1
|
Yang X, Zeng Q, İnam MG, İnam O, Lin CS, Tezel G. cFLIP in the molecular regulation of astroglia-driven neuroinflammation in experimental glaucoma. J Neuroinflammation 2024; 21:145. [PMID: 38824526 PMCID: PMC11143607 DOI: 10.1186/s12974-024-03141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Recent experimental studies of neuroinflammation in glaucoma pointed to cFLIP as a molecular switch for cell fate decisions, mainly regulating cell type-specific caspase-8 functions in cell death and inflammation. This study aimed to determine the importance of cFLIP for regulating astroglia-driven neuroinflammation in experimental glaucoma by analyzing the outcomes of astroglia-targeted transgenic deletion of cFLIP or cFLIPL. METHODS Glaucoma was modeled by anterior chamber microbead injections to induce ocular hypertension in mouse lines with or without conditional deletion of cFLIP or cFLIPL in astroglia. Morphological analysis of astroglia responses assessed quantitative parameters in retinal whole mounts immunolabeled for GFAP and inflammatory molecules or assayed for TUNEL. The molecular analysis included 36-plexed immunoassays of the retina and optic nerve cytokines and chemokines, NanoString-based profiling of inflammation-related gene expression, and Western blot analysis of selected proteins in freshly isolated samples of astroglia. RESULTS Immunoassays and immunolabeling of retina and optic nerve tissues presented reduced production of various proinflammatory cytokines, including TNFα, in GFAP/cFLIP and GFAP/cFLIPL relative to controls at 12 weeks of ocular hypertension with no detectable alteration in TUNEL. Besides presenting a similar trend of the proinflammatory versus anti-inflammatory molecules displayed by immunoassays, NanoString-based molecular profiling detected downregulated NF-κB/RelA and upregulated RelB expression of astroglia in ocular hypertensive samples of GFAP/cFLIP compared to ocular hypertensive controls. Analysis of protein expression also revealed decreased phospho-RelA and increased phospho-RelB in parallel with an increase in caspase-8 cleavage products. CONCLUSIONS A prominent response limiting neuroinflammation in ocular hypertensive eyes with cFLIP-deletion in astroglia values the role of cFLIP in the molecular regulation of glia-driven neuroinflammation during glaucomatous neurodegeneration. The molecular responses accompanying the lessening of neurodegenerative inflammation also seem to maintain astroglia survival despite increased caspase-8 cleavage with cFLIP deletion. A transcriptional autoregulatory response, dampening RelA but boosting RelB for selective expression of NF-κB target genes, might reinforce cell survival in cFLIP-deleted astroglia.
Collapse
Affiliation(s)
- Xiangjun Yang
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Qun Zeng
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Maide Gözde İnam
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Onur İnam
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Hayashi Y, Nakayama J, Yamamoto M, Maekawa M, Watanabe S, Higashiyama S, Inoue JI, Yamamoto Y, Semba K. Aberrant accumulation of NIK promotes tumor growth by dysregulating translation and post-translational modifications in breast cancer. Cancer Cell Int 2023; 23:57. [PMID: 37005661 PMCID: PMC10067241 DOI: 10.1186/s12935-023-02904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND In vivo investigations with cancer cells have powerful tools to discover cancer progression mechanisms and preclinical candidate drugs. Among these in vivo experimental models, the establishment of highly malignancy cell lines with xenograft has been frequently used. However, few previous researches targeted malignancy-related genes whose protein levels translationally changed. Therefore, this study aimed to identify malignancy-related genes which contributed to cancer progression and changed at the protein level in the in vivo selected cancer cell lines. METHODS We established the high malignancy breast cancer cell line (LM05) by orthotopic xenograft as an in vivo selection method. To explore the altered genes by translational or post-translational regulation, we analyzed the protein production by western blotting in the highly malignant breast cancer cell line. Functional analyses of the altered genes were performed by in vitro and in vivo experiments. To reveal the molecular mechanisms of the regulation with protein level, we evaluated post-translational modification by immunoprecipitation. In addition, we evaluated translational production by click reaction-based purification of nascent protein. RESULTS As a result, NF-κB inducing kinase (NIK) increased at the protein level and promoted the nuclear localization of NF-κB2 (p52) and RelB in the highly malignant breast cancer cell line. The functional analyses indicated the NIK upregulation contributed to tumor malignancy via cancer-associated fibroblasts (CAFs) attraction and partially anti-apoptotic activities. Additionally, the immunoprecipitation experiment revealed that the ubiquitination of NIK decreased in LM05 cells. The decline in NIK ubiquitination was attributed to the translational downregulation of cIAP1. CONCLUSIONS Our study identified a dysregulated mechanism of NIK production by the suppression of NIK post-modification and cIAP1 translation. The aberrant NIK accumulation promoted tumor growth in the highly malignant breast cancer cell line.
Collapse
Affiliation(s)
- Yusuke Hayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan.
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Shirokane-Dai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Masashi Maekawa
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, 791-0295, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-Ku, Tokyo, 105-8512, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, 791-0295, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan
- Department of Molecular and Cellular Biology, Osaka International Cancer Institute, Chuo-Ku, Osaka, 541-8567, Japan
| | - Jun-Ichiro Inoue
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Shirokane-Dai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
3
|
Nguyen QA, Schmitt L, Mejías-Luque R, Gerhard M. Effects of Helicobacter pylori adhesin HopQ binding to CEACAM receptors in the human stomach. Front Immunol 2023; 14:1113478. [PMID: 36891299 PMCID: PMC9986547 DOI: 10.3389/fimmu.2023.1113478] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Helicobacter pylori has developed several strategies using its diverse virulence factors to trigger and, at the same time, limit the host's inflammatory responses in order to establish a chronic infection in the human stomach. One of the virulence factors that has recently received more attention is a member of the Helicobacter outer membrane protein family, the adhesin HopQ, which binds to the human Carcinoembryonic Antigen-related Cell Adhesion Molecules (CEACAMs) on the host cell surface. The HopQ-CEACAM interaction facilitates the translocation of the cytotoxin-associated gene A (CagA), an important effector protein of H. pylori, into host cells via the Type IV secretion system (T4SS). Both the T4SS itself and CagA are important virulence factors that are linked to many aberrant host signaling cascades. In the last few years, many studies have emphasized the prerequisite role of the HopQ-CEACAM interaction not only for the adhesion of this pathogen to host cells but also for the regulation of cellular processes. This review summarizes recent findings about the structural characteristics of the HopQ-CEACAM complex and the consequences of this interaction in gastric epithelial cells as well as immune cells. Given that the upregulation of CEACAMs is associated with many H. pylori-induced gastric diseases including gastritis and gastric cancer, these data may enable us to better understand the mechanisms of H. pylori's pathogenicity.
Collapse
Affiliation(s)
- Quynh Anh Nguyen
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Leonard Schmitt
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| |
Collapse
|
4
|
Interleukin-1 and Nuclear Factor Kappa B Signaling Promote Breast Cancer Progression and Treatment Resistance. Cells 2022; 11:cells11101673. [PMID: 35626710 PMCID: PMC9139516 DOI: 10.3390/cells11101673] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
While meant for wound healing and immunity in response to injury and infection, inflammatory signaling is usurped by cancerous tumors to promote disease progression, including treatment resistance. The interleukin-1 (IL-1) inflammatory cytokine family functions in wound healing and innate and adaptive immunity. Two major, closely related IL-1 family members, IL-1α and IL-1β, promote tumorigenic phenotypes and contribute to treatment resistance in cancer. IL-1 signaling converges on transactivation of the Nuclear Factor Kappa B (NF-κB) and Activator protein 1 (AP-1) transcription factors. NF-κB and AP-1 signaling are also activated by the inflammatory cytokine Tumor Necrosis Factor Alpha (TNFα) and microbe-sensing Toll-Like Receptors (TLRs). As reviewed elsewhere, IL-1, TNFα, and TLR can promote cancer progression through NF-κB or AP-1. In this review, we focus on what is known about the role of IL-1α and IL-1β in breast cancer (BCa) progression and therapeutic resistance, and state evidence for the role of NF-κB in mediating IL-1-induced BCa progression and therapeutic resistance. We will present evidence that IL-1 promotes BCa cell proliferation, BCa stem cell expansion, angiogenesis, and metastasis. IL-1 also regulates intracellular signaling and BCa cell hormone receptor expression in a manner that confers a growth advantage to the tumor cells and allows BCa cells to evade therapy. As such, the IL-1 receptor antagonist, anakinra, is in clinical trials to treat BCa and multiple other cancer types. This article presents a review of the literature from the 1990s to the present, outlining the evidence supporting a role for IL-1 and IL-1-NF-κB signaling in BCa progression.
Collapse
|
5
|
A T cell-intrinsic function for NF-κB RelB in experimental autoimmune encephalomyelitis. Sci Rep 2021; 11:19674. [PMID: 34608221 PMCID: PMC8490410 DOI: 10.1038/s41598-021-99134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
NF-kappaB (NF-κB) is a family of transcription factors with pleiotropic functions in immune responses. The alternative NF-κB pathway that leads to the activation of RelB and NF-κB2, was previously associated with the activation and function of T cells, though the exact contribution of these NF-κB subunits remains unclear. Here, using mice carrying conditional ablation of RelB in T cells, we evaluated its role in the development of conventional CD4+ T (Tconv) cells and their function in autoimmune diseases. RelB was largely dispensable for Tconv cell homeostasis, activation and proliferation, and for their polarization toward different flavors of Thelper cells in vitro. Moreover, ablation of RelB had no impact on the capacity of Tconv cells to induce autoimmune colitis. Conversely, clinical severity of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS) was significantly reduced in mice with RelB-deficient T cells. This was associated with impaired expression of granulocyte–macrophage colony-stimulating factor (GM-CSF) specifically in the central nervous system. Our data reveal a discrete role for RelB in the pathogenic function of Tconv cells during EAE, and highlight this transcription factor as a putative therapeutic target in MS.
Collapse
|
6
|
The alternative RelB NF-κB subunit is a novel critical player in diffuse large B-cell lymphoma. Blood 2021; 139:384-398. [PMID: 34232979 DOI: 10.1182/blood.2020010039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most frequent lymphoid malignancy affecting adults. NF-kB transcription factor family is activated by two main pathways, the canonical and the alternative NF-kB activation pathways with different functions. The alternative NF-kB pathway leads to the activation of the transcriptionally active RelB NF-kB subunit. Alternative NF-kB activation status and its role in DLBCL pathogenesis remain undefined. Here, we reveal a frequent activation of RelB in a large cohort of DLBCL patients and cell lines, independently of their ABC or GCB subtypes. RelB activity defines a new subset of DLBCL patients with a peculiar gene expression profile and mutational pattern. Importantly, RelB activation does not correlate with the MCD genetic subtype, enriched for ABC tumors carrying MYD88L265P and CD79B mutations that cooperatively activate canonical NF-kB, thus indicating that current genetic tools to evaluate NF-kB activity in DLBCL do not provide information on the alternative NF-kB activation. Further, the newly defined RelB-positive subgroup of DLBCL patients exhibits a dismal outcome following immunochemotherapy. Functional studies revealed that RelB confers DLBCL cell resistance to DNA-damage induced apoptosis in response to doxorubicin, a genotoxic agent used in front-line treatment for DLBCL. We also show that RelB positivity is associated with high expression of cIAP2. Altogether, RelB activation can be used to refine the prognostic stratification of DLBCL and may contribute to subvert the therapeutic DNA damage response in a segment of DLBCL patients.
