terminal α-helix. At lower pH, ZF5.3 unfolds cooperatively as judged by both circular dichroism and high-resolution NMR. Unfolding occurs upon protonation of a single Zn(II)-binding His side chain whose pKa corresponds almost exactly to that of the late endosomal lumen. pH-induced unfolding is essential for endosomal escape, as a ZF5.3 analog that remains folded at pH 4.5 fails to efficiently reach the cytosol, despite high overall uptake. Finally, using reconstituted liposomes, we identify a high-affinity interaction of ZF5.3 with a specific lipid-BMP-that is selectively enriched in the inner leaflet of late endosomal membranes. This interaction is 10-fold stronger at low pH than neutral pH, providing a molecular picture for why escape occurs preferentially and in a HOPS-dependent manner from late endosomal compartments. The requirements for programmed endosomal escape identified here should aid and inform the design of proteins, peptidomimetics, and other macromolecules that reach cytosolic or nuclear targets intact and at therapeutically relevant concentrations.
Collapse
Affiliation(s)
- Jonathan Giudice
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Daniel D. Brauer
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Madeline Zoltek
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720
| | | | - Mark Kelly
- School of Pharmacy, University of California-San Francisco, San Francisco, CA 94158
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
- Chan Zuckerberg Biohub, San Francisco, CA 94158
- Arc Institute, Palo Alto, CA
| |
Collapse
|
22
|
Mason AJ, Deppmann C, Winckler B. Emerging Roles of Neuronal Extracellular Vesicles at the Synapse. Neuroscientist 2024; 30:199-213. [PMID: 36942881 DOI: 10.1177/10738584231160521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Extracellular vesicles (EVs) are secreted from most, if not all, cell types and are implicated in short- and long-distance signaling throughout the body. EVs are also secreted from neurons and represent an emergent neuronal communication platform. Understanding the functional implications of EV signaling to recipient neurons and glia requires understanding the cell biology involved in EV biogenesis, cargo loading, secretion, uptake, and signal transduction in the recipient cell. Here we review these major questions of EV biology while highlighting recent new insights and examples within the nervous system, such as modulating synaptic function or morphogenesis in recipient neurons.
Collapse
Affiliation(s)
- Ashley J Mason
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher Deppmann
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Bettina Winckler
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
23
|
Birtles D, Abbas W, Lee J. Bis(Monoacylglycero)Phosphate Promotes Membrane Fusion Facilitated by the SARS-CoV-2 Fusion Domain. J Phys Chem B 2024; 128:2675-2683. [PMID: 38466655 DOI: 10.1021/acs.jpcb.3c07863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Membrane fusion is a critical component of the viral lifecycle. For SARS-CoV-2, fusion is facilitated by the spike glycoprotein and can take place via either the plasma membrane or the endocytic pathway. The fusion domain (FD), which is found within the spike glycoprotein, is primarily responsible for the initiation of fusion as it embeds itself within the target cell's membrane. A preference for SARS-CoV-2 to fuse at low pH akin to the environment of the endocytic pathway has already been established; however, the impact of the target cell's lipid composition on the FD has yet to be explored. Here, we have shown that the SARS-CoV-2 FD preferentially initiates fusion at the late endosomal membrane over the plasma membrane, on the basis of lipid composition alone. A positive, fusogenic relationship with anionic lipids from the plasma membrane (POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine) and endosomal membrane (BMP: bis(monoacylglycero)phosphate) was established, with a large preference demonstrated for the latter. When comparing the binding affinity and secondary structure of the FD in the presence of different anionic lipids, little deviation was evident while the charge was maintained. However, it was discovered that BMP had a subtle, negative impact on lipid packing in comparison to that of POPS. Furthermore, an inverse relationship between lipid packing and the fusogenecity of the SARS-CoV-2 FD was witnessed. In conclusion, the SARS-CoV-2 FD preferentially initiates fusion at a membrane resembling that of the late endosomal compartment, predominately due to the presence of BMP and its impact on lipid packing.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| | - Wafa Abbas
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| |
Collapse
|
24
|
Singh S, Dransfeld U, Ambaw Y, Lopez-Scarim J, Farese RV, Walther TC. PLD3 and PLD4 synthesize S,S-BMP, a key phospholipid enabling lipid degradation in lysosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586175. [PMID: 38562702 PMCID: PMC10983895 DOI: 10.1101/2024.03.21.586175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bis(monoacylglycero)phosphate (BMP) is an abundant lysosomal phospholipid required for degradation of lipids, in particular gangliosides. Alterations in BMP levels are associated with neurodegenerative diseases. Unlike typical glycerophospholipids, lysosomal BMP has two chiral glycerol carbons in the S (rather than the R) stereo-conformation, protecting it from lysosomal degradation. How this unusual and yet crucial S,S-stereochemistry is achieved is unknown. Here we report that phospholipases D3 and D4 (PLD3 and PLD4) synthesize lysosomal S,S-BMP, with either enzyme catalyzing the critical glycerol stereo-inversion reaction in vitro. Deletion of PLD3 or PLD4 markedly reduced BMP levels in cells or in murine tissues where either enzyme is highly expressed (brain for PLD3; spleen for PLD4), leading to gangliosidosis and lysosomal abnormalities. PLD3 mutants associated with neurodegenerative diseases, including Alzheimer's disease risk, diminished PLD3 catalytic activity. We conclude that PLD3/4 enzymes synthesize lysosomal S,S-BMP, a crucial lipid for maintaining brain health.
Collapse
Affiliation(s)
- Shubham Singh
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Ulrich Dransfeld
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yohannes Ambaw
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Joshua Lopez-Scarim
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Robert V. Farese
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Tobias C. Walther
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
25
|
Ramirez JM, Calderon-Zavala AC, Balaram A, Heldwein EE. In vitro reconstitution of herpes simplex virus 1 fusion identifies low pH as a fusion co-trigger. mBio 2023; 14:e0208723. [PMID: 37874146 PMCID: PMC10746285 DOI: 10.1128/mbio.02087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE HSV-1 causes lifelong, incurable infections and diseases ranging from mucocutaneous lesions to fatal encephalitis. Fusion of viral and host membranes is a critical step in HSV-1 infection of target cells that requires multiple factors on both the viral and host sides. Due to this complexity, many fundamental questions remain unanswered, such as the identity of the viral and host factors that are necessary and sufficient for HSV-1-mediated membrane fusion and the nature of the fusion trigger. Here, we developed a simplified in vitro fusion assay to examine the fusion requirements and identified low pH as a co-trigger for virus-mediated fusion in vitro. We hypothesize that low pH has a critical role in cell entry and, potentially, pathogenesis.
