1
|
Yang M, Boye-Doe A, Abosabie SAS, Barr AM, Mendez LM, Sharda AV. RalB uncoupled exocyst mediates endothelial Weibel-Palade body exocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613344. [PMID: 39345530 PMCID: PMC11429928 DOI: 10.1101/2024.09.16.613344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Ras-like (Ral) GTPases play essential regulatory roles in many cellular processes, including exocytosis. Cycling between GDP- and GTP-bound states, Ral GTPases function as molecular switches and regulate effectors, specifically the multi-subunit tethering complex exocyst. Here, we show that Ral isoform RalB controls regulated exocytosis of Weibel-Palade bodies (WPBs), the specialized endothelial secretory granules that store hemostatic protein von Willebrand factor. Remarkably, unlike typical small GTPase-effector interactions, RalB binds exocyst in its GDP-bound state in resting endothelium. Upon endothelial cell stimulation, exocyst is uncoupled from RalB-GTP resulting in WPB tethering and exocytosis. Furthermore, we report that PKC-dependent phosphorylation of the C-terminal hypervariable region (HVR) of RalB modulates its dynamic interaction with exocyst in endothelium. Exocyst preferentially interacts with phosphorylated RalB in resting endothelium. Dephosphorylation of RalB either by endothelial cell stimulation, or PKC inhibition, or expression of nonphosphorylatable mutant at a specific serine residue of RalB HVR, disengages exocyst and augments WPB exocytosis, resembling RalB exocyst-binding site mutant. In summary, it is the uncoupling of exocyst from RalB that mediates endothelial Weibel-Palade body exocytosis. Our data shows that Ral function may be more dynamically regulated by phosphorylation and may confer distinct functionality given high degree of homology and the shared set of effector protein between the two Ral isoforms.
Collapse
Affiliation(s)
- Moua Yang
- Bloodworks Northwest Research Institute, Seattle, WA 98102, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra Boye-Doe
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Salma A S Abosabie
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Alexandra M Barr
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Lourdes M Mendez
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Anish V Sharda
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Huang HL, Liao X, Liu HW, Ou WG, She WL, Xie B, Xiao LL, Xie GH, Huang YW. Development and Evaluation of the Airtight, Minimal-Invasive, and Fast Device Harvesting Adipose Tissue for Autologous Fat Grafting. Indian J Surg 2020. [DOI: 10.1007/s12262-019-02036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
3
|
Kitano T, Usui S, Takashima SI, Inoue O, Goten C, Nomura A, Yoshioka K, Okajima M, Kaneko S, Takuwa Y, Takamura M. Sphigosine-1-phosphate receptor 1 promotes neointimal hyperplasia in a mouse model of carotid artery injury. Biochem Biophys Res Commun 2019; 511:179-184. [DOI: 10.1016/j.bbrc.2019.02.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/08/2019] [Indexed: 11/28/2022]
|
4
|
Xie L, Chiang ET, Wu X, Kelly GT, Kanteti P, Singleton PA, Camp SM, Zhou T, Dudek SM, Natarajan V, Wang T, Black SM, Garcia JGN, Jacobson JR. Regulation of Thrombin-Induced Lung Endothelial Cell Barrier Disruption by Protein Kinase C Delta. PLoS One 2016; 11:e0158865. [PMID: 27442243 PMCID: PMC4956111 DOI: 10.1371/journal.pone.0158865] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 06/23/2016] [Indexed: 12/18/2022] Open
Abstract
Protein Kinase C (PKC) plays a significant role in thrombin-induced loss of endothelial cell (EC) barrier integrity; however, the existence of more than 10 isozymes of PKC and tissue-specific isoform expression has limited our understanding of this important second messenger in vascular homeostasis. In this study, we show that PKCδ isoform promotes thrombin-induced loss of human pulmonary artery EC barrier integrity, findings substantiated by PKCδ inhibitory studies (rottlerin), dominant negative PKCδ construct and PKCδ silencing (siRNA). In addition, we identified PKCδ as a signaling mediator upstream of both thrombin-induced MLC phosphorylation and Rho GTPase activation affecting stress fiber formation, cell contraction and loss of EC barrier integrity. Our inhibitor-based studies indicate that thrombin-induced PKCδ activation exerts a positive feedback on Rho GTPase activation and contributes to Rac1 GTPase inhibition. Moreover, PKD (or PKCμ) and CPI-17, two known PKCδ targets, were found to be activated by PKCδ in EC and served as modulators of cytoskeleton rearrangement. These studies clarify the role of PKCδ in EC cytoskeleton regulation, and highlight PKCδ as a therapeutic target in inflammatory lung disorders, characterized by the loss of barrier integrity, such as acute lung injury and sepsis.
Collapse
Affiliation(s)
- Lishi Xie
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Eddie T Chiang
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Xiaomin Wu
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Gabriel T Kelly
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Prasad Kanteti
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Patrick A Singleton
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Sara M Camp
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Tingting Zhou
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Steven M Dudek
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Viswanathan Natarajan
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ting Wang
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Steven M Black
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Joe G N Garcia
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Jeffrey R Jacobson
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Asaithambi A, Ay M, Jin H, Gosh A, Anantharam V, Kanthasamy A, Kanthasamy AG. Protein kinase D1 (PKD1) phosphorylation promotes dopaminergic neuronal survival during 6-OHDA-induced oxidative stress. PLoS One 2014; 9:e96947. [PMID: 24806360 PMCID: PMC4013052 DOI: 10.1371/journal.pone.0096947] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/12/2014] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is a major pathophysiological mediator of degenerative processes in many neurodegenerative diseases including Parkinson’s disease (PD). Aberrant cell signaling governed by protein phosphorylation has been linked to oxidative damage of dopaminergic neurons in PD. Although several studies have associated activation of certain protein kinases with apoptotic cell death in PD, very little is known about protein kinase regulation of cell survival and protection against oxidative damage and degeneration in dopaminergic neurons. Here, we characterized the PKD1-mediated protective pathway against oxidative damage in cell culture models of PD. Dopaminergic neurotoxicant 6-hydroxy dopamine (6-OHDA) was used to induce oxidative stress in the N27 dopaminergic cell model and in primary mesencephalic neurons. Our results indicated that 6-OHDA induced the PKD1 activation loop (PKD1S744/S748) phosphorylation during early stages of oxidative stress and that PKD1 activation preceded cell death. We also found that 6-OHDA rapidly increased phosphorylation of the C-terminal S916 in PKD1, which is required for PKD1 activation loop (PKD1S744/748) phosphorylation. Interestingly, negative modulation of PKD1 activation by RNAi knockdown or by the pharmacological inhibition of PKD1 by kbNB-14270 augmented 6-OHDA-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 (PKD1WT) or constitutively active PKD1 (PKD1S744E/S748E) attenuated 6-OHDA-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Collectively, our results demonstrate that PKD1 signaling plays a cell survival role during early stages of oxidative stress in dopaminergic neurons and therefore, positive modulation of the PKD1-mediated signal transduction pathway can provide a novel neuroprotective strategy against PD.
Collapse
Affiliation(s)
- Arunkumar Asaithambi
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Muhammet Ay
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Anamitra Gosh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
6
|
Bao Y, Hou W, Hua B. Protease-activated receptor 2 signalling pathways: a role in pain processing. Expert Opin Ther Targets 2013; 18:15-27. [PMID: 24147628 DOI: 10.1517/14728222.2014.844792] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Pain is a complex biological phenomenon that includes intricate neurophysiological, behavioural, psychosocial and affective components. Despite decades of pain research, many patients continue suffering from chronic pain that may be refractory to current medical regimens. Accumulating evidence has indicated an important role of protease-activated receptor 2 (PAR2) in the pathogenesis of pain, including inflammation, neuropathic and cancer pain. AREAS COVERED In this review, the role of the PAR2 signalling pathway in pain processes, basic mechanism of PAR2 activation and expression of PAR2 in the nervous system is covered. Furthermore, intracellular signalling pathways that are activated by PAR2 are also described. EXPERT OPINION The role of PAR2 in pain processing is becoming increasingly clear, and although causal implication remains to be established, PAR2 activation has been observed in several disease model systems. Since PAR2 is activated after nerve injury as well as by trypsin and related serine proteases, and PAR2 plays an important role in pain development and maintenance, exploring PAR2 and its corresponding signalling pathways will provide unfathomable knowledge in understanding the molecular basis of pain. This will also help to identify new targets for pharmacological intervention; however, in the context of potential PAR2-directed therapies, several aspects should be clarified.
Collapse
Affiliation(s)
- Yanju Bao
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Department of Oncology , Beixiange 5, Xicheng District, Beijing 100053 , China +86 10 88001221 ; +86 10 88001430 ; ; ;
| | | | | |
Collapse
|
7
|
Shi J, Dong Y, Cui MZ, Xu X. Lysophosphatidic acid induces increased BACE1 expression and Aβ formation. Biochim Biophys Acta Mol Basis Dis 2012; 1832:29-38. [PMID: 23036978 DOI: 10.1016/j.bbadis.2012.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 01/08/2023]
Abstract
The abnormal production and accumulation of β-amyloid peptide (Aβ), which is produced from amyloid precursor protein (APP) by the sequential actions of β-secretase and γ-secretase, are thought to be the initial causative events in the development of Alzheimer's disease (AD). Accumulating evidence suggests that vascular factors play an important role in the pathogenesis of AD. Specifically, studies have suggested that one vascular factor in particular, oxidized low density lipoprotein (oxLDL), may play an important role in regulating Aβ formation in AD. However, the mechanism by which oxLDL modulates Aβ formation remains elusive. In this study, we report several new findings that provide biochemical evidence suggesting that the cardiovascular risk factor oxLDL may contribute to Alzheimer's disease by increasing Aβ production. First, we found that lysophosphatidic acid (LPA), the most bioactive component of oxLDL induces increased production of Aβ. Second, our data strongly indicate that LPA induces increased Aβ production via upregulating β-secretase expression. Third, our data strongly support the notion that different isoforms of protein kinase C (PKC) may play different roles in regulating APP processing. Specifically, most PKC members, such as PKCα, PKCβ, and PKCε, are implicated in regulating α-secretase-mediated APP processing; however, PKCδ, a member of the novel PKC subfamily, is involved in LPA-induced upregulation of β-secretase expression and Aβ production. These findings may contribute to a better understanding of the mechanisms by which the cardiovascular risk factor oxLDL is involved in Alzheimer's disease.
