1
|
Li T, Zhou X, Wang Y, Liu X, Fan Y, Li R, Zhang H, Xu Y. AtCIPK20 regulates microtubule stability to mediate stomatal closure under drought stress in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:5297-5314. [PMID: 39189953 DOI: 10.1111/pce.15112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Drought stress is a common abiotic challenge that profoundly impacts plant growth and development. As sessile organisms, plants rely on various physiological and morphological adaptations to cope with drought conditions. The CIPK (calcineurin B-like protein-interacting protein kinase) family proteins play a pivotal role in mediating plant responses to abiotic stress through modulation of cellular membrane events via the CBL-CIPK complex. However, reports documenting the CIPKs' regulation of non-membrane events are scant. In this study, we discovered a novel subcellular localisation pattern of the AtCIPK20 protein of Arabidopsis, specifically to cortical microtubules (cMT), which is distinct from previously reported localisation patterns of plant CIPKs. AtCIPK20 regulates ABA-induced loss of cMT organisation in guard cells, thereby facilitating stomatal closure, mitigating leaf water loss, and protecting plants from drought stress in Arabidopsis. The C-terminal regulatory domain of AtCIPK20 governs its cMT targeting, whereas the interaction of AtCIPK20 with its CBL partners disrupts this localisation. Notably, the cMT targeting characteristic of AtCIPK20 is not exclusive, as several other CIPK members in Arabidopsis, maize, and rice exhibit similar localisation patterns. These findings broaden our current understanding of the role of plant CIPK members in abiotic stress resistance and suggest that future exploration of CIPK molecular functions should adopt a more comprehensive perspective.
Collapse
Affiliation(s)
- Tao Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xuna Zhou
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yixiao Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xueqin Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yudong Fan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Ruiqi Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Huiyong Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yufang Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Zhang M, Yang Q, Yuan X, Yan X, Wang J, Cheng T, Zhang Q. Integrating Genome-Wide Association Analysis With Transcriptome Sequencing to Identify Candidate Genes Related to Blooming Time in Prunus mume. FRONTIERS IN PLANT SCIENCE 2021; 12:690841. [PMID: 34335659 PMCID: PMC8319914 DOI: 10.3389/fpls.2021.690841] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/28/2021] [Indexed: 05/12/2023]
Abstract
Prunus mume is one of the most important woody perennials for edible and ornamental use. Despite a substantial variation in the flowering phenology among the P. mume germplasm resources, the genetic control for flowering time remains to be elucidated. In this study, we examined five blooming time-related traits of 235 P. mume landraces for 2 years. Based on the phenotypic data, we performed genome-wide association studies, which included a combination of marker- and gene-based association tests, and identified 1,445 candidate genes that are consistently linked with flowering time across multiple years. Furthermore, we assessed the global transcriptome change of floral buds from the two P. mume cultivars exhibiting contrasting bloom dates and detected 617 associated genes that were differentially expressed during the flowering process. By integrating a co-expression network analysis, we screened out 191 gene candidates of conserved transcriptional pattern during blooming across cultivars. Finally, we validated the temporal expression profiles of these candidates and highlighted their putative roles in regulating floral bud break and blooming time in P. mume. Our findings are important to expand the understanding of flowering time control in woody perennials and will boost the molecular breeding of novel varieties in P. mume.
Collapse
Affiliation(s)
- Man Zhang
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qingqing Yang
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xi Yuan
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | | | - Jia Wang
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- *Correspondence: Qixiang Zhang
| |
Collapse
|
3
|
Matsuoka S, Sato K, Maruki-Imamura R, Noutoshi Y, Okabe T, Kojima H, Umezawa T. Identification of novel compounds that inhibit SnRK2 kinase activity by high-throughput screening. Biochem Biophys Res Commun 2020; 537:57-63. [PMID: 33385806 DOI: 10.1016/j.bbrc.2020.12.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 11/24/2022]
Abstract
Abscisic acid (ABA) is a major phytohormone that regulates abiotic stress responses and development. SNF1-rerated protein kinase 2 (SnRK2) is a key regulator of ABA signaling. To isolate compounds which directly affect SnRK2 activity, we optimized a fluorescence-based system for high-throughput screening (HTS) of SnRK2 kinase regulators. Using this system, we screened a chemical library consisting of 16,000 compounds and identified ten compounds (INH1-10) as potential SnRK2 inhibitors. Further characterization of these compounds by in vitro phosphorylation assays confirmed that three of the ten compounds were SnRK2-specific kinase inhibitors. In contrast, seven of ten compounds inhibited ABA-responsive gene expression in Arabidopsis cells. From these results, INH1 was identified as a SnRK2-specific inhibitor in vitro and in vivo. We propose that INH1 could be a lead compound of chemical tools for studying ABA responses in various plant species.
Collapse
Affiliation(s)
- Shoko Matsuoka
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Karin Sato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | | | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-0082, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan; Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8538, Japan; PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| |
Collapse
|
4
|
Omidbakhshfard MA, Sujeeth N, Gupta S, Omranian N, Guinan KJ, Brotman Y, Nikoloski Z, Fernie AR, Mueller-Roeber B, Gechev TS. A Biostimulant Obtained from the Seaweed Ascophyllum nodosum Protects Arabidopsis thaliana from Severe Oxidative Stress. Int J Mol Sci 2020; 21:E474. [PMID: 31940839 PMCID: PMC7013732 DOI: 10.3390/ijms21020474] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 11/16/2022] Open
Abstract
Abiotic stresses cause oxidative damage in plants. Here, we demonstrate that foliar application of an extract from the seaweed Ascophyllum nodosum, SuperFifty (SF), largely prevents paraquat (PQ)-induced oxidative stress in Arabidopsis thaliana. While PQ-stressed plants develop necrotic lesions, plants pre-treated with SF (i.e., primed plants) were unaffected by PQ. Transcriptome analysis revealed induction of reactive oxygen species (ROS) marker genes, genes involved in ROS-induced programmed cell death, and autophagy-related genes after PQ treatment. These changes did not occur in PQ-stressed plants primed with SF. In contrast, upregulation of several carbohydrate metabolism genes, growth, and hormone signaling as well as antioxidant-related genes were specific to SF-primed plants. Metabolomic analyses revealed accumulation of the stress-protective metabolite maltose and the tricarboxylic acid cycle intermediates fumarate and malate in SF-primed plants. Lipidome analysis indicated that those lipids associated with oxidative stress-induced cell death and chloroplast degradation, such as triacylglycerols (TAGs), declined upon SF priming. Our study demonstrated that SF confers tolerance to PQ-induced oxidative stress in A. thaliana, an effect achieved by modulating a range of processes at the transcriptomic, metabolic, and lipid levels.
Collapse
Affiliation(s)
- Mohammad Amin Omidbakhshfard
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.A.O.); (S.G.); (N.O.); (Y.B.); (A.R.F.); (B.M.-R.)
| | - Neerakkal Sujeeth
- BioAtlantis Ltd., Clash Industrial Estate, Tralee, V92 RWV5 Co. Kerry, Ireland;
| | - Saurabh Gupta
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.A.O.); (S.G.); (N.O.); (Y.B.); (A.R.F.); (B.M.-R.)
- Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Nooshin Omranian
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.A.O.); (S.G.); (N.O.); (Y.B.); (A.R.F.); (B.M.-R.)
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany;
| | - Kieran J. Guinan
- BioAtlantis Ltd., Clash Industrial Estate, Tralee, V92 RWV5 Co. Kerry, Ireland;
| | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.A.O.); (S.G.); (N.O.); (Y.B.); (A.R.F.); (B.M.-R.)
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany;
- Department of Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, 139 Ruski blvd., 4000 Plovdiv, Bulgaria;
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.A.O.); (S.G.); (N.O.); (Y.B.); (A.R.F.); (B.M.-R.)
- Department of Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, 139 Ruski blvd., 4000 Plovdiv, Bulgaria;
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.A.O.); (S.G.); (N.O.); (Y.B.); (A.R.F.); (B.M.-R.)
- Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany
- Department of Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, 139 Ruski blvd., 4000 Plovdiv, Bulgaria;
| | - Tsanko S. Gechev
- Department of Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, 139 Ruski blvd., 4000 Plovdiv, Bulgaria;
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Kumar Meena M, Kumar Vishwakarma N, Tripathi V, Chattopadhyay D. CBL-interacting protein kinase 25 contributes to root meristem development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:133-147. [PMID: 30239807 PMCID: PMC6305191 DOI: 10.1093/jxb/ery334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/14/2018] [Indexed: 05/08/2023]
Abstract
Co-ordination of auxin and cytokinin activities determines root meristem size during post-embryonic development. Calcineurin B-like proteins (CBLs) and their interacting protein kinases (CIPKs) constitute signaling modules that relay calcium signals. Here we report that CIPK25 is involved in regulating the root meristem size. Arabidopsis plants lacking CIPK25 expression displayed a short root phenotype and a slower root growth rate with fewer meristem cells. This phenotype was rescued by restoration of CIPK25 expression. CIPK25 interacted with CBL4 and -5, and displayed strong gene expression in the flower and root, except in the cell proliferation domain in the root apical meristem. Its expression in the root was positively and negatively regulated by auxin and cytokinin, respectively. The cipk25 T-DNA insertion line was compromised in auxin transport and auxin-responsive promoter activity. The cipk25 mutant line showed altered expression of auxin efflux carriers (PIN1 and PIN2) and an Aux/IAA family gene SHY2. Decreased PIN1 and PIN2 expression in the cipk25 mutant line was completely restored when combined with a SHY2 loss-of-function mutation, resulting in recovery of root growth. SHY2 and PIN1 expression was partially regulated by cytokinin even in the absence of CIPK25, suggesting a CIPK25-independent cytokinin signaling pathway(s). Our results revealed that CIPK25 plays an important role in the co-ordination of auxin and cytokinin signaling in root meristem development.