Collapse
|
7
|
Mockenhaupt K, Gonsiewski A, Kordula T. RelB and Neuroinflammation. Cells 2021; 10:1609. [PMID: 34198987 PMCID: PMC8307460 DOI: 10.3390/cells10071609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation within the central nervous system involves multiple cell types that coordinate their responses by secreting and responding to a plethora of inflammatory mediators. These factors activate multiple signaling cascades to orchestrate initial inflammatory response and subsequent resolution. Activation of NF-κB pathways in several cell types is critical during neuroinflammation. In contrast to the well-studied role of p65 NF-κB during neuroinflammation, the mechanisms of RelB activation in specific cell types and its roles during neuroinflammatory response are less understood. In this review, we summarize the mechanisms of RelB activation in specific cell types of the CNS and the specialized effects this transcription factor exerts during neuroinflammation.
Collapse
Affiliation(s)
| | | | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VI 23298, USA; (K.M.); (A.G.)
| |
Collapse
|
8
|
Kalac M, Mangone M, Rinderspacher A, Deng SX, Scotto L, Markson M, Bansal M, Califano A, Landry DW, O'Connor OA. N-quinoline-benzenesulfonamide derivatives exert potent anti-lymphoma effect by targeting NF-κB. iScience 2020; 23:101884. [PMID: 33354662 PMCID: PMC7744703 DOI: 10.1016/j.isci.2020.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/28/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022] Open
Abstract
We previously identified the N-quinoline-benzenesulfonamide (NQBS) scaffold as a potent inhibitor of nuclear factor-κB (NF-κB) translocation. Now, we report the structure-activity relationship of compounds with the NQBS scaffold in models of diffuse large B-cell lymphoma (DLBCL). We identified CU-O42, CU-O47, and CU-O75 as NQBS analogs with the most potent cytotoxic activity in DLBCL lines. Their anti-lymphoma effect was mediated by NF-κB sequestration to the cytoplasm of DLBCL cells. Internal Coordinates Mechanics analysis suggested direct binding between CU-O75 and IκBα/p50/p65 which leads to the stabilization of the NF-κB trimer. A whole cellular thermal shift assay confirmed direct binding of the NQBS to IκBα, an inhibitory component of the IκBα/p50/p65 trimer. Lymphoma cell line sequencing revealed CU-O75 induced downregulation of NF-κB-dependent genes and DeMAND analysis identified IκBα as one of the top protein targets for CU-O75. CU-O42 was potent in inhibiting tumor growth in two mouse models of aggressive lymphomas.
Collapse
Affiliation(s)
- Matko Kalac
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Center for Lymphoid Malignancies, Columbia University Irving Medical Center, New York, NY, USA
- Department of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Michael Mangone
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Center for Lymphoid Malignancies, Columbia University Irving Medical Center, New York, NY, USA
| | - Alison Rinderspacher
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shi-Xian Deng
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - Luigi Scotto
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Center for Lymphoid Malignancies, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Markson
- Department of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Mukesh Bansal
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Psychogenics Inc., Paramus, NJ, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrea Califano
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- J.P. Sulzberger Columbia Genome Center, New York, NY, USA
| | - Donald W. Landry
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - Owen A. O'Connor
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Center for Lymphoid Malignancies, Columbia University Irving Medical Center, New York, NY, USA
- Division of Hematology and Oncology, University of Virginia Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
9
|
Koch PD, Pittet MJ, Weissleder R. The chemical biology of IL-12 production via the non-canonical NFkB pathway. RSC Chem Biol 2020; 1:166-176. [PMID: 34458756 PMCID: PMC8341911 DOI: 10.1039/d0cb00022a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Interleukin-12 (IL-12) has emerged as an attractive cytokine for cancer therapy because it has direct anti-cancer effects and additionally plays a critical role in enhancing checkpoint inhibitors. Given these multiple modes of actions, identifying means to pharmacologically induce IL-12 production in the tumor microenvironment has become important. In this review, we highlight therapeutics that promote IL-12 induction in tumor-associated myeloid cells through the non-canonical NFkB pathway. We discuss existing clinical trials and briefly examine the additional pathway targets that warrant further exploration for drug discovery.
Collapse
Affiliation(s)
- Peter D Koch
- Center for Systems Biology, Massachusetts General Hospital 185 Cambridge St Boston MA 02114 USA
- Department of Systems Biology, Harvard Medical School 200 Longwood Ave Boston MA 02115 USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital 185 Cambridge St Boston MA 02114 USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital 185 Cambridge St Boston MA 02114 USA
- Department of Systems Biology, Harvard Medical School 200 Longwood Ave Boston MA 02115 USA
| |
Collapse
|
10
|
de Jesús TJ, Ramakrishnan P. NF-κB c-Rel Dictates the Inflammatory Threshold by Acting as a Transcriptional Repressor. iScience 2020; 23:100876. [PMID: 32062419 PMCID: PMC7031323 DOI: 10.1016/j.isci.2020.100876] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/11/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
NF-κB/Rel family of transcription factors plays a central role in initiation and resolution of inflammatory responses. Here, we identified a function of the NF-κB subunit c-Rel as a transcriptional repressor of inflammatory genes. Genetic deletion of c-Rel substantially potentiates the expression of several TNF-α-induced RelA-dependent mediators of inflammation. v-Rel, the viral homologue of c-Rel, but not RelB, also possesses this repressive function. Mechanistically, we found that c-Rel selectively binds to the co-repressor HDAC1 and competitively binds to the DNA mediating HDAC1 recruitment to the promoters of inflammatory genes. A specific point mutation at tyrosine25 in c-Rel's DNA-binding domain, for which a missense single nucleotide variation (Y25H) exists in humans, completely abrogated its ability to bind DNA and repress TNF-α-induced, RelA-mediated transcription. Our findings reveal that the transactivator NF-κB subunit c-Rel also plays a role as a transcriptional repressor in the maintenance of inflammatory homeostasis.
Collapse
Affiliation(s)
- Tristan James de Jesús
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA; Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
11
|
NF-κB signaling promotes castration-resistant prostate cancer initiation and progression. Pharmacol Ther 2020; 211:107538. [PMID: 32201312 DOI: 10.1016/j.pharmthera.2020.107538] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Prostate Cancer (PCa) is the second leading cause of cancer-related death in men. Adenocarcinoma of the prostate is primarily composed of Androgen Receptor-positive (AR+) luminal cells that require AR transcriptional activity for survival and proliferation. As a consequence, androgen deprivation and anti-androgens are used to treat PCa patients whose disease progresses following attempted surgical or radiation interventions. Unfortunately, patients with advanced PCa can develop incurable castration-resistant PCa (CRPCa) due to mutated, variant, or overexpressed AR. Conversely, low or no AR accumulation or activity can also underlie castration resistance. Whether CRPCa is due to aberrant AR activity or AR independence, NF-κB signaling is also implicated in the initiation and maintenance of CRPCa and, thus, the NF-κB pathway may be a promising alternative therapeutic target. In this review, we present evidence that NF-κB signaling promotes CRPCa initiation and progression, describe the dichotomic role of NF-κB in the regulation of AR expression and activity and outline studies that explore NF-κB inhibitors as PCa therapies.
Collapse
|
12
|
Ravi S, Sayed CJ. Fibrotic Signaling Pathways of Skin Fibroblasts in Nephrogenic Systemic Fibrosis. CURRENT GERIATRICS REPORTS 2019. [DOI: 10.1007/s13670-019-00306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Dhar A, Chawla M, Chattopadhyay S, Oswal N, Umar D, Gupta S, Bal V, Rath S, George A, Arimbasseri GA, Basak S. Role of NF-kappaB2-p100 in regulatory T cell homeostasis and activation. Sci Rep 2019; 9:13867. [PMID: 31554891 PMCID: PMC6761191 DOI: 10.1038/s41598-019-50454-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
The immunological roles of the nuclear factor-kappaB (NF-κB) pathway are mediated via the canonical components in immune responses and via non-canonical components in immune organogenesis and homeostasis, although the two components are capable of crosstalk. Regulatory CD4 T cells (Tregs) are homeostatically functional and represent an interesting potential meeting point of these two NF-κB components. We show that mice deficient in the non-canonical NF-κB component gene Nfkb2 (p100) had normal thymic development and suppressive function of Tregs. However, they had enhanced frequencies of peripheral 'effector-phenotype' Tregs (eTregs). In bi-parental chimeras of wild-type (WT) and Nfkb2-/- mice, the Nfkb2-/- genotype was over-represented in Tregs, with a further increase in the relative prominence of eTregs. Consistent with distinct properties of eTregs, the Nfkb2-/- genotype was more prominent in Tregs in extra-lymphoid tissues such as liver in the bi-parental chimeras. The Nfkb2-/- Tregs also displayed greater survival, activation and proliferation in vivo. These Nfkb2-/- Tregs showed higher nuclear NF-κB activity mainly comprising of RelB-containing dimers, in contrast to the prominence of cRel- and RelA-containing dimers in WT Tregs. Since p100 is an inhibitor of RelB activation as well as a participant as cleaved p52 in RelB nuclear activity, we tested bi-parental chimeras of WT and Relb-/- mice, and found normal frequencies of Relb-/- Tregs and eTregs in these chimeric mice. Our findings confirm and extend recent data, and indicate that p100 normally restrains RelB-mediated Treg activation, and in the absence of p100, p50-RelB dimers can contribute to Treg activation.