Collapse
Affiliation(s)
- Jing Shi
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
8
|
Ferdaoussi M, Bergeron V, Zarrouki B, Kolic J, Cantley J, Fielitz J, Olson EN, Prentki M, Biden T, MacDonald PE, Poitout V. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia 2012; 55:2682-2692. [PMID: 22820510 PMCID: PMC3543464 DOI: 10.1007/s00125-012-2650-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
AIMS/HYPOTHESIS Activation of the G protein-coupled receptor (GPR)40 by long-chain fatty acids potentiates glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells, and GPR40 agonists are in clinical development for type 2 diabetes therapy. GPR40 couples to the G protein subunit Gα(q/11) but the signalling cascade activated downstream is unknown. This study aimed to determine the mechanisms of GPR40-dependent potentiation of GSIS by fatty acids. METHODS Insulin secretion in response to glucose, oleate or diacylglycerol (DAG) was assessed in dynamic perifusions and static incubations in islets from wild-type (WT) and Gpr40 (-/-) mice. Depolymerisation of filamentous actin (F-actin) was visualised by phalloidin staining and epifluorescence. Pharmacological and molecular approaches were used to ascertain the roles of protein kinase D (PKD) and protein kinase C delta in GPR40-mediated potentiation of GSIS. RESULTS Oleate potentiates the second phase of GSIS, and this effect is largely dependent upon GPR40. Accordingly, oleate induces rapid F-actin remodelling in WT but not in Gpr40 (-/-) islets. Exogenous DAG potentiates GSIS in both WT and Gpr40 (-/-) islets. Oleate induces PKD phosphorylation at residues Ser-744/748 and Ser-916 in WT but not Gpr40 (-/-) islets. Importantly, oleate-induced F-actin depolymerisation and potentiation of GSIS are lost upon pharmacological inhibition of PKD1 or deletion of Prkd1. CONCLUSIONS/INTERPRETATION We conclude that the signalling cascade downstream of GPR40 activation by fatty acids involves activation of PKD1, F-actin depolymerisation and potentiation of second-phase insulin secretion. These results provide important information on the mechanisms of action of GPR40, a novel drug target for type 2 diabetes.
Collapse
Affiliation(s)
- M Ferdaoussi
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - V Bergeron
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - B Zarrouki
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - J Kolic
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - J Cantley
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | - J Fielitz
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Medical Department, Division of Cardiology, Charité University, Campus Virchow-Klinikum, Berlin, Germany
| | - E N Olson
- Departments of Molecular Biology, Internal Medicine, and Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Prentki
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal, QC, Canada
| | - T Biden
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | - P E MacDonald
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - V Poitout
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4.
- Department of Medicine, University of Montreal, Montreal, QC, Canada.
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
9
|
Xiang SY, Vanhoutte D, Del Re DP, Purcell NH, Ling H, Banerjee I, Bossuyt J, Lang RA, Zheng Y, Matkovich SJ, Miyamoto S, Molkentin JD, Dorn GW, Brown JH. RhoA protects the mouse heart against ischemia/reperfusion injury. J Clin Invest 2011; 121:3269-76. [PMID: 21747165 DOI: 10.1172/jci44371] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/18/2011] [Indexed: 12/24/2022] Open
Abstract
The small GTPase RhoA serves as a nodal point for signaling through hormones and mechanical stretch. However, the role of RhoA signaling in cardiac pathophysiology is poorly understood. To address this issue, we generated mice with cardiomyocyte-specific conditional expression of low levels of activated RhoA (CA-RhoA mice) and demonstrated that they exhibited no overt cardiomyopathy. When challenged by in vivo or ex vivo ischemia/reperfusion (I/R), however, the CA-RhoA mice exhibited strikingly increased tolerance to injury, which was manifest as reduced myocardial lactate dehydrogenase (LDH) release and infarct size and improved contractile function. PKD was robustly activated in CA-RhoA hearts. The cardioprotection afforded by RhoA was reversed by PKD inhibition. The hypothesis that activated RhoA and PKD serve protective physiological functions during I/R was supported by several lines of evidence. In WT mice, both RhoA and PKD were rapidly activated during I/R, and blocking PKD augmented I/R injury. In addition, cardiac-specific RhoA-knockout mice showed reduced PKD activation after I/R and strikingly decreased tolerance to I/R injury, as shown by increased infarct size and LDH release. Collectively, our findings provide strong support for the concept that RhoA signaling in adult cardiomyocytes promotes survival. They also reveal unexpected roles for PKD as a downstream mediator of RhoA and in cardioprotection against I/R.
Collapse
Affiliation(s)
- Sunny Yang Xiang
- Department of Pharmacology, UCSD, San Diego, California 92093-0636, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bhavanasi D, Kim S, Goldfinger LE, Kunapuli SP. Protein kinase Cδ mediates the activation of protein kinase D2 in platelets. Biochem Pharmacol 2011; 82:720-7. [PMID: 21736870 DOI: 10.1016/j.bcp.2011.06.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 01/25/2023]
Abstract
Protein kinase D (PKD) is a subfamily of serine/threonine specific family of kinases, comprised of PKD1, PKD2 and PKD3 (PKCμ, PKD2 and PKCv in humans). It is known that PKCs activate PKD, but the relative expression of isoforms of PKD or the specific PKC isoform/s responsible for its activation in platelets is not known. This study is aimed at investigating the pathway involved in activation of PKD in platelets. We show that PKD2 is the major isoform of PKD that is expressed in human as well as murine platelets but not PKD1 or PKD3. PKD2 activation induced by AYPGKF was abolished with a G(q) inhibitor YM-254890, but was not affected by Y-27632, a RhoA/p160ROCK inhibitor, indicating that PKD2 activation is G(q)-, but not G₁₂/₁₃-mediated Rho-kinase dependent. Calcium-mediated signals are also required for activation of PKD2 as dimethyl BAPTA inhibited its phosphorylation. GF109203X, a pan PKC inhibitor abolished PKD2 phosphorylation but Go6976, a classical PKC inhibitor had no effect suggesting that novel PKC isoforms are involved in PKD2 activation. Importantly, Rottlerin, a non-selective PKCδ inhibitor, inhibited AYPGKF-induced PKD2 activation in human platelets. Similarly, AYPGKF- and Convulxin-induced PKD2 phosphorylation was dramatically inhibited in PKCδ-deficient platelets, but not in PKCθ- or PKCɛ-deficient murine platelets compared to that of wild type platelets. Hence, we conclude that PKD2 is a common signaling target downstream of various agonist receptors in platelets and G(q)-mediated signals along with calcium and novel PKC isoforms, in particular, PKCδ activate PKD2 in platelets.
Collapse
Affiliation(s)
- Dheeraj Bhavanasi
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
11
|
Asaithambi A, Kanthasamy A, Saminathan H, Anantharam V, Kanthasamy AG. Protein kinase D1 (PKD1) activation mediates a compensatory protective response during early stages of oxidative stress-induced neuronal degeneration. Mol Neurodegener 2011; 6:43. [PMID: 21696630 PMCID: PMC3145571 DOI: 10.1186/1750-1326-6-43] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 06/22/2011] [Indexed: 11/17/2022] Open
Abstract
Background Oxidative stress is a key pathophysiological mechanism contributing to degenerative processes in many neurodegenerative diseases and therefore, unraveling molecular mechanisms underlying various stages of oxidative neuronal damage is critical to better understanding the diseases and developing new treatment modalities. We previously showed that protein kinase C delta (PKCδ) proteolytic activation during the late stages of oxidative stress is a key proapoptotic signaling mechanism that contributes to oxidative damage in Parkinson's disease (PD) models. The time course studies revealed that PKCδ activation precedes apoptotic cell death and that cells resisted early insults of oxidative damage, suggesting that some intrinsic compensatory response protects neurons from early oxidative insult. Therefore, the purpose of the present study was to characterize protective signaling pathways in dopaminergic neurons during early stages of oxidative stress. Results Herein, we identify that protein kinase D1 (PKD1) functions as a key anti-apoptotic kinase to protect neuronal cells against early stages of oxidative stress. Exposure of dopaminergic neuronal cells to H2O2 or 6-OHDA induced PKD1 activation loop (PKD1S744/748) phosphorylation long before induction of neuronal cell death. Blockade of PKCδ cleavage, PKCδ knockdown or overexpression of a cleavage-resistant PKCδ mutant effectively attenuated PKD1 activation, indicating that PKCδ proteolytic activation regulates PKD1 phosphorylation. Furthermore, the PKCδ catalytic fragment, but not the regulatory fragment, increased PKD1 activation, confirming PKCδ activity modulates PKD1 activation. We also identified that phosphorylation of S916 at the C-terminal is a preceding event required for PKD1 activation loop phosphorylation. Importantly, negative modulation of PKD1 by the RNAi knockdown or overexpression of PKD1S916A phospho-defective mutants augmented oxidative stress-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 or constitutively active PKD1 plasmids attenuated oxidative stress-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Conclusion Collectively, our results demonstrate that PKCδ-dependent activation of PKD1 represents a novel intrinsic protective response in counteracting early stage oxidative damage in neuronal cells. Our results suggest that positive modulation of the PKD1-mediated compensatory protective mechanism against oxidative damage in dopaminergic neurons may provide novel neuroprotective strategies for treatment of PD.