Collapse
Affiliation(s)
- Mukesh Kumar Meena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Vineeta Tripathi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Correspondence:
| |
Collapse
|
6
|
Alberto D, Couée I, Pateyron S, Sulmon C, Gouesbet G. Low doses of triazine xenobiotics mobilize ABA and cytokinin regulations in a stress- and low-energy-dependent manner. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:8-22. [PMID: 30080643 DOI: 10.1016/j.plantsci.2018.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
The extent of residual contaminations of pesticides through drift, run-off and leaching is a potential threat to non-target plant communities. Arabidopsis thaliana responds to low doses of the herbicide atrazine, and of its degradation products, desethylatrazine and hydroxyatrazine, not only in the long term, but also under conditions of short-term exposure. In order to investigate underlying molecular mechanisms of low-dose responses and to decipher commonalities and specificities between different chemical treatments, parallel transcriptomic studies of the early effects of the atrazine-desethylatrazine-hydroxyatrazine chemical series were undertaken using whole-genome microarrays. All of the triazines under study produced coordinated and specific changes in gene expression. Hydroxyatrazine-responsive genes were mainly linked to root development, whereas atrazine and desethylatrazine mostly affected molecular signaling networks implicated in stress and hormone responses. Analysis of signaling-related genes, promoter sites and shared-function interaction networks highlighted the involvement of energy-, stress-, abscisic acid- and cytokinin-regulated processes, and emphasized the importance of cold-, heat- and drought-related signaling in the perception of low doses of triazines. These links between low-dose xenobiotic impacts and stress-hormone crosstalk pathways give novel insights into plant-pesticide interactions and plant-pollution interactions that are essential for toxicity evaluation in the context of environmental risk assessment.
Collapse
Affiliation(s)
- Diana Alberto
- Université de Rennes 1 / Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Rennes, F-35000, France
| | - Ivan Couée
- Université de Rennes 1 / Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Rennes, F-35000, France
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Cécile Sulmon
- Université de Rennes 1 / Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Rennes, F-35000, France
| | - Gwenola Gouesbet
- Université de Rennes 1 / Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Rennes, F-35000, France.
| |
Collapse
|
7
|
Abstract
Eukaryotic protein kinases (PKs) are a large family of proteins critical for cellular response to external signals, acting as molecular switches. PKs propagate biochemical signals by catalyzing phosphorylation of other proteins, including other PKs, which can undergo conformational changes upon phosphorylation and catalyze further phosphorylations. Although PKs have been studied thoroughly across the domains of life, the structures of these proteins are sparsely understood in numerous groups of organisms, including plants. In addition to efforts towards determining crystal structures of PKs, research on human PKs has incorporated molecular dynamics (MD) simulations to study the conformational dynamics underlying the switching of PK function. This approach of experimental structural biology coupled with computational biophysics has led to improved understanding of how PKs become catalytically active and why mutations cause pathological PK behavior, at spatial and temporal resolutions inaccessible to current experimental methods alone. In this review, we argue for the value of applying MD simulation to plant PKs. We review the basics of MD simulation methodology, the successes achieved through MD simulation in animal PKs, and current work on plant PKs using MD simulation. We conclude with a discussion of the future of MD simulations and plant PKs, arguing for the importance of molecular simulation in the future of plant PK research.
Collapse
|
8
|
Barajas‐Lopez JDD, Moreno JR, Gamez‐Arjona FM, Pardo JM, Punkkinen M, Zhu J, Quintero FJ, Fujii H. Upstream kinases of plant SnRKs are involved in salt stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:107-118. [PMID: 29094495 PMCID: PMC5814739 DOI: 10.1111/tpj.13761] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 10/21/2017] [Accepted: 10/24/2017] [Indexed: 05/03/2023]
Abstract
Sucrose non-fermenting 1-related protein kinases (SnRKs) are important for plant growth and stress responses. This family has three clades: SnRK1, SnRK2 and SnRK3. Although plant SnRKs are thought to be activated by upstream kinases, the overall mechanism remains obscure. Geminivirus Rep-Interacting Kinase (GRIK)1 and GRIK2 phosphorylate SnRK1s, which are involved in sugar/energy sensing, and the grik1-1 grik2-1 double mutant shows growth retardation under regular growth conditions. In this study, we established another Arabidopsis mutant line harbouring a different allele of gene GRIK1 (grik1-2 grik2-1) that grows similarly to the wild-type, enabling us to evaluate the function of GRIKs under stress conditions. In the grik1-2 grik2-1 double mutant, phosphorylation of SnRK1.1 was reduced, but not eliminated, suggesting that the grik1-2 mutation is a weak allele. In addition to high sensitivity to glucose, the grik1-2 grik2-1 mutant was sensitive to high salt, indicating that GRIKs are also involved in salinity signalling pathways. Salt Overly Sensitive (SOS)2, a member of the SnRK3 subfamily, is a critical mediator of the response to salinity. GRIK1 phosphorylated SOS2 in vitro, resulting in elevated kinase activity of SOS2. The salt tolerance of sos2 was restored to normal levels by wild-type SOS2, but not by a mutated form of SOS2 lacking the T168 residue phosphorylated by GRIK1. Activation of SOS2 by GRIK1 was also demonstrated in a reconstituted system in yeast. Our results indicate that GRIKs phosphorylate and activate SnRK1 and other members of the SnRK3 family, and that they play important roles in multiple signalling pathways in vivo.
Collapse
Affiliation(s)
| | - Jose Ramon Moreno
- Instituto de Recursos Naturales y Agrobiología de SevillaConsejo Superior de Investigaciones Cientificas41012SevillaSpain
| | - Francisco M. Gamez‐Arjona
- Instituto de Recursos Naturales y Agrobiología de SevillaConsejo Superior de Investigaciones Cientificas41012SevillaSpain
| | - Jose M. Pardo
- Instituto de Bioquímica Vegetal y FotosíntesisConsejo Superior de Investigaciones Cientificas41092SevillaSpain
| | - Matleena Punkkinen
- Molecular Plant Biology UnitDepartment of BiochemistryUniversity of Turku20014TurkuFinland
| | - Jian‐Kang Zhu
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
- Shanghai Center for Plant Stress BiologyShanghai Institutes for Biological SciencesCenter of Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai200032China
| | - Francisco J. Quintero
- Instituto de Bioquímica Vegetal y FotosíntesisConsejo Superior de Investigaciones Cientificas41092SevillaSpain
| | - Hiroaki Fujii
- Molecular Plant Biology UnitDepartment of BiochemistryUniversity of Turku20014TurkuFinland
| |
Collapse
|
9
|
Ma QJ, Sun MH, Lu J, Liu YJ, You CX, Hao YJ. An apple CIPK protein kinase targets a novel residue of AREB transcription factor for ABA-dependent phosphorylation. PLANT, CELL & ENVIRONMENT 2017; 40:2207-2219. [PMID: 28667821 DOI: 10.1111/pce.13013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/17/2017] [Accepted: 06/23/2017] [Indexed: 05/17/2023]
Abstract
Phytohormone abscisic acid (ABA) regulates many important processes in plants. It is a major molecule facilitating signal transduction during the abiotic stress response. In this study, an ABA-inducible transcription factor gene, MdAREB2, was identified in apple. Transgenic analysis was performed to characterize its function in ABA sensitivity. Overexpression of the MdAREB2 gene increased ABA sensitivity in the transgenic apple compared with the wild-type (WT) control. In addition, it was found that the protein MdAREB2 was phosphorylated at a novel site Thr411 in response to ABA. A yeast two-hybridization screen of an apple cDNA library demonstrated that a protein kinase, MdCIPK22, interacted with MdAREB2. Their interaction was further verified with Pull Down and Co-IP assays. A series of transgenic analyses in apple calli and plantlets showed that MdCIPK22 was required for ABA-induced phosphorylation at Thr411 of the MdAREB2 protein and enhanced its stability and transcriptional activity. Finally, it was found that MdCIPK22 increased ABA sensitivity in an MdAREB2-dependent manner. Our findings indicate a novel phosphorylation site in CIPK-AREB regulatory module for the ABA signalling pathway, which would be helpful for researchers to identify the functions of uncharacterized homologs in the future.
Collapse
Affiliation(s)
- Qi-Jun Ma
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Mei-Hong Sun
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Jing Lu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Ya-Jing Liu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
10
|
Sanyal SK, Kanwar P, Yadav AK, Sharma C, Kumar A, Pandey GK. Arabidopsis CBL interacting protein kinase 3 interacts with ABR1, an APETALA2 domain transcription factor, to regulate ABA responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 254:48-59. [PMID: 27964784 DOI: 10.1016/j.plantsci.2016.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 05/08/2023]
Abstract
Calcium (Ca2+) plays a vital role as a second messenger in several signaling pathways in plants. The calcineurin B-like proteins (CBLs) represent a family of plant calcium-binding proteins that function in propagating Ca2+ signals by interacting with CBL interacting protein kinases (CIPKs). Phosphorylation of CBL by CIPK is essential for the module to display full activity towards its target protein. Previous genetic analysis showed that the function of CBL9-CIPK3 module was implicated in negatively regulating seed germination and early development. In the present study, we have biochemically investigated the interaction of CBL9-CIPK3 module and our findings show that CBL9 is phosphorylated by CIPK3. Moreover, Abscisic acid repressor 1 (ABR1) is identified as the downstream target of CIPK3 and CIPK3-ABR1 function to regulate ABA responses during seed germination. Our study also indicates that the role of ABR1 is not limited to seed germination but it also regulates the ABA dependent processes in the adult stage of plant development. Combining our results, we conclude that the CBL9-CIPK3-ABR1 pathway functions to regulate seed germination and ABA dependent physiological processes in Arabidopsis.
Collapse
Affiliation(s)
- Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Akhilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Cheshta Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Ashish Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
11
|
Lyzenga WJ, Sullivan V, Liu H, Stone SL. The Kinase Activity of Calcineurin B-like Interacting Protein Kinase 26 (CIPK26) Influences Its Own Stability and that of the ABA-regulated Ubiquitin Ligase, Keep on Going (KEG). FRONTIERS IN PLANT SCIENCE 2017; 8:502. [PMID: 28443108 PMCID: PMC5385374 DOI: 10.3389/fpls.2017.00502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/22/2017] [Indexed: 05/20/2023]
Abstract
The Really Interesting New Gene (RING)-type E3 ligase, Keep on Going (KEG) plays a critical role in Arabidopsis growth after germination and the connections between KEG and hormone signaling pathways are expanding. With regards to abscisic acid (ABA) signaling, KEG targets ABA-responsive transcription factors abscisic acid insensitive 5, ABF1 and ABF3 for ubiquitination and subsequent degradation through the 26S proteasome. Regulation of E3 ligases through self-ubiquitination is common to RING-type E3 ligases and ABA promotes KEG self-ubiquitination and degradation. ABA-mediated degradation of KEG is phosphorylation-dependent; however, upstream signaling proteins that may regulate KEG stability have not been characterized. In this report, we show that CBL-Interacting Protein Kinase (CIPK) 26 can phosphorylate KEG in vitro. Using both in vitro and in planta degradation assays we provide evidence which suggests that the kinase activity of CIPK26 promotes the degradation of KEG. Furthermore, we found that the kinase activity of CIPK26 also influences its own stability; a constitutively active version is more stable than a wild type or a kinase dead version. Our results suggest a reciprocal regulation model wherein an activated and stable CIPK26 phosphorylates KEG to promote degradation of the E3.
