1
|
Li C, Yang Q, Zhang L. Identification of putative allosteric inhibitors of BCKDK via virtual screening and biological evaluation. J Enzyme Inhib Med Chem 2024; 39:2290458. [PMID: 38059302 PMCID: PMC11721764 DOI: 10.1080/14756366.2023.2290458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Abnormal accumulation of branched-chain amino acids (BCAAs) can lead to metabolic diseases and cancers. Branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a key negative regulator of BCAA catabolism, and targeting BCKDK provides a promising therapeutic approach for diseases caused by BCAA accumulation. Here, we screened PPHN and POAB as novel putative allosteric inhibitors by integrating allosteric binding site prediction, large-scale ligand database virtual screening, and bioactivity evaluation assays. Both of them showed a high binding affinity to BCKDK, with Kd values of 3.9 μM and 1.86 μM, respectively. In vivo experiments, the inhibitors demonstrated superior kinase inhibitory activity and notable antiproliferative and proapoptotic effects on diverse cancer cells. Finally, bulk RNA-seq analysis revealed that PPHN and POAB suppressed cell growth through a range of signalling pathways. Taken together, our findings highlight two novel BCKDK inhibitors as potent therapeutic candidates for metabolic diseases and cancers associated with BCAA dysfunctional metabolism.
Collapse
Affiliation(s)
- Chunqiong Li
- Genomics Center, Chinese Institute for Brain Research, Beijing, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Genomics Center, Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
2
|
Delgadillo-Velázquez J, Mendivil-Alvarado H, Coronado-Alvarado CD, Astiazaran-Garcia H. Extracellular Vesicles from Adipose Tissue Could Promote Metabolic Adaptation through PI3K/Akt/mTOR. Cells 2022; 11:cells11111831. [PMID: 35681526 PMCID: PMC9180692 DOI: 10.3390/cells11111831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 01/25/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles secreted by cells under physiological and pathological conditions, such as metabolic diseases. In this context, EVs are considered potential key mediators in the physiopathology of obesity. It has been reported that EVs derived from adipose tissue (ADEVs) contribute to the development of a local inflammatory response that leads to adipose tissue dysfunction. In addition, it has been proposed that EVs are associated with the onset and progression of several obesity-related metabolic diseases such as insulin resistance. In particular, characterizing the molecular fingerprint of obesity-related ADEVs can provide a bigger picture that better reflects metabolic adaptation though PI3K/Akt/mTOR. Hence, in this review we describe the possible crosstalk communication of ADEVs with metabolically active organs and the intracellular response in the insulin signaling pathway.
Collapse
Affiliation(s)
- Jaime Delgadillo-Velázquez
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
| | - Herminia Mendivil-Alvarado
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
| | - Carlos Daniel Coronado-Alvarado
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
| | - Humberto Astiazaran-Garcia
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Mexico
- Correspondence: ; Tel.: +52-662-1029-701
| |
Collapse
|
3
|
Artemisinin Alleviates Intestinal Inflammation and Metabolic Disturbance in Ulcerative Colitis Rats Induced by DSS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6211215. [PMID: 35497913 PMCID: PMC9042626 DOI: 10.1155/2022/6211215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022]
Abstract
Objective This study is aimed to reveal the possible mechanisms of artemisinin in the treatment of ulcerative colitis (UC) through bioinformatics analysis and experimental verification in UC model rats. Methods Firstly, we searched two microarray data of the Gene Expression Omnibus (GEO) database to explore the differentially expressed genes (DEGs) between UC samples and normal samples. Then, we selected DEGs for gene ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The acute UC model of rats was established by using 3.5% dextran sulfate sodium (DSS) for 10 days to verify the core pathway. Finally, we evaluated the therapeutic effect of artemisinin at the molecular level and used metabonomics to study the endogenous metabolites in the rat serum. Results We screened in the GEO database and selected two eligible microarray datasets, GSE36807 and GSE9452. We performed GO function and KEGG pathway enrichment analyses of DEGs and found that these DEGs were mainly enriched in the inflammatory response, immune response, and IL-17 and NF-κB signaling pathways. Finally, we verified the IL-17 signaling pathway and key cytokines, and ELISA and immunohistochemical results showed that artemisinin could downregulate the expression of proinflammatory cytokines such as IL-1β and IL-17 in the IL-17 signaling pathway and upregulate the expression of the anti-inflammatory cytokine PPAR-γ. Metabolomics analysis showed that 33 differential metabolites were identified in the artemisinin group (AG) compared to the model group (MG). Differential metabolites were mainly involved in alanine, aspartate, and glutamate metabolism and synthesis and degradation of ketone bodies. Conclusion In this study, we found that artemisinin can significantly inhibit the inflammatory response in UC rats and regulate metabolites and related metabolic pathways. This study provides a foundation for further research on the mechanism of artemisinin in the treatment of UC.