Collapse
Affiliation(s)
- Arunkumar Asaithambi
- Department of Biomedical Sciences, 2062 Veterinary Medicine Bldg, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | |
Collapse
|
12
|
Evans IM, Zachary IC. Protein kinase D in vascular biology and angiogenesis. IUBMB Life 2011; 63:258-63. [DOI: 10.1002/iub.456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Miyamoto S, Del Re DP, Xiang SY, Zhao X, Florholmen G, Brown JH. Revisited and revised: is RhoA always a villain in cardiac pathophysiology? J Cardiovasc Transl Res 2010; 3:330-43. [PMID: 20559774 DOI: 10.1007/s12265-010-9192-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/22/2010] [Indexed: 01/10/2023]
Abstract
The neonatal rat ventricular myocyte model of hypertrophy has provided tremendous insight with regard to signaling pathways regulating cardiac growth and gene expression. Many mediators thus discovered have been successfully extrapolated to the in vivo setting, as assessed using genetically engineered mice and physiological interventions. Studies in neonatal rat ventricular myocytes demonstrated a role for the small G-protein RhoA and its downstream effector kinase, Rho-associated coiled-coil containing protein kinase (ROCK), in agonist-mediated hypertrophy. Transgenic expression of RhoA in the heart does not phenocopy this response, however, nor does genetic deletion of ROCK prevent hypertrophy. Pharmacologic inhibition of ROCK has effects most consistent with roles for RhoA signaling in the development of heart failure or responses to ischemic damage. Whether signals elicited downstream of RhoA promote cell death or survival and are deleterious or salutary is, however, context and cell-type dependent. The concepts discussed above are reviewed, and the hypothesis that RhoA might protect cardiomyocytes from ischemia and other insults is presented. Novel RhoA targets including phospholipid regulated and regulating enzymes (Akt, PI kinases, phospholipase C, protein kinases C and D) and serum response element-mediated transcriptional responses are considered as possible pathways through which RhoA could affect cardiomyocyte survival.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Amadesi S, Grant AD, Cottrell GS, Vaksman N, Poole DP, Rozengurt E, Bunnett NW. Protein kinase D isoforms are expressed in rat and mouse primary sensory neurons and are activated by agonists of protease-activated receptor 2. J Comp Neurol 2009; 516:141-56. [PMID: 19575452 DOI: 10.1002/cne.22104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Serine proteases generated during injury and inflammation cleave protease-activated receptor 2 (PAR(2)) on primary sensory neurons to induce neurogenic inflammation and hyperalgesia. Hyperalgesia requires sensitization of transient receptor potential vanilloid (TRPV) ion channels by mechanisms involving phospholipase C and protein kinase C (PKC). The protein kinase D (PKD) serine/threonine kinases are activated by diacylglycerol and PKCs and can phosphorylate TRPV1. Thus, PKDs may participate in novel signal transduction pathways triggered by serine proteases during inflammation and pain. However, it is not known whether PAR(2) activates PKD, and the expression of PKD isoforms by nociceptive neurons is poorly characterized. By using HEK293 cells transfected with PKDs, we found that PAR(2) stimulation promoted plasma membrane translocation and phosphorylation of PKD1, PKD2, and PKD3, indicating activation. This effect was partially dependent on PKCepsilon. By immunofluorescence and confocal microscopy, with antibodies against PKD1/PKD2 and PKD3 and neuronal markers, we found that PKDs were expressed in rat and mouse dorsal root ganglia (DRG) neurons, including nociceptive neurons that expressed TRPV1, PAR(2), and neuropeptides. PAR(2) agonist induced phosphorylation of PKD in cultured DRG neurons, indicating PKD activation. Intraplantar injection of PAR(2) agonist also caused phosphorylation of PKD in neurons of lumbar DRG, confirming activation in vivo. Thus, PKD1, PKD2, and PKD3 are expressed in primary sensory neurons that mediate neurogenic inflammation and pain transmission, and PAR(2) agonists activate PKDs in HEK293 cells and DRG neurons in culture and in intact animals. PKD may be a novel component of a signal transduction pathway for protease-induced activation of nociceptive neurons and an important new target for antiinflammatory and analgesic therapies.
Collapse
Affiliation(s)
- Silvia Amadesi
- Center for Neurobiology of Digestive Diseases, University of California, San Francisco, San Francisco, California 94143-0660, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Tan M, Hao F, Xu X, Chisolm GM, Cui MZ. Lysophosphatidylcholine activates a novel PKD2-mediated signaling pathway that controls monocyte migration. Arterioscler Thromb Vasc Biol 2009; 29:1376-82. [PMID: 19520973 PMCID: PMC3073140 DOI: 10.1161/atvbaha.109.191585] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Monocyte activation and migration are crucial events in the development of atherosclerosis and other inflammatory diseases. This study examined the role of protein kinase D (PKD) in monocyte migration. Method and Results- PKD2 is the predominant isoform of PKD expressed in monocytic THP-1 cells and primary human monocytes. Lysophosphatidylcholine (lysoPC), a prominent component of oxidized low-density lipoprotein, induces rapid and marked PKD activation in these cells. Using multiple approaches, including dominant-negative mutants and small interfering RNA knock-down, we found that lysoPC-induced PKD2 activation was required for the activation of both ERK and p38 MAPK. p38 MAPK mediation of lysoPC-induced monocytic cell migration was reported previously; our results reveal that the lysoPC-induced PKD2-p38 pathway controls monocyte migration. CONCLUSIONS This study provides the first evidence that (1) lysoPC activates PKD, (2) PKD2 has a novel role in p38 activation, and (3) the PKD2-activated p38 pathway is responsible for lysoPC-induced migration of THP-1 cells and human monocytes. Thus, PKD is a novel and functional intracellular regulator in both lysoPC signaling and monocyte migration. These results suggest a new role for PKD2 in the development of atherosclerosis and other inflammatory diseases.
Collapse
Affiliation(s)
- Mingqi Tan
- Department of Pathobiology, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996, USA
| | | | | | | | | |
Collapse
|
17
|
Hsieh HL, Tung WH, Wu CY, Wang HH, Lin CC, Wang TS, Yang CM. Thrombin induces EGF receptor expression and cell proliferation via a PKC(delta)/c-Src-dependent pathway in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2009; 29:1594-601. [PMID: 19628787 DOI: 10.1161/atvbaha.109.185801] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Thrombin upregulates expression of several proteins in vascular smooth muscle cells (VSMCs) which may contribute to atherosclerosis. Here, we investigated the mechanisms underlying thrombin-induced EGF receptor (EGFR) expression and its effect on VSMCs. METHODS AND RESULTS Normal rat VSMCs were used. First, Western blotting and RT-PCR analyses showed that thrombin induces the expression of EGFR at transcription and translation levels in VSMCs. Second, pharmacological inhibitors, dominant negative mutants, and short hairpin RNA interference (shRNA) technology enabled us to demonstrate that thrombin-induced EGFR expression is mediated through PKC(delta)/c-Src-dependent transactivation of EGFR linking to PI3K/Akt and ERK1/2. We further investigated whether the transcription factors AP-1 and NF-kappaB are involved in this response by a promoter assay. Finally, data obtained by using EGFR shRNA technology and XTT assay demonstrated that thrombin-enhanced VSMC proliferation was mediated through upregulation of EGFR. CONCLUSIONS Our results demonstrate that thrombin-enhanced VSMC proliferation was mediated through upregulation of EGFR via a PKC(delta)/c-Src-dependent transactivation of EGFR, PI3K-Akt, and ERK, and AP-1/NF-kappaB pathway.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung Institute of Technology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
18
|
Kunkel MT, Garcia EL, Kajimoto T, Hall RA, Newton AC. The protein scaffold NHERF-1 controls the amplitude and duration of localized protein kinase D activity. J Biol Chem 2009; 284:24653-61. [PMID: 19581308 DOI: 10.1074/jbc.m109.024547] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase D (PKD) transduces an abundance of signals downstream of diacylglycerol production. The mammalian PKD family consists of three isoforms, PKD1, PKD2, and PKD3; of these PKD1 and PKD2 contain PDZ-binding motifs at their carboxyl termini. Here we show that membrane-localized NHERF scaffold proteins provide a nexus for tightly controlled PKD signaling via a PDZ domain interaction. Using a proteomic array containing 96 purified PDZ domains, we have identified the first PDZ domain of NHERF-1 as an interaction partner for the PDZ-binding motifs of both PKD1 and PKD2. A fluorescence resonance energy transfer-based translocation assay reveals a transient association of PKD1 and PKD2 with NHERF-1 in live cells that is triggered by phorbol ester stimulation and, importantly, differs strikingly from the sustained translocation to plasma membrane. Targeting a fluorescence resonance energy transfer-based kinase activity reporter for PKD to NHERF scaffolds reveals a unique signature of PKD activation at the scaffold that is distinct from that of general cytosolic or plasma membrane activity. Specifically, agonist-evoked activation of PKD at the scaffold is rapid and sustained but blunted in magnitude when compared with cytosolic PKD. Thus, live cell imaging of PKD activity demonstrates ultrasensitive control of kinase signaling at the scaffold compared with bulk activity in the cytosol or at the plasma membrane.
Collapse
Affiliation(s)
- Maya T Kunkel
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721, USA
| | | | | | | | | |
Collapse
|
19
|
Bair AM, Thippegowda PB, Freichel M, Cheng N, Ye RD, Vogel SM, Yu Y, Flockerzi V, Malik AB, Tiruppathi C. Ca2+ entry via TRPC channels is necessary for thrombin-induced NF-kappaB activation in endothelial cells through AMP-activated protein kinase and protein kinase Cdelta. J Biol Chem 2009; 284:563-574. [PMID: 18990707 PMCID: PMC2610508 DOI: 10.1074/jbc.m803984200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 09/17/2008] [Indexed: 01/12/2023] Open
Abstract
The transient receptor potential canonical (TRPC) family channels are proposed to be essential for store-operated Ca2+ entry in endothelial cells. Ca2+ signaling is involved in NF-kappaB activation, but the role of store-operated Ca2+ entry is unclear. Here we show that thrombin-induced Ca2+ entry and the resultant AMP-activated protein kinase (AMPK) activation targets the Ca2+-independent protein kinase Cdelta (PKCdelta) to mediate NF-kappaB activation in endothelial cells. We observed that thrombin-induced p65/RelA, AMPK, and PKCdelta activation were markedly reduced by knockdown of the TRPC isoform TRPC1 expressed in human endothelial cells and in endothelial cells obtained from Trpc4 knock-out mice. Inhibition of Ca2+/calmodulin-dependent protein kinase kinase beta downstream of the Ca2+ influx or knockdown of the downstream Ca2+/calmodulin-dependent protein kinase kinase beta target kinase, AMPK, also prevented NF-kappaB activation. Further, we observed that AMPK interacted with PKCdelta and phosphorylated Thr505 in the activation loop of PKCdelta in thrombin-stimulated endothelial cells. Expression of a PKCdelta-T505A mutant suppressed the thrombin-induced but not the TNF-alpha-induced NF-kappaB activation. These findings demonstrate a novel mechanism for TRPC channels to mediate NF-kappaB activation in endothelial cells that involves the convergence of the TRPC-regulated signaling at AMPK and PKCdelta and that may be a target of interference of the inappropriate activation of NF-kappaB associated with thrombosis.