Collapse
Affiliation(s)
- J. Martin Ramirez
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Medical Scientist Training Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ariana C. Calderon-Zavala
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ariane Balaram
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Medical Scientist Training Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Jain A, Govindan R, Berkman AR, Luban J, Díaz-Salinas MA, Durham ND, Munro JB. Regulation of Ebola GP conformation and membrane binding by the chemical environment of the late endosome. PLoS Pathog 2023; 19:e1011848. [PMID: 38055723 PMCID: PMC10727438 DOI: 10.1371/journal.ppat.1011848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Interaction between the Ebola virus envelope glycoprotein (GP) and the endosomal membrane is an essential step during virus entry into the cell. Acidic pH and Ca2+ have been implicated in mediating the GP-membrane interaction. However, the molecular mechanism by which these environmental factors regulate the conformational changes that enable engagement of GP with the target membrane is unknown. Here, we apply fluorescence correlation spectroscopy (FCS) and single-molecule Förster resonance energy transfer (smFRET) imaging to elucidate how the acidic pH, Ca2+ and anionic phospholipids in the late endosome promote GP-membrane interaction, thereby facilitating virus entry. We find that bis(monoacylglycero)phosphate (BMP), which is specific to the late endosome, is especially critical in determining the Ca2+-dependence of the GP-membrane interaction. Molecular dynamics (MD) simulations suggested residues in GP that sense pH and induce conformational changes that make the fusion loop available for insertion into the membrane. We similarly confirm residues in the fusion loop that mediate GP's interaction with Ca2+, which likely promotes local conformational changes in the fusion loop and mediates electrostatic interactions with the anionic phospholipids. Collectively, our results provide a mechanistic understanding of how the environment of the late endosome regulates the timing and efficiency of virus entry.
Collapse
Affiliation(s)
- Aastha Jain
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ramesh Govindan
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Alex R. Berkman
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Jeremy Luban
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Marco A. Díaz-Salinas
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Natasha D. Durham
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - James B. Munro
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
27
|
Diaz J, Pietsch M, Davila M, Jaimes G, Hudson A, Pellois JP. Elucidating the Impact of Payload Conjugation on the Cell-Penetrating Efficiency of the Endosomal Escape Peptide dfTAT: Implications for Future Designs for CPP-Based Delivery Systems. Bioconjug Chem 2023; 34:1861-1872. [PMID: 37774419 PMCID: PMC10644971 DOI: 10.1021/acs.bioconjchem.3c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Cell-penetrating peptides (CPPs) are promising tools for the intracellular delivery of various biological payloads. However, the impact of payload conjugation on the cell-penetrating activity of CPPs is poorly understood. This study focused on dfTAT, a modified version of the HIV-TAT peptide with enhanced endosomal escape activity, to explore how different payloads affect its cell-penetrating activity. We systematically examined dfTAT conjugated with the SnoopTag/SnoopCatcher pair and found that while smaller payloads such as short peptides do not significantly impair dfTAT's cell delivery activity, larger payloads markedly reduce both its endocytic uptake and endosomal escape efficiency. Our results highlight the role of the payload size and bulk in limiting CPP-mediated delivery. While further research is needed to understand the molecular underpinnings of these effects, our findings pave the way for developing more effective CPP-based delivery systems.
Collapse
Affiliation(s)
- Joshua Diaz
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Miles Pietsch
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Marissa Davila
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Gerardo Jaimes
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Alexis Hudson
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Jean-Philippe Pellois
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
28
|
Jain A, Govindan R, Berkman A, Luban J, Durham ND, Munro J. Regulation of Ebola GP conformation and membrane binding by the chemical environment of the late endosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524651. [PMID: 36711925 PMCID: PMC9882366 DOI: 10.1101/2023.01.18.524651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Interaction between the Ebola virus envelope glycoprotein (GP) and the endosomal membrane is an essential step during virus entry into the cell. Acidic pH and Ca2+ have been implicated in mediating the GP-membrane interaction. However, the molecular mechanism by which these environmental factors regulate the conformational changes that enable engagement of GP with the target membrane is unknown. Here, we apply fluorescence correlation spectroscopy (FCS) and single-molecule Forster resonance energy transfer (smFRET) imaging to elucidate how the acidic pH, Ca2+ and anionic phospholipids in the late endosome promote GP-membrane interaction, thereby facilitating virus entry. We find that bis(monoacylglycero)phosphate (BMP), which is specific to the late endosome, is especially critical in determining the Ca2+-dependence of the GP-membrane interaction. Molecular dynamics (MD) simulations suggested residues in GP that sense pH and induce conformational changes that make the fusion loop available for insertion into the membrane. We similarly confirm residues in the fusion loop that mediate GPs interaction with Ca2+, which likely promotes local conformational changes in the fusion loop and mediates electrostatic interactions with the anionic phospholipids. Collectively, our results provide a mechanistic understanding of how the environment of the late endosome regulates the timing and efficiency of virus entry.
Collapse
|
29
|
Rani S, Lai A, Nair S, Sharma S, Handberg A, Carrion F, Möller A, Salomon C. Extracellular vesicles as mediators of cell-cell communication in ovarian cancer and beyond - A lipids focus. Cytokine Growth Factor Rev 2023; 73:52-68. [PMID: 37423866 DOI: 10.1016/j.cytogfr.2023.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Extracellular vesicles (EVs) are messengers that carry information in the form of proteins, lipids, and nucleic acids and are not only essential for intercellular communication but also play a critical role in the progression of various pathologies, including ovarian cancer. There has been recent substantial research characterising EV cargo, specifically, the lipid profile of EVs. Lipids are involved in formation and cargo sorting of EVs, their release and cellular uptake. Numerous lipidomic studies demonstrated the enrichment of specific classes of lipids in EVs derived from cancer cells suggesting that the EV associated lipids can potentially be employed as minimally invasive biomarkers for early diagnosis of various malignancies, including ovarian cancer. In this review, we aim to provide a general overview of the heterogeneity of EV, biogenesis, their lipid content, and function in cancer progression focussing on ovarian cancer.