Collapse
|
4
|
Li M, Yang L. Autophagy in the liver. AUTOPHAGY IN HEALTH AND DISEASE 2022:161-179. [DOI: 10.1016/b978-0-12-822003-0.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Abdullah ML, Al-Shabanah O, Hassan ZK, Hafez MM. Eugenol-Induced Autophagy and Apoptosis in Breast Cancer Cells via PI3K/AKT/FOXO3a Pathway Inhibition. Int J Mol Sci 2021; 22:ijms22179243. [PMID: 34502165 PMCID: PMC8430664 DOI: 10.3390/ijms22179243] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
The use of natural compounds is promising in approaches to prevent and treat cancer. The long-term application of most currently employed chemotherapy techniques has toxic side effects. Eugenol, a phenolic phytochemical extracted from certain essential oils, has an anti-cancer effect. The modulation of autophagy can promote either the survival or apoptosis of cancer cells. Triple-negative (MDA-MB-231) and HER2 positive (SK-BR-3) breast cancer cell lines were treated with different doses of eugenol. Apoptosis was detected by a flow-cytometry technique, while autophagy was detected by acridine orange. Real-time PCR and Western blot assays were applied to investigate the effect of eugenol on the gene and protein expression levels of autophagy and apoptotic genes. Treating cells with different concentrations of eugenol significantly inhibited cell proliferation. The protein levels of AKT serine/threonine kinase 1 (AKT), forkhead box O3 (FOXO3a), cyclin dependent kinase inhibitor 1A (p21), cyclin-dependent kinase inhibitor (p27), and Caspase-3 and -9 increased significantly in Eugenol-treated cells. Eugenol also induced autophagy by upregulating the expression levels of microtubule-associated protein 1 light chain 3 (LC3) and downregulating the expression of nucleoporin 62 (NU p62). Eugenol is a promising natural anti-cancer agent against triple-negative and HER2-positive breast cancer. It appears to work by targeting the caspase pathway and by inducing autophagic cell death.
Collapse
Affiliation(s)
- Mashan L. Abdullah
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia
- Pharmacology and Toxicology Department, King Saud University, Riyadh 11426, Saudi Arabia;
- Correspondence: (M.L.A.); (M.M.H.)
| | - Othman Al-Shabanah
- Pharmacology and Toxicology Department, King Saud University, Riyadh 11426, Saudi Arabia;
| | - Zeinab K. Hassan
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt;
| | - Mohamed M. Hafez
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt;
- Correspondence: (M.L.A.); (M.M.H.)