Collapse
|
12
|
Sanyal SK, Rao S, Mishra LK, Sharma M, Pandey GK. Plant Stress Responses Mediated by CBL-CIPK Phosphorylation Network. Enzymes 2016; 40:31-64. [PMID: 27776782 DOI: 10.1016/bs.enz.2016.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
At any given time and location, plants encounter a flood of environmental stimuli. Diverse signal transduction pathways sense these stimuli and generate a diverse array of responses. Calcium (Ca2+) is generated as a second messenger due to these stimuli and is responsible for transducing the signals downstream in the pathway. A large number of Ca2+ sensor-responder components are responsible for Ca2+ signaling in plants. The sensor-responder complexes calcineurin B-like protein (CBL) and CBL-interacting protein kinases (CIPKs) are pivotal players in Ca2+-mediated signaling. The CIPKs are the protein kinases and hence mediate signal transduction mainly by the process of protein phosphorylation. Elaborate studies conducted in Arabidopsis have shown the involvement of CBL-CIPK complexes in abiotic and biotic stresses, and nutrient deficiency. Additionally, studies in crop plants have also indicated their role in the similar responses. In this chapter, we review the current literature on the CBL and CIPK network, shedding light into the enzymatic property and mechanism of action of CBL-CIPK complexes. We also summarize various reports on the functional modulation of the downstream targets by the CBL-CIPK modules across all plant species.
Collapse
Affiliation(s)
- S K Sanyal
- University of Delhi South Campus, New Delhi, India
| | - S Rao
- University of Delhi South Campus, New Delhi, India
| | - L K Mishra
- University of Delhi South Campus, New Delhi, India
| | - M Sharma
- University of Delhi South Campus, New Delhi, India
| | - G K Pandey
- University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
13
|
Identification and characterization of CBL and CIPK gene families in eggplant (Solanum melongena L.). Mol Genet Genomics 2016; 291:1769-81. [PMID: 27287616 DOI: 10.1007/s00438-016-1218-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
Eggplant (Solanum melongena L.) is an edible vegetable cultivated and consumed worldwide. But the production of eggplant is significantly limited by the soil salinization in greenhouse cultivation system. The main ions are Na(+), Ca(2+), Mg(2+), K(+), Cl(-), and SO4 (2-) in the salty soils. Calcineurin B-like proteins (CBLs) are calcium sensors and control the affinities and activities of numerous ion transporters with CBL-interacting protein kinases (CIPKs). In this study, a total of 5 CBL and 15 CIPK genes from eggplant were identified first. The yeast two-hybrid (Y2H) assay and bimolecular fluorescence complementation (BiFC) assay demonstrated the interaction network between SmCBLs and SmCIPKs. Strikingly, some new CBL-CIPK complexes were found which have never been discovered in any other plant species. The expression level of each SmCBL or SmCIPK under 200 mM NaCl, low potassium (LK; 100 μM), high Mg with 20 mM MgCl2 and MgSO4 stresses were examined by quantitative real-time PCR (qRT-PCR) assay and these CBL and CIPK genes were found to respond to the four ion stresses differently. Interestingly, the differential expression level of SmCIPK3, -24 or -25 to Mg(2+) is higher than Na(+), and Cl(-) is higher than SO4 (2-). In addition, different magnesium salt can induce different response mechanisms in eggplant. In summary, this study provides insight into the characterization of CBLs and CIPKs in eggplant. It may be used in a novel biotechnological breeding program strategy to create new eggplant cultivars, leading to enhance different ion tolerance.
Collapse
|
14
|
Zhou X, Hao H, Zhang Y, Bai Y, Zhu W, Qin Y, Yuan F, Zhao F, Wang M, Hu J, Xu H, Guo A, Zhao H, Zhao Y, Cao C, Yang Y, Schumaker KS, Guo Y, Xie CG. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase, Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE5. PLANT PHYSIOLOGY 2015; 168:659-76. [PMID: 25858916 PMCID: PMC4453773 DOI: 10.1104/pp.114.255455] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/04/2015] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-related protein kinase3-type protein kinase, SOS2-like protein kinase5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, abscisic acid-insensitive5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase mutants with point mutations in the PKS5 FISL/NAF (a conserved peptide that is necessary for interaction with SOS3 or SOS3-like calcium binding proteins) motif and the kinase domain, respectively, are hypersensitive to ABA during seed germination. PKS5 was found to interact with ABI5 in yeast (Saccharomyces cerevisiae), and this interaction was further confirmed in planta using bimolecular fluorescence complementation. Genetic studies revealed that ABI5 is epistatic to PKS5. PKS5 phosphorylates a serine (Ser) residue at position 42 in ABI5 and regulates ABA-responsive gene expression. This phosphorylation was induced by ABA in vivo and transactivated ABI5. Expression of ABI5, in which Ser-42 was mutated to alanine, could not fully rescue the ABA-insensitive phenotypes of the abi5-8 and pks5-4abi5-8 mutants. In contrast, mutating Ser-42 to aspartate rescued the ABA insensitivity of these mutants. These data demonstrate that PKS5-mediated phosphorylation of ABI5 at Ser-42 is critical for the ABA regulation of seed germination and gene expression in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Xiaona Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Hongmei Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yuguo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yili Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Wenbo Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yunxia Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Feifei Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Feiyi Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Mengyao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Jingjiang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Hong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Aiguang Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Huixian Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Cuiling Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yongqing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Karen S Schumaker
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Chang Gen Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| |
Collapse
|
15
|
Yan C, Yan Z, Wang Y, Yan X, Han Y. Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5933-44. [PMID: 25205572 PMCID: PMC4203129 DOI: 10.1093/jxb/eru334] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Tudor-SN protein (TSN) is universally expressed and highly conserved in eukaryotes. In Arabidopsis, TSN is reportedly involved in stress adaptation, but the mechanism involved in this adaptation is not understood. Here, we provide evidence that TSN regulates the mRNA levels of GA20ox3, a key enzyme for gibberellin (GA) biosynthesis. The levels of GA20ox3 transcripts decreased in TSN1/TSN2 RNA interference (RNAi) transgenic lines and increased in TSN1 over-expression (OE) transgenic lines. The TSN1 OE lines displayed phenotypes that may be attributed to the overproduction of GA. No obvious defects were observed in the RNAi transgenic lines under normal conditions, but under salt stress conditions these lines displayed slower growth than wild-type (WT) plants. Two mutants of GA20ox3, ga20ox3-1 and -2, also showed slower growth under stress than WT plants. Moreover, a higher accumulation of GA20ox3 transcripts was observed under salt stress. The results of a western blot analysis indicated that higher levels of TSN1 accumulated after salt treatment than under normal conditions. Subcellular localization studies showed that TSN1 was uniformly distributed in the cytoplasm under normal conditions but accumulated in small granules and co-localized with RBP47, a marker protein for stress granules (SGs), in response to salt stress. The results of RNA immunoprecipitation experiments indicated that TSN1 bound GA20ox3 mRNA in vivo. On the basis of these findings, we conclude that TSN is a novel component of plant SGs that regulates growth under salt stress by modulating levels of GA20ox3 mRNA.
Collapse
Affiliation(s)
- Chunxia Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zongyun Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yizheng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyuan Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuzhen Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress. Proc Natl Acad Sci U S A 2014; 111:E4532-41. [PMID: 25288725 DOI: 10.1073/pnas.1407610111] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plant cells have developed specific protective molecular machinery against environmental stresses. The family of CBL-interacting protein kinases (CIPK) and their interacting activators, the calcium sensors calcineurin B-like (CBLs), work together to decode calcium signals elicited by stress situations. The molecular basis of biological activation of CIPKs relies on the calcium-dependent interaction of a self-inhibitory NAF motif with a particular CBL, the phosphorylation of the activation loop by upstream kinases, and the subsequent phosphorylation of the CBL by the CIPK. We present the crystal structures of the NAF-truncated and pseudophosphorylated kinase domains of CIPK23 and CIPK24/SOS2. In addition, we provide biochemical data showing that although CIPK23 is intrinsically inactive and requires an external stimulation, CIPK24/SOS2 displays basal activity. This data correlates well with the observed conformation of the respective activation loops: Although the loop of CIPK23 is folded into a well-ordered structure that blocks the active site access to substrates, the loop of CIPK24/SOS2 protrudes out of the active site and allows catalysis. These structures together with biochemical and biophysical data show that CIPK kinase activity necessarily requires the coordinated releases of the activation loop from the active site and of the NAF motif from the nucleotide-binding site. Taken all together, we postulate the basis for a conserved calcium-dependent NAF-mediated regulation of CIPKs and a variable regulation by upstream kinases.
Collapse
|
17
|
Lyzenga WJ, Liu H, Schofield A, Muise-Hennessey A, Stone SL. Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin-proteasome system. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2779-91. [PMID: 23658427 PMCID: PMC3697954 DOI: 10.1093/jxb/ert123] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The RING-type E3 ligase, Keep on Going (KEG), is required for early seedling establishment in Arabidopsis thaliana. Post-germination, KEG negatively regulates abscisic acid (ABA) signalling by targeting Abscisic Acid Insensitive 5 (ABI5) for ubiquitination and subsequent degradation. Previous reports suggest that the role of KEG during early seedling development is not limited to regulation of ABI5 abundance. Using a yeast two-hybrid screen, this study identified Calcineurin B-like Interacting Protein Kinase (CIPK) 26 as a KEG-interacting protein. In vitro pull-down and in planta bimolecular fluorescence complementation assays confirmed the interactions between CIPK26 and KEG. In planta experiments demonstrated that CIPK26 was ubiquitinated and degraded via the 26S proteasome. It was also found that turnover of CIPK26 was increased when KEG protein levels were elevated, suggesting that the RING-type E3 ligase is involved in targeting CIPK26 for degradation. CIPK26 was found to interact with the ABA signalling components ABI1, ABI2, and ABI5. In addition, CIPK26 was capable of phosphorylating ABI5 in vitro. Consistent with a role in ABA signalling, overexpression of CIPK26 increased the sensitivity of germinating seeds to the inhibitory effects of ABA. The data presented in this report suggest that KEG mediates the proteasomal degradation of CIPK26 and that CIPK26 is part of the ABA signalling network.