Collapse
Affiliation(s)
- Shikha Rani
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Soumya Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Shayna Sharma
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Andreas Möller
- Department of Otorhinolaryngology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia; Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
30
|
Villalaín J. Phospholipid binding of the dengue virus envelope E protein segment containing the conserved His residue. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184198. [PMID: 37437754 DOI: 10.1016/j.bbamem.2023.184198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Flaviviruses encompass many important human pathogens, including Dengue, Zika, West Nile, Yellow fever, Japanese encephalitis, and Tick-borne encephalitis viruses as well as several emerging viruses that affect millions of people worldwide. They enter cells by endocytosis, fusing their membrane with the late endosomal one in a pH-dependent manner, so membrane fusion is one of the main targets for obtaining new antiviral inhibitors. The envelope E protein, a class II membrane fusion protein, is responsible for fusion and contains different domains involved in the fusion mechanism, including the fusion peptide. However, other segments, apart from the fusion peptide, have been implicated in the mechanism of membrane fusion, in particular a segment containing a His residue supposed to act as a specific pH sensor. We have used atomistic molecular dynamics to study the binding of the envelope E protein segment containing the conserved His residue in its three different tautomer forms with a complex membrane mimicking the late-endosomal one. We show that this His-containing segment is capable of spontaneous membrane binding, preferentially binds electronegatively charged phospholipids and does not bind cholesterol. Since Flaviviruses have caused epidemics in the past, continue to do so and will undoubtedly continue to do so, this specific segment could characterise a new target that would allow finding effective antiviral molecules against DENV virus in particular and Flaviviruses in general.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche, Alicante, Spain.
| |
Collapse
|
31
|
Joshi R, Zhaliazka K, Holman AP, Kurouski D. Elucidation of the Role of Lipids in Late Endosomes on the Aggregation of Insulin. ACS Chem Neurosci 2023; 14:3551-3559. [PMID: 37682720 PMCID: PMC10862470 DOI: 10.1021/acschemneuro.3c00475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Abrupt aggregation of misfolded proteins is the underlying molecular cause of numerous pathologies including diabetes type 2 and injection amyloidosis. Although the exact cause of this process is unclear, a growing body of evidence suggests that protein aggregation is linked to a high protein concentration and the presence of lipid membranes. Endosomes are cell organelles that often possess high concentrations of proteins due to their uptake from the extracellular space. However, the role of endosomes in amyloid pathologies remains unclear. In this study, we used a set of biophysical methods to determine the role of bis(monoacylglycero)phosphate (BMP), the major lipid constituent of late endosomes on the aggregation properties of insulin. We found that both saturated and unsaturated BMP accelerated protein aggregation. However, very little if any changes in the secondary structure of insulin fibrils grown in the presence of BMP were observed. Therefore, no changes in the toxicity of these aggregates compared to the fibrils formed in the lipid-free environment were observed. We also found that the toxicity of insulin oligomers formed in the presence of a 77:23 mol/mol ratio of BMP/PC, which represents the lipid composition of late endosomes, was slightly higher than the toxicity of insulin oligomers formed in the lipid-free environment. However, the toxicity of mature insulin fibrils formed in the presence of BMP/PC mixture was found to be lower or similar to the toxicity of insulin fibrils formed in the lipid-free environment. These results suggest that late endosomes are unlikely to be the source of highly toxic protein aggregates if amyloid proteins aggregate in them.
Collapse
Affiliation(s)
- Ritu Joshi
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kiryl Zhaliazka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Aidan P. Holman
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Entomology, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
32
|
Medoh UN, Hims A, Chen JY, Ghoochani A, Nyame K, Dong W, Abu-Remaileh M. The Batten disease gene product CLN5 is the lysosomal bis(monoacylglycero)phosphate synthase. Science 2023; 381:1182-1189. [PMID: 37708259 DOI: 10.1126/science.adg9288] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
Lysosomes critically rely on bis(monoacylglycero)phosphate (BMP) to stimulate lipid catabolism, cholesterol homeostasis, and lysosomal function. Alterations in BMP levels in monogenic and complex neurodegeneration suggest an essential function in human health. However, the site and mechanism responsible for BMP synthesis have been subject to debate for decades. Here, we report that the Batten disease gene product CLN5 is the elusive BMP synthase (BMPS). BMPS-deficient cells exhibited a massive accumulation of the BMP synthesis precursor lysophosphatidylglycerol (LPG), depletion of BMP species, and dysfunctional lipid metabolism. Mechanistically, we found that BMPS mediated synthesis through an energy-independent base exchange reaction between two LPG molecules with increased activity on BMP-laden vesicles. Our study elucidates BMP biosynthesis and reveals an anabolic function of late endosomes/lysosomes.
Collapse
Affiliation(s)
- Uche N Medoh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andy Hims
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Julie Y Chen
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Ali Ghoochani
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
33
|
Farnoodian M, Bose D, Barone F, Nelson LM, Boyle M, Jun B, Do K, Gordon W, Guerin MAK, Perera R, Ji JX, Cogliati T, Sharma R, Brooks BP, Bazan NG, Bharti K. Retina and RPE lipid profile changes linked with ABCA4 associated Stargardt's maculopathy. Pharmacol Ther 2023; 249:108482. [PMID: 37385300 PMCID: PMC10530239 DOI: 10.1016/j.pharmthera.2023.108482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Stargardt maculopathy, caused predominantly by mutations in the ABCA4 gene, is characterized by an accumulation of non-degradable visual pigment derivative, lipofuscin, in the retinal pigment epithelium (RPE) - resulting in RPE atrophy. RPE is a monolayer tissue located adjacent to retinal photoreceptors and regulates their health and functioning; RPE atrophy triggers photoreceptor cell death and vision loss in Stargardt patients. Previously, ABCA4 mutations in photoreceptors were thought to be the major contributor to lipid homeostasis defects in the eye. Recently, we demonstrated that ABCA4 loss of function in the RPE leads to cell-autonomous lipid homeostasis defects. Our work underscores that an incomplete understanding of lipid metabolism and lipid-mediated signaling in the retina and RPE are potential causes for lacking treatments for this disease. Here we report altered lipidomic in mouse and human Stargardt models. This work provides the basis for therapeutics that aim to restore lipid homeostasis in the retina and the RPE.