| |
Collapse
|
6
|
Autophagy and Tau Protein. Int J Mol Sci 2021; 22:ijms22147475. [PMID: 34299093 PMCID: PMC8303176 DOI: 10.3390/ijms22147475] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
Neurofibrillary tangles, which consist of highly phosphorylated tau protein, and senile plaques (SPs) are pathological hallmarks of Alzheimer's disease (AD). In swollen axons, many autophagic vacuoles are observed around SP in the AD brain. This suggests that autophagy function is disturbed in AD. We used a neuronal cellular model of tauopathy (M1C cells), which harbors wild type tau (4R0N), to assess the effects of the lysosomotrophic agent NH4Cl, and autophagy inhibitors chloroquine and 3 methyladenine (3MA). It was found that chloroquine, NH4Cl and 3MA markedly increased tau accumulation. Thus, autophagy lysosomal system disturbances disturbed the degradation mechanisms of tau protein. Other studies also revealed that tau protein, including aggregated tau, is degraded via the autophagy lysosome system. Phosphorylated and C terminal truncated tau were also reported to disturb autophagy function. As a therapeutic strategy, autophagy upregulation was suggested. Thus far, as autophagy modulators, rapamycin, mTOCR1 inhibitor and its analogues, lithium, metformin, clonidine, curcumin, nicotinamide, bexaroten, and torehalose have been proposed. As a therapeutic strategy, autophagic modulation may be the next target of AD therapeutics.
Collapse
|
7
|
Chua JP, De Calbiac H, Kabashi E, Barmada SJ. Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy 2021; 18:254-282. [PMID: 34057020 PMCID: PMC8942428 DOI: 10.1080/15548627.2021.1926656] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanisms of protein homeostasis are crucial for overseeing the clearance of misfolded and toxic proteins over the lifetime of an organism, thereby ensuring the health of neurons and other cells of the central nervous system. The highly conserved pathway of autophagy is particularly necessary for preventing and counteracting pathogenic insults that may lead to neurodegeneration. In line with this, mutations in genes that encode essential autophagy factors result in impaired autophagy and lead to neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). However, the mechanistic details underlying the neuroprotective role of autophagy, neuronal resistance to autophagy induction, and the neuron-specific effects of autophagy-impairing mutations remain incompletely defined. Further, the manner and extent to which non-cell autonomous effects of autophagy dysfunction contribute to ALS pathogenesis are not fully understood. Here, we review the current understanding of the interplay between autophagy and ALS pathogenesis by providing an overview of critical steps in the autophagy pathway, with special focus on pivotal factors impaired by ALS-causing mutations, their physiologic effects on autophagy in disease models, and the cell type-specific mechanisms regulating autophagy in non-neuronal cells which, when impaired, can contribute to neurodegeneration. This review thereby provides a framework not only to guide further investigations of neuronal autophagy but also to refine therapeutic strategies for ALS and related neurodegenerative diseases.Abbreviations: ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CHMP2B: charged multivesicular body protein 2B; DPR: dipeptide repeat; FTD: frontotemporal dementia; iPSC: induced pluripotent stem cell; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PINK1: PTEN induced kinase 1; RNP: ribonuclear protein; sALS: sporadic ALS; SPHK1: sphingosine kinase 1; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; VCP: valosin containing protein.
Collapse
Affiliation(s)
- Jason P Chua
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Hortense De Calbiac
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Edor Kabashi
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
King KE, Losier TT, Russell RC. Regulation of Autophagy Enzymes by Nutrient Signaling. Trends Biochem Sci 2021; 46:687-700. [PMID: 33593593 DOI: 10.1016/j.tibs.2021.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Autophagy is the primary catabolic program of the cell that promotes survival in response to metabolic stress. It is tightly regulated by a suite of kinases responsive to nutrient status, including mammalian target of rapamycin complex 1 (mTORC1), AMP-activated protein kinase (AMPK), protein kinase C-α (PKCα), MAPK-activated protein kinases 2/3 (MAPKAPK2/3), Rho kinase 1 (ROCK1), c-Jun N-terminal kinase 1 (JNK), and Casein kinase 2 (CSNK2). Here, we highlight recently uncovered mechanisms linking amino acid, glucose, and oxygen levels to autophagy regulation through mTORC1 and AMPK. In addition, we describe new pathways governing the autophagic machinery, including the Unc-51-like (ULK1), vacuolar protein sorting 34 (VPS34), and autophagy related 16 like 1 (ATG16L1) enzyme complexes. Novel downstream targets of ULK1 protein kinase are also discussed, such as the ATG16L1 subunit of the microtubule-associated protein 1 light chain 3 (LC3)-lipidating enzyme and the ATG14 subunit of the VPS34 complex. Collectively, we describe the complexities of the autophagy pathway and its role in maintaining cellular nutrient homeostasis during times of starvation.