Collapse
Affiliation(s)
- Angela M Bair
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Prabhakar B Thippegowda
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Marc Freichel
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Ni Cheng
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Richard D Ye
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Stephen M Vogel
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Yanni Yu
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Veit Flockerzi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Asrar B Malik
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Chinnaswamy Tiruppathi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany.
| |
Collapse
|
20
|
Jin J, Mao Y, Thomas D, Kim S, Daniel JL, Kunapuli SP. RhoA downstream of G(q) and G(12/13) pathways regulates protease-activated receptor-mediated dense granule release in platelets. Biochem Pharmacol 2008; 77:835-44. [PMID: 19073150 DOI: 10.1016/j.bcp.2008.11.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 11/17/2022]
Abstract
Platelet secretion is an important physiological event in hemostasis. The protease-activated receptors, PAR 1 and PAR 4, and the thromboxane receptor activate the G(12/13) pathways, in addition to the G(q) pathways. Here, we investigated the contribution of G(12/13) pathways to platelet dense granule release. 2MeSADP, which does not activate G(12/13) pathways, does not cause dense granule release in aspirin-treated platelets. However, supplementing 2MeSADP with YFLLRNP (60muM), as selective activator of G(12/13) pathways, resulted in dense granule release. Similarly, supplementing PLC activation with G(12/13) stimulation also leads to dense granule release. These results demonstrate that supplemental signaling from G(12/13) is required for G(q)-mediated dense granule release and that ADP fails to cause dense granule release because the platelet P2Y receptors, although activate PLC, do not activate G(12/13) pathways. When RhoA, downstream signaling molecule in G(12/13) pathways, is blocked, PAR-mediated dense granule release is inhibited. Furthermore, ADP activated RhoA downstream of G(q) and upstream of PLC. Finally, RhoA regulated PKCdelta T505 phosphorylation, suggesting that RhoA pathways contribute to platelet secretion through PKCdelta activation. We conclude that G(12/13) pathways, through RhoA, regulate dense granule release and fibrinogen receptor activation in platelets.
Collapse
Affiliation(s)
- Jianguo Jin
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
21
|
Iwamoto N, Abe-Dohmae S, Lu R, Yokoyama S. Involvement of protein kinase D in phosphorylation and increase of DNA binding of activator protein 2 alpha to downregulate ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol 2008; 28:2282-7. [PMID: 18845787 DOI: 10.1161/atvbaha.108.174714] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Activator protein (AP) 2alpha negatively regulates expression of ABCA1 gene through Ser-phosphorylation of AP2alpha (Circ Res. 2007;101:156-165). Potential specific Ser-phosphorylation sites for this reaction were investigated in human AP2alpha. METHODS AND RESULTS The phosphorylation was shown mediated by PKD, and Ser258 and Ser326 were found in its specific phosphorylation sequence segment in AP2alpha. PKD phosphorylated Ser258 more than Ser326 and induced its binding to the ABCA1 promoter. These reactions and AP2alpha-induced suppression of the ABCA1 promoter activity were reversed by mutation of Ser258 more than Ser326 mutation. Knockdown of PKD by siRNA reduced the AP2alpha Ser-phosphorylation, and increased ABCA1 expression and HDL biogenesis. Gö6983 inhibited PKD more selectively than PKC in THP-1 and HEK 293 cells and in mice, and increased ABCA1 expression, HDL biogenesis, and plasma HDL level. CONCLUSIONS PKD phosphorylates AP2alpha to negatively regulate expression of ABCA1 gene to increase HDL biogenesis. The major functional phosphorylation of AP2alpha was identified at Ser258 by PKD, in the AP2alpha basic domain highly conserved among species and all 5 subtypes of AP2. PKD/AP2 system can be a potent pharmacological target for prevention of atherosclerosis.
Collapse
Affiliation(s)
- Noriyuki Iwamoto
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | |
Collapse
|
22
|
Hsieh HL, Sun CC, Wang TS, Yang CM. PKC-δ/c-Src-mediated EGF receptor transactivation regulates thrombin-induced COX-2 expression and PGE2 production in rat vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1563-75. [DOI: 10.1016/j.bbamcr.2008.03.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 03/12/2008] [Accepted: 03/27/2008] [Indexed: 01/25/2023]
|
23
|
Ozgen N, Obreztchikova M, Guo J, Elouardighi H, Dorn GW, Wilson BA, Steinberg SF. Protein kinase D links Gq-coupled receptors to cAMP response element-binding protein (CREB)-Ser133 phosphorylation in the heart. J Biol Chem 2008; 283:17009-19. [PMID: 18378685 DOI: 10.1074/jbc.m709851200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many growth regulatory stimuli promote cAMP response element-binding protein (CREB) Ser(133) phosphorylation, but the physiologically relevant CREB-Ser(133) kinase(s) in the heart remains uncertain. This study identifies a novel role for protein kinase D (PKD) as an in vivo cardiac CREB-Ser(133) kinase. We show that thrombin activates a PKCdelta-PKD pathway leading to CREB-Ser(133) phosphorylation in cardiomyocytes and cardiac fibroblasts. alpha(1)-Adrenergic receptors also activate a PKCdelta-PKD-CREB-Ser(133) phosphorylation pathway in cardiomyocytes. Of note, while the epidermal growth factor (EGF) promotes CREB-Ser(133) phosphorylation via an ERK-RSK pathway in cardiac fibroblasts, the thrombin-dependent EGFR transactivation pathway leading to ERK-RSK activation does not lead to CREB-Ser(133) phosphorylation in this cell type. Adenoviral-mediated overexpression of PKCdelta (but not PKCepsilon or PKCalpha) activates PKD; PKCdelta and PKD1-S744E/S748E overexpression both promote CREB-Ser(133) phosphorylation. Pasteuralla multocida toxin (PMT), a direct Galpha(q) agonist that induces robust cardiomyocyte hypertrophy, also activates the PKD-CREB-Ser(133) phosphorylation pathway, leading to the accumulation of active PKD and Ser(133)-phosphorylated CREB in the nucleus, activation of a CRE-responsive promoter, and increased Bcl-2 (CREB target gene) expression in cardiomyocyte cultures. Cardiac-specific Galpha(q) overexpression also leads to an increase in PKD-Ser(744)/Ser(748) and CREB-Ser(133) phosphorylation as well as increased Bcl-2 protein expression in the hearts of transgenic mice. Collectively, these studies identify a novel Galpha(q)-PKCdelta-PKD-CREB-Ser(133) phosphorylation pathway that is predicted to contribute to cardiac remodeling and could be targeted for therapeutic advantage in the setting of heart failure phenotypes.
Collapse
Affiliation(s)
- Nazira Ozgen
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Avkiran M, Rowland AJ, Cuello F, Haworth RS. Protein kinase d in the cardiovascular system: emerging roles in health and disease. Circ Res 2008; 102:157-63. [PMID: 18239146 DOI: 10.1161/circresaha.107.168211] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The protein kinase D (PKD) family is a recent addition to the calcium/calmodulin-dependent protein kinase group of serine/threonine kinases, within the protein kinase complement of the mammalian genome. Relative to their alphabetically superior cousins in the AGC group of kinases, namely the various isoforms of protein kinase A, protein kinase B/Akt, and protein kinase C, PKD family members have to date received limited attention from cardiovascular investigators. Nevertheless, increasing evidence now points toward important roles for PKD-mediated signaling pathways in the cardiovascular system, particularly in the regulation of myocardial contraction, hypertrophy and remodeling. This review provides a primer on PKD signaling, using information gained from studies in multiple cell types, and discusses recent data that suggest novel functions for PKD-mediated pathways in the heart and the circulation.
Collapse
Affiliation(s)
- Metin Avkiran
- Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, United Kingdom.
| | | | | | | |
Collapse
|
25
|
Holden NS, Squires PE, Kaur M, Bland R, Jones CE, Newton R. Phorbol ester-stimulated NF-kappaB-dependent transcription: roles for isoforms of novel protein kinase C. Cell Signal 2008; 20:1338-48. [PMID: 18436431 DOI: 10.1016/j.cellsig.2008.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 03/02/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
Abstract
Since protein kinase C (PKC) isoforms are variously implicated in the activation of NF-kappaB, we have investigated the role of PKC in the activation of NF-kappaB-dependent transcription by the diacyl glycerol (DAG) mimetic, phorbol 12-myristate 13-acetate (PMA), and by tumour necrosis factor (TNF) alpha in pulmonary A549 cells. The PKC selective inhibitors, Ro31-8220, Gö6976, GF109203X and Gö6983, revealed no effect on TNFalpha-induced NF-kappaB DNA binding and a similar lack of effect on serine 32/36 phosphorylated IkappaBalpha and the loss of total IkappaBalpha indicates that activation of the core IKK-IkappaBalpha-NF-kappaB cascade by TNFalpha does not involve PKC. In contrast, differential sensitivity of an NF-kappaB-dependent reporter to Ro31-8220, Gö6976, GF109203X and Gö6983 (EC(50)s 0.46 microM, 0.34 microM, >10 microM and >10 microM respectively) suggests a role for protein kinase D in transcriptional activation by TNFalpha. Compared with TNFalpha, PMA weakly induces NF-kappaB DNA binding and this effect was not associated with serine 32/36 phosphorylation of IkappaBalpha. However, PMA-stimulated NF-kappaB DNA binding was inhibited by Ro31-8220 (10 microM), GF109203X (10 microM) and Gö6983 (10 microM), but not by Gö6976 (10 microM), suggesting a role for novel PKC isoforms. Furthermore, a lack of positive effect of calcium mobilising agents on both NF-kappaB DNA binding and on transcriptional activation argues against major roles for classical PKCs. This, combined with the ability of both GF109203X and Gö6983 to prevent enhancement of TNFalpha-induced NF-kappaB-dependent transcription by PMA, further indicates a role for novel PKCs in NF-kappaB transactivation. Finally, siRNA-mediated knockdown of PKCdelta and epsilon expression did not affect TNFalpha-induced NF-kappaB-dependent transcription. However, knockdown of PKCdelta expression significantly inhibited PMA-stimulated luciferase activity, whereas knockdown of PKCepsilon was without effect. Furthermore, combined knockdown of PKCdelta and epsilon revealed an increased inhibitory effect on PMA-stimulated NF-kappaB-dependent transcription suggesting that PMA-induced NF-kappaB-dependent transcription is driven by novel PKC isoforms, particularly PKCdelta and epsilon.