Collapse
Affiliation(s)
- Mitra Farnoodian
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Devika Bose
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Francesca Barone
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Luke Mathew Nelson
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Marisa Boyle
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Khanh Do
- Faculty of Medicine, Phenikaa University, Hanoi, Viet Nam
| | - William Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Marie-Audrey Kautzmann Guerin
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Rasangi Perera
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Jeff X Ji
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Tiziana Cogliati
- Division of Aging Biology, National Institute on Aging, National Institute of Health, Bethesda, MD, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
34
|
Sarmento MJ, Llorente A, Petan T, Khnykin D, Popa I, Nikolac Perkovic M, Konjevod M, Jaganjac M. The expanding organelle lipidomes: current knowledge and challenges. Cell Mol Life Sci 2023; 80:237. [PMID: 37530856 PMCID: PMC10397142 DOI: 10.1007/s00018-023-04889-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Lipids in cell membranes and subcellular compartments play essential roles in numerous cellular processes, such as energy production, cell signaling and inflammation. A specific organelle lipidome is characterized by lipid synthesis and metabolism, intracellular trafficking, and lipid homeostasis in the organelle. Over the years, considerable effort has been directed to the identification of the lipid fingerprints of cellular organelles. However, these fingerprints are not fully characterized due to the large variety and structural complexity of lipids and the great variability in the abundance of different lipid species. The process becomes even more challenging when considering that the lipidome differs in health and disease contexts. This review summarizes the information available on the lipid composition of mammalian cell organelles, particularly the lipidome of the nucleus, mitochondrion, endoplasmic reticulum, Golgi apparatus, plasma membrane and organelles in the endocytic pathway. The lipid compositions of extracellular vesicles and lamellar bodies are also described. In addition, several examples of subcellular lipidome dynamics under physiological and pathological conditions are presented. Finally, challenges in mapping organelle lipidomes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167, Oslo, Norway
- Faculty of Medicine, Centre for Cancer Cell Reprogramming, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Iuliana Popa
- Pharmacy Department, Bâtiment Henri Moissan, University Paris-Saclay, 17 Avenue des Sciences, 91400, Orsay, France
| | | | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Morana Jaganjac
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
35
|
Bianco V, Korbelius M, Vujic N, Akhmetshina A, Amor M, Kolb D, Pirchheim A, Bradic I, Kuentzel KB, Buerger M, Schauer S, Phan HTT, Bulfon D, Hoefler G, Zimmermann R, Kratky D. Impact of (intestinal) LAL deficiency on lipid metabolism and macrophage infiltration. Mol Metab 2023; 73:101737. [PMID: 37182562 PMCID: PMC10209539 DOI: 10.1016/j.molmet.2023.101737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023] Open
Abstract
OBJECTIVE To date, the only enzyme known to be responsible for the hydrolysis of cholesteryl esters and triacylglycerols in the lysosome at acidic pH is lysosomal acid lipase (LAL). Lipid malabsorption in the small intestine (SI), accompanied by macrophage infiltration, is one of the most common pathological features of LAL deficiency. However, the exact role of LAL in intestinal lipid metabolism is still unknown. METHODS We collected three parts of the SI (duodenum, jejunum, ileum) from mice with a global (LAL KO) or intestine-specific deletion of LAL (iLAL KO) and corresponding controls. RESULTS We observed infiltration of lipid-associated macrophages into the lamina propria, where neutral lipids accumulate massively in the SI of LAL KO mice. In addition, LAL KO mice absorb less dietary lipids but have accelerated basolateral lipid uptake, secrete fewer chylomicrons, and have increased fecal lipid loss. Inflammatory markers and genes involved in lipid metabolism were overexpressed in the duodenum of old but not in younger LAL KO mice. Despite the significant reduction of LAL activity in enterocytes of enterocyte-specific (iLAL) KO mice, villous morphology, intestinal lipid concentrations, expression of lipid transporters and inflammatory genes, as well as lipoprotein secretion were comparable to control mice. CONCLUSIONS We conclude that loss of LAL only in enterocytes is insufficient to cause lipid deposition in the SI, suggesting that infiltrating macrophages are the key players in this process.
Collapse
Affiliation(s)
- Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Alena Akhmetshina
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Ivan Bradic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Katharina B Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Martin Buerger
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Huyen T T Phan
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Dominik Bulfon
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Robert Zimmermann
- BioTechMed-Graz, Graz, Austria; Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
36
|
Villalaín J. LABYRINTHOPEPTIN A2 DISRUPTS RAFT DOMAINS. Chem Phys Lipids 2023; 253:105303. [PMID: 37061155 DOI: 10.1016/j.chemphyslip.2023.105303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Labyrinthopeptins constitute a class of ribosomal synthesized peptides belonging to the type III family of lantibiotics. They exist in different variants and display broad antiviral activities as well as show antiallodynic activity. Although their mechanism of action is not understood, it has been described that Labyrinthopeptins interact with membrane phospholipids modulating its biophysical properties and point out to membrane destabilization as its main point of action. We have used all-atom molecular dynamics to study the location of labyrinthopeptin A2 in a complex membrane as well as the existence of specific interactions with membrane lipids. Our results indicate that labyrinthopeptin A2, maintaining its globular structure, tends to be placed at the membrane interface, mainly between the phosphate atoms of the phospholipids and the oxygen atom of cholesterol modulating the biophysical properties of the membrane lipids. Outstandingly, we have found that labyrinthopeptin A2 tends to be preferentially surrounded by sphingomyelin while excluding cholesterol. The bioactive properties of labyrinthopeptin A2 could be attributed to the specific disorganization of raft domains in the membrane and the concomitant disruption of the overall membrane organization. These results support the improvement of Labyrinthopeptins as therapeutic molecules, opening up new opportunities for future medical advances.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202 Elche-Alicante, Spain.