Collapse
Affiliation(s)
- Karyn E King
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONT, Canada
| | - Truc T Losier
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONT, Canada
| | - Ryan C Russell
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONT, Canada; Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ONT, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ONT, Canada.
| |
Collapse
|
9
|
Mugume Y, Kazibwe Z, Bassham DC. Target of Rapamycin in Control of Autophagy: Puppet Master and Signal Integrator. Int J Mol Sci 2020; 21:ijms21218259. [PMID: 33158137 PMCID: PMC7672647 DOI: 10.3390/ijms21218259] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
The target of rapamycin (TOR) is an evolutionarily-conserved serine/threonine kinase that senses and integrates signals from the environment to coordinate developmental and metabolic processes. TOR senses nutrients, hormones, metabolites, and stress signals to promote cell and organ growth when conditions are favorable. However, TOR is inhibited when conditions are unfavorable, promoting catabolic processes such as autophagy. Autophagy is a macromolecular degradation pathway by which cells degrade and recycle cytoplasmic materials. TOR negatively regulates autophagy through phosphorylation of ATG13, preventing activation of the autophagy-initiating ATG1-ATG13 kinase complex. Here we review TOR complex composition and function in photosynthetic and non-photosynthetic organisms. We also review recent developments in the identification of upstream TOR activators and downstream effectors of TOR. Finally, we discuss recent developments in our understanding of the regulation of autophagy by TOR in photosynthetic organisms.
Collapse
|
10
|
Lin PW, Chu ML, Liu HS. Autophagy and metabolism. Kaohsiung J Med Sci 2020; 37:12-19. [PMID: 33021078 DOI: 10.1002/kjm2.12299] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolism consists of diverse life-sustaining chemical reactions in living organisms. Autophagy is a highly conservative process that responds to various internal and external stresses. Both processes utilize surrounding resources to provide energy and nutrients for the cell. Autophagy progression may proceed to the degradative or secretory pathway determined by Rab family proteins. The former is a degradative and lysosome-dependent catabolic process that produces energy and provides nutrients for the synthesis of essential proteins. The degradative pathway also balances the energy source of the cell and regulates tissue homeostasis. The latter is a newly discovered pathway in which the autophagosome is fused with the plasma membrane. Secretory autophagy participates in diverse functions and diseases ranging from the spread of viral particles to cancer and neurodegenerative diseases. Aberrant metabolism in the body causes various metabolic syndromes. This review explores the relationships among autophagy, metabolism, and related diseases.
Collapse
Affiliation(s)
- Pei-Wen Lin
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Man-Ling Chu
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiao-Sheng Liu
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
Activate or Inhibit? Implications of Autophagy Modulation as a Therapeutic Strategy for Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21186739. [PMID: 32937909 PMCID: PMC7554997 DOI: 10.3390/ijms21186739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases result in a range of conditions depending on the type of proteinopathy, genes affected or the location of the degeneration in the brain. Proteinopathies such as senile plaques and neurofibrillary tangles in the brain are prominent features of Alzheimer’s disease (AD). Autophagy is a highly regulated mechanism of eliminating dysfunctional organelles and proteins, and plays an important role in removing these pathogenic intracellular protein aggregates, not only in AD, but also in other neurodegenerative diseases. Activating autophagy is gaining interest as a potential therapeutic strategy for chronic diseases featuring protein aggregation and misfolding, including AD. Although autophagy activation is a promising intervention, over-activation of autophagy in neurodegenerative diseases that display impaired lysosomal clearance may accelerate pathology, suggesting that the success of any autophagy-based intervention is dependent on lysosomal clearance being functional. Additionally, the effects of autophagy activation may vary significantly depending on the physiological state of the cell, especially during proteotoxic stress and ageing. Growing evidence seems to favour a strategy of enhancing the efficacy of autophagy by preventing or reversing the impairments of the specific processes that are disrupted. Therefore, it is essential to understand the underlying causes of the autophagy defect in different neurodegenerative diseases to explore possible therapeutic approaches. This review will focus on the role of autophagy during stress and ageing, consequences that are linked to its activation and caveats in modulating this pathway as a treatment.