Collapse
Affiliation(s)
- Neil S Holden
- Airways Inflammation Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
26
|
McEneaney V, Harvey BJ, Thomas W. Aldosterone regulates rapid trafficking of epithelial sodium channel subunits in renal cortical collecting duct cells via protein kinase D activation. Mol Endocrinol 2008; 22:881-92. [PMID: 18202152 DOI: 10.1210/me.2007-0225] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aldosterone elicits rapid physiological responses in target tissues such as the distal nephron through the stimulation of cell signaling cascades. We identified protein kinase D (PKD1) as an early signaling response to aldosterone treatment in the M1-cortical collecting duct (M1-CCD) cell line. PKD1 activation was blocked by the PKC inhibitor chelerythrine chloride and by rottlerin, a specific inhibitor of PKCdelta. The activation of PKCdelta and PKCepsilon coincided with PKD1 activation and while a complex was formed between PKD1 and PKCepsilon after aldosterone treatment, there was a concurrent reduction in PKD1 association with PKCdelta. A stable PKD1 knockdown M1-CCD-derrived clone was developed in which PKD1 expression was 90% suppressed by gene silencing with a PKD1-specific siRNA. The effect of aldosterone treatment on the subcellular distribution of enhanced cyan fluorescent protein (eCFP)-tagged epithelial sodium channel (ENaC) subunits in wild type (WT) and PKD1 suppressed cells was examined using confocal microscopy. In an untreated confluent monolayer of M1-CCD cells, alpha, beta, and gamma ENaC subunits were evenly distributed throughout the cytoplasm of WT and PKD1-suppressed cells. After 2 min treatment, aldosterone stimulated the localization of each of the ENaC subunits to discrete regions within the cytoplasm of WT cells. The translocation of eCFP-ENaC subunits in WT cells was inhibited by rottlerin and the mineralocorticoid receptor (MR) antagonist spironolactone. No subcellular translocation of eCFP-ENaC subunits was observed in PKD1-suppressed cells treated with aldosterone. These data demonstrate the involvement of a novel MR/PKCdelta /PKD1 signaling cascade in the earliest ENaC subunit intracellular trafficking events that follow aldosterone treatment.
Collapse
Affiliation(s)
- Victoria McEneaney
- Department of Molecular Medicine, Royal College of Surgeons in Ireland Education and Research Centre, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | | | | |
Collapse
|
27
|
Ramnath RD, Sun J, Adhikari S, Zhi L, Bhatia M. Role of PKC-delta on substance P-induced chemokine synthesis in pancreatic acinar cells. Am J Physiol Cell Physiol 2007; 294:C683-92. [PMID: 18160487 DOI: 10.1152/ajpcell.00360.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Interaction of the neuropeptide substance P (SP) with its high-affinity neurokinin-1 receptor (NK1R) plays an important role in the pathophysiology of acute pancreatitis. SP is known to stimulate the production of chemokines monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)-1 alpha, and MIP-2 in pancreatic acinar cells via the activation of NF-kappaB. However, the signaling mechanisms by which the SP-NK1R interaction induces NF-kappaB activation and chemokine production remain unclear. To that end, in the present study, we investigated the participation of PKC in SP-induced chemokine production in pancreatic acinar cells. In this study, we showed that SP stimulated an early phosphorylation of PKC isoform PKC-delta followed by increased activation of MAPKKK MEKK1 and MAPK ERK and JNK as well as transcription factor NF-kappaB and activator protein-1 driven chemokine production. Depletion of PKC-delta with its inhibitor rottlerin or the specific PKC-delta translocation inhibitor peptide dose dependently decreased SP-induced PKC-delta, MEKK1, ERK, JNK, NF-kappaB, and AP-1 activation. Moreover, rottlerin as well as PKC-delta translocation inhibitor inhibited SP-induced chemokine production in a concentration-dependent manner. We also demonstrated that PKC-delta activation was attenuated by CP96345, a selective NK1R antagonist, thus showing that PKC-delta activation was indeed mediated by SP in pancreatic acinar cells. These results show that PKC-delta is an important proinflammatory signal transducer for SP-NK1R-induced chemokine production in pancreatic acinar cells.
Collapse
Affiliation(s)
- Raina Devi Ramnath
- Dept. of Pharmacology, National Univ. of Singapore, Yong Loo Lin School of Medicine, Centre for life Sciences, 28 Medical Drive, Singapore 117456
| | | | | | | | | |
Collapse
|
28
|
McEneaney V, Harvey BJ, Thomas W. Aldosterone rapidly activates protein kinase D via a mineralocorticoid receptor/EGFR trans-activation pathway in the M1 kidney CCD cell line. J Steroid Biochem Mol Biol 2007; 107:180-90. [PMID: 17681751 DOI: 10.1016/j.jsbmb.2007.03.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
Aldosterone elicits physiological responses through the modulation of gene expression and by stimulating signaling processes. Here we investigated the activation pathway of protein kinase D1 (PKD1) by aldosterone in the murine M1 renal cortical collecting duct cell line. Aldosterone stimulated a rapid increase in PKD1 activity peaking at 2-5 min and at 30 min after treatment that was insensitive to inhibitors of transcription or translation. PKD1 was not activated by aldosterone in MR null NIH-3T3 fibroblasts or M1-CCD cells propagated without dexamethasone, which did not express MR. PKD1 activation was sensitive to the MR antagonists spironolactone and RU28318 but not to the glucocorticoid receptor antagonist RU486. Aldosterone activation of PKD1 was inhibited by the epidermal growth factor (EGFR) antagonist tyrphostin AG1478 and by the c-Src inhibitor PP2. Western blotting revealed EGFR phosphorylation following aldosterone treatment at the c-Src tyrosine kinase-specific residue Tyr845. The activation of c-Src was dependent on its interaction with HSP84, since HSP84 antagonist 17-AAG inhibited both the phosphorylation of EGFR in response to aldosterone by c-Src and also the subsequent activation of PKD1.
Collapse
Affiliation(s)
- Victoria McEneaney
- Department of Molecular Medicine, Royal College of Surgeons in Ireland Education and Research Centre, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | | | | |
Collapse
|
29
|
Haworth RS, Roberts NA, Cuello F, Avkiran M. Regulation of protein kinase D activity in adult myocardium: novel counter-regulatory roles for protein kinase Cepsilon and protein kinase A. J Mol Cell Cardiol 2007; 43:686-95. [PMID: 17964599 DOI: 10.1016/j.yjmcc.2007.09.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 08/23/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
Abstract
Protein kinase D (PKD) is activated downstream of protein kinase C (PKC) in many cell types, although little is known about the mechanisms that regulate PKD in adult myocardium. Exposure of cultured adult rat ventricular myocytes (ARVM) to phorbol 12-myristate 13-acetate (PMA; 100 nM for 5 min) activated PKD, as evidenced by significantly increased phosphorylation at Ser744/8 (PKC phosphorylation sites) and Ser916 (autophosphorylation site). PKD activation occurred concomitantly with translocation of the enzyme from the cytosolic to the particulate fraction. The role of PKC was confirmed by pretreatment (15 min) of ARVM with the PKC inhibitors GF109203X (1 microM) and Ro31-8220 (1 microM), both of which prevented PKD phosphorylation on subsequent exposure to PMA. Exposure of ARVM to endothelin-1 (ET1; 100 nM for 10 min) also activated PKD by a PKC-dependent mechanism. To determine the PKC isoform(s) involved in the ET1-induced PKD activation, ARVM were infected with adenoviral vectors encoding dominant-negative (DN) mutants of PKCalpha, PKCdelta and PKCepsilon. Expression of DN-PKCalpha and DN-PKCdelta had little effect on ET1-induced PKD activation, whilst this was significantly attenuated by expression of DN-PKCepsilon, indicating that PKCepsilon plays a predominant role in the pertinent ET1 signaling pathway. Intriguingly, prior exposure to the adenylyl cyclase activator forskolin (1 microM for 5 min) or the beta-adrenergic agonist isoprenaline (100 nM for 5 min) markedly attenuated ET1-induced PKD activation, but not PMA-induced PKD activation. The ET1-induced response was rescued when protein kinase A (PKA) was inhibited (H89, 10 microM) before exposure to isoprenaline. These results show that ET1-induced PKD activation in ARVM is mediated by PKC, primarily the PKCepsilon isoform, and is suppressed by PKA activation.