Collapse
|
18
|
Oh S, Warnasooriya SN, Montgomery BL. Downstream effectors of light- and phytochrome-dependent regulation of hypocotyl elongation in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2013; 81:627-40. [PMID: 23456246 PMCID: PMC3597320 DOI: 10.1007/s11103-013-0029-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/14/2013] [Indexed: 05/04/2023]
Abstract
Arabidopsis, like most plants, exhibits tissue-specific, light-dependent growth responses. Cotyledon and leaf growth and the accumulation of photosynthetic pigments are promoted by light, whereas hypocotyl growth is inhibited. The identification and characterization of distinct phytochrome-dependent molecular effectors that are associated with these divergent tissue-specific, light-dependent growth responses are limited. To identify phytochrome-dependent factors that impact the photoregulation of hypocotyl length, we conducted comparative gene expression studies using Arabidopsis lines exhibiting distinct patterns of phytochrome chromophore inactivation and associated disparate hypocotyl elongation responses under far-red (FR) light. A large number of genes was misregulated in plants lacking mesophyll-specific phytochromes relative to constitutively-deficient phytochrome lines. We identified and characterized genes whose expression is impacted by light and by phyA and phyB that have roles in the photoregulation of hypocotyl length. We characterized the functions of several identified target genes by phenotyping of T-DNA mutants. Among these genes is a previously uncharacterized LHE (LIGHT-INDUCED HYPOCOTYL ELONGATION) gene, which we show impacts light- and phytochrome-mediated regulation of hypocotyl elongation under red (R) and FR illumination. We describe a new approach for identifying genes involved in light- and phytochrome-dependent, tissue-specific growth regulation and confirmed the roles of three such genes in the phytochrome-dependent photoregulation of hypocotyl length.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis/radiation effects
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Color
- Cotyledon/genetics
- Cotyledon/growth & development
- Cotyledon/metabolism
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Gene Expression Regulation, Plant
- Genes, Plant
- Genotyping Techniques
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Hypocotyl/genetics
- Hypocotyl/growth & development
- Hypocotyl/metabolism
- Hypocotyl/radiation effects
- Light
- Oligonucleotide Array Sequence Analysis/methods
- Phenotype
- Phytochrome A/genetics
- Phytochrome A/metabolism
- Phytochrome B/genetics
- Phytochrome B/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/radiation effects
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Sookyung Oh
- Department of Energy-Plant Research Laboratory, Michigan State University Plant Biology Laboratories, 612 Wilson Road, Rm. 106, East Lansing, MI 48824-1312 USA
| | - Sankalpi N. Warnasooriya
- Department of Energy-Plant Research Laboratory, Michigan State University Plant Biology Laboratories, 612 Wilson Road, Rm. 106, East Lansing, MI 48824-1312 USA
- Present Address: Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132 USA
| | - Beronda L. Montgomery
- Department of Energy-Plant Research Laboratory, Michigan State University Plant Biology Laboratories, 612 Wilson Road, Rm. 106, East Lansing, MI 48824-1312 USA
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 212, East Lansing, MI 48824-1319 USA
| |
Collapse
|
19
|
Chen L, Ren F, Zhou L, Wang QQ, Zhong H, Li XB. The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6211-22. [PMID: 23105131 PMCID: PMC3481211 DOI: 10.1093/jxb/ers273] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A CBL-interacting protein kinase (CIPK) gene, BnCIPK6, was isolated in Brassica napus. Through yeast two-hybrid screening, 27 interaction partners (including BnCBL1) of BnCIPK6 were identified in Brassica napus. Interaction of BnCIPK6 and BnCBL1 was further confirmed by BiFC (bimolecular fluorescence complementation) in plant cells. Expressions of BnCIPK6 and BnCBL1 were significantly up-regulated by salt and osmotic stresses, phosphorous starvation, and abscisic acid (ABA). Furthermore, BnCIPK6 promoter activity was intensively induced in cotyledons and roots under NaCl, mannitol, and ABA treatments. Transgenic Arabidopsis plants with over-expressing BnCIPK6, its activated form BnCIPK6M, and BnCBL1 enhanced high salinity and low phosphate tolerance, suggesting that the functional interaction of BnCBL1 and BnCIPK6 may be important for the high salinity and phosphorous deficiency signalling pathways. In addition, activation of BnCIPK6 confers Arabidopsis plants hypersensitive to ABA. On the other hand, over-expression of BnCIPK6 in Arabidopsis cipk6 mutant completely rescued the low-phosphate-sensitive and ABA-insensitive phenotypes of this mutant, further suggesting that BnCIPK6 is involved in the plant response to high-salinity, phosphorous deficiency, and ABA signalling.
Collapse
Affiliation(s)
- Liang Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Li Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Qing-Qing Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Hui Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Fujii H, Zhu JK. Osmotic stress signaling via protein kinases. Cell Mol Life Sci 2012; 69:3165-73. [PMID: 22828864 PMCID: PMC3438365 DOI: 10.1007/s00018-012-1087-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Plants face various kinds of environmental stresses, including drought, salinity, and low temperature, which cause osmotic stress. An understanding of the plant signaling pathways that respond to osmotic stress is important for both basic biology and agriculture. In this review, we summarize recent investigations concerning the SNF1-related protein kinase (SnRK) 2 kinase family, which play central roles in osmotic stress responses. SnRK2s are activated by osmotic stress, and a mutant lacking SnRK2s is hypersensitive to osmotic stress. Many questions remain about the signaling pathway upstream and downstream of SnRK2s. Because some SnRK2s also functions in the abscisic acid (ABA) signaling pathway, which has recently been well clarified, study of SnRK2s in ABA signaling can provide clues regarding their roles in osmotic stress signaling.
Collapse
Affiliation(s)
- Hiroaki Fujii
- Molecular Plant Biology Unit, Department of Biochemistry and Food Chemistry, University of Turku, Finland.
| | | |
Collapse
|
21
|
Gao P, Kolenovsky A, Cui Y, Cutler AJ, Tsang EWT. Expression, purification and analysis of an Arabidopsis recombinant CBL-interacting protein kinase3 (CIPK3) and its constitutively active form. Protein Expr Purif 2012; 86:45-52. [PMID: 22985939 DOI: 10.1016/j.pep.2012.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/17/2012] [Accepted: 08/19/2012] [Indexed: 10/27/2022]
Abstract
CIPK3 is a member of CBL (calcineurin B-like)-interacting serine-threonine protein kinases which play an important role in many developmental and adaptation processes in Arabidopsis. Studies conducted on members of this family such as SOS2, PKS8 and PKS11 have provided insight into how these kinases interact with their target substrates in the signal-response process. Since SOS2, PKS8 and PKS11 have low enzymatic activities in vitro and their amino acid sequences are homologous to that of CIPK3, it was assumed that CIPK3 would have a low enzymatic activity. To enhance CIPK3 enzyme activity, a constitutively active form, CIPK3T183D, was generated by a Thr(183) to Asp(183) substitution in the activation loop. To obtain proteins for analysis, glutathione S-transferase (GST) fusion protein system was used. Although both CIPK3 and CIPK3T183D were successfully expressed, they were found in inclusion bodies with three truncated proteins. Since the truncated proteins had a similar affinity to the GST-Bind Resin as the target protein, the one-step affinity purification could no longer be used. As an alternative, His fusion protein expression system was employed for protein production. Although both His-CIPK3 and His-CIPK3T183D also accumulated in inclusion bodies, they were expressed as a single protein species. A method involving Sarkosyl was developed for isolating and purifying the His fusion proteins. His-CIPK3 and His-CIPK3T183D produced were highly purified and enzymatically active. In addition, a 9-fold increase in kinase activity in His-CIPK3T183D was observed, indicating that Thr(183) to Asp(183) substitution in the activation loop of CIPK3 had succeeded in enhancing the kinase activity.
Collapse
Affiliation(s)
- Peng Gao
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | | | | | | | | |
Collapse
|
22
|
Wang RK, Li LL, Cao ZH, Zhao Q, Li M, Zhang LY, Hao YJ. Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. PLANT MOLECULAR BIOLOGY 2012; 79:123-35. [PMID: 22382993 DOI: 10.1007/s11103-012-9899-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 02/20/2012] [Indexed: 05/09/2023]
Abstract
CBL-interacting protein kinases (CIPKs) are involved in many aspects of plant responses to abiotic stresses. However, their functions are poorly understood in fruit trees. In this study, a salt-induced MdCIPK6L gene was isolated from apple. Its expression was positively induced by abiotic stresses, stress-related hormones and exogenous Ca(2+). MdCIPK6L was not homologous to AtSOS2, however, its ectopic expression functionally complemented Arabidopsis sos2 mutant. Furthermore, yeast two-hybrid assay showed that MdCIPK6L protein interacted with AtSOS3, indicating that it functions in salt tolerance partially like AtSOS2 through SOS pathway. As a result, the overexpression of both MdCIPK6L and MdCIPK6LT175D remarkably enhanced the tolerance to salt, osmotic/drought and chilling stresses, but did not affect root growth, in transgenic Arabidopsis and apple. Also, T-to-D mutation to MdCIPK6L at Thr175 did not affect its function. These differences between MdCIPK6L and other CIPKs, especially CIPK6s, indicate that MdCIPK6L encodes a novel CIPK in apple. Finally, MdCIPK6L overexpression also conferred tolerance to salt, drought and chilling stresses in transgenic tomatoes. Therefore, MdCIPK6L functions in stress tolerance crossing the species barriers, and is supposed to be a potential candidate gene to improve stress tolerance by genetic manipulation in apple and other crops.
Collapse
Affiliation(s)
- Rong-Kai Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Yang L, Ji W, Gao P, Li Y, Cai H, Bai X, Chen Q, Zhu Y. GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress. PLoS One 2012; 7:e33838. [PMID: 22439004 PMCID: PMC3306294 DOI: 10.1371/journal.pone.0033838] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 02/17/2012] [Indexed: 11/19/2022] Open
Abstract
Plant Snf1 (sucrose non-fermenting-1) related protein kinase (SnRK), a subfamily of serine/threonine kinases, has been implicated as a crucial upstream regulator of ABA and osmotic signaling as in many other signaling cascades. In this paper, we have isolated a novel plant specific ABA activated calcium independent protein kinase (GsAPK) from a highly salt tolerant plant, Glycine soja (50109), which is a member of the SnRK2 family. Subcellular localization studies using GFP fusion protein indicated that GsAPK is localized in the plasma membrane. We found that autophosphorylation and Myelin Basis Protein phosphorylation activity of GsAPK is only activated by ABA and the kinase activity also was observed when calcium was replaced by EGTA, suggesting its independence of calcium in enzyme activity. We also found that cold, salinity, drought, and ABA stress alter GsAPK gene transcripts and heterogonous overexpression of GsAPK in Arabidopsis alters plant tolerance to high salinity and ABA stress. In summary, we demonstrated that GsAPK is a Glycine soja ABA activated calcium independent SnRK-type kinase presumably involved in ABA mediated stress signal transduction.