Collapse
|
12
|
Cônsolo NRB, da Silva J, Buarque VLM, Higuera-Padilla A, Barbosa LCGS, Zawadzki A, Colnago LA, Saran Netto A, Gerrard DE, Silva SL. Selection for Growth and Precocity Alters Muscle Metabolism in Nellore Cattle. Metabolites 2020; 10:metabo10020058. [PMID: 32041181 PMCID: PMC7073857 DOI: 10.3390/metabo10020058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Abstract
To clarify the relationship between beef genetic selection for growth and precocity with muscle metabolism and metabolites, we performed metabolomic analysis using Longissimus lumborum (LL) muscle from Nellore cattle with divergent selection for these traits (high growth, HG; low growth, LG; high precocity, HP; low precocity, LP). Genetic potential for growth affected muscle protein and energetic metabolism. HG animals had a high concentration of arginine, carnosine, and leucine compared to LG animals. HP animals presented a high concentration of glutamine, betaine, creatinine, isoleucine, carnitine, acetyl carnitine, and lower levels of glucose compared to LP animals, affecting protein and fatty acid metabolism. Intensity of selection (high or low) was correlated with changes in protein metabolism, and the type of selection (growth or precocity) affected fat metabolism. In conclusion, both HG and HP appear to be correlated with a high concentration of protein metabolites and changes in protein metabolic pathways, while selection for precocity is more correlated with changes in fat metabolism compared to animals selected for growth.
Collapse
Affiliation(s)
- Nara Regina Brandão Cônsolo
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte 225, Pirassununga 13635-900, Brazil; (J.d.S.); (V.L.M.B.); (S.L.S.)
- Correspondence:
| | - Juliana da Silva
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte 225, Pirassununga 13635-900, Brazil; (J.d.S.); (V.L.M.B.); (S.L.S.)
| | - Vicente Luiz Macedo Buarque
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte 225, Pirassununga 13635-900, Brazil; (J.d.S.); (V.L.M.B.); (S.L.S.)
| | - Angel Higuera-Padilla
- EMBRAPA Instrumentação, XV de Novembro 1452, São Carlos 13560-970, Brazil; (A.H.-P.); (L.C.G.S.B.); (L.A.C.)
| | | | - Andressa Zawadzki
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Luis Alberto Colnago
- EMBRAPA Instrumentação, XV de Novembro 1452, São Carlos 13560-970, Brazil; (A.H.-P.); (L.C.G.S.B.); (L.A.C.)
| | - Arlindo Saran Netto
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte 225, Pirassununga 13635-900, Brazil; (J.d.S.); (V.L.M.B.); (S.L.S.)
| | - David Edwin Gerrard
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Saulo Luz Silva
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte 225, Pirassununga 13635-900, Brazil; (J.d.S.); (V.L.M.B.); (S.L.S.)
| |
Collapse
|
13
|
Abstract
D-Amino acids occur in modest amounts in bacterial proteins and the bacterial cell wall, as well as in peptide antibiotics. Therefore, D-amino acids present in terrestrial vertebrates were believed to be derived from bacteria present in the gastrointestinal tract or fermented food. However, both exogenous and endogenous origins of D-amino acids have been confirmed. Terrestrial vertebrates possess an enzyme for converting certain L-isomers to D-isomers. D-Amino acids have nutritional aspects and functions, some are similar to, and others are different from those of L-isomers. Here, we describe the nutritional characteristics and functions of D-amino acids and also discuss the future perspectives of D-amino acid nutrition in the chicken.