Collapse
Affiliation(s)
- Robert S Haworth
- Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, Lambeth Palace Road, London, UK
| | | | | | | |
Collapse
|
30
|
Song MJ, Wang YQ, Wu GC. Lipopolysaccharide-induced protein kinase D activation mediated by interleukin-1beta and protein kinase C. Brain Res 2007; 1145:19-27. [PMID: 17331478 DOI: 10.1016/j.brainres.2007.01.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 11/29/2022]
Abstract
Protein kinase D (PKD), a newly described serine/threonine kinase, has been implicated in many signal transduction pathways. The present study was designed to determine whether and how PKD is activated in inflammation. The results demonstrated that lipopolysaccharide (LPS, 30 microg/ml) stimulated PKD and protein kinase C (PKC) phosphorylation in spinal neurons within 0.5 h, and the activation reached a maximum at 3 or 8 h and declined at 12 h. The phosphorylation could be inhibited by the selective inhibitors for PKC (100 nM), mainly for PKCalpha and PKCbeta, suggesting the involvement of the PKC pathway. Particularly, PKCalpha might be critical for LPS-induced PKD activation since the PKCbeta inhibitor (100 nM) observed no effect on the phosphorylation of PKD. Furthermore, the expression of interleukin-1beta (IL-1beta) was significantly induced by LPS within 0.5 h, and reached a maximum at 8 h. IL-1 receptor antagonist inhibited PKD and PKCs activation induced by LPS at a concentration of 50 nM and achieved maximum at 1000 nM. These results demonstrated for the first time that PKD could be activated by LPS in spinal neurons, might via the IL-1beta/PKCalpha pathway. Additionally, immunostaining showed an increase in number of phosphorylated PKD-immunoreactive cells of adult spinal dorsal horn induced by intraplantar injected carrageenan (2 microg/100 microl), and antisense oligodeoxynucleotide to IL-1 receptor type I (50 microg/10 microl, intrathecal injected) inhibited the PKD activation, suggesting an involvement of IL-1beta/PKD pathway in inflammation in adult spinal cord.
Collapse
Affiliation(s)
- Ming-Juan Song
- Department of Integrative Medicine and Neurobiology, Institute of Acupuncture Research, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | |
Collapse
|
31
|
Alpert E, Gruzman A, Tennenbaum T, Sasson S. Selective cyclooxygenase-2 inhibitors stimulate glucose transport in L6 myotubes in a protein kinase Cδ-dependent manner. Biochem Pharmacol 2007; 73:368-77. [PMID: 17098211 DOI: 10.1016/j.bcp.2006.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 10/06/2006] [Accepted: 10/09/2006] [Indexed: 11/24/2022]
Abstract
Selective inhibitors of cyclooxygenase-2 (prostaglandin-endoperoxide synthase-2; COX-2) augment the rate of hexose uptake in myotubes by recruiting glucose transporter-4 (GLUT-4) to the plasma membrane in an insulin- and AMPKalpha-independent manner [Alpert E, Gruzman A, Lardi-Studler B, Cohen G, Reich R, Sasson S. Cyclooxygenase-2 (PTGS2) inhibitors augment the rate of hexose transport in L6 myotubes in an insulin- and AMPKalpha-independent manner. Diabetologia 2006;49:562-70]. We aimed at elucidating the molecular interactions that mediate this effect of COX-2 inhibitors in L6 myotubes. The effects of the inhibitors niflumic acid, nimesulide and rofecoxib on activities and phosphorylation state of key proteins in the insulin transduction pathway were determined. These inhibitors did not induce specific tyrosine phosphorylation in IRS-1, could not assemble a functional IRS-PI3K-PKB/Akt complex and did not activate GSK3alpha/beta, JNK1/2, ERK1/2, p38-MAPK or c-Cbl by site-specific phosphorylation(s). Yet, like insulin, they activated mTOR and induced downstream threonine phosphorylation in p70S6K and 4EBP1. However, rapamycin, which inhibits mTOR enzymatic activity, did not interfere with COX-2 inhibitor-induced stimulation of hexose uptake in myotube. Thus, mTOR activation was not required for COX-2 inhibitor-dependent augmentation of hexose transport in myotubes. Because PKCdelta has also been shown to activate mTOR, we asked whether COX-2 inhibitors activate mTOR by a prior activation of PKCdelta. Indeed, all three inhibitors induced tyrosine phosphorylation in PKCdelta and stimulated its kinase activity. Moreover, pharmacological inhibition of PKCdelta or the expression of a dominant-negative form of PKCdelta in myotubes completely abolished COX-2 inhibitor-dependent stimulation of hexose uptake. This study shows that selective COX-2 inhibitors activate a unique PKCdelta-dependent pathway to increase GLUT-4 abundance in the plasma membrane of myotubes and augment the rate of hexose transport.
Collapse
Affiliation(s)
- Evgenia Alpert
- Department of Pharmacology, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
32
|
Romero DG, Welsh BL, Gomez-Sanchez EP, Yanes LL, Rilli S, Gomez-Sanchez CE. Angiotensin II-mediated protein kinase D activation stimulates aldosterone and cortisol secretion in H295R human adrenocortical cells. Endocrinology 2006; 147:6046-55. [PMID: 16973724 DOI: 10.1210/en.2006-0794] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinases are important mediators in intracellular signaling. Angiotensin II is the most important modulator of adrenal zona glomerulosa cell physiology. Angiotensin II regulates steroidogenesis and proliferation among many other metabolic processes. H295R human adrenal cells are a widely used experimental model to study adrenal cell physiology and metabolism. We screened for protein kinase expression levels using the Kinetwork system in H295R cells after 3 h angiotensin II treatment. Protein kinase D (PKD) was the protein kinase that suffers the most dramatic changes. PKD is a member of a new class of serine/threonine protein kinases that is activated by phosphorylation. Our studies indicated that angiotensin II time- and dose-dependently increased PKD phosphorylation, which occurred within 2 min of angiotensin II treatment and at concentrations as low as 1 nm. PKD phosphorylation was also dose-dependently increased by the PKC activator phorbol 12-myristate 13-acetate. Angiotensin II-mediated PKD phosphorylation was blocked by several PKC inhibitors. Furthermore, PKCepsilon translocation inhibitor peptide decreased angiotensin II-mediated PKD phosphorylation, and PKCepsilon down-regulation by RNA interference also decreased PKD phosphorylation mediated by angiotensin II. Cotransfection of constitutively active PKD mutant constructs up-regulated aldosterone synthase and 11beta-hydroxylase expression in reporter assays. Constitutively active PKD mutants increased aldosterone and cortisol secretion under angiotensin II stimulatory conditions. This study reveals that PKD is an intracellular signaling mediator of angiotensin II regulation of steroidogenesis in human adrenal cells. These data provide new insights into the molecular mechanisms involved in angiotensin II-induced physiological and pathophysiological events in adrenal cells.
Collapse
Affiliation(s)
- Damian G Romero
- Division of Endocrinology, Department of Medicine, Montgomery Veterans Affairs Medical Center, and The University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Yeoh M, Brock JA. Rho kinase inhibitors reduce neurally evoked contraction of the rat tail artery in vitro. Br J Pharmacol 2006; 146:854-61. [PMID: 16113686 PMCID: PMC1751218 DOI: 10.1038/sj.bjp.0706377] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effects of Rho kinase inhibitors (Y27632, HA-1077) on contractions to electrical stimulation and to application of phenylephrine, clonidine or alpha,beta-methylene adenosine 5'-triphosphate (alpha,beta-mATP) were investigated in rat tail artery in vitro. In addition, continuous amperometry and intracellular recording were used to monitor the effects of Y27632 on noradrenaline (NA) release and postjunctional electrical activity, respectively. Y27632 (0.5 and 1 microM) and HA-1077 (5 microM) reduced neurally evoked contractions. In contrast, the protein kinase C inhibitor, Ro31-8220 (1 microM), had little effect on neurally evoked contraction. In the absence and the presence of Y27632 (0.5 microM), the reduction of neurally evoked contraction produced by the alpha-adrenoceptor antagonists prazosin (10 nM) and idazoxan (0.1 microM) was similar. The P2-purinoceptor antagonist, suramin (0.1 mM), had no inhibitory effect on neurally evoked contraction in the absence or the presence of Y27632 (1 microM). In the presence of Y27632, desensitization of P2X-purinoceptors with alpha,beta-mATP (10 microM) increased neurally evoked contractions.Y27632 (1 microM) and H-1077 (5 microM) reduced sensitivity to phenylephrine and clonidine. In addition, Y27632 reduced contractions to alpha,beta-mATP (10 microM). Y27632 (1 microM) had no effect on the NA-induced oxidation currents or the purinergic excitatory junction potentials and NA-induced slow depolarizations evoked by electrical stimulation. Rho kinase inhibitors reduce sympathetic nerve-mediated contractions of the tail artery. This effect is mediated at a postjunctional site, most likely by inhibition of Rho kinase-mediated 'Ca2+ sensitization' of the contractile apparatus.
Collapse
Affiliation(s)
- Melanie Yeoh
- Prince of Wales Medical Research Institute, University of New South Wales, Barker St., Randwick, NSW 2031, Australia
| | - James A Brock
- Prince of Wales Medical Research Institute, University of New South Wales, Barker St., Randwick, NSW 2031, Australia
- Author for correspondence:
| |
Collapse
|
34
|
Xie Z, Dong Y, Zhang M, Cui MZ, Cohen RA, Riek U, Neumann D, Schlattner U, Zou MH. Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J Biol Chem 2006; 281:6366-75. [PMID: 16407220 DOI: 10.1074/jbc.m511178200] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported the phosphoinositide 3-kinase-dependent activation of the 5'-AMP-activated kinase (AMPK) by peroxynitrite (ONOO-) and hypoxia-reoxygenation in cultured endothelial cells. Here we show the molecular mechanism of activation of this pathway. Exposure of bovine aortic endothelial cells to ONOO- significantly increased the phosphorylation of both Thr172 of AMPK and Ser1179 of endothelial nitric-oxide synthase, a known downstream enzyme of AMPK. In addition, activation of AMPK by ONOO- was accompanied by increased phosphorylation of protein kinase Czeta (PKCzeta) (Thr410/403) and translocation of cytosolic PKCzeta into the membrane. Further, inhibition of PKCzeta abrogated ONOO- -induced AMPK-Thr172 phosphorylation as that of endothelial nitric-oxide synthase. Furthermore, overexpression of a constitutively active PKCzeta mutant enhanced the phosphorylation of AMPK-Thr172, suggesting that PKCzeta is upstream of AMPK activation. In contrast, ONOO- activated PKCzeta in LKB1-deficient HeLa-S3 but affected neither AMPK-Thr172 nor AMPK activity. These data suggest that LKB1 is required for PKCzeta-enhanced AMPK activation. In vitro, recombinant PKCzeta phosphorylated LKB1 at Ser428, resulting in phosphorylation of AMPK at Thr172. Further, direct mutation of Ser428 of LKB1 into alanine, like the kinase-inactive LKB1 mutant, abolished ONOO- -induced AMPK activation. In several cell types originating from human, rat, and mouse, inhibition of PKCzeta significantly attenuated the phosphorylation of both LKB1-Ser428 and AMPK-Thr172 that were enhanced by ONOO-. Taken together, we conclude that PKCzeta can regulate AMPK activity by increasing the Ser428 phosphorylation of LKB1, resulting in association of LKB1 with AMPK and consequent AMPK Thr172 phosphorylation by LKB1.