| |
Collapse
|
37
|
Klein S, Golani G, Lolicato F, Lahr C, Beyer D, Herrmann A, Wachsmuth-Melm M, Reddmann N, Brecht R, Hosseinzadeh M, Kolovou A, Makroczyova J, Peterl S, Schorb M, Schwab Y, Brügger B, Nickel W, Schwarz US, Chlanda P. IFITM3 blocks influenza virus entry by sorting lipids and stabilizing hemifusion. Cell Host Microbe 2023; 31:616-633.e20. [PMID: 37003257 DOI: 10.1016/j.chom.2023.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) inhibits the entry of numerous viruses through undefined molecular mechanisms. IFITM3 localizes in the endosomal-lysosomal system and specifically affects virus fusion with target cell membranes. We found that IFITM3 induces local lipid sorting, resulting in an increased concentration of lipids disfavoring viral fusion at the hemifusion site. This increases the energy barrier for fusion pore formation and the hemifusion dwell time, promoting viral degradation in lysosomes. In situ cryo-electron tomography captured IFITM3-mediated arrest of influenza A virus membrane fusion. Observation of hemifusion diaphragms between viral particles and late endosomal membranes confirmed hemifusion stabilization as a molecular mechanism of IFITM3. The presence of the influenza fusion protein hemagglutinin in post-fusion conformation close to hemifusion sites further indicated that IFITM3 does not interfere with the viral fusion machinery. Collectively, these findings show that IFITM3 induces lipid sorting to stabilize hemifusion and prevent virus entry into target cells.
Collapse
Affiliation(s)
- Steffen Klein
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Gonen Golani
- BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland
| | - Carmen Lahr
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Daniel Beyer
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Alexia Herrmann
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Moritz Wachsmuth-Melm
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Nina Reddmann
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Romy Brecht
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mehdi Hosseinzadeh
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Androniki Kolovou
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Jana Makroczyova
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Sarah Peterl
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
38
|
Villalaín J. SARS-CoV-2 Protein S Fusion Peptide Is Capable of Wrapping Negatively-Charged Phospholipids. MEMBRANES 2023; 13:344. [PMID: 36984731 PMCID: PMC10057416 DOI: 10.3390/membranes13030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
COVID-19, caused by SARS-CoV-2, which is a positive-sense, single-stranded RNA enveloped virus, emerged in late 2019 and was declared a worldwide pandemic in early 2020 causing more than 600 million infections so far and more than 6 million deaths in the world. Although new vaccines have been implemented, the pandemic continues to impact world health dramatically. Membrane fusion, critical for the viral entry into the host cell, is one of the main targets for the development of novel antiviral therapies to combat COVID-19. The S2 subunit of the viral S protein, a class I membrane fusion protein, contains the fusion domain which is directly implicated in the fusion mechanism. The knowledge of the membrane fusion mechanism at the molecular level will undoubtedly result in the development of effective antiviral strategies. We have used all-atom molecular dynamics to analyse the binding of the SARS-CoV-2 fusion peptide to specific phospholipids in model membranes composed of only one phospholipid plus cholesterol in the presence of either Na+ or Ca2+. Our results show that the fusion peptide is capable of binding to the membrane, that its secondary structure does not change significantly upon binding, that it tends to preferentially bind electronegatively charged phospholipids, and that it does not bind cholesterol at all. Understanding the intricacies of the membrane fusion mechanism and the molecular interactions involved will lead us to the development of antiviral molecules that will allow a more efficient battle against these viruses.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche, Spain
| |
Collapse
|
39
|
Villalaín J. Bergamottin: location, aggregation and interaction with the plasma membrane. J Biomol Struct Dyn 2023; 41:12026-12037. [PMID: 36602143 DOI: 10.1080/07391102.2022.2164521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
Bioactive furanocoumarins, a group of natural secondary metabolites common in higher plants, are recognized for their benefits to human health and have been shown to have numerous biological properties. However, the knowledge of its biomolecular mechanism is not known. One of the main furanocoumarins is bergamottin (BGM), which is characterized by a planar three-ringed structure and a hydrocarbon chain, which give BGM its high lipid/water partition coefficient. Because of that, and although the biological mechanism of BGM is not known, BGM bioactive properties could be ascribed to its potential to interact with the biological membrane, modulating its structure, changing its dynamics and at the same time that it might interact with lipids. For our goal, we have applied molecular dynamics to determine the position of BGM in a complex membrane and discern the possibility of certain interactions with membrane lipids. Our findings establish that BGM tends to locate in the middle of the hydrocarbon layer of the membrane, inserts in between the hydrocarbon chains of the phospholipids in an oblique position with respect to the membrane plane, increasing the fluidity of the membrane. Significantly, BGM tends to be surrounded by POPC molecules but exclude the molecule of CHOL. Outstandingly, BGM molecules associate spontaneously creating aggregates, which does not preclude them from interacting with and inserting into the membrane. The bioactive properties of BGM could be ascribed to its membranotropic effects and support the improvement of these molecules as therapeutic molecules, giving place to new opportunities for potential medical improvements.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", Elche-Alicante, Spain
| |
Collapse
|
40
|
Aliakbarinodehi N, Gallud A, Mapar M, Wesén E, Heydari S, Jing Y, Emilsson G, Liu K, Sabirsh A, Zhdanov VP, Lindfors L, Esbjörner EK, Höök F. Interaction Kinetics of Individual mRNA-Containing Lipid Nanoparticles with an Endosomal Membrane Mimic: Dependence on pH, Protein Corona Formation, and Lipoprotein Depletion. ACS NANO 2022; 16:20163-20173. [PMID: 36511601 PMCID: PMC9798854 DOI: 10.1021/acsnano.2c04829] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/06/2022] [Indexed: 06/04/2023]
Abstract
Lipid nanoparticles (LNPs) have emerged as potent carriers for mRNA delivery, but several challenges remain before this approach can offer broad clinical translation of mRNA therapeutics. To improve their efficacy, a better understanding is required regarding how LNPs are trapped and processed at the anionic endosomal membrane prior to mRNA release. We used surface-sensitive fluorescence microscopy with single LNP resolution to investigate the pH dependency of the binding kinetics of ionizable lipid-containing LNPs to a supported endosomal model membrane. A sharp increase of LNP binding was observed when the pH was lowered from 6 to 5, accompanied by stepwise large-scale LNP disintegration. For LNPs preincubated in serum, protein corona formation shifted the onset of LNP binding and subsequent disintegration to lower pH, an effect that was less pronounced for lipoprotein-depleted serum. The LNP binding to the endosomal membrane mimic was observed to eventually become severely limited by suppression of the driving force for the formation of multivalent bonds during LNP attachment or, more specifically, by charge neutralization of anionic lipids in the model membrane due to their association with cationic lipids from earlier attached LNPs upon their disintegration. Cell uptake experiments demonstrated marginal differences in LNP uptake in untreated and lipoprotein-depleted serum, whereas lipoprotein-depleted serum increased mRNA-controlled protein (eGFP) production substantially. This complies with model membrane data and suggests that protein corona formation on the surface of the LNPs influences the nature of the interaction between LNPs and endosomal membranes.