Collapse
Affiliation(s)
- Atika Dhar
- National Institute of Immunology, New Delhi, India
| | | | | | - Neelam Oswal
- National Institute of Immunology, New Delhi, India
| | - Danish Umar
- National Institute of Immunology, New Delhi, India
| | - Suman Gupta
- National Institute of Immunology, New Delhi, India
| | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
| | | | - Anna George
- National Institute of Immunology, New Delhi, India
| | | | - Soumen Basak
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
14
|
Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel Transcription Factors in Pancreatic Cancer: Focusing on RelA, c-Rel, and RelB. Cancers (Basel) 2019; 11:E937. [PMID: 31277415 PMCID: PMC6679104 DOI: 10.3390/cancers11070937] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel transcription factors (TFs) is extremely cell-type-specific owing to their ability to act disparately in the context of cellular homeostasis driven by cellular fate and the microenvironment. This is also valid for tumor cells in which every single component shows heterogenic effects. Whereas many studies highlighted a per se oncogenic function for NF-κB/Rel TFs across cancers, recent advances in the field revealed their additional tumor-suppressive nature. Specifically, pancreatic ductal adenocarcinoma (PDAC), as one of the deadliest malignant diseases, shows aberrant canonical-noncanonical NF-κB signaling activity. Although decades of work suggest a prominent oncogenic activity of NF-κB signaling in PDAC, emerging evidence points to the opposite including anti-tumor effects. Considering the dual nature of NF-κB signaling and how it is closely linked to many other cancer related signaling pathways, it is essential to dissect the roles of individual Rel TFs in pancreatic carcinogenesis and tumor persistency and progression. Here, we discuss recent knowledge highlighting the role of Rel TFs RelA, RelB, and c-Rel in PDAC development and maintenance. Next to providing rationales for therapeutically harnessing Rel TF function in PDAC, we compile strategies currently in (pre-)clinical evaluation.
Collapse
Affiliation(s)
- Derya Kabacaoglu
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dietrich A Ruess
- Department of Surgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jiaoyu Ai
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
15
|
Chatterjee B, Roy P, Sarkar UA, Zhao M, Ratra Y, Singh A, Chawla M, De S, Gomes J, Sen R, Basak S. Immune Differentiation Regulator p100 Tunes NF-κB Responses to TNF. Front Immunol 2019; 10:997. [PMID: 31134075 PMCID: PMC6514058 DOI: 10.3389/fimmu.2019.00997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/18/2019] [Indexed: 11/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine whose primary physiological function involves coordinating inflammatory and adaptive immune responses. However, uncontrolled TNF signaling causes aberrant inflammation and has been implicated in several human ailments. Therefore, an understanding of the molecular mechanisms underlying dynamical and gene controls of TNF signaling bear significance for human health. As such, TNF engages the canonical nuclear factor kappa B (NF-κB) pathway to activate RelA:p50 heterodimers, which induce expression of specific immune response genes. Brief and chronic TNF stimulation produces transient and long-lasting NF-κB activities, respectively. Negative feedback regulators of the canonical pathway, including IκBα, are thought to ensure transient RelA:p50 responses to short-lived TNF signals. The non-canonical NF-κB pathway mediates RelB activity during immune differentiation involving p100. We uncovered an unexpected role of p100 in TNF signaling. Brief TNF stimulation of p100-deficient cells triggered an additional late NF-κB activity consisting of RelB:p50 heterodimers, which modified the TNF-induced gene-expression program. In p100-deficient cells subjected to brief TNF stimulation, RelB:p50 not only sustained the expression of a subset of RelA-target immune response genes but also activated additional genes that were not normally induced by TNF in WT mouse embryonic fibroblasts (MEFs) and were related to immune differentiation and metabolic processes. Despite this RelB-mediated distinct gene control, however, RelA and RelB bound to mostly overlapping chromatin sites in p100-deficient cells. Repeated TNF pulses strengthened this RelB:p50 activity, which was supported by NF-κB-driven RelB synthesis. Finally, brief TNF stimulation elicited late-acting expressions of NF-κB target pro-survival genes in p100-deficient myeloma cells. In sum, our study suggests that the immune-differentiation regulator p100 enforces specificity of TNF signaling and that varied p100 levels may provide for modifying TNF responses in diverse physiological and pathological settings.
Collapse
Affiliation(s)
- Budhaditya Chatterjee
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India.,Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Payel Roy
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Mingming Zhao
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| | - Yashika Ratra
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Amit Singh
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| | - Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, United States
| | - James Gomes
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Ranjan Sen
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
16
|
Elßner C, Goeppert B, Longerich T, Scherr AL, Stindt J, Nanduri LK, Rupp C, Kather JN, Schmitt N, Kautz N, Breuhahn K, Ismail L, Heide D, Hetzer J, García-Beccaria M, Hövelmeyer N, Waisman A, Urbanik T, Mueller S, Gdynia G, Banales JM, Roessler S, Schirmacher P, Jäger D, Schölch S, Keitel V, Heikenwalder M, Schulze-Bergkamen H, Köhler BC. Nuclear Translocation of RELB Is Increased in Diseased Human Liver and Promotes Ductular Reaction and Biliary Fibrosis in Mice. Gastroenterology 2019; 156:1190-1205.e14. [PMID: 30445013 DOI: 10.1053/j.gastro.2018.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Cholangiocyte proliferation and ductular reaction contribute to the onset and progression of liver diseases. Little is known about the role of the transcription factor nuclear factor-κB (NF-κB) in this process. We investigated the activities of the RELB proto-oncogene NF-κB subunit in human cholangiocytes and in mouse models of liver disease characterized by a ductular reaction. METHODS We obtained liver tissue samples from patients with primary sclerosing cholangitis, primary biliary cholangitis, hepatitis B or C virus infection, autoimmune hepatitis, alcoholic liver disease, or without these diseases (controls) from a tissue bank in Germany. Tissues were analyzed by immunohistochemistry for levels of RELB and lymphotoxin β (LTB). We studied mice with liver parenchymal cell (LPC)-specific disruption of the cylindromatosis (CYLD) lysine 63 deubiquitinase gene (Cyld), with or without disruption of Relb (CyldΔLPC mice and Cyld/RelbΔLPC mice) and compared them with C57BL/6 mice (controls). Mice were fed 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or standard chow diets to induce biliary injury or were given injections of CCl4 to induce non-cholestatic liver fibrosis. Liver tissues were analyzed by histology, immunohistochemistry, immunoblots, in situ hybridization, and quantitative real-time polymerase chain reaction. Cholangiocytes were isolated from normal human liver, incubated with LTB receptor agonist, and transfected with small interfering RNAs to knock down RELB. RESULTS In liver tissues from patients with primary sclerosing cholangitis, primary biliary cholangitis, chronic infection with hepatitis B or C virus, autoimmune hepatitis, or alcoholic liver disease, we detected increased nuclear translocation of RELB and increased levels of LTB in cholangiocytes that formed reactive bile ducts compared with control liver tissues. Human cholangiocytes, but not those with RELB knockdown, proliferated with exposure to LTB. The phenotype of CyldΔLPC mice, which included ductular reaction, oval cell activation, and biliary fibrosis, was completely lost from Cyld/RelbΔLPC mice. Compared with livers from control mice, livers from CyldΔLPC mice (but not Cyld/RelbΔLPC mice) had increased levels of mRNAs encoding cytokines (LTB; CD40; and tumor necrosis factor superfamily [TNFSF] members TNFSF11 [RANKL], TNFSF13B [BAFF], and TNFSF14 [LIGHT]) produced by reactive cholangiocytes. However, these strains of mice developed similar levels of liver fibrosis in response to CCl4 exposure. CyldΔLPC mice and Cyld/RelbΔLPC mice had improved liver function on the DDC diet compared with control mice fed the DDC diet. CONCLUSION Reactive bile ducts in patients with chronic liver diseases have increased levels of LTB and nuclear translocation of RELB. RELB is required for the ductular reaction and development of biliary fibrosis in CyldΔLPC mice. Deletion of RELB and CYLD from LPCs protects mice from DDC-induced cholestatic liver fibrosis.
Collapse
Affiliation(s)
- Christin Elßner
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Benjamin Goeppert
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna-Lena Scherr
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Lahiri Kanth Nanduri
- German Cancer Consortium (DKTK) and Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Christian Rupp
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Jakob Nikolas Kather
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalie Schmitt
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Nicole Kautz
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lars Ismail
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Hetzer
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - María García-Beccaria
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Toni Urbanik
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Mueller
- Department of Medicine, Salem Medical Center and Center for Alcohol Research and Liver Disease, University of Heidelberg, Germany
| | - Georg Gdynia
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV-EHU) CIBERehd, IKERBASQUE, San Sebastian, Spain
| | - Stephanie Roessler
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Schölch
- German Cancer Consortium (DKTK) and Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technical University Dresden, Dresden, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Bruno Christian Köhler
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
17
|
Lacher SM, Thurm C, Distler U, Mohebiany AN, Israel N, Kitic M, Ebering A, Tang Y, Klein M, Wabnitz GH, Wanke F, Samstag Y, Bopp T, Kurschus FC, Simeoni L, Tenzer S, Waisman A. NF-κB inducing kinase (NIK) is an essential post-transcriptional regulator of T-cell activation affecting F-actin dynamics and TCR signaling. J Autoimmun 2018; 94:110-121. [PMID: 30061013 DOI: 10.1016/j.jaut.2018.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022]
Abstract
NF-κB inducing kinase (NIK) is the key protein of the non-canonical NF-κB pathway and is important for the development of lymph nodes and other secondary immune organs. We elucidated the specific role of NIK in T cells using T-cell specific NIK-deficient (NIKΔT) mice. Despite showing normal development of lymphoid organs, NIKΔT mice were resistant to induction of CNS autoimmunity. T cells from NIKΔT mice were deficient in late priming, failed to up-regulate T-bet and to transmigrate into the CNS. Proteomic analysis of activated NIK-/- T cells showed de-regulated expression of proteins involved in the formation of the immunological synapse: in particular, proteins involved in cytoskeleton dynamics. In line with this we found that NIK-deficient T cells were hampered in phosphorylation of Zap70, LAT, AKT, ERK1/2 and PLCγ upon TCR engagement. Hence, our data disclose a hitherto unknown function of NIK in T-cell priming and differentiation.
Collapse
MESH Headings
- Actins/genetics
- Actins/immunology
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Animals
- Central Nervous System/immunology
- Central Nervous System/pathology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression Profiling
- Gene Expression Regulation
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Lymphocyte Activation
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/immunology
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/immunology
- Myelin-Oligodendrocyte Glycoprotein/administration & dosage
- Peptide Fragments/administration & dosage
- Phospholipase C gamma/genetics
- Phospholipase C gamma/immunology
- Phosphoproteins/genetics
- Phosphoproteins/immunology
- Primary Cell Culture
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/immunology
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction
- Spleen/immunology
- Spleen/pathology
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- ZAP-70 Protein-Tyrosine Kinase/genetics
- ZAP-70 Protein-Tyrosine Kinase/immunology
- NF-kappaB-Inducing Kinase
Collapse
Affiliation(s)
- Sonja M Lacher
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christoph Thurm
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto von Guericke University, Magdeburg, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Alma N Mohebiany
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nicole Israel
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Maja Kitic
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anna Ebering
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yilang Tang
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Guido H Wabnitz
- Institute of Immunology, Section Molecular Immunology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Florian Wanke
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yvonne Samstag
- Institute of Immunology, Section Molecular Immunology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto von Guericke University, Magdeburg, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
18
|
Puar YR, Shanmugam MK, Fan L, Arfuso F, Sethi G, Tergaonkar V. Evidence for the Involvement of the Master Transcription Factor NF-κB in Cancer Initiation and Progression. Biomedicines 2018; 6:biomedicines6030082. [PMID: 30060453 PMCID: PMC6163404 DOI: 10.3390/biomedicines6030082] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is responsible for the regulation of a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. At the same time, this transcription factor can control the expression of a plethora of genes that promote tumor cell proliferation, survival, metastasis, inflammation, invasion, and angiogenesis. The aberrant activation of this transcription factor has been observed in several types of cancer and is known to contribute to aggressive tumor growth and resistance to therapeutic treatment. Although NF-κB has been identified to be a major contributor to cancer initiation and development, there is evidence revealing its role in tumor suppression. This review briefly highlights the major mechanisms of NF-κB activation, the role of NF-κB in tumor promotion and suppression, as well as a few important pharmacological strategies that have been developed to modulate NF-κB function.