Collapse
Affiliation(s)
- Zhonglin Xie
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Delicado EG, Jiménez AI, Carrasquero LMG, Castro E, Miras-Portugal MT. Cross-talk among epidermal growth factor, Ap(5)A, and nucleotide receptors causing enhanced ATP Ca(2+) signaling involves extracellular kinase activation in cerebellar astrocytes. J Neurosci Res 2005; 81:789-96. [PMID: 16052566 DOI: 10.1002/jnr.20609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In previous papers, we reported that ATP calcium responses in cerebellar astrocytes were strongly potentiated by preincubation with nanomolar concentrations of the diadenosine pentaphosphate Ap(5)A. However, the intracellular signaling pathway mediating this effect was not defined. We also showed that stimulation of astrocytes with the dinucleotide led to the activation of extracellular regulated kinases (ERKs). Here, we examined whether ERKs are involved in the potentiating mechanism and intracellular mechanism leading to their activation. Epidermal growth factor (EGF) exactly reproduced the potentiation displayed by the dinucleotide. Moreover, the potentiation of ATP responses by Ap(5)A and EGF was completely abolished by the MAP kinase (MEK) inhibitor U-0126, indicating that ERK activation is a required step for the potentiation event. Our data also indicated that ERK activation and the potentiation of ATP calcium responses were sensitive to the src-like kinase inhibitor herbimycin A, p21(ras) farnesyltransferase inhibitor peptide, and some PKC inhibitors. Taken together, our findings reveal that Ap(5)A triggers the potentiation of ATP calcium responses through an intracellular mechanism that is insensitive to pertussis toxin and that this potentiation requires src protein-mediated ERK activation and the participation of an atypical protein kinase C isoform activated downstream from ERK.
Collapse
Affiliation(s)
- Esmerilda G Delicado
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | |
Collapse
|
36
|
Ernest Dodd M, Ristich VL, Ray S, Lober RM, Bollag WB. Regulation of protein kinase D during differentiation and proliferation of primary mouse keratinocytes. J Invest Dermatol 2005; 125:294-306. [PMID: 16098040 DOI: 10.1111/j.0022-202x.2005.23780.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Diseased skin often exhibits a deregulated program of the keratinocyte maturation necessary for epidermal stratification and function. Protein kinase D (PKD), a serine/threonine kinase, is expressed in proliferating keratinocytes, and PKD activation occurs in response to mitogen stimulation in other cell types. We have proposed that PKD functions as a pro-proliferative and/or anti-differentiative signal in keratinocytes and hypothesized that differentiation inducers will downmodulate PKD to allow differentiation to proceed. Thus, changes in PKD levels, autophosphorylation, and activity were analyzed upon stimulation of differentiation and proliferation in primary mouse keratinocytes. Elevated extracellular calcium and acute 12-O-tetradecanoylphorbol-13-acetate (TPA) treatments induced differentiation and triggered a downmodulation of PKD levels, autophosphorylation at serine 916, and activity. Chronic TPA treatment stimulated proliferation and resulted in a recovery of PKD levels, autophosphorylation, and activity. Immunohistochemical analysis demonstrated PKD localization predominantly in the proliferative basal layer of mouse epidermis. Co-expression studies revealed a pro-proliferative, anti-differentiative effect of PKD on keratinocyte maturation as monitored by increased and decreased promoter activities of keratin 5, a proliferative marker, and involucrin, a differentiative marker, respectively. This work describes the inverse regulation of PKD during keratinocyte differentiation and proliferation and the pro-proliferative/anti-differentiative effects of PKD co-expression on keratinocyte maturation.
Collapse
Affiliation(s)
- M Ernest Dodd
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
37
|
Wong C, Jin ZG. Protein kinase C-dependent protein kinase D activation modulates ERK signal pathway and endothelial cell proliferation by vascular endothelial growth factor. J Biol Chem 2005; 280:33262-9. [PMID: 16006559 PMCID: PMC4228942 DOI: 10.1074/jbc.m503198200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is essential for many angiogenic processes both in normal conditions and in pathological conditions. However, the signaling pathways involved in VEGF-induced angiogenesis are not well defined. Protein kinase D (PKD), a newly described serine/threonine protein kinase, has been implicated in many signal transduction pathways and in cell proliferation. We hypothesized that PKD would mediate VEGF signaling and function in endothelial cells. Here we found that VEGF rapidly and strongly stimulated PKD phosphorylation and activation in endothelial cells via VEGF receptor 2 (VEGFR2). The pharmacological inhibitors for phospholipase Cgamma (PLCgamma) and protein kinase C (PKC) significantly inhibited VEGF-induced PKD activation, suggesting the involvement of the PLCgamma/PKC pathway. In particular, PKCalpha was critical for VEGF-induced PKD activation since both overexpression of adenovirus PKCalpha dominant negative mutant and reduction of PKCalpha expression by small interfering RNA markedly inhibited VEGF-induced PKD activation. Importantly, we found that small interfering RNA knockdown of PKD and PKCalpha expression significantly attenuated ERK activation and DNA synthesis in endothelial cells by VEGF. Taken together, our results demonstrated for the first time that VEGF activates PKD via the VEGFR2/PLCgamma/PKCalpha pathway and revealed a critical role of PKD in VEGF-induced ERK signaling and endothelial cell proliferation.
Collapse
Affiliation(s)
| | - Zheng-Gen Jin
- To whom correspondence should be addressed: Cardiovascular Research Institute, Dept. of Medicine, University of Rochester Medical Center, 601 Elmwood Ave. Box 679, Rochester, NY 14642. Tel.: 585-273-3415; Fax: 585-273-1497;
| |
Collapse
|
38
|
Murugappan S, Shankar H, Bhamidipati S, Dorsam RT, Jin J, Kunapuli SP. Molecular mechanism and functional implications of thrombin-mediated tyrosine phosphorylation of PKCdelta in platelets. Blood 2005; 106:550-7. [PMID: 15811957 PMCID: PMC1895183 DOI: 10.1182/blood-2004-12-4866] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Thrombin has been known to cause tyrosine phosphorylation of protein kinase C delta (PKCdelta) in platelets, but the molecular mechanisms and function of this tyrosine phosphorylation is not known. In this study, we investigated the signaling pathways used by protease-activated receptors (PARs) to cause tyrosine phosphorylation of PKCdelta and the role of this event in platelet function. PKCdelta was tyrosine phosphorylated by either PAR1 or PAR4 in a concentration- and time-dependent manner in human platelets. In particular, the tyrosine 311 residue was phosphorylated downstream of PAR receptors. Also the tyrosine phosphorylation of PKCdelta did not occur in Galpha(q)-deficient mouse platelets and was inhibited in the presence of a phospholipase C (PLC) inhibitor U73122 and calcium chelator BAPTA (5,5'-dimethyl-bis(o-aminophenoxy)ethane-N, N, N ', N '-tetraacetic acid), suggesting a role for Galpha(q) pathways and calcium in this event. Both PAR1 and PAR4 caused a time-dependent activation of Src (pp60c-src) tyrosine kinase and Src tyrosine kinase inhibitors completely blocked the tyrosine phosphorylation of PKCdelta. Inhibition of tyrosine phosphorylation or the kinase activity of PKCdelta dramatically blocked PAR-mediated thromboxane A2 generation. We conclude that thrombin causes tyrosine phosphorylation of PKCdelta in a calcium- and Src-family kinase-dependent manner in platelets, with functional implications in thromboxane A2 generation.
Collapse
Affiliation(s)
- Swaminathan Murugappan
- Department of Physiology, Temple University School of Medicine, Rm 224, OMS, 3420 N Broad St, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
39
|
Tan M, Xu X, Ohba M, Cui MZ. Angiotensin II-induced protein kinase D activation is regulated by protein kinase Cdelta and mediated via the angiotensin II type 1 receptor in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2004; 24:2271-6. [PMID: 15499041 DOI: 10.1161/01.atv.0000148449.92035.3a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Angiotensin II (Ang II), through its specific signaling cascades, exerts multiple effects on vascular smooth muscle cells (SMCs). It has been shown that Ang II stimulates activation of protein kinase D (PKD), a member of a new class of serine-threonine kinases. However, little is known regarding the upstream cascade of the intracellular signaling that leads to PKD activation. In the present study, we investigated upstream molecules that mediate Ang II-induced PKD activation in SMCs. METHODS AND RESULTS Protein kinase C (PKC) inhibitors completely block Ang II-induced PKD activation, and pretreatment with phorbol 12,13-dibutyrate downregulates Ang II-induced PKD activation, indicating that classical or novel isoforms of PKC mediate Ang II-induced PKD activation. Furthermore, the finding that rottlerin, a PKCdelta-specific inhibitor, blocks PKD activation suggests that PKCdelta, a member of novel PKCs, mediates Ang II-induced PKD activation. By using dominant-negative approaches, our results demonstrate that expression of the dominant-negative PKCdelta, but neither the dominant-negative form of PKCepsilon nor PKCzeta, inhibits PKD activation. These results further substantiate the finding that Ang II-induced PKD activation is mediated by PKCdelta. Moreover, using selective Ang II receptor antagonists, our data show that the Ang II type 1 (AT1) receptor but not the AT2 mediates Ang II-stimulated PKD activation. CONCLUSIONS This study reveals for the first time that Ang II-induced PKD activation is mediated via AT1 and regulated by PKCdelta in living cells. These data may provide new insights into molecular mechanisms involved in Ang II-induced physiological and pathological events.
Collapse
MESH Headings
- Acetophenones/pharmacology
- Angiotensin II/administration & dosage
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Animals
- Aorta/cytology
- Benzopyrans/pharmacology
- Cell Line
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Phorbol 12,13-Dibutyrate/pharmacology
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Rats
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Time Factors
Collapse
Affiliation(s)
- Mingqi Tan
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
40
|
Abstract
For many years protein kinase C (PKC) has been the subject of extensive studies as a molecular target for the treatment of cancer and other diseases. To better define the role of PKC isozymes in the control of cell proliferation, survival and transformation, the examination of PKC-mediated signal transduction pathways by isozyme-specific intervention has become essential. However, issues related to the selectivity of activators and inhibitors of PKC isozymes, in addition to convoluted cross-talks between phorbol ester-regulated pathways, have greatly complicated our understanding of PKC-mediated responses. An additional level of complexity is provided by the fact diacylglycerol (DAG) signals can be transduced by phorbol ester receptors other than PKC. These receptors include chimaerins, RasGRPs, MUNC13s, PKD (PKC mu) and DAG kinases beta and gamma. Thus, it is conceivable that some of the effects that were originally attributed to PKC isozymes in response to phorbol esters might be mediated by PKC-independent pathways. A key issue for the design of novel therapeutic strategies that target PKC isozymes is a comprehensive analysis of isozyme-specific signal transduction pathways in different cell types and the development of pharmacological and molecular tools that can distinguish between the various PKC and 'non-PKC' phorbol ester receptors.
Collapse
Affiliation(s)
- ChengFeng Yang
- Center for Experimental Therapeutics and Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | | |
Collapse
|
41
|
Li J, O'Connor KL, Hellmich MR, Greeley GH, Townsend CM, Evers BM. The Role of Protein Kinase D in Neurotensin Secretion Mediated by Protein Kinase C-α/-δ and Rho/Rho Kinase. J Biol Chem 2004; 279:28466-74. [PMID: 15123666 DOI: 10.1074/jbc.m314307200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neurotensin (NT) is a gut peptide that plays an important role in gastrointestinal (GI) secretion, motility, and growth as well as the proliferation of NT receptor positive cancers. Secretion of NT is regulated by phorbol ester-sensitive protein kinase C (PKC) isoforms-alpha and -delta and may involve protein kinase D (PKD). The purpose of our present study was: (i) to define the role of PKD in NT release from BON endocrine cells and (ii) to delineate the upstream signaling mechanisms mediating this effect. Here, we demonstrate that small interfering RNA (siRNA) targeted against PKD dramatically inhibited both basal and PMA-stimulated NT secretion; NT release is significantly increased by overexpression of PKD. PKC-alpha and -delta siRNA attenuated PKD activity, whereas overexpression of PKC-alpha and -delta enhanced PKD activity. Rho kinase (ROK) siRNA significantly inhibited NT secretion, whereas overexpression of ROKalpha effectively increased NT release. Rho protein inhibitor C3 dramatically inhibited both NT secretion and PKD activity. In conclusion, our results demonstrate that PKD activation plays a central role in NT peptide secretion; upstream regulators of PKD include PKC-alpha and -delta and Rho/ROK. Importantly, our results identify novel signaling pathways, which culminate in gut peptide release.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery and Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0536, USA
| | | | | | | | | | | |
Collapse
|
42
|
Yang MS, Lee J, Ji KA, Min KJ, Lee MA, Jou I, Joe E. Thrombin induces suppressor of cytokine signaling 3 expression in brain microglia via protein kinase Cdelta activation. Biochem Biophys Res Commun 2004; 317:811-6. [PMID: 15081412 DOI: 10.1016/j.bbrc.2004.03.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Indexed: 11/30/2022]
Abstract
Microglia (brain macrophages) are activated upon brain damage. In this study, we demonstrated that thrombin, a pro-inflammatory stimulator of microglia, induced expression of suppressors of cytokine signaling (SOCS) in microglia. RT-PCR analysis and Northern blot analysis showed that thrombin induced SOCS3 mRNA expression. Further experiments indicated SOCS3 expression was not affected by cycloheximide, indicating thrombin directly stimulated SOCS3 transcript expression without de novo protein synthesis. We investigated whether PKCdelta played a role in thrombin-stimulated SOCS3 expression. We found that thrombin activated PKCdelta, and the specific inhibitor of PKCdelta, rottlerin, significantly suppressed thrombin-stimulated SOCS3 expression. In thrombin-pretreated cells, microglial activation-induced by another inflammatory stimulator, lipopolysaccharide, was attenuated compared to that in non-pretreated cells. These results suggest thrombin induce not only proinflammatory mediators but also negative feedback regulators of inflammation, SOCS, which prevent prolonged inflammatory reactions in microglia.
Collapse
Affiliation(s)
- Myung-Soon Yang
- Neuroscience graduate program, Ajou University School of Medicine, Suwon 442-721, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Murugappan S, Tuluc F, Dorsam RT, Shankar H, Kunapuli SP. Differential Role of Protein Kinase Cδ Isoform in Agonist-induced Dense Granule Secretion in Human Platelets. J Biol Chem 2004; 279:2360-7. [PMID: 14578358 DOI: 10.1074/jbc.m306960200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several platelet agonists, including thrombin, collagen, and thromboxane A(2), cause dense granule release independently of thromboxane generation. Because protein kinase C (PKC) isoforms are implicated in platelet secretion, we investigated the role of individual PKC isoforms in platelet dense granule release. PKCdelta was phosphorylated in a time-dependent manner that coincided with dense granule release in response to protease-activated receptor-activating peptides SFLLRN and AYPGKF in human platelets. Only agonists that caused platelet dense granule secretion activated PKCdelta. SFLLRN- or AYPGKF-induced dense granule release and PKCdelta phosphorylation occurred at the same respective agonist concentration. Furthermore, AYPGKF and SFLLRN-induced dense granule release was blocked by rottlerin, a PKCdelta selective inhibitor. In contrast, convulxin-induced dense granule secretion was potentiated by rottlerin but was abolished by Go6976, a classical PKC isoform inhibitor. However, SFLLRN-induced dense granule release was unaffected in the presence of Go6976. Finally, rottlerin did not affect SFLLRN-induced platelet aggregation, even in the presence of dimethyl-BAPTA, indicating that PKCdelta has no role in platelet fibrinogen receptor activation. We conclude that PKCdelta and the classical PKC isoforms play a differential role in platelet dense granule release mediated by protease-activated receptors and glycoprotein VI. Furthermore, PKCdelta plays a positive role in protease-activated receptor-mediated dense granule secretion, whereas it functions as a negative regulator downstream of glycoprotein VI signaling.
Collapse
Affiliation(s)
- Swaminathan Murugappan
- Departments of Physiology and Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | |
Collapse
|
44
|
Kanthasamy AG, Kitazawa M, Kanthasamy A, Anantharam V. Role of proteolytic activation of protein kinase Cdelta in oxidative stress-induced apoptosis. Antioxid Redox Signal 2003; 5:609-20. [PMID: 14580317 DOI: 10.1089/152308603770310275] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein kinase Cdelta (PKCdelta), a member of the novel PKC family, is emerging as a redox-sensitive kinase in various cell types. Oxidative stress activates the PKCdelta kinase by translocation, tyrosine phosphorylation, or proteolysis. During proteolysis, caspase-3 cleaves the native PKCdelta (72-74 kDa) into 41-kDa catalytically active and 38-kDa regulatory fragments to persistently activate the kinase. The proteolytic activation of PKCdelta plays a key role in promoting apoptotic cell death in various cell types, including neuronal cells. Attenuation of PKCdelta proteolytic activation by antioxidants suggests that the cellular redox status can influence activation of the proapoptotic kinase. PKCdelta may also amplify apoptotic signaling via positive feedback activation of the caspase cascade. Thus, the dual role of PKCdelta as a mediator and amplifier of apoptosis may be important in the pathogenesis of major neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, and Huntington disease.
Collapse
Affiliation(s)
- Anumantha G Kanthasamy
- Parkinson's Disorders Research Program, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
45
|
Tinsley JH, Teasdale NR, Yuan SY. Involvement of PKCdelta and PKD in pulmonary microvascular endothelial cell hyperpermeability. Am J Physiol Cell Physiol 2003; 286:C105-11. [PMID: 13679307 DOI: 10.1152/ajpcell.00340.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The involvement of PKC, the isoforms of which are categorized into three subtypes: conventional (alpha, betaI, betaII, and gamma), novel [delta, epsilon, eta, and mu (also known as PKD), theta], and atypical (zeta and iota/lambda), in the regulation of endothelial monolayer integrity is well documented. However, isoform activity varies among different cell types. Our goal was to reveal isoform-specific PKC activity in the microvascular endothelium in response to phorbol 12-myristate 13-acetate (PMA) and diacylglycerol (DAG). Isoform activity was demonstrated by cytosol-to-membrane translocation after PMA treatment and phosphorylation of the myristoylated alanine-rich C kinase substrate (MARCKS) protein after PMA and DAG treatment. Specific isoforms were inhibited by using both antisense oligonucleotides and pharmacological agents. The data showed partial cytosol-to-membrane translocation of isoforms alpha, betaI, and epsilon and complete translocation of PKCdelta and PKD in response to PMA. Furthermore, antisense treatment and pharmacological studies indicated that the novel isoform PKCdelta and PKD are both required for PMA- and DAG-induced MARCKS phosphorylation and hyperpermeability in pulmonary microvascular endothelial cells, whereas isoforms alpha, betaI, and epsilon were dispensable with regard to these same phenomena.
Collapse
Affiliation(s)
- John H Tinsley
- Department of Surgery, Texas A & M University, System Health Science Center, 702 SW H.K. Dodgen Loop, Temple, TX 76504, USA.
| | | | | |
Collapse
|