Collapse
|
14
|
Kunz TC, Kozjak-Pavlovic V. Diverse Facets of Sphingolipid Involvement in Bacterial Infections. Front Cell Dev Biol 2019; 7:203. [PMID: 31608278 PMCID: PMC6761390 DOI: 10.3389/fcell.2019.00203] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022] Open
Abstract
Sphingolipids are constituents of the cell membrane that perform various tasks as structural elements and signaling molecules, in addition to regulating many important cellular processes, such as apoptosis and autophagy. In recent years, it has become increasingly clear that sphingolipids and sphingolipid signaling play a vital role in infection processes. In many cases the attachment and uptake of pathogenic bacteria, as well as bacterial development and survival within the host cell depend on sphingolipids. In addition, sphingolipids can serve as antimicrobials, inhibiting bacterial growth and formation of biofilms. This review will give an overview of our current information about these various aspects of sphingolipid involvement in bacterial infections.
Collapse
Affiliation(s)
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Abstract
Some amino acids (AA) act through several signalling pathways and mechanisms to mediate the control of gene expression at the translation level, and the regulation occurs, specifically, on the initiation and the signalling pathways for translation. The translation of mRNA to protein synthesis proceeds through the steps of initiation and elongation, and AA act as important feed-forward activators that are involved in many pathways, such as the sensing and the transportation of AA by cells, in these steps in many tissues of mammals. For the translation, phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) is a critical molecule that controls the translation initiation and its functions can be regulated by some AA. Another control point in the mRNA binding step in the translation initiation is at the regulation by mammalian target of rapamycin, which requires a change of phosphorylation status of ribosomal protein S6. In fact, the change of phosphorylation status of ribosomal protein S6 might be involved in global protein synthesis. The present review summarises recent work on the molecular mechanisms of the regulation of protein synthesis by AA and highlights new findings.
Collapse
|
16
|
Biochemical and morphological changes in mouse liver induced by mistletoe toxins. Food Chem Toxicol 2019; 129:229-238. [PMID: 31034933 DOI: 10.1016/j.fct.2019.04.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 01/13/2023]
Abstract
Natural compounds are often characterized by high biological activity and sometimes toxicity. This also applies to compounds contained in the herb mistletoe. The objective of this study was to investigate short-term effects (up to 48 h) of mistletoe toxins on mouse hepatocytes. Standardized mistletoe extract Iscador P was given to female mice as a single injection (0.1 mg/kg b.w., 1 mg/kg b.w., or 2 mg/kg b.w). Activities of lysosomal hydrolases: acid phosphatase, cathepsins D and L, N-acetyl-β-D-hexosaminidase, β-D-glucuronidase, β-D-glucosidase and cytosolic proteases: arginine and leucine aminopeptidases were analyzed in the liver fractions 24 and 48 h after the injection. The morphology of hepatocytes was examined by light and transmission electron microscopy. Iscador P caused a decrease in the activity of all lysosomal hydrolases (except cathepsins) in the lysosomal pellet, and an increase in the activity of both aminopeptidases and β-D-glucuronidase in the cytosol. However, despite membranotropic properties of the viscotoxins, we did not find a significant labilising effect on the lysosomal membranes. Only β-D-glucuronidase activity was relocated to the supernatant of lysosomal fraction. Microscopic examinations revealed that hepatocyte mitochondria were enlarged and increased in number, whereas the surface of the rough endoplasmic reticulum was decreased significantly.
Collapse
|
17
|
Wang Y, Han T, Gan M, Guo M, Xie C, Jin J, Zhang S, Wang P, Cao J, Wang JB. A novel function of anaphase promoting complex subunit 10 in tumor progression in non-small cell lung cancer. Cell Cycle 2019; 18:1019-1032. [PMID: 31023143 DOI: 10.1080/15384101.2019.1609830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase, is responsible for the transition from metaphase to anaphase and the exit from mitosis. The anaphase promoting complex subunit 10 (APC10), a subunit of the APC/C, executes a vital function in substrate recognition. However, no research has reported the connection between APC10 and cancer until now. In this study, we uncovered a novel, unprecedented role of APC10 in tumor progression, which is independent of APC/C. First, aberrant increase of APC10 expression was validated in non-small cell lung cancer (NSCLC) cells and tissues, and the absence of APC10 repressed cell proliferation and migration. Of great interest, we found that APC10 inhibition induced cell cycle