Collapse
Affiliation(s)
- Nima Aliakbarinodehi
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology 41296 Göteborg, Sweden
| | - Audrey Gallud
- Division
of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
- Advanced
Drug Delivery, Pharmaceutical Sciences,
R&D, AstraZeneca, 43181 Gothenburg, Sweden
| | - Mokhtar Mapar
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology 41296 Göteborg, Sweden
| | - Emelie Wesén
- Division
of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Sahar Heydari
- Division
of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Yujia Jing
- Advanced
Drug Delivery, Pharmaceutical Sciences,
R&D, AstraZeneca, 43181 Gothenburg, Sweden
| | - Gustav Emilsson
- Advanced
Drug Delivery, Pharmaceutical Sciences,
R&D, AstraZeneca, 43181 Gothenburg, Sweden
| | - Kai Liu
- Advanced
Drug Delivery, Pharmaceutical Sciences,
R&D, AstraZeneca, 43181 Gothenburg, Sweden
| | - Alan Sabirsh
- Advanced
Drug Delivery, Pharmaceutical Sciences,
R&D, AstraZeneca, 43181 Gothenburg, Sweden
| | - Vladimir P. Zhdanov
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology 41296 Göteborg, Sweden
- Boreskov
Institute of Catalysis, Russian Academy
of Sciences, Novosibirsk 630090, Russia
| | - Lennart Lindfors
- Advanced
Drug Delivery, Pharmaceutical Sciences,
R&D, AstraZeneca, 43181 Gothenburg, Sweden
| | - Elin K. Esbjörner
- Division
of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Fredrik Höök
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology 41296 Göteborg, Sweden
| |
Collapse
|
41
|
Mannsverk S, Villamil Giraldo AM, Kasson PM. Influenza Virus Membrane Fusion Is Promoted by the Endosome-Resident Phospholipid Bis(monoacylglycero)phosphate. J Phys Chem B 2022; 126:10445-10451. [PMID: 36468619 PMCID: PMC9761668 DOI: 10.1021/acs.jpcb.2c06642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The phospholipid bis(monoacylglycero)phosphate (BMP) is enriched in late endosomal and endolysosomal membranes and is believed to be involved in membrane deformation and generation of intralumenal vesicles within late endosomes. Previous studies have demonstrated that BMP promotes membrane fusion of several enveloped viruses, but a limited effect has been found on influenza virus. Here, we report the use of single-virus fusion assays to dissect BMP's effect on influenza virus fusion in greater depth. In agreement with prior reports, we found that hemifusion kinetics and efficiency were unaffected by the addition of 10-20 mol % BMP to the target membrane. However, using an assay for fusion pore formation and genome exposure, we found full fusion efficiency to be substantially enhanced by the addition of 10-20 mol % BMP to the target membrane, while the kinetics remained unaffected. By comparing BMP to other negatively charged phospholipids, we found the effect on fusion efficiency mainly attributable to headgroup charge, although we also hypothesize a role for BMP's unusual chemical structure. Our results suggest that BMP function as a permissive factor for a wider range of viruses than previously reported. We hypothesize that BMP may be a general cofactor for endosomal entry of enveloped viruses.
Collapse
Affiliation(s)
- Steinar Mannsverk
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Ana M. Villamil Giraldo
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Peter M. Kasson
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden,Departments
of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States,
| |
Collapse
|
42
|
Villalaín J. Interaction of Lassa virus fusion and membrane proximal peptides with late endosomal membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184031. [PMID: 35964711 DOI: 10.1016/j.bbamem.2022.184031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Mammarenaviruses include many significant worldwide-widespread human pathogens, among them Lassa virus (LASV), having a dramatic morbidity and mortality rate. They are a potential high-risk menace to the worldwide public health since there are no treatments and there is a high possibility of animal-to-human and human-to-human viral transmission. These viruses enter into the cells by endocytosis fusing its membrane envelope with the late endosomal membrane thanks to the glycoprotein GP2, a membrane fusion protein of class I. This protein contains different domains, among them the N-terminal fusion peptide (NFP), the internal fusion loop (IFL), the membrane proximal external region (MPER) and the transmembrane domain (TMD). All these domains are implicated in the membrane fusion process. In this work, we have used an all-atom molecular dynamics study to know the binding of these protein domains with a complex membrane mimicking the late endosome one. We show that the NFP/IFL domain is capable of spontaneously inserting into the membrane without a significant change of secondary structure, the MPER domain locates at the bilayer interface with an orientation parallel to the membrane surface and tends to interact with other MPER domains, and the TMD domain tilts inside the bilayer. Moreover, they predominantly interact with negatively charged phospholipids. Overall, these membrane-interacting domains would characterise a target that would make possible to find effective antiviral molecules against LASV in particular and Mammarenaviruses in general.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche-Alicante, Spain.