Collapse
Affiliation(s)
- Yu Rou Puar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Vinay Tergaonkar
- Institute of Molecular and Cellular Biology (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- Centre for Cancer Biology (University of South Australia and SA Pathology), Adelaide, SA 5000, Australia.
| |
Collapse
|
19
|
Noncanonical NF-κB in Cancer. Biomedicines 2018; 6:biomedicines6020066. [PMID: 29874793 PMCID: PMC6027307 DOI: 10.3390/biomedicines6020066] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
The NF-κB pathway is a critical regulator of immune responses and is often dysregulated in cancer. Two NF-κB pathways have been described to mediate these responses, the canonical and the noncanonical. While understudied compared to the canonical NF-κB pathway, noncanonical NF-κB and its components have been shown to have effects, usually protumorigenic, in many different cancer types. Here, we review noncanonical NF-κB pathways and discuss its important roles in promoting cancer. We also discuss alternative NF-κB-independent functions of some the components of noncanonical NF-κB signaling. Finally, we discuss important crosstalk between canonical and noncanonical signaling, which blurs the two pathways, indicating that understanding the full picture of NF-κB regulation is critical to deciphering how this broad pathway promotes oncogenesis.
Collapse
|
20
|
Roy P, Sarkar UA, Basak S. The NF-κB Activating Pathways in Multiple Myeloma. Biomedicines 2018; 6:biomedicines6020059. [PMID: 29772694 PMCID: PMC6027071 DOI: 10.3390/biomedicines6020059] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma(MM), an incurable plasma cell cancer, represents the second most prevalent hematological malignancy. Deregulated activity of the nuclear factor kappaB (NF-κB) family of transcription factors has been implicated in the pathogenesis of multiple myeloma. Tumor microenvironment-derived cytokines and cancer-associated genetic mutations signal through the canonical as well as the non-canonical arms to activate the NF-κB system in myeloma cells. In fact, frequent engagement of both the NF-κB pathways constitutes a distinguishing characteristic of myeloma. In turn, NF-κB signaling promotes proliferation, survival and drug-resistance of myeloma cells. In this review article, we catalog NF-κB activating genetic mutations and microenvironmental cues associated with multiple myeloma. We then describe how the individual canonical and non-canonical pathways transduce signals and contribute towards NF-κB -driven gene-expressions in healthy and malignant cells. Furthermore, we discuss signaling crosstalk between concomitantly triggered NF-κB pathways, and its plausible implication for anomalous NF-κB activation and NF-κB driven pro-survival gene-expressions in multiple myeloma. Finally, we propose that mechanistic understanding of NF-κB deregulations may provide for improved therapeutic and prognostic tools in multiple myeloma.
Collapse
Affiliation(s)
- Payel Roy
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
21
|
Rozas-Serri M, Peña A, Maldonado L. Transcriptomic profiles of post-smolt Atlantic salmon challenged with Piscirickettsia salmonis reveal a strategy to evade the adaptive immune response and modify cell-autonomous immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:348-362. [PMID: 29288676 DOI: 10.1016/j.dci.2017.12.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/23/2017] [Accepted: 12/23/2017] [Indexed: 06/07/2023]
Abstract
Piscirickettsiosis is the main bacterial disease affecting the Chilean salmon farming industry and is responsible for high economic losses. The development of effective strategies to control piscirickettsiosis has been limited in part by insufficient knowledge of the host response. The aim of this study was to use RNA sequencing to describe the transcriptional profiles of the responses of post-smolt Atlantic salmon infected with LF-89-like or EM-90-like Piscirickettsia salmonis. Enrichment and pathway analyses of the differentially expressed genes revealed several central signatures following infection, including positive regulation of DC-SIGN and TLR5 signalling, which converged at the NF-κB level to modulate the pro-inflammatory cytokine response, particularly in the PS-EM-90-infected fish. P. salmonis induced an IFN-inducible response (e.g., IRF-1 and GBP-1) but inhibited the humoral and cell-mediated immune responses. P. salmonis induced significant cytoskeletal reorganization but decreased lysosomal protease activity and caused the degradation of proteins associated with cellular stress. Infection with these isolates also delayed protein transport, antigen processing, vesicle trafficking and autophagy. Both P. salmonis isolates promoted cell survival and proliferation and inhibited apoptosis. Both groups of Trojan fish used similar pathways to modulate the immune response at 5 dpi, but the transcriptomic profiles in the head kidneys of the cohabitant fish infected with PS-LF-89 and PS-MS-90 were relatively different at day 35 post-infection of the Trojan fish, probably due to the different degree of pathogenicity of each isolate. Our study showed the most important biological mechanisms used by P. salmonis, regardless of the isolate, to evade the immune response, maintain the viability of host cells and increase intracellular replication and persistence at the infection site. These results improve the understanding of the mechanisms by which P. salmonis interacts with its host and may serve as a basis for the development of effective strategies for the control of piscirickettsiosis.
Collapse
Affiliation(s)
| | - Andrea Peña
- Pathovet Laboratory Ltd., Puerto Montt, Chile.
| | | |
Collapse
|
22
|
Miraghazadeh B, Cook MC. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse. Front Immunol 2018; 9:613. [PMID: 29686669 PMCID: PMC5900062 DOI: 10.3389/fimmu.2018.00613] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease.
Collapse
Affiliation(s)
- Bahar Miraghazadeh
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
| | - Matthew C. Cook
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
- Department of Immunology, Canberra Hospital, Acton, ACT, Australia
- *Correspondence: Matthew C. Cook,
| |
Collapse
|
23
|
Mukherjee T, Chatterjee B, Dhar A, Bais SS, Chawla M, Roy P, George A, Bal V, Rath S, Basak S. A TNF-p100 pathway subverts noncanonical NF-κB signaling in inflamed secondary lymphoid organs. EMBO J 2017; 36:3501-3516. [PMID: 29061763 PMCID: PMC5709727 DOI: 10.15252/embj.201796919] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/22/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022] Open
Abstract
Lymphotoxin-beta receptor (LTβR) present on stromal cells engages the noncanonical NF-κB pathway to mediate RelB-dependent expressions of homeostatic chemokines, which direct steady-state ingress of naïve lymphocytes to secondary lymphoid organs (SLOs). In this pathway, NIK promotes partial proteolysis of p100 into p52 that induces nuclear translocation of the RelB NF-κB heterodimers. Microbial infections often deplete homeostatic chemokines; it is thought that infection-inflicted destruction of stromal cells results in the downregulation of these chemokines. Whether inflammation per se also regulates these processes remains unclear. We show that TNF accumulated upon non-infectious immunization of mice similarly downregulates the expressions of these chemokines and consequently diminishes the ingress of naïve lymphocytes in inflamed SLOs. Mechanistically, TNF inactivated NIK in LTβR-stimulated cells and induced the synthesis of Nfkb2 mRNA encoding p100; these together potently accumulated unprocessed p100, which attenuated the RelB activity as inhibitory IκBδ. Finally, a lack of p100 alleviated these TNF-mediated inhibitions in inflamed SLOs of immunized Nfkb2-/- mice. In sum, we reveal that an inhibitory TNF-p100 pathway modulates the adaptive compartment during immune responses.
Collapse
Affiliation(s)
- Tapas Mukherjee
- Systems Immunology Laboratory National Institute of Immunology, New Delhi, India
- National Institute of Immunology, New Delhi, India
| | - Budhaditya Chatterjee
- Systems Immunology Laboratory National Institute of Immunology, New Delhi, India
- Kusuma School of Biological Sciences, IIT-Delhi, New Delhi, India
| | - Atika Dhar
- National Institute of Immunology, New Delhi, India
| | - Sachendra S Bais
- Systems Immunology Laboratory National Institute of Immunology, New Delhi, India
- National Institute of Immunology, New Delhi, India
| | - Meenakshi Chawla
- Systems Immunology Laboratory National Institute of Immunology, New Delhi, India
- National Institute of Immunology, New Delhi, India
| | - Payel Roy
- Systems Immunology Laboratory National Institute of Immunology, New Delhi, India
- National Institute of Immunology, New Delhi, India
| | - Anna George
- National Institute of Immunology, New Delhi, India
| | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
| | | | - Soumen Basak
- Systems Immunology Laboratory National Institute of Immunology, New Delhi, India
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
24
|
Kuehn HS, Niemela JE, Sreedhara K, Stoddard JL, Grossman J, Wysocki CA, de la Morena MT, Garofalo M, Inlora J, Snyder MP, Lewis DB, Stratakis CA, Fleisher TA, Rosenzweig SD. Novel nonsense gain-of-function NFKB2 mutations associated with a combined immunodeficiency phenotype. Blood 2017; 130:1553-1564. [PMID: 28778864 PMCID: PMC5620416 DOI: 10.1182/blood-2017-05-782177] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/09/2017] [Indexed: 11/20/2022] Open
Abstract
NF-κB signaling through its NFKB1-dependent canonical and NFKB2-dependent noncanonical pathways plays distinctive roles in a diverse range of immune processes. Recently, mutations in these 2 genes have been associated with common variable immunodeficiency (CVID). While studying patients with genetically uncharacterized primary immunodeficiencies, we detected 2 novel nonsense gain-of-function (GOF) NFKB2 mutations (E418X and R635X) in 3 patients from 2 families, and a novel missense change (S866R) in another patient. Their immunophenotype was assessed by flow cytometry and protein expression; activation of canonical and noncanonical pathways was examined in peripheral blood mononuclear cells and transfected HEK293T cells through immunoblotting, immunohistochemistry, luciferase activity, real-time polymerase chain reaction, and multiplex assays. The S866R change disrupted a C-terminal NF-κΒ2 critical site affecting protein phosphorylation and nuclear translocation, resulting in CVID with adrenocorticotropic hormone deficiency, growth hormone deficiency, and mild ectodermal dysplasia as previously described. In contrast, the nonsense mutations E418X and R635X observed in 3 patients led to constitutive nuclear localization and activation of both canonical and noncanonical NF-κΒ pathways, resulting in a combined immunodeficiency (CID) without endocrine or ectodermal manifestations. These changes were also found in 2 asymptomatic relatives. Thus, these novel NFKB2 GOF mutations produce a nonfully penetrant CID phenotype through a different pathophysiologic mechanism than previously described for mutations in NFKB2.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Julie E Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Karthik Sreedhara
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Jennifer L Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Jennifer Grossman
- Division of Hematology and Hematologic Malignancies, Alberta Health Services, Calgary, AB, Canada
| | - Christian A Wysocki
- Division of Allergy and Immunology, Department of Internal Medicine and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - M Teresa de la Morena
- Division of Allergy and Immunology, Department of Internal Medicine and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mary Garofalo
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD
| | | | | | - David B Lewis
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA; and
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics
- Program on Developmental Endocrinology and Genetics, and
- Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
25
|
Mejías-Luque R, Zöller J, Anderl F, Loew-Gil E, Vieth M, Adler T, Engler DB, Urban S, Browning JL, Müller A, Gerhard M, Heikenwalder M. Lymphotoxin β receptor signalling executes Helicobacter pylori-driven gastric inflammation in a T4SS-dependent manner. Gut 2017; 66:1369-1381. [PMID: 27196595 DOI: 10.1136/gutjnl-2015-310783] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/14/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Lymphotoxin β receptor (LTβR) signalling has been implicated in inflammation-associated tumour development in different tissues. We have analysed the role of LTβR and alternative NF-κB signalling in Helicobacter pylori-mediated gastric inflammation and pathology. DESIGN We analysed several ligands and receptors of the alternative NF-κB pathway, RelB, p52 nuclear translocation and target genes in tissue samples of H. pylori-infected patients with different degrees of gastritis or early gastric tumours by in situ hybridisation, immunohistochemistry, Western blot and real-time PCR analyses. Molecular mechanisms involved in LTβR activation by H. pylori were assessed in vitro using human gastric cancer cell lines and distinct H. pylori isolates. The effects of blocking or agonistically activating LTβR on gastric pathology during challenge with a human pathogenic H. pylori strain were studied in a mouse model. RESULTS Among the tested candidates, LT was significantly increased and activated alternative NF-κB signalling was observed in the gastric mucosa of H. pylori-infected patients. H. pyloriinduced LTβR-ligand expression in a type IV secretion system-dependent but CagA-independent manner, resulting in activation of the alternative NF-κB pathway, which was further enhanced by blocking canonical NF-κB during infection. Blocking LTβR signalling in vivo suppressed H. pylori-driven gastritis, whereas LTβR activation in gastric epithelial cells of infected mice induced a broadened pro-inflammatory chemokine milieu, resulting in exacerbated pathology. CONCLUSIONS LTβR-triggered activation of alternative NF-κB signalling in gastric epithelial cells executes H. pylori-induced chronic gastritis, representing a novel target to restrict gastric inflammation and pathology elicited by H. pylori, while exclusively targeting canonical NF-κB may aggravate pathology by enhancing the alternative pathway.
Collapse
Affiliation(s)
- Raquel Mejías-Luque
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany.,German Centre for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Jessica Zöller
- Institut für Virologie, Technische Universität München, Helmholtz Zentrum München, Neuherberg, Germany
| | - Florian Anderl
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Elena Loew-Gil
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Michael Vieth
- Institut für Pathologie, Klinikum Bayreuth, Bayreuth, Germany
| | - Thure Adler
- Immunology Screen, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniela B Engler
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Sabine Urban
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | | | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Markus Gerhard
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany.,German Centre for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Mathias Heikenwalder
- Institut für Virologie, Technische Universität München, Helmholtz Zentrum München, Neuherberg, Germany.,Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
26
|
Non-canonical NFκB mutations reinforce pro-survival TNF response in multiple myeloma through an autoregulatory RelB:p50 NFκB pathway. Oncogene 2016; 36:1417-1429. [PMID: 27641334 PMCID: PMC5346295 DOI: 10.1038/onc.2016.309] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/01/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Environmental drug resistance constitutes a serious impediment for therapeutic intervention in multiple myeloma. Tumor-promoting cytokines, such as tumor necrosis factor (TNF), induce nuclear factor-κB (NFκB)- driven expression of pro-survival factors, which confer resistance in myeloma cells to apoptotic insults from TNF-related apoptosis-inducing ligand (TRAIL) and other chemotherapeutic drugs. It is thought that RelA:p50 dimer, activated from IκBα-inhibited complex in response to TNF-induced canonical NFκB signal, mediates the pro-survival NFκB function in cancerous cells. Myeloma cells additionally acquire gain-of-function mutations in the non-canonical NFκB module, which induces partial proteolysis of p100 into p52 to promote RelB:p52/NFκB activation from p100-inhibited complex during immune cell differentiation. However, role of non-canonical NFκB signaling in the drug resistance in multiple myeloma remains unclear. Here we report that myeloma-associated non-canonical aberrations reinforce pro-survival TNF signaling in producing a protracted TRAIL-refractory state. These mutations did not act through a typical p52 NFκB complex, but completely degraded p100 to reposition RelB under IκBα control, whose degradation during TNF signaling induced an early RelB:p50 containing NFκB activity. More so, autoregulatory RelB synthesis prolonged this TNF-induced RelB:p50 activity in myeloma cells harboring non-canonical mutations. Intriguingly, TNF-activated RelB:p50 dimer was both necessary and sufficient, and RelA was not required, for NFκB-dependent pro-survival gene expressions and suppression of apoptosis. Indeed, high RelB mRNA expressions in myeloma patients correlated with the augmented level of pro-survival factors and resistance to therapeutic intervention. In sum, we provide evidence that cancer-associated mutations perpetuate TNF-induced pro-survival NFκB activity through autoregulatory RelB control and thereby exacerbate environmental drug resistance in multiple myeloma.
Collapse
|
27
|
Baud V, Collares D. Post-Translational Modifications of RelB NF-κB Subunit and Associated Functions. Cells 2016; 5:cells5020022. [PMID: 27153093 PMCID: PMC4931671 DOI: 10.3390/cells5020022] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 01/02/2023] Open
Abstract
The family of NF-κB transcription factors plays a key role in diverse biological processes, such as inflammatory and immune responses, cell survival and tumor development. Beyond the classical NF-κB activation pathway, a second NF-κB pathway has more recently been uncovered, the so-called alternative NF-κB activation pathway. It has been shown that this pathway mainly controls the activity of RelB, a member of the NF-κB family. Post-translational modifications, such as phosphorylation, acetylation, methylation, ubiquitination and SUMOylation, have recently emerged as a strategy for the fine-tuned regulation of NF-κB. Our review discusses recent progress in the understanding of RelB regulation by post-translational modifications and the associated functions in normal and pathological conditions.
Collapse
Affiliation(s)
- Véronique Baud
- NF-κB, Differentiation and Cancer, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France.
| | - Davi Collares
- NF-κB, Differentiation and Cancer, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| |
Collapse
|
28
|
Ghaffari SH, Yousefi M, Dizaji MZ, Momeny M, Bashash D, Zekri A, Alimoghaddam K, Ghavamzadeh A. Arsenic Trioxide Induces Apoptosis and Incapacitates Proliferation and Invasive Properties of U87MG Glioblastoma Cells through a Possible NF-κB-Mediated Mechanism. Asian Pac J Cancer Prev 2016; 17:1553-64. [DOI: 10.7314/apjcp.2016.17.3.1553] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
29
|
Park MH, Hong JT. Roles of NF-κB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches. Cells 2016; 5:cells5020015. [PMID: 27043634 PMCID: PMC4931664 DOI: 10.3390/cells5020015] [Citation(s) in RCA: 418] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that plays a crucial role in various biological processes, including immune response, inflammation, cell growth and survival, and development. NF-κB is critical for human health, and aberrant NF-κB activation contributes to development of various autoimmune, inflammatory and malignant disorders including rheumatoid arthritis, atherosclerosis, inflammatory bowel diseases, multiple sclerosis and malignant tumors. Thus, inhibiting NF-κB signaling has potential therapeutic applications in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk 28160, Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk 28160, Korea.
| |
Collapse
|
30
|
Wang XK, Agarwal M, Parobchak N, Rosen A, Vetrano AM, Srinivasan A, Wang B, Rosen T. Mono-(2-Ethylhexyl) Phthalate Promotes Pro-Labor Gene Expression in the Human Placenta. PLoS One 2016; 11:e0147013. [PMID: 26751383 PMCID: PMC4709041 DOI: 10.1371/journal.pone.0147013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/28/2015] [Indexed: 12/28/2022] Open
Abstract
Women exposed to phthalates during pregnancy are at increased risk for delivering preterm, but the mechanism behind this relationship is unknown. Placental corticotropin-releasing hormone (CRH) and cyclooxygenase-2 (COX-2) are key mediators of parturition and are regulated by the non-canonical NF-kB (RelB/p52) signaling pathway. In this study, we demonstrate that one of the major phthalate metabolites, mono-(2-ethylhexyl)-phthalate (MEHP), increased CRH and COX-2 mRNA and protein abundance in a dose-dependent manner in primary cultures of cytotrophoblast. This was coupled with an increase in nuclear import of RelB/p52 and its association with the CRH and COX-2 promoters. Silencing of NF-kB inducing kinase, a central signaling component of the non-canonical NF-kB pathway, blocked MEHP-induced upregulation of CRH and COX-2. These results suggest a potential mechanism mediated by RelB/p52 by which phthalates could prematurely induce pro-labor gene activity and lead to preterm birth.
Collapse
Affiliation(s)
- Ximi K. Wang
- Biomedical Sciences Graduate Program, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Monica Agarwal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Nataliya Parobchak
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Alex Rosen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Anna M. Vetrano
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Aarthi Srinivasan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Bingbing Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Todd Rosen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| |
Collapse
|
31
|
Normal human CD4(+) helper T cells express Kv1.1 voltage-gated K(+) channels, and selective Kv1.1 block in T cells induces by itself robust TNFα production and secretion and activation of the NFκB non-canonical pathway. J Neural Transm (Vienna) 2015; 123:137-57. [PMID: 26611796 DOI: 10.1007/s00702-015-1446-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/16/2015] [Indexed: 10/22/2022]
Abstract
TNFα is a very potent and pleiotropic pro-inflammatory cytokine, essential to the immune system for eradicating cancer and microorganisms, and to the nervous system, for brain development and ongoing function. Yet, excess and/or chronic TNFα secretion causes massive tissue damage in autoimmune, inflammatory and neurological diseases and injuries. Therefore, many patients with autoimmune/inflammatory diseases receive anti-TNFα medications. TNFα is secreted primarily by CD4(+) T cells, macrophages, monocytes, neutrophils and NK cells, mainly after immune stimulation. Yet, the cause for the pathologically high and chronic TNFα secretion is unknown. Can blocking of a particular ion channel in T cells induce by itself TNFα secretion? Such phenomenon was never revealed or even hypothesized. In this interdisciplinary study we discovered that: (1) normal human T cells express Kv1.1 voltage-gated potassium channel mRNA, and the Kv1.1 membrane-anchored protein channel; (2) Kv1.1 is expressed in most CD4(+)CD3(+) helper T cells (mean CD4(+)CD3(+)Kv1.1(+) T cells of 7 healthy subjects: 53.09 ± 22.17 %), but not in CD8(+)CD3(+) cytotoxic T cells (mean CD8(+)CD3(+)Kv1.1(+) T cells: 4.12 ± 3.04 %); (3) electrophysiological whole-cell recordings in normal human T cells revealed Kv currents; (4) Dendrotoxin-K (DTX-K), a highly selective Kv1.1 blocker derived from snake toxin, increases the rate of rise and decay of Kv currents in both resting and activated T cells, without affecting the peak current; (5) DTX-K by itself induces robust TNFα production and secretion by normal human T cells, without elevating IFNγ, IL-4 and IL-10; (6) intact Ca(2+) channels are required for DTX-induced TNFα secretion; (7) selective anti-Kv1.1 antibodies also induce by themselves TNFα secretion; (8) DTX-K activates NFκB in normal human T cells via the unique non-canonical-pathway; (9) injection of Kv1.1-blocked human T cells to SCID mice, causes recruitment of resident mouse cells into the liver, alike reported after TNFα injection into the brain. Based on our discoveries we speculate that abnormally blocked Kv1.1 in T cells (and other immune cells?), due to either anti-Kv1.1 autoimmune antibodies, or Kv1.1-blocking toxins alike DTX-K, or Kv1.1-blocking genetic mutations, may be responsible for the chronic/excessive TNFα in autoimmune/inflammatory diseases. Independently, we also hypothesize that selective block of Kv1.1 in CD4(+) T cells of patients with cancer or chronic infectious diseases could be therapeutic, since it may: a. augment beneficial secretion and delivery of TNFα to the disease-affected sites; b. induce recruitment and extravasation of curative immune cells and factors; c. improve accessibility of drugs to the brain and few peripheral organs thanks to TNFα-induced increased permeability of organ's barriers.
Collapse
|
32
|
Lopez MA, Meier D, Wong WWL, Fontana A. TNF induced inhibition of Cirbp expression depends on RelB NF-κB signalling pathway. Biochem Biophys Rep 2015; 5:22-26. [PMID: 28955803 PMCID: PMC5600431 DOI: 10.1016/j.bbrep.2015.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 10/27/2015] [Accepted: 11/09/2015] [Indexed: 12/27/2022] Open
Abstract
The circadian clock is required for the rhythmic expression of a plethora of genes that orchestrate metabolism, sleep-wake behaviour and the immune response to pathogens. The cold-inducible RNA binding protein (CIRBP) is required for high amplitude expression of clock genes. Moreover, CIRBP protects the expression of clock genes from the inhibitory effects of tumour necrosis factor (TNF). However, since TNF represses Cirbp expression, the protective effect of CIRBP is lost. Here, we show that the TNF effect on Cirbp requires the non-canonical NF-κB signalling pathway. While a knock down of RelA does not alter the effects of TNF on Cirbp, a knock down of RelB represses this effect. In addition, the data indicate that p50 and p52 are required in the TNF induced inhibition of Cirbp. These results show that Cirbp expression in TNF treated cells is regulated via the non-canonical NF-κB pathway.
Collapse
Affiliation(s)
- Martin A Lopez
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Daniel Meier
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - W Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Adriano Fontana
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
33
|
Yeh DYW, Wu CC, Chin YP, Lu CJ, Wang YH, Chen MC. Mechanisms of human lymphotoxin beta receptor activation on upregulation of CCL5/RANTES production. Int Immunopharmacol 2015; 28:220-9. [DOI: 10.1016/j.intimp.2015.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 11/28/2022]
|
34
|
Sulfhydryl-mediated redox signaling in inflammation: role in neurodegenerative diseases. Arch Toxicol 2015; 89:1439-67. [DOI: 10.1007/s00204-015-1496-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 01/05/2023]
|
35
|
Yu LJ, Wang B, Parobchak N, Roche N, Rosen T. STAT3 cooperates with the non-canonical NF-κB signaling to regulate pro-labor genes in the human placenta. Placenta 2015; 36:581-6. [PMID: 25771405 DOI: 10.1016/j.placenta.2015.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/03/2015] [Accepted: 02/23/2015] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Our recent studies have shown that constitutively activated non-canonical RelB/NF-κB2 (p52) in the human placenta positively regulates the pro-labor genes CRH and COX-2. STAT3 regulates NF-κB2 (p100) processing to active p52, and in turn, nuclear activation of RelB/p52, by directly binding to p100/p52 in a variety of cancer cells. In the current study, we tested the hypothesis that STAT3 is involved in regulation of pro-labor genes by associating with RelB/p52 heterodimers in the human placenta. METHODS We used a variety of techniques including immunohistochemical staining, gene silencing, ectopic expression, chromatin immunoprecipitation, Western blot, RT-qPCR, and immunofluorescence assays in primary culture of cytotrophoblast and placental tissues. RESULTS We found that knockdown of STAT3 led to down-regulation of both CRH and COX-2 in a dose-dependent manner. By using chromatin immunoprecipitation, we further showed that interaction of RelB with the CRH or COX-2 gene promoters decreased when STAT3 was depleted. Immunofluorescence demonstrated co-localization of STAT3 with RelB or p100/p52 in both the cytoplasm and nucleus of term cytotrophoblasts. DISCUSSION Collectively, these results suggest that STAT3 constitutes part of the RelB/p52-containing activator complex that positively regulates pro-labor genes in the human placenta.
Collapse
Affiliation(s)
- L J Yu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - B Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | - N Parobchak
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - N Roche
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - T Rosen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| |
Collapse
|
36
|
Bhardwaj R, Yester JW, Singh SK, Biswas DD, Surace MJ, Waters MR, Hauser KF, Yao Z, Boyce BF, Kordula T. RelB/p50 complexes regulate cytokine-induced YKL-40 expression. THE JOURNAL OF IMMUNOLOGY 2015; 194:2862-70. [PMID: 25681350 DOI: 10.4049/jimmunol.1400874] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The secreted protein, YKL-40, has been proposed as a biomarker of a variety of human diseases characterized by ongoing inflammation, including chronic neurologic pathologies such as multiple sclerosis and Alzheimer's disease. However, inflammatory mediators and the molecular mechanism responsible for enhanced expression of YKL-40 remained elusive. Using several mouse models of inflammation, we now show that YKL-40 expression correlated with increased expression of both IL-1 and IL-6. Furthermore, IL-1 together with IL-6 or the IL-6 family cytokine, oncostatin M, synergistically upregulated YKL-40 expression in both primary human and mouse astrocytes in vitro. The robust cytokine-driven expression of YKL-40 in astrocytes required both STAT3 and NF-κB binding elements of the YKL-40 promoter. In addition, YKL-40 expression was enhanced by constitutively active STAT3 and inhibited by dominant-negative IκBα. Surprisingly, cytokine-driven expression of YKL-40 in astrocytes was independent of the p65 subunit of NF-κB and instead required subunits RelB and p50. Mechanistically, we show that IL-1-induced RelB/p50 complex formation was further promoted by oncostatin M and that these complexes directly bound to the YKL-40 promoter. Moreover, we found that expression of RelB was strongly upregulated during inflammation in vivo and by IL-1 in astrocytes in vitro. We propose that IL-1 and the IL-6 family of cytokines regulate YKL-40 expression during sterile inflammation via both STAT3 and RelB/p50 complexes. These results suggest that IL-1 may regulate the expression of specific anti-inflammatory genes in nonlymphoid tissues via the canonical activation of the RelB/p50 complexes.
Collapse
Affiliation(s)
- Reetika Bhardwaj
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Jessie W Yester
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sandeep K Singh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Debolina D Biswas
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael J Surace
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael R Waters
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642; and
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642; and
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298.
| |
Collapse
|
37
|
IKK phosphorylates RelB to modulate its promoter specificity and promote fibroblast migration downstream of TNF receptors. Proc Natl Acad Sci U S A 2014; 111:14794-9. [PMID: 25267645 DOI: 10.1073/pnas.1410124111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TNFα is a potent cytokine that plays a critical role in numerous cellular processes, particularly immune and inflammatory responses, programmed cell death, angiogenesis, and cell migration. Thus, understanding the molecular mechanisms that mediate TNFα-induced cellular responses is a crucial issue. It is generally accepted that global DNA binding activity of the NF-κB avian reticuloendotheliosis viral (v-rel) oncogene related B (RelB) subunit is not induced upon TNFα treatment in fibroblasts, despite its TNFα-induced nuclear accumulation. Here, we demonstrate that RelB plays a critical role in promoting fibroblast migration upon prolonged TNFα treatment. We identified the two kinases IκB kinase α (IKKα) and IκB kinase β (IKKβ) as RelB interacting partners whose activation by TNFα promotes RelB phosphorylation at serine 472. Once phosphorylated on serine 472, nuclear RelB dissociates from its interaction with the inhibitory protein IκBα and binds to the promoter of critical migration-associated genes, such as the matrix metallopeptidase 3 (MMP3). Further, we show that RelB serine 472 phosphorylation status controls MMP3 expression and promigration activity downstream of TNF receptors. Our findings provide new insights into the regulation of RelB activity and reveal a novel link between selective NF-κB target gene expression and cellular response in response to TNFα.
Collapse
|
38
|
Autosomal-dominant B-cell deficiency with alopecia due to a mutation in NFKB2 that results in nonprocessable p100. Blood 2014; 124:2964-72. [PMID: 25237204 DOI: 10.1182/blood-2014-06-578542] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Most genetic defects that arrest B-cell development in the bone marrow present early in life with agammaglobulinemia, whereas incomplete antibody deficiency is usually associated with circulating B cells. We report 3 related individuals with a novel form of severe B-cell deficiency associated with partial persistence of serum immunoglobulin arising from a missense mutation in NFKB2. Significantly, this point mutation results in a D865G substitution and causes a failure of p100 phosphorylation that blocks processing to p52. Severe B-cell deficiency affects mature and transitional cells, mimicking the action of rituximab. This phenotype appears to be due to disruption of canonical and noncanonical nuclear factor κB pathways by the mutant p100 molecule. These findings could be informative for therapeutics as well as immunodeficiency.
Collapse
|
39
|
Gasparini C, Celeghini C, Monasta L, Zauli G. NF-κB pathways in hematological malignancies. Cell Mol Life Sci 2014; 71:2083-102. [PMID: 24419302 PMCID: PMC11113378 DOI: 10.1007/s00018-013-1545-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 12/22/2022]
Abstract
The nuclear factor κB or NF-κB transcription factor family plays a key role in several cellular functions, i.e. inflammation, apoptosis, cell survival, proliferation, angiogenesis, and innate and acquired immunity. The constitutive activation of NF-κB is typical of most malignancies and plays a major role in tumorigenesis. In this review, we describe NF-κB and its two pathways: the canonical pathway (RelA/p50) and the non-canonical pathway (RelB/p50 or RelB/p52). We then consider the role of the NF-κB subunits in the development and functional activity of B cells, T cells, macrophages and dendritic cells, which are the targets of hematological malignancies. The relevance of the two pathways is described in normal B and T cells and in hematological malignancies, acute and chronic leukemias (ALL, AML, CLL, CML), B lymphomas (DLBCLs, Hodgkin's lymphoma), T lymphomas (ATLL, ALCL) and multiple myeloma. We describe the interaction of NF-κB with the apoptotic pathways induced by TRAIL and the transcription factor p53. Finally, we discuss therapeutic anti-tumoral approaches as mono-therapies or combination therapies aimed to block NF-κB activity and to induce apoptosis (PARAs and Nutlin-3).
Collapse
Affiliation(s)
- Chiara Gasparini
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy,
| | | | | | | |
Collapse
|
40
|
Gray CM, Remouchamps C, McCorkell KA, Solt LA, Dejardin E, Orange JS, May MJ. Noncanonical NF-κB signaling is limited by classical NF-κB activity. Sci Signal 2014; 7:ra13. [PMID: 24497610 PMCID: PMC3960999 DOI: 10.1126/scisignal.2004557] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Precise regulation of nuclear factor κB (NF-κB) signaling is crucial for normal immune responses, and defective NF-κB activity underlies a range of immunodeficiencies. NF-κB is activated through two signaling cascades: the classical and noncanonical pathways. The classical pathway requires inhibitor of κB kinase β (IKKβ) and NF-κB essential modulator (NEMO), and hypomorphic mutations in the gene encoding NEMO (ikbkg) lead to inherited immunodeficiencies, collectively termed NEMO-ID. Noncanonical NF-κB activation requires NF-κB-inducing kinase (NIK) and IKKα, but not NEMO. We found that noncanonical NF-κB was basally active in peripheral blood mononuclear cells from NEMO-ID patients and that noncanonical NF-κB signaling was similarly enhanced in cell lines lacking functional NEMO. NIK, which normally undergoes constitutive degradation, was aberrantly present in resting NEMO-deficient cells, and regulation of its abundance was rescued by reconstitution with full-length NEMO, but not a mutant NEMO protein unable to physically associate with IKKα or IKKβ. Binding of NEMO to IKKα was not required for ligand-dependent stabilization of NIK or noncanonical NF-κB signaling. Rather, an intact and functional IKK complex was essential to suppress basal NIK activity in unstimulated cells. Despite interacting with IKKα and IKKβ to form an IKK complex, NEMO mutants associated with immunodeficiency failed to rescue classical NF-κB signaling or reverse the accumulation of NIK. Together, these findings identify a crucial role for classical NF-κB activity in the suppression of basal noncanonical NF-κB signaling.
Collapse
Affiliation(s)
- Carolyn M. Gray
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Caroline Remouchamps
- Laboratory of Molecular Immunology and Signal Transduction, The University of Liège-GIGA Research, Liège, Belgium
| | - Kelly A. McCorkell
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Laura A. Solt
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, The University of Liège-GIGA Research, Liège, Belgium
| | - Jordan S. Orange
- Section of Immunology Allergy and Rheumatology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Michael J. May
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
- The Mari Lowe Center for Comparative Oncology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Wang B, Parobchak N, Rosen M, Roche N, Rosen T. Negative effects of progesterone receptor isoform-A on human placental activity of the noncanonical NF-κB signaling. J Clin Endocrinol Metab 2014; 99:E320-8. [PMID: 24276461 DOI: 10.1210/jc.2013-2721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Progesterone (P4)contributes to the maintenance of human pregnancy, in part by inhibiting activity of the human pro-labor genes CRH and cyclooxygenase-2 (COX-2). However, the molecular mechanisms underlying the action of P4 remain poorly defined. We have shown that in human placenta, the constitutively activated noncanonical nuclear factor (NF)-κB pathway positively regulates CRH and COX-2, which is further stimulated by glucocorticoid receptor signaling. OBJECTIVE We investigated the role of P4 receptor (PR) in the regulation of nuclear activity of v-rel avian reticuloendotheliosis viral oncogene homolog B (RelB)/NF-κB2 and, in turn, expression of placental CRH and COX-2. METHODS We used a variety of techniques including gene silencing, ectopic expression, chromatin immunoprecipitation, Western blot, quantitative RT-PCR, and immunohistochemical staining assays in human placental tissues and primary culture of human cytotrophoblast. RESULTS We identified PR isoform-A (PR-A) as the only isoform of PR produced in human placenta. PR-A levels were lower in term placenta than in midterm placenta. Depletion of PR-A by short interfering RNA derepressed inhibition of CRH and COX-2 by P4 and the synthetic progestin 17α-hydroxyprogesterone caproate. Overexpression of PR-A inhibited transcription of CRH and COX-2, which was further downregulated by treatment with P4 or 17α-hydroxyprogesterone caproate. Such an inhibition was mediated by a negative functional interaction of PR-A with the activity of RelB/NF-κB2. CONCLUSION P4 inhibits the pro-labor genes CRH and COX-2 via PR-A repression of the noncanonical NF-κB signaling in human placenta. Characterization of these pathways may identify potential drug targets for prevention of preterm birth.
Collapse
Affiliation(s)
- Bingbing Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences (B.W., N.P., M.R., T.R.), Division of Maternal-Fetal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901; and Department of Obstetrics, Gynecology, and Women's Health (N.R.), Rutgers New Jersey Medical School, Newark, New Jersey 07101
| | | | | | | | | |
Collapse
|
42
|
Gardam S, Brink R. Non-Canonical NF-κB Signaling Initiated by BAFF Influences B Cell Biology at Multiple Junctures. Front Immunol 2014; 4:509. [PMID: 24432023 PMCID: PMC3880999 DOI: 10.3389/fimmu.2013.00509] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/24/2013] [Indexed: 01/13/2023] Open
Abstract
It has been more than a decade since it was recognized that the nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) transcription factor family was activated by two distinct pathways: the canonical pathway involving NF-κB1 and the non-canonical pathway involving NF-κB2. During this time a great deal of evidence has been amassed on the ligands and receptors that activate these pathways, the cytoplasmic adapter molecules involved in transducing the signals from receptors to nucleus, and the resulting physiological outcomes within body tissues. In contrast to NF-κB1 signaling, which can be activated by a wide variety of receptors, the NF-κB2 pathway is typically only activated by a subset of receptor and ligand pairs belonging to the tumor necrosis factor (TNF) family. Amongst these is B cell activating factor of the TNF family (BAFF) and its receptor BAFFR. Whilst BAFF is produced by many cell types throughout the body, BAFFR expression appears to be restricted to the hematopoietic lineage and B cells in particular. For this reason, the main physiological outcomes of BAFF mediated NF-κB2 activation are confined to B cells. Indeed BAFF mediated NF-κB2 signaling contributes to peripheral B cell survival and maturation as well as playing a role in antibody responses and long term maintenance plasma cells. Thus the importance BAFF and NF-κB2 permeates the entire B cell lifespan and impacts on this important component of the immune system in a variety of ways.
Collapse
Affiliation(s)
- Sandra Gardam
- Immunology Division, Garvan Institute of Medical Research , Darlinghurst, NSW , Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research , Darlinghurst, NSW , Australia ; St. Vincent's Clinical School, University of New South Wales , Darlinghurst, NSW , Australia
| |
Collapse
|
43
|
Vander Broek R, Snow GE, Chen Z, Van Waes C. Chemoprevention of head and neck squamous cell carcinoma through inhibition of NF-κB signaling. Oral Oncol 2013; 50:930-41. [PMID: 24177052 DOI: 10.1016/j.oraloncology.2013.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 10/04/2013] [Indexed: 01/27/2023]
Abstract
Nuclear factor-kappa B (NF-κB) transcription factors regulate cellular processes such as inflammation and cell survival. The NF-κB pathway is often activated with development and progression of head and neck squamous cell carcinoma (HNSCC). As such, NF-κB represents an attractive target for chemoprevention. HNSCC involves progression of lesions from premalignant to malignant, providing a window of opportunity for intervention with chemopreventive agents. Appropriate chemopreventive agents should be inexpensive, nontoxic, and target important pathways involved in the development of HNSCC. Several such agents that inhibit the NF-κB pathway have been investigated in HNSCC. Retinoids have been studied most extensively but have shown limited potential in human trials. Epidermal growth factor receptor inhibitors and PI3K-mTOR inhibitors may benefit a subset of patients. Other agents such as green tea extract and curcumin are appealing because they are generally regarded as safe. In contrast, there is evidence that Vitamin E supplementation may actually increase mortality of cancer patients. Repurposed drugs such as cyclooxygenase (COX) inhibitors and antidiabetic drugs are an emerging area of interest. Future research to develop agents with lower toxicity and higher specificity for the NF-κB pathway, and to target these therapies to individual patient genetic signatures should help to increase the utility of chemoprevention in HSNCC.
Collapse
Affiliation(s)
- Robert Vander Broek
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States; Medical Research Scholars Program, NIH, Bethesda, Maryland, United States
| | - Grace E Snow
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States; Medical Research Scholars Program, NIH, Bethesda, Maryland, United States
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States.
| |
Collapse
|
44
|
Chanut A, Duguet F, Marfak A, David A, Petit B, Parrens M, Durand-Panteix S, Boulin-Deveza M, Gachard N, Youlyouz-Marfak I, Bordessoule D, Feuillard J, Faumont N. RelA and RelB cross-talk and function in Epstein-Barr virus transformed B cells. Leukemia 2013; 28:871-9. [PMID: 24056880 DOI: 10.1038/leu.2013.274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 01/26/2023]
Abstract
In this study, we determined the respective roles of RelA and RelB NF-κB subunits in Epstein-Barr virus (EBV)-transformed B cells. Using different EBV-immortalized B-cell models, we showed that only RelA activation increased both survival and cell growth. RelB activity was induced secondarily to RelA activation and repressed RelA DNA binding by trapping the p50 subunit. Reciprocally, RelA activation repressed RelB activity by increasing expression of its inhibitor p100. To search for such reciprocal inhibition at the transcriptional level, we studied gene expression profiles of our RelA and RelB regulatable cellular models. Ten RelA-induced genes and one RelB-regulated gene, ARNTL2, were repressed by RelB and RelA, respectively. Apart from this gene, RelB signature was included in that of RelA Functional groups of RelA-regulated genes were for control of energy metabolism, genetic instability, protection against apoptosis, cell cycle and immune response. Additional functions coregulated by RelA and/or RelB were autophagy and plasma cell differentiation. Altogether, these results demonstrate a cross-inhibition between RelA and RelB and suggest that, in fine, RelB was subordinated to RelA. In the view of future drug development, RelA appeared to be pivotal in both classical and alternative activation pathways, at least in EBV-transformed B cells.
Collapse
Affiliation(s)
- A Chanut
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - F Duguet
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - A Marfak
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - A David
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - B Petit
- CHU Dupuytren, Laboratory of Pathology, Limoges, France
| | - M Parrens
- CHU de Bordeaux, Laboratory of Pathology, Bordeaux, France
| | - S Durand-Panteix
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - M Boulin-Deveza
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - N Gachard
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - I Youlyouz-Marfak
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - D Bordessoule
- 1] CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France [2] Department of Hematology, CHU Dupuytren, Limoges, France
| | - J Feuillard
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| | - N Faumont
- CNRS-UMR-7276, University of Limoges, and CHU Dupuytren, Laboratory of Hematology, Limoges, France
| |
Collapse
|
45
|
Abstract
RelB is one of the more unusual members of the NF-κB family. This family, arguably the best known group of transcription regulators, regulates an astonishing array of cell types and biological processes. This includes regulation of cell growth, differentiation and death by apoptosis, and the development and function of the innate and adaptive-immune system. RelB is best known for its roles in lymphoid development, DC biology, and noncanonical signaling. Within the last few years, however, surprising functions of RelB have emerged. The N-terminal leucine zipper motif of RelB, a motif unique among the NF-κB family, may associate with more diverse DNA sequences than other NF-κB members. RelB is capable of direct binding to the AhR that supports the xenobiotic-detoxifying pathway. RelB can regulate the circadian rhythm by directly binding to the BMAL partner of CLOCK. Finally, RelB also couples with bioenergy NAD(+) sensor SIRT1 to integrate acute inflammation with changes in metabolism and mitochondrial bioenergetics. In this review, we will explore these unique aspects of RelB, specifically with regard to its role in immunity.
Collapse
Affiliation(s)
- Patrick Millet
- 1.Wake Forest University Health Sciences, Wake Forest University, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
46
|
Cormier F, Monjanel H, Fabre C, Billot K, Sapharikas E, Chereau F, Bordereaux D, Molina TJ, Avet-Loiseau H, Baud V. Frequent engagement of RelB activation is critical for cell survival in multiple myeloma. PLoS One 2013; 8:e59127. [PMID: 23555623 PMCID: PMC3610937 DOI: 10.1371/journal.pone.0059127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/11/2013] [Indexed: 12/17/2022] Open
Abstract
The NF-κB family of transcription factors has emerged as a key player in the pathogenesis of multiple myeloma (MM). NF-κB is activated by at least two major signaling pathways. The classical pathway results in the activation of mainly RelA containing dimers, whereas the alternative pathway leads to the activation of RelB/p52 and RelB/p50 heterodimers. Activating mutations in regulators of the alternative pathway have been identified in 17% of MM patients. However, the status of RelB activation per se and its role in the regulation of cell survival in MM has not been investigated. Here, we reveal that 40% of newly diagnosed MM patients have a constitutive RelB DNA-binding activity in CD138(+) tumor cells, and we show an association with increased expression of a subset of anti-apoptotic NF-κB target genes, such as cIAP2. Furthermore, we demonstrate that RelB exerts a crucial anti-apoptotic activity in MM cells. Our findings indicate that RelB activation is key for promoting MM cell survival through the upregulation of anti-apoptotic proteins. Altogether, our study provides the framework for the development of new molecules targeting RelB in the treatment of MM.
Collapse
|
47
|
Döppler H, Liou GY, Storz P. Downregulation of TRAF2 mediates NIK-induced pancreatic cancer cell proliferation and tumorigenicity. PLoS One 2013; 8:e53676. [PMID: 23301098 PMCID: PMC3536768 DOI: 10.1371/journal.pone.0053676] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 12/03/2012] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Increased levels of NF-κB are hallmarks of pancreatic ductal adenocarcinoma (PDAC) and both classical and alternative NF-κB activation pathways have been implicated. METHODOLOGY/PRINCIPAL FINDINGS Here we show that activation of the alternative pathway is a source for the high basal NF-κB activity in PDAC cell lines. Increased activity of the p52/RelB NF-κB complex is mediated through stabilization and activation of NF-κB-inducing kinase (NIK). We identify proteasomal downregulation of TNF receptor-associated factor 2 (TRAF2) as a mechanism by which levels of active NIK are increased in PDAC cell lines. Such upregulation of NIK expression and activity levels relays to increased proliferation and anchorage-independent growth, but not migration or survival of PDAC cells. CONCLUSIONS/SIGNIFICANCE Rapid growth is one characteristic of pancreatic cancer. Our data indicates that the TRAF2/NIK/NF-κB2 pathway regulates PDAC cell tumorigenicity and could be a valuable target for therapy of this cancer.
Collapse
Affiliation(s)
- Heike Döppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Geou-Yarh Liou
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida, United States of America
| |
Collapse
|
48
|
Saldanha-Araujo F, Haddad R, Farias KCRMD, Souza ADPA, Palma PV, Araujo AG, Orellana MD, Voltarelli JC, Covas DT, Zago MA, Panepucci RA. Mesenchymal stem cells promote the sustained expression of CD69 on activated T lymphocytes: roles of canonical and non-canonical NF-κB signalling. J Cell Mol Med 2012; 16:1232-44. [PMID: 21777379 PMCID: PMC3823077 DOI: 10.1111/j.1582-4934.2011.01391.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are known to induce the conversion of activated T cells into regulatory T cells in vitro. The marker CD69 is a target of canonical nuclear factor kappa-B (NF-κB) signalling and is transiently expressed upon activation; however, stable CD69 expression defines cells with immunoregulatory properties. Given its enormous therapeutic potential, we explored the molecular mechanisms underlying the induction of regulatory cells by MSCs. Peripheral blood CD3+ T cells were activated and cultured in the presence or absence of MSCs. CD4+ cell mRNA expression was then characterized by microarray analysis. The drug BAY11-7082 (BAY) and a siRNA against v-rel reticuloendotheliosis viral oncogene homolog B (RELB) were used to explore the differential roles of canonical and non-canonical NF-κB signalling, respectively. Flow cytometry and real-time PCR were used for analyses. Genes with immunoregulatory functions, CD69 and non-canonical NF-κB subunits (RELB and NFKB2) were all expressed at higher levels in lymphocytes co-cultured with MSCs. The frequency of CD69+ cells among lymphocytes cultured alone progressively decreased after activation. In contrast, the frequency of CD69+ cells increased significantly following activation in lymphocytes co-cultured with MSCs. Inhibition of canonical NF-κB signalling by BAY immediately following activation blocked the induction of CD69; however, inhibition of canonical NF-κB signalling on the third day further induced the expression of CD69. Furthermore, late expression of CD69 was inhibited by RELB siRNA. These results indicate that the canonical NF-κB pathway controls the early expression of CD69 after activation; however, in an immunoregulatory context, late and sustained CD69 expression is promoted by the non-canonical pathway and is inhibited by canonical NF-κB signalling.
Collapse
Affiliation(s)
- Felipe Saldanha-Araujo
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy, Regional Blood Center and Faculty of Medicine, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Arabi A, Ullah K, Branca RMM, Johansson J, Bandarra D, Haneklaus M, Fu J, Ariës I, Nilsson P, Den Boer ML, Pokrovskaja K, Grandér D, Xiao G, Rocha S, Lehtiö J, Sangfelt O. Proteomic screen reveals Fbw7 as a modulator of the NF-κB pathway. Nat Commun 2012; 3:976. [PMID: 22864569 PMCID: PMC4354031 DOI: 10.1038/ncomms1975] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 06/26/2012] [Indexed: 12/12/2022] Open
Abstract
Fbw7 is a ubiquitin-ligase that targets several oncoproteins for proteolysis, but the full range of Fbw7 substrates is not known. Here we show that by performing quantitative proteomics combined with degron motif searches, we effectively screened for a more complete set of Fbw7 targets. We identify 89 putative Fbw7 substrates, including several disease-associated proteins. The transcription factor NF-κB2 (p100/p52) is one of the candidate Fbw7 substrates. We show that Fbw7 interacts with p100 via a conserved degron and that it promotes degradation of p100 in a GSK3β phosphorylation-dependent manner. Fbw7 inactivation increases p100 levels, which in the presence of NF-κB pathway stimuli, leads to increased p52 levels and activity. Accordingly, the apoptotic threshold can be increased by loss of Fbw7 in a p100-dependent manner. In conclusion, Fbw7-mediated destruction of p100 is a regulatory component restricting the response to NF-κB2 pathway stimulation. Fbw7 is a ubiquitin-ligase, which targets several oncoproteins for proteolysis, and is therefore important for the control and prevention of tumorigenesis. In this study, Arabi and colleagues carry out a proteomic screen of the targets of Fbw7, and identify Nuclear Factor of κ-B2 as a substrate.
Collapse
Affiliation(s)
- Azadeh Arabi
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Control of RelB during dendritic cell activation integrates canonical and noncanonical NF-κB pathways. Nat Immunol 2012; 13:1162-70. [PMID: 23086447 PMCID: PMC3634611 DOI: 10.1038/ni.2446] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 08/29/2012] [Indexed: 12/15/2022]
Abstract
The NF-κB protein RelB controls dendritic cell (DC) maturation and may be targeted therapeutically to manipulate T cell responses in disease. Here we report that RelB promoted DC activation not as the expected RelB-p52 effector of the non-canonical NF-κB pathway, but as a RelB-p50 dimer regulated by canonical IκBs, IκBα and IκBε. IκB control of RelB minimized spontaneous maturation but enabled rapid pathogen-responsive maturation. Computational modeling of the NF-κB signaling module identified control points of this unexpected cell-type-specific regulation. Fibroblasts that were engineered accordingly showed DC-like RelB control. Canonical pathway control of RelB regulated pathogen-responsive gene expression programs. This work illustrates the potential utility of systems analyses in guiding the development of combination therapeutics for modulating DC-dependent T cell responses.
Collapse
|