Collapse
Affiliation(s)
- Liang Yang
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, Heilongjiang, China
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
| | - Wei Ji
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Peng Gao
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yong Li
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hua Cai
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xi Bai
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qin Chen
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - Yanming Zhu
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
24
|
Hashimoto K, Eckert C, Anschütz U, Scholz M, Held K, Waadt R, Reyer A, Hippler M, Becker D, Kudla J. Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins. J Biol Chem 2012; 287:7956-68. [PMID: 22253446 DOI: 10.1074/jbc.m111.279331] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcineurin B-like proteins (CBLs) represent a family of calcium sensor proteins that interact with a group of serine/threonine kinases designated as CBL-interacting protein kinases (CIPKs). CBL-CIPK complexes are crucially involved in relaying plant responses to many environmental signals and in regulating ion fluxes. However, the biochemical characterization of CBL-CIPK complexes has so far been hampered by low activities of recombinant CIPKs. Here, we report on an efficient wheat germ extract-based in vitro transcription/translation protocol that yields active full-length wild-type CIPK proteins. We identified a conserved serine residue within the C terminus of CBLs as being phosphorylated by their interacting CIPKs. Remarkably, our studies revealed that CIPK-dependent CBL phosphorylation is strictly dependent on CBL-CIPK interaction via the CIPK NAF domain. The phosphorylation status of CBLs does not appear to influence the stability, localization, or CIPK interaction of these calcium sensor proteins in general. However, proper phosphorylation of CBL1 is absolutely required for the in vivo activation of the AKT1 K(+) channel by CBL1-CIPK23 and CBL9-CIPK23 complexes in oocytes. Moreover, we show that by combining CBL1, CIPK23, and AKT1, we can faithfully reconstitute CBL-dependent enhancement of phosphorylation of target proteins by CIPKs in vitro. In addition, we report that phosphorylation of CBL1 by CIPK23 is also required for the CBL1-dependent enhancement of CIPK23 activity toward its substrate. Together, these data identify a novel general regulatory mechanism of CBL-CIPK complexes in that CBL phosphorylation at their flexible C terminus likely provokes conformational changes that enhance specificity and activity of CBL-CIPK complexes toward their target proteins.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vlad F, Droillard MJ, Valot B, Khafif M, Rodrigues A, Brault M, Zivy M, Rodriguez PL, Merlot S, Laurière C. Phospho-site mapping, genetic and in planta activation studies reveal key aspects of the different phosphorylation mechanisms involved in activation of SnRK2s. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:778-90. [PMID: 20561261 DOI: 10.1111/j.1365-313x.2010.04281.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Snf1-related protein kinases 2 (SnRK2s) are major positive regulators of drought stress tolerance. The kinases of this family are activated by hyperosmotic stress, but only some of them are also responsive to abscisic acid (ABA). Moreover, genetic evidence has indicated the ABA-independence of SnRK2 activation in the fast response to osmotic stress. Although phosphorylation was demonstrated to be crucial for the activation or activity of the kinases of both subgroups, different phosphorylation mechanisms were suggested. Here, using one kinase from each subgroup (SnRK2.6 and SnRK2.10), two phosphorylation sites within the activation loop were identified by mass spectrometry after immunoprecipitation from Arabidopsis cells treated by ABA or osmolarity. By site-directed mutagenesis, the phosphorylation of only one of the two sites was shown to be necessary for the catalytic activity of the kinase, whereas both sites are necessary for the full activation of the two SnRK2s by hyperosmolarity or ABA. Phosphoprotein staining together with two-dimensional PAGE followed by immunoblotting indicated distinct phosphorylation mechanisms of the two kinases. While SnRK2.6 seems to be activated through the independent phosphorylation of these two sites, a sequential process occurs in SnRK2.10, where phosphorylation of one serine is required for the phosphorylation of the other. In addition, a subgroup of protein phosphatases 2C which interact and participate in the regulation of SnRK2.6 do not interact with SnRK2.10. Taken together, our data bring evidence for the involvement of distinct phosphorylation mechanisms in the activation of SnRK2.6 and SnRK2.10, which may be conserved between the two subgroups of SnRK2s depending on their ABA-responsiveness.
Collapse
Affiliation(s)
- Florina Vlad
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, UPR 2355, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yang S, Vanderbeld B, Wan J, Huang Y. Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. MOLECULAR PLANT 2010; 3:469-90. [PMID: 20507936 DOI: 10.1093/mp/ssq016] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drought is the most important environmental stress affecting agriculture worldwide. Exploiting yield potential and maintaining yield stability of crops in water-limited environments are urgent tasks that must be undertaken in order to guarantee food supply for the increasing world population. Tremendous efforts have been devoted to identifying key regulators in plant drought response through genetic, molecular, and biochemical studies using, in most cases, the model species Arabidopsis thaliana. However, only a small portion of these regulators have been explored as potential candidate genes for their application in the improvement of drought tolerance in crops. Based on biological functions, these genes can be classified into the following three categories: (1) stress-responsive transcriptional regulation (e.g. DREB1, AREB, NF-YB); (2) post-transcriptional RNA or protein modifications such as phosphorylation/dephosphorylation (e.g. SnRK2, ABI1) and farnesylation (e.g. ERA1); and (3) osomoprotectant metabolism or molecular chaperones (e.g. CspB). While continuing down the path to discovery of new target genes, serious efforts are also focused on fine-tuning the expression of the known candidate genes for stress tolerance in specific temporal and spatial patterns to avoid negative effects in plant growth and development. These efforts are starting to bear fruit by showing yield improvements in several crops under a variety of water-deprivation conditions. As most such evaluations have been performed under controlled growth environments, a gap still remains between early success in the laboratory and the application of these techniques to the elite cultivars of staple crops in the field. Nevertheless, significant progress has been made in the identification of signaling pathways and master regulators for drought tolerance. The knowledge acquired will facilitate the genetic engineering of single or multiple targets and quantitative trait loci in key crops to create commercial-grade cultivars with high-yielding potential under both optimal and suboptimal conditions.
Collapse
Affiliation(s)
- Shujun Yang
- Performance Plants Inc., 700 Gardiners Road, Kingston, Ontario, K7M 3X9, Canada
| | | | | | | |
Collapse
|
27
|
Zheng Z, Xu X, Crosley RA, Greenwalt SA, Sun Y, Blakeslee B, Wang L, Ni W, Sopko MS, Yao C, Yau K, Burton S, Zhuang M, McCaskill DG, Gachotte D, Thompson M, Greene TW. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. PLANT PHYSIOLOGY 2010; 153:99-113. [PMID: 20200070 PMCID: PMC2862418 DOI: 10.1104/pp.109.150789] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/01/2010] [Indexed: 05/18/2023]
Abstract
In higher plants, three subfamilies of sucrose nonfermenting-1 (Snf1)-related protein kinases have evolved. While the Snf1-related protein kinase 1 (SnRK1) subfamily has been shown to share pivotal roles with the orthologous yeast Snf1 and mammalian AMP-activated protein kinase in modulating energy and metabolic homeostasis, the functional significance of the two plant-specific subfamilies SnRK2 and SnRK3 in these critical processes is poorly understood. We show here that SnRK2.6, previously identified as crucial in the control of stomatal aperture by abscisic acid (ABA), has a broad expression pattern and participates in the regulation of plant primary metabolism. Inactivation of this gene reduced oil synthesis in Arabidopsis (Arabidopsis thaliana) seeds, whereas its overexpression increased Suc synthesis and fatty acid desaturation in the leaves. Notably, the metabolic alterations in the SnRK2.6 overexpressors were accompanied by amelioration of those physiological processes that require high levels of carbon and energy input, such as plant growth and seed production. However, the mechanisms underlying these functionalities could not be solely attributed to the role of SnRK2.6 as a positive regulator of ABA signaling, although we demonstrate that this kinase confers ABA hypersensitivity during seedling growth. Collectively, our results suggest that SnRK2.6 mediates hormonal and metabolic regulation of plant growth and development and that, besides the SnRK1 kinases, SnRK2.6 is also implicated in the regulation of metabolic homeostasis in plants.
Collapse
Affiliation(s)
- Zhifu Zheng
- Dow AgroSciences LLC, Indianapolis, Indiana 46268, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tominaga M, Harada A, Kinoshita T, Shimazaki KI. Biochemical Characterization of Calcineurin B-Like-Interacting Protein Kinase in Vicia Guard Cells. ACTA ACUST UNITED AC 2010; 51:408-21. [DOI: 10.1093/pcp/pcq006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:778-90. [PMID: 19187042 DOI: 10.1111/j.1365-313x.2009.03812.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Calcineurin B-like proteins (CBL) and CBL-interacting protein kinases (CIPK) mediate plant responses to a variety of external stresses. Here we report that Arabidopsis CIPK6 is also required for the growth and development of plants. Phenotype of tobacco plants ectopically expressing a homologous gene (CaCIPK6) from the leguminous plant chickpea (Cicer arietinum) indicated its functional conservation. A lesion inAtCIPK6 significantly reduced shoot-to-root and root basipetal auxin transport, and the plants exhibited developmental defects such as fused cotyledons, swollen hypocotyls and compromised lateral root formation, in conjunction with reduced expression of a number of genes involved in auxin transport and abiotic stress response. The Arabidopsis mutant was more sensitive to salt stress compared to wild-type, while overexpression of a constitutively active mutant of CaCIPK6 promoted salt tolerance in transgenic tobacco. Furthermore, tobacco seedlings expressing the constitutively active mutant of CaCIPK6 showed a developed root system, increased basipetal auxin transport and hypersensitivity to auxin. Our results provide evidence for involvement of a CIPK in auxin transport and consequently in root development, as well as in the salt-stress response, by regulating the expression of genes.
Collapse
Affiliation(s)
- Vineeta Tripathi
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | |
Collapse
|
30
|
Hamada S, Seiki Y, Watanabe K, Ozeki T, Matsui H, Ito H. Expression and interaction of the CBLs and CIPKs from immature seeds of kidney bean (Phaseolus vulgaris L.). PHYTOCHEMISTRY 2009; 70:501-507. [PMID: 19278694 DOI: 10.1016/j.phytochem.2009.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/22/2009] [Accepted: 02/03/2009] [Indexed: 05/27/2023]
Abstract
Protein phosphorylation plays a key regulatory role in a variety of cellular processes. To better understand the function of protein phosphorylation in seed maturation, a PCR-based cloning method was employed and five cDNA clones (pvcipk1-5) for protein kinases were isolated from a cDNA library prepared from immature seeds of kidney bean (Phaseolus vulgaris L.). The deduced amino acid sequences showed that the five protein kinases (PvCIPK1-5) are members of the sucrose non-fermenting 1-related protein kinase type 3 (SnRK3) family, which interacts with calcineurin B-like proteins (CBLs). Two cDNA clones (pvcbl1 and 2) for CBLs were further isolated from the cDNA library. The predicted primary sequences of the proteins (PvCBL1 and 2) displayed significant identity (more than 90%) with those of other plant CBLs. Semi-quantitative RT-PCR analysis showed that the isolated genes, except pvcbl1, are expressed in leaves and early maturing seeds, whereas pvcbl1 is constitutively expressed during seed development. Yeast two-hybrid assay indicated that among the five PvCIPKs, only PvCIPK1 interacts with both PvCBL1 and PvCBL2. These results suggest that calcium-dependent protein phosphorylation-signaling via CBL-CIPK complexes occurs during seed development.
Collapse
Affiliation(s)
- Shigeki Hamada
- Division of Applied Bioscience, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Hu HC, Wang YY, Tsay YF. AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:264-78. [PMID: 18798873 DOI: 10.1111/j.1365-313x.2008.03685.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nitrate, the major nitrogen source for most plants, is not only a nutrient but also a signaling molecule. For almost two decades, it has been known that nitrate can rapidly induce transcriptional expression of several nitrate-related genes, a process that is referred to as the primary nitrate response. However, little is known about how plants actually sense nitrate and how the signal is transmitted in this pathway. In this study, a calcineurin B-like (CBL) -interacting protein kinase (CIPK) gene, CIPK8, was found to be involved in early nitrate signaling. CIPK8 expression was rapidly induced by nitrate. Analysis of two independent knockout mutants and a complemented line showed that CIPK8 positively regulates the nitrate-induced expression of primary nitrate response genes, including nitrate transporter genes and genes required for assimilation. Kinetic analysis of nitrate induction levels of these genes in wild-type plants indicated that there are two response phases: a high-affinity phase with a K(m) of approximately 30 mum and a low-affinity phase with a K(m) of approximately 0.9 mm. As cipk8 mutants were defective mainly in the low-affinity response, the high-affinity and low-affinity nitrate signaling systems are proposed to be genetically distinct, with CIPK8 involved in the low-affinity system. In addition, CIPK8 was found to be involved in long-term nitrate-modulated primary root growth and nitrate-modulated expression of a vacuolar malate transporter. Taken together, our results indicate that CBL-CIPK networks are responsible not only for stress responses and potassium shortage, but also for nitrate sensing.
Collapse
Affiliation(s)
- Heng-Cheng Hu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | | | | |
Collapse
|
32
|
Moes D, Himmelbach A, Korte A, Haberer G, Grill E. Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:806-819. [PMID: 18298671 DOI: 10.1111/j.1365-313x.2008.03454.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABI1, a protein phosphatase 2C, is a key component of ABA signal transduction in Arabidopsis that regulates numerous ABA responses, such as stomatal closure, seed germination and inhibition of vegetative growth. The abi1-1 mutation, so far the only characterized dominant allele for ABI1, impairs ABA responsitivity in both seeds and vegetative tissues. The site of action of ABI1 is unknown. We show that there is an essential requirement for nuclear localization of abi1 to confer insensitivity towards ABA responses. Transient analyses in protoplasts revealed a strict dependence of wild-type ABI1 and mutant abi1 on a functional nuclear localization sequence (NLS) for regulating ABA-dependent gene expression. Arabidopsis lines with ectopic expression of various abi1 forms corroborated the necessity of a functional NLS to control ABA sensitivity. Disruption of the NLS function in abi1 rescued ABA-controlled gene transcription to wild-type levels, but also attenuated abi1-conferred insensitivity towards ABA during seed germination, root growth and stomatal movement. The mutation in the PP2C resulted in a preferential accumulation of the protein in the nucleus. Application of a proteosomal inhibitor led to both a preferential nuclear accumulation of ABI1 and an enhancement of PP2C-dependent inhibitory action on the ABA response. Thus, abi1-1 acts as a hypermorphic allele, and ABI1 reprograms sensitivity towards ABA in the nucleus.
Collapse
Affiliation(s)
- Danièle Moes
- Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354 Freising, Germany
| | | | | | | | | |
Collapse
|
33
|
Shukla V, Mattoo AK. Sucrose non-fermenting 1-related protein kinase 2 (SnRK2): a family of protein kinases involved in hyperosmotic stress signaling. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:91-100. [PMID: 23572876 PMCID: PMC3550663 DOI: 10.1007/s12298-008-0008-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Our understanding of plant adaptation to abiotic stresses, which include drought, salinity, non-optimal temperatures and poor soil nutrition, is limited, although significant strides have been made in identifying some of the gene players and signaling partners. Several protein kinases get activated in plants in response to osmotic stress and the stress hormone abscisic acid (ABA). Among these is a superfamily of sucrose non-fermenting protein kinase genes (SnRK2). This review focuses on the developments related to the activity, substrates, interacting proteins and gene regulation of SnRK2 gene family members. Reversible phosphorylation as a crucial regulatory mechanism turns out to be a rule rather than an exception in plant responses to abiotic stress. Nine out of thirteen bZIP transcription factors (ABI5/ABF/AREB family) share the recognition motif, R-Q-X-S/T, suggesting that likely SnRK2 kinases have a major role in regulating gene expression during hyperosmotic stress.
Collapse
Affiliation(s)
- Vijaya Shukla
- />Sustainable Agricultural Systems Laboratory, USDA-ARS, The Henry A. Wallace Beltsville Agricultural Research Center, Building 001, Beltsville, MD 20705-2350 USA
- />Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742 USA
| | - Autar K. Mattoo
- />Sustainable Agricultural Systems Laboratory, USDA-ARS, The Henry A. Wallace Beltsville Agricultural Research Center, Building 001, Beltsville, MD 20705-2350 USA
| |
Collapse
|
34
|
Pandey GK. Emergence of a novel calcium signaling pathway in plants: CBL-CIPK signaling network. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:51-68. [PMID: 23572873 PMCID: PMC3550666 DOI: 10.1007/s12298-008-0005-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In the environment, plants are exposed to plethora of adverse stimuli such as abiotic and biotic stresses. Abiotic stresses including dehydration, salinity and low temperature poses a major threat for crop productivity. Plant responds to these stresses by activating a number of signaling pathways which enable them to defend or adjust against these stresses. To understand the mechanisms by which plants perceive environmental signals and transmit these signals to cellular machinery to activate adaptive responses is of fundamental importance to biology. Calcium plays a pivotal role in plant responses to a number of stimuli including pathogens, abiotic stresses, and hormones. However, the molecular mechanisms underlying calcium functions are poorly understood. It is hypothesized that calcium serves as second messenger and, in many cases, requires intracellular protein sensors to transduce the signal further downstream in the pathways. Recently a novel calcium signaling pathway which consist of calcineurin B-like protein (CBL) calcium sensor and CBL-interacting protein kinase (CIPK) network as a newly emerging signaling system mediating a complex array of environmental stimuli. This review focuses on the overview of functional aspects of CBL and CIPK in plants. In addition, an attempt has also been made to categorize the functions of this CBL-CIPK pair in major signaling pathways in plants.
Collapse
Affiliation(s)
- Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021 India
| |
Collapse
|
35
|
Pandey GK, Grant JJ, Cheong YH, Kim BG, Li LG, Luan S. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. MOLECULAR PLANT 2008; 1:238-48. [PMID: 19825536 DOI: 10.1093/mp/ssn003] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Calcium plays a vital role as a second messenger in many signaling pathways in plants. The calcineurin B-like proteins (CBLs) represent a family of plant calcium-binding proteins that function in calcium signaling by interacting with their interacting protein kinases (CIPKs). In our previous study, we have reported a role for one of the CBLs (CBL9) and one of the CIPKs (CIPK3) in ABA signaling. Here, we have shown that CBL9 and CIPK3 physically and functionally interact with each other in regulating the ABA responses. The CBL9 and CIPK3 proteins interacted with each other in the yeast two-hybrid system and when expressed in plant cells. The double mutant cbl9cipk3 showed the similar hypersensitive response to ABA as observed in single mutants (cbl9 or cipk3). The constitutively active form of CIPK3 genetically complemented the cbl9 mutant, indicating that CIPK3 function downstream of CBL9. Based on these findings, we conclude that CBL9 and CIPK3 act together in the same pathway for regulating ABA responses.
Collapse
Affiliation(s)
- Girdhar K Pandey
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hirayama T, Shinozaki K. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. TRENDS IN PLANT SCIENCE 2007; 12:343-51. [PMID: 17629540 DOI: 10.1016/j.tplants.2007.06.013] [Citation(s) in RCA: 303] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/31/2007] [Accepted: 06/28/2007] [Indexed: 05/16/2023]
Abstract
During the past decade, much progress has been made toward understanding the mechanisms underlying plant hormone activity, from perception to nuclear events. However, the signaling mechanisms for abscisic acid (ABA) have remained largely obscure. Recent breakthroughs identifying FCA, which is an RNA-binding protein, the Mg-chelatase H subunit, and a G protein-coupled receptor as receptors for ABA provide a major leap forward in understanding the initial steps of ABA signaling mechanisms. Recent studies have also revealed the molecular mechanisms of second messenger production, protein modifications such as phosphorylation, and regulatory mechanisms of gene expression in the ABA response. Therefore, the connections between these events are also beginning to be determined. Here, we review recent progress and discuss the overall scheme of the ABA response mechanisms.
Collapse
Affiliation(s)
- Takashi Hirayama
- Laboratory of Plant Molecular Biology, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | |
Collapse
|
37
|
Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T. ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:935-49. [PMID: 17461784 DOI: 10.1111/j.1365-313x.2007.03107.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The phytohormone abscisic acid (ABA) regulates physiologically important stress and developmental responses in plants. To reveal the mechanism of response to ABA, we isolated several novel ABA-hypersensitive Arabidopsis thaliana mutants, named ahg (ABA-hypersensitive germination). ahg1-1 mutants showed hypersensitivity to ABA, NaCl, KCl, mannitol, glucose and sucrose during germination and post-germination growth, but did not display any significant phenotypes in adult plants. ahg1-1 seeds accumulated slightly more ABA before stratification and showed increased seed dormancy. Map-based cloning of AHG1 revealed that ahg1-1 has a nonsense mutation in a gene encoding a novel protein phosphatase 2C (PP2C). We previously showed that the ahg3-1 mutant has a point mutation in the AtPP2CA gene, which encodes another PP2C that has a major role in the ABA response in seeds (Yoshida et al., 2006b). The levels of AHG1 mRNA were higher in dry seeds and increased during late seed maturation--an expression pattern similar to that of ABI5. Transcriptome analysis revealed that, in ABA-treated germinating seeds, many seed-specific genes and ABA-inducible genes were highly expressed in ahg1-1 and ahg3-1 mutants compared with the wild-type. Detailed analysis suggested differences between the functions of AHG1 and AHG3. Dozens of genes were expressed more strongly in the ahg1-1 mutant than in ahg3-1. Promoter-GUS analyses demonstrated both overlapping and distinct expression patterns in seed. In addition, the ahg1-1 ahg3-1 double mutant was more hypersensitive than either monogenic mutant. These results suggest that AHG1 has specific functions in seed development and germination, shared partly with AHG3.
Collapse
Affiliation(s)
- Noriyuki Nishimura
- Laboratory of Environmental Molecular Biology, RIKEN Wako Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Pandey GK, Pandey A, Reddy VS, Deswal R, Bhattacharya A, Upadhyaya KC, Sopory SK. Antisense expression of a gene encoding a calcium-binding protein in transgenic tobacco leads to altered morphology and enhanced chlorophyll. J Biosci 2007; 32:251-60. [PMID: 17435317 DOI: 10.1007/s12038-007-0025-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Entamoeba histolytica contains a novel calcium-binding protein like calmodulin,which was discovered earlier,and we have reported the presence of its homologue(s)and a dependent protein kinase in plants.To understand the functions of these in plants,a cDNA encoding a calcium-binding protein isolated from Entamoeba histolytica (EhCaBP)was cloned into vector pBI121 in antisense orientation and transgenic tobacco plants were raised.These plants showed variation in several phenotypic characters,of which two distinct features,more greenness and leaf thickness,were inherited in subsequent generations.The increase in the level of total chlorophyll in different plants ranged from 60% to 70%.There was no major change in chloroplast structure and in the protein level of D1,D2,LHCP and RuBP carboxylase.These morphological changes were not seen in antisense calmodulin transgenic tobacco plants,nor was the calmodulin level altered in EhCaBP antisense plants.
Collapse
Affiliation(s)
- Girdhar K Pandey
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | | | | | | | | | | | | |
Collapse
|
39
|
Chae MJ, Lee JS, Nam MH, Cho K, Hong JY, Yi SA, Suh SC, Yoon IS. A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. PLANT MOLECULAR BIOLOGY 2007; 63:151-69. [PMID: 16977424 DOI: 10.1007/s11103-006-9079-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 08/19/2006] [Indexed: 05/11/2023]
Abstract
By a differential cDNA screening technique, we have isolated a dehydration-inducible gene (designated OSRK1) that encodes a 41.8 kD protein kinase of SnRK2 family from Oryza sativa. The OSRK1 transcript level was undetectable in vegetative tissues, but significantly increased by hyperosmotic stress and Abscisic acid (ABA). To determine its biochemical properties, we expressed and isolated OSRK1 and its mutants as glutathione S-transferase fusion proteins in Escherichia coli. In vitro kinase assay showed that OSRK1 can phosphorylate itself and generic substrates as well. Interestingly, OSRK1 showed strong substrate preference for rice bZIP transcription factors and uncommon cofactor requirement for Mn(2+) over Mg(2+). By deletion of C-terminus 73 amino acids or mutations of Ser-158 and Thr-159 to aspartic acids (Asp) in the activation loop, the activity of OSRK1 was dramatically decreased. OSRK1 can transphosphorylate the inactive deletion protein. A rice family of abscisic acid-responsive element (ABRE) binding factor, OREB1 was phosphorylated in vitro by OSRK1 at multiple sites of different functional domains. MALDI-TOF analysis identified a phosphorylation site at Ser44 of OREB1 and mutation of the residue greatly decreased the substrate specificity for OSRK1. The recognition motif for OSRK1, RQSS is highly similar to the consensus substrate sequence of AMPK/SNF1 kinase family. We further showed that OSRK1 interacts with OREB1 in a yeast two-hybrid system and co-localized to nuclei by transient expression analysis of GFP-fused protein in onion epidermis. Finally, ectopic expression of OSRK1 in transgenic tobacco resulted in a reduced sensitivity to ABA in seed germination and root elongation. These findings suggest that OSRK1 is associated with ABA signaling, possibly through the phosphorylation of ABF family in vivo. The interaction between SnRK2 family kinases and ABF transcription factors may constitute an important part of cross-talk mechanism in the stress signaling networks in plants.
Collapse
Affiliation(s)
- Min-Ju Chae
- Cell and Genetics Division, National Institute of Agricultural Biotechnology, Suwon, 441-707, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Burza AM, Pekala I, Sikora J, Siedlecki P, Małagocki P, Bucholc M, Koper L, Zielenkiewicz P, Dadlez M, Dobrowolska G. Nicotiana tabacum osmotic stress-activated kinase is regulated by phosphorylation on Ser-154 and Ser-158 in the kinase activation loop. J Biol Chem 2006; 281:34299-311. [PMID: 16980311 DOI: 10.1074/jbc.m601977200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
NtOSAK (Nicotiana tabacum osmotic stress-activated protein kinase), a member of the SnRK2 subfamily, is activated rapidly in response to hyperosmotic stress. Our previous results as well as data presented by others indicate that phosphorylation is involved in activation of SnRK2 kinases. Here, we have mapped the regulatory phosphorylation sites of NtOSAK by mass spectrometry with collision-induced peptide fragmentation. We show that active NtOSAK, isolated from NaCl-treated tobacco BY-2 cells, is phosphorylated on Ser-154 and Ser-158 in the kinase activation loop. Prediction of the NtOSAK three-dimensional structure indicates that phosphorylation of Ser-154 and Ser-158 triggers changes in enzyme conformation resulting in its activation. The involvement of Ser-154 and Ser-158 phosphorylation in regulation of NtOSAK activity was confirmed by site-directed mutagenesis of NtOSAK expressed in bacteria and in maize protoplasts. Our data reveal that phosphorylation of Ser-158 is essential for NtOSAK activation, whereas phosphorylation of Ser-154 most probably facilitates Ser-158 phosphorylation. The time course of NtOSAK phosphorylation on Ser-154 and Ser-158 in BY-2 cells subjected to osmotic stress correlates with NtOSAK activity, indicating that NtOSAK is regulated by reversible phosphorylation of these residues in vivo. Importantly, Ser-154 and Ser-158 are conserved in all SnRK2 subfamily members, suggesting that phosphorylation at these sites may be a general mechanism for SnRK2 activation.
Collapse
Affiliation(s)
- Anna Maria Burza
- Department of Plant Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 2006; 17:113-22. [PMID: 16495045 DOI: 10.1016/j.copbio.2006.02.002] [Citation(s) in RCA: 346] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 12/16/2005] [Accepted: 02/10/2006] [Indexed: 01/04/2023]
Abstract
The ability of plants to tolerate drought conditions is crucial for agricultural production worldwide. Recent progress has been made in our understanding of gene expression, transcriptional regulation and signal transduction in plant responses to drought. Molecular and genomic analyses have facilitated gene discovery and enabled genetic engineering using several functional or regulatory genes to activate specific or broad pathways related to drought tolerance in plants. Several lines of evidence have indicated that molecular tailoring of genes has the potential to overcome a number of limitations in creating drought-tolerant transgenic plants. Recent studies have increased our understanding of the regulatory networks controlling the drought stress response and have led to practical approaches for engineering drought tolerance in plants.
Collapse
Affiliation(s)
- Taishi Umezawa
- Gene Discovery Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Yokohama, Kanagawa 203-0045, Japan
| | | | | | | | | |
Collapse
|
42
|
Ma S, Quist TM, Ulanov A, Joly R, Bohnert HJ. Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:845-859. [PMID: 15584951 DOI: 10.1111/j.1365-313x.2004.02265.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Arabidopsis TIP1;1 (gammaTIP) is a member of the tonoplast family of aquaporins (AQP). Using RNA interference (RNAi) we reduced TIP1;1 to different extent in various lines. When most severely affected, miniature plants died, a phenotype partially complemented by the TIP1;1 homolog McMIP-F. Less severely affected lines produced small plants, early senescence, and showed lesion formation. The relative water content in TIP1;1 RNAi plants was not significantly affected. Global expression profiling suggested a disturbance in carbon metabolism in RNAi lines with upregulated transcripts for functions in carbon acquisition and respiration, vesicle transport, signaling and transcription, and radical oxygen stress. Metabolite profiles showed low glucose, fructose, inositol, and threonic, succinic, fumaric, and malic acids, but sucrose levels were similar to WT. Increased amounts were found for raffinose and several unknown compounds. TIP1;1 RNAi plants also contained high starch and apoplastic carbohydrate increased. A GFP-TIP1;1 fusion protein indicated tonoplast location in spongy mesophyll cells, and high signal intensity in palisade mesophyll associated with vesicles near plastids. Signals in vascular tissues were strongest not only in vesicle-like structures but also outlined large vacuoles. Compromised routing of carbohydrate and lack of sucrose provision for cell-autonomous functions seems to characterize this RNAi phenotype. We suggest a function for TIP1;1 in vesicle-based metabolite routing through or between pre-vacuolar compartments and the central vacuole. Phenotype and expression characteristics support a view of TIP1;1 functioning as a marker for vesicles that are targeted to the central vacuole.
Collapse
Affiliation(s)
- Shisong Ma
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
43
|
Kelner A, Pekala I, Kaczanowski S, Muszynska G, Hardie DG, Dobrowolska G. Biochemical characterization of the tobacco 42-kD protein kinase activated by osmotic stress. PLANT PHYSIOLOGY 2004; 136:3255-65. [PMID: 15466234 PMCID: PMC523384 DOI: 10.1104/pp.104.046151] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 07/12/2004] [Accepted: 07/12/2004] [Indexed: 05/19/2023]
Abstract
In tobacco (Nicotiana tabacum), hyperosmotic stress induces rapid activation of a 42-kD protein kinase, referred to as Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK). cDNA encoding the kinase was cloned and, based on the predicted amino acid sequence, the enzyme was assigned to the SNF1-related protein kinase type 2 (SnRK2) family. The identity of the enzyme was confirmed by immunoprecipitation of the active kinase from tobacco cells subjected to osmotic stress using antibodies raised against a peptide corresponding to the C-terminal sequence of the kinase predicted from the cloned cDNA. A detailed biochemical characterization of NtOSAK purified from stressed tobacco cells was performed. Our results show that NtOSAK is a calcium-independent Ser/Thr protein kinase. The sequence of putative phosphorylation sites recognized by NtOSAK, predicted by the computer program PREDIKIN, resembled the substrate consensus sequence defined for animal and yeast (Saccharomyces cerevisiae) AMPK/SNF1 kinases. Our experimental data confirmed these results, as various targets for AMPK/SNF1 kinases were also efficiently phosphorylated by NtOSAK. A range of protein kinase inhibitors was tested as potential modulators of NtOSAK, but only staurosporine, a rather nonspecific protein kinase inhibitor, was found to abolish the enzyme activity. In phosphorylation reactions, NtOSAK exhibited a preference for Mg(2+) over Mn(2+) ions and an inability to use GTP instead of ATP as a phosphate donor. The enzyme activity was not modulated by 5'-AMP. To our knowledge, these results represent the first detailed biochemical characterization of a kinase of the SnRK2 family.
Collapse
Affiliation(s)
- Anna Kelner
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
44
|
Batistic O, Kudla J. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. PLANTA 2004; 219:915-24. [PMID: 15322881 DOI: 10.1007/s00425-004-1333-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 06/15/2004] [Indexed: 05/02/2023]
Abstract
Plant development and reproduction depend on a precise recognition of environmental conditions and the integration of this information with endogenous metabolic and developmental cues. Calcium ions have been firmly established as ubiquitous second messengers functioning in these processes. Calcium signal deciphering and signal-response coupling often involve calcium-binding proteins as responders or relays in this information flow. Here we review the calcineurin B-like protein (CBL) calcium sensor/CBL-interacting protein kinase (CIPK) network as a newly emerging signaling system mediating a complex array of environmental stimuli. We focus particularly on the mechanisms generating signaling specificity. Moreover, we emphasize the functional implications that are emerging from the analyses of CBL and CIPK loss-of-function mutants.
Collapse
Affiliation(s)
- Oliver Batistic
- Institut für Botanik und Botanischer Garten, Universität Münster, Schlossgarten 3, 48149 Münster, Germany
| | | |
Collapse
|
45
|
Gong D, Guo Y, Schumaker KS, Zhu JK. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. PLANT PHYSIOLOGY 2004; 134:919-26. [PMID: 15020756 PMCID: PMC523892 DOI: 10.1104/pp.103.037440] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 12/18/2003] [Accepted: 12/18/2003] [Indexed: 05/17/2023]
Affiliation(s)
- Deming Gong
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
46
|
Harper JF, Breton G, Harmon A. Decoding Ca(2+) signals through plant protein kinases. ANNUAL REVIEW OF PLANT BIOLOGY 2004; 55:263-88. [PMID: 15377221 DOI: 10.1146/annurev.arplant.55.031903.141627] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants harbor four families of kinases that have been implicated in Ca(2+) signaling (CDPKs, CRKs, CCaMKs, and SnRK3s). Although each family appears to respond to Ca(2+) via different mechanisms, they all utilize Ca(2+) sensors that bind Ca(2+) through multiple EF-hands. The CDPK (Ca(2+)-dependent protein kinase) family is represented by the most genes, with 12 subfamilies comprised of 34 isoforms in Arabidopsis and 27 in rice. Some of the calcium-regulated kinases also show potential for regulation by lipid signals and kinase cascades. Thus, Ca(2+)-regulated kinases provide potential nodes of cross-talk for multiple signaling pathways that integrate Ca(2+) signals into all aspects of plant growth and development.
Collapse
Affiliation(s)
- Jeffrey F Harper
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
47
|
Ohta M, Guo Y, Halfter U, Zhu JK. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci U S A 2003; 100:11771-6. [PMID: 14504388 PMCID: PMC208833 DOI: 10.1073/pnas.2034853100] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SOS2 (salt overly sensitive 2) is a serine/threonine protein kinase required for salt tolerance in Arabidopsis thaliana. In this study, we identified the protein phosphatase 2C ABI2 (abscisic acid-insensitive 2) as a SOS2-interacting protein. Deletion analysis led to the discovery of a novel protein domain of 37 amino acid residues, designated as the protein phosphatase interaction (PPI) motif, of SOS2 that is necessary and sufficient for interaction with ABI2. The PPI motif is conserved in protein kinases of the SOS2 family (i.e., protein kinase S, PKS) and in the DNA damage repair and replication block checkpoint kinase, Chk1, from various organisms including humans. Mutations in the conserved amino acid residues in the PPI motif abolish the interaction of SOS2 with ABI2. We also identified a protein kinase interaction domain in ABI2 and examined the interaction specificity between PKS and the ABI phosphatases. We found that some PKSs interact strongly with ABI2 whereas others interact preferentially with ABI1. The interaction between SOS2 and ABI2 was disrupted by the abi2-1 mutation, which causes increased tolerance to salt shock and abscisic acid insensitivity in plants. Our results establish the PPI motif and the protein kinase interaction domain as novel protein interaction domains that mediate the binding between the SOS2 family of protein kinases and the ABI1/2 family of protein phosphatases.
Collapse
Affiliation(s)
- Masaru Ohta
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
48
|
Suzuki M, Ketterling MG, Li QB, McCarty DR. Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. PLANT PHYSIOLOGY 2003; 132:1664-77. [PMID: 12857845 PMCID: PMC167103 DOI: 10.1104/pp.103.022475] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Revised: 03/27/2003] [Accepted: 04/21/2003] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) Viviparous1 (VP1) and Arabidopsis ABI3 are orthologous transcription factors that regulate key aspects of plant seed development and ABA signaling. To understand VP1-regulated gene expression on a global scale, we have performed oligomicroarray analysis of transgenic Arabidopsis carrying 35S::VP1 in an abi3 null mutant background. We have identified 353 VP1/ABA-regulated genes by GeneChip analysis. Seventy-three percent of the genes were affected by both VP1 and ABA in vegetative tissues, indicating a tight coupling between ABA signaling and VP1 function. A large number of seed-specific genes were ectopically expressed in vegetative tissue of 35S::VP1 plants consistent with evidence that VP1 and ABI3 are key determinants of seed-specific expression. ABI5, a positive regulator of ABA signaling, was activated by VP1, indicating conservation of the feed-forward pathway mediated by ABI3. ABA induction of ABI1 and ABI2, negative regulators of ABA signaling, was strongly inhibited by VP1, revealing a second pathway of feed-forward regulation. These results indicate that VP1 strongly modifies ABA signaling through feed-forward regulation of ABI1/ABI5-related genes. Of the 32 bZIP transcription factors represented on the GeneChip, genes in the ABI5 clade were specifically coregulated by ABA and VP1. Statistical analysis of 5' upstream sequences of the VP1/ABA-regulated genes identified consensus abscisic responsive elements as an enriched element, indicating that many of the genes could be direct targets of the ABI5-related bZIPs. The Sph element is an enriched sequence motif in promoters of genes co-activated by ABA and VP1 but not in promoters of genes activated by ABA alone. This analysis reveals that distinct combinatorial patterns of promoter elements distinguish subclasses of VP1/ABA coregulated genes.
Collapse
Affiliation(s)
- Masaharu Suzuki
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | |
Collapse
|
49
|
Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC. The Arabidopsis CDPK-SnRK superfamily of protein kinases. PLANT PHYSIOLOGY 2003; 132:666-80. [PMID: 12805596 PMCID: PMC167006 DOI: 10.1104/pp.102.011999] [Citation(s) in RCA: 644] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Revised: 10/02/2002] [Accepted: 02/17/2003] [Indexed: 05/17/2023]
Abstract
The CDPK-SnRK superfamily consists of seven types of serine-threonine protein kinases: calcium-dependent protein kinase (CDPKs), CDPK-related kinases (CRKs), phosphoenolpyruvate carboxylase kinases (PPCKs), PEP carboxylase kinase-related kinases (PEPRKs), calmodulin-dependent protein kinases (CaMKs), calcium and calmodulin-dependent protein kinases (CCaMKs), and SnRKs. Within this superfamily, individual isoforms and subfamilies contain distinct regulatory domains, subcellular targeting information, and substrate specificities. Our analysis of the Arabidopsis genome identified 34 CDPKs, eight CRKs, two PPCKs, two PEPRKs, and 38 SnRKs. No definitive examples were found for a CCaMK similar to those previously identified in lily (Lilium longiflorum) and tobacco (Nicotiana tabacum) or for a CaMK similar to those in animals or yeast. CDPKs are present in plants and a specific subgroup of protists, but CRKs, PPCKs, PEPRKs, and two of the SnRK subgroups have been found only in plants. CDPKs and at least one SnRK have been implicated in decoding calcium signals in Arabidopsis. Analysis of intron placements supports the hypothesis that CDPKs, CRKs, PPCKs and PEPRKs have a common evolutionary origin; however there are no conserved intron positions between these kinases and the SnRK subgroup. CDPKs and SnRKs are found on all five Arabidopsis chromosomes. The presence of closely related kinases in regions of the genome known to have arisen by genome duplication indicates that these kinases probably arose by divergence from common ancestors. The PlantsP database provides a resource of continuously updated information on protein kinases from Arabidopsis and other plants.
Collapse
Affiliation(s)
- Estelle M Hrabak
- Department of Plant Biology and Program in Genetics, University of New Hampshire, 46 College Road, Durham 03824, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 2003; 14:194-9. [PMID: 12732320 DOI: 10.1016/s0958-1669(03)00030-2] [Citation(s) in RCA: 356] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Drought, high salinity and low temperature are major environmental factors that limit plant productivity. Plants respond and adapt to these stresses in order to survive. Signaling pathways are induced in response to environmental stress and recent molecular and genetic studies have revealed that these pathways involve many components. In this review, we highlight recent findings on the gene expression associated with stress responses and the signaling pathways that are either common or specific to the response.
Collapse
Affiliation(s)
- Motoaki Seki
- Plant Mutation Exploration Team, Plant Functional Genomics Research Group, RIKEN Genomic Sciences Center, 3-1-1 Koyadai, Tsukuba 305-0074, Japan
| | | | | | | |
Collapse
|