| |
Collapse
|
43
|
Galper J, Kim WS, Dzamko N. LRRK2 and Lipid Pathways: Implications for Parkinson's Disease. Biomolecules 2022; 12:1597. [PMID: 36358947 PMCID: PMC9687231 DOI: 10.3390/biom12111597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 04/10/2024] Open
Abstract
Genetic alterations in the LRRK2 gene, encoding leucine-rich repeat kinase 2, are a common risk factor for Parkinson's disease. How LRRK2 alterations lead to cell pathology is an area of ongoing investigation, however, multiple lines of evidence suggest a role for LRRK2 in lipid pathways. It is increasingly recognized that in addition to being energy reservoirs and structural entities, some lipids, including neural lipids, participate in signaling cascades. Early investigations revealed that LRRK2 localized to membranous and vesicular structures, suggesting an interaction of LRRK2 and lipids or lipid-associated proteins. LRRK2 substrates from the Rab GTPase family play a critical role in vesicle trafficking, lipid metabolism and lipid storage, all processes which rely on lipid dynamics. In addition, LRRK2 is associated with the phosphorylation and activity of enzymes that catabolize plasma membrane and lysosomal lipids. Furthermore, LRRK2 knockout studies have revealed that blood, brain and urine exhibit lipid level changes, including alterations to sterols, sphingolipids and phospholipids, respectively. In human LRRK2 mutation carriers, changes to sterols, sphingolipids, phospholipids, fatty acyls and glycerolipids are reported in multiple tissues. This review summarizes the evidence regarding associations between LRRK2 and lipids, and the functional consequences of LRRK2-associated lipid changes are discussed.
Collapse
Affiliation(s)
- Jasmin Galper
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Woojin S Kim
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Nicolas Dzamko
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
44
|
Spatial snapshots of amyloid precursor protein intramembrane processing via early endosome proteomics. Nat Commun 2022; 13:6112. [PMID: 36245040 PMCID: PMC9573879 DOI: 10.1038/s41467-022-33881-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Degradation and recycling of plasma membrane proteins occurs via the endolysosomal system, wherein endosomes bud into the cytosol from the plasma membrane and subsequently mature into degradative lysosomal compartments. While methods have been developed for rapid selective capture of lysosomes (Lyso-IP), analogous methods for isolation of early endosome intermediates are lacking. Here, we develop an approach for rapid isolation of early/sorting endosomes through affinity capture of the early endosome-associated protein EEA1 (Endo-IP) and provide proteomic and lipidomic snapshots of EEA1-positive endosomes in action. We identify recycling, regulatory and membrane fusion complexes, as well as candidate cargo, providing a proteomic landscape of early/sorting endosomes. To demonstrate the utility of the method, we combined Endo- and Lyso-IP with multiplexed targeted proteomics to provide a spatial digital snapshot of amyloid precursor protein (APP) processing by β and γ-Secretases, which produce amyloidogenic Aβ species, and quantify small molecule modulation of Secretase action on endosomes. We anticipate that the Endo-IP approach will facilitate systematic interrogation of processes that are coordinated on EEA1-positive endosomes.
Collapse
|
45
|
Zhang CS, Li M, Wang Y, Li X, Zong Y, Long S, Zhang M, Feng JW, Wei X, Liu YH, Zhang B, Wu J, Zhang C, Lian W, Ma T, Tian X, Qu Q, Yu Y, Xiong J, Liu DT, Wu Z, Zhu M, Xie C, Wu Y, Xu Z, Yang C, Chen J, Huang G, He Q, Huang X, Zhang L, Sun X, Liu Q, Ghafoor A, Gui F, Zheng K, Wang W, Wang ZC, Yu Y, Zhao Q, Lin SY, Wang ZX, Piao HL, Deng X, Lin SC. The aldolase inhibitor aldometanib mimics glucose starvation to activate lysosomal AMPK. Nat Metab 2022; 4:1369-1401. [PMID: 36217034 PMCID: PMC9584815 DOI: 10.1038/s42255-022-00640-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/16/2022] [Indexed: 01/20/2023]
Abstract
The activity of 5'-adenosine monophosphate-activated protein kinase (AMPK) is inversely correlated with the cellular availability of glucose. When glucose levels are low, the glycolytic enzyme aldolase is not bound to fructose-1,6-bisphosphate (FBP) and, instead, signals to activate lysosomal AMPK. Here, we show that blocking FBP binding to aldolase with the small molecule aldometanib selectively activates the lysosomal pool of AMPK and has beneficial metabolic effects in rodents. We identify aldometanib in a screen for aldolase inhibitors and show that it prevents FBP from binding to v-ATPase-associated aldolase and activates lysosomal AMPK, thereby mimicking a cellular state of glucose starvation. In male mice, aldometanib elicits an insulin-independent glucose-lowering effect, without causing hypoglycaemia. Aldometanib also alleviates fatty liver and nonalcoholic steatohepatitis in obese male rodents. Moreover, aldometanib extends lifespan and healthspan in both Caenorhabditis elegans and mice. Taken together, aldometanib mimics and adopts the lysosomal AMPK activation pathway associated with glucose starvation to exert physiological roles, and might have potential as a therapeutic for metabolic disorders in humans.
Collapse
Affiliation(s)
- Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Mengqi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yu Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Xiaoyang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yue Zong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Shating Long
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Mingliang Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jin-Wei Feng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Baoding Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Wenhua Lian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Teng Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Xiao Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Qi Qu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yaxin Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Jinye Xiong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Dong-Tai Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Zhenhua Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yaying Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Zheni Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Fujian, China
| | - Guohong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Qingxia He
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Lei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Xiufeng Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Qingfeng Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Abdul Ghafoor
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Fu Gui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Kaili Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Fujian, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Zhi-Chao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Yong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Zhi-Xin Wang
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
46
|
Hydrophobicity is a key determinant in the activity of arginine-rich cell penetrating peptides. Sci Rep 2022; 12:15981. [PMID: 36156072 PMCID: PMC9510126 DOI: 10.1038/s41598-022-20425-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
To deliver useful biological payloads into the cytosolic space of cells, cell-penetrating peptides have to cross biological membranes. The molecular features that control or enhance this activity remain unclear. Herein, a dimeric template of the arginine-rich HIV TAT CPP was used to establish the effect of incorporating groups and residues of various chemical structures and properties. A positive correlation is established between the relative hydrophobicity of these additional moieties and the ability of the CPP conjugates to deliver a peptidic probe into live cells. CPP conjugates with low hydrophobicity lead to no detectable delivery activity, while CPPs containing groups of increasing hydrophobicity achieve intracellular delivery at low micromolar concentrations. Notably, the chemical structures of the hydrophobic groups do not appear to play a role in overall cell penetration activity. The cell penetration activity detected is consistent with endosomal escape. Leakage assays with lipid bilayer of endosomal membrane composition also establish a positive correlation between hydrophobicity and membrane permeation. Overall, these results indicate that the presence of a relatively hydrophobic moiety, regardless of structure, is required in a CPP structure to enhance its cell penetration. It also indicates that simple modifications, including fluorophores used for cell imaging or small payloads, modulate the activity of CPPs and that a given CPP-conjugate may be unique in its membrane permeation properties.
Collapse
|
47
|
Hullin-Matsuda F, Colosetti P, Rabia M, Luquain-Costaz C, Delton I. Exosomal lipids from membrane organization to biomarkers: Focus on an endolysosomal-specific lipid. Biochimie 2022; 203:77-92. [DOI: 10.1016/j.biochi.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022]
|
48
|
Pusch LM, Riegler-Berket L, Oberer M, Zimmermann R, Taschler U. α/β-Hydrolase Domain-Containing 6 (ABHD6)- A Multifunctional Lipid Hydrolase. Metabolites 2022; 12:761. [PMID: 36005632 PMCID: PMC9412472 DOI: 10.3390/metabo12080761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
α/β-hydrolase domain-containing 6 (ABHD6) belongs to the α/β-hydrolase fold superfamily and was originally discovered in a functional proteomic approach designed to discover monoacylglycerol (MAG) hydrolases in the mouse brain degrading the endocannabinoid 2-arachidonoylglycerol. Subsequent studies confirmed that ABHD6 acts as an MAG hydrolase regulating cannabinoid receptor-dependent and -independent signaling processes. The enzyme was identified as a negative modulator of insulin secretion and regulator of energy metabolism affecting the pathogenesis of obesity and metabolic syndrome. It has been implicated in the metabolism of the lysosomal co-factor bis(monoacylglycerol)phosphate and in the surface delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. Finally, ABHD6 was shown to affect cancer cell lipid metabolism and tumor malignancy. Here, we provide new insights into the experimentally derived crystal structure of ABHD6 and its possible orientation in biological membranes, and discuss ABHD6's functions in health and disease.
Collapse
Affiliation(s)
- Lisa-Maria Pusch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Lina Riegler-Berket
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| |
Collapse
|
49
|
Li Z, Li T, Liu M, Ivanovic T. Hemagglutinin Stability Determines Influenza A Virus Susceptibility to a Broad-Spectrum Fusion Inhibitor Arbidol. ACS Infect Dis 2022; 8:1543-1552. [PMID: 35819162 PMCID: PMC9810120 DOI: 10.1021/acsinfecdis.2c00178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Understanding mechanisms of resistance to antiviral inhibitors can reveal nuanced features of targeted viral mechanisms and, in turn, lead to improved strategies for inhibitor design. Arbidol is a broad-spectrum antiviral that binds to and prevents the fusion-associated conformational changes in the trimeric influenza A virus (IAV) hemagglutinin (HA). The rate-limiting step during the HA-mediated membrane fusion is the release of the hydrophobic fusion peptides from a conserved pocket on HA. Here, we investigated how destabilizing or stabilizing mutations in or near the fusion peptide affect viral sensitivity to Arbidol. The degree of sensitivity was proportional to the extent of fusion-peptide stability on the prefusion HA: stabilized mutants were more sensitive, and destabilized ones were resistant to Arbidol. Single-virion membrane fusion experiments for representative wild-type (WT) and mutant viruses demonstrated that resistance is a direct consequence of fusion-peptide destabilization not requiring reduced Arbidol binding to HA. Our results support the model whereby the probability of individual HAs extending to engage the target membrane is determined by the composite of two critical forces: a "tug" on the fusion peptide by HA rearrangements near the Arbidol binding site and the key interactions stabilizing the fusion peptide in the prefusion pocket. Arbidol increases and destabilizing mutations decrease the free-energy cost for fusion-peptide release, accounting for the observed resistance. Our findings have broad implications for fusion inhibitor design, viral mechanisms of resistance, and our basic understanding of HA-mediated membrane fusion.
Collapse
|
50
|
Hausig-Punke F, Richter F, Hoernke M, Brendel JC, Traeger A. Tracking the Endosomal Escape: A Closer Look at Calcein and Related Reporters. Macromol Biosci 2022; 22:e2200167. [PMID: 35933579 DOI: 10.1002/mabi.202200167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/19/2022] [Indexed: 11/11/2022]
Abstract
Crossing the cellular membrane and delivering active pharmaceuticals or biologicals into the cytosol of cells is an essential step in the development of nanomedicines. One of the most important intracellular processes regarding the cellular uptake of biologicals is the endolysosomal pathway. Sophisticated nanocarriers have been developed overcoming a major hurdle, the endosomal entrapment, and delivering their cargo to the required site of action. In parallel, in vitro assays have been established analyzing the performance of these nanocarriers. Among them, the release of the membrane-impermeable dye calcein has become a popular and straightforward method. It is accessible for most researchers worldwide, allows for rapid conclusions about the release potential, and enables the study of release mechanisms. This review is intended to provide an overview and guidance for scientists applying the calcein release assay. It comprises a survey of several applications in the study of endosomal escape, considerations of potential pitfalls, challenges and limitations of the assay, and a brief summary of complementary methods. Based on this review, we hope to encourage further research groups to take advantage of the calcein release assay for their own purposes and help to create a database for more efficient cross-correlations between nanocarriers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Franziska Hausig-Punke
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Maria Hoernke
- Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, 79104, Freiburg i.Br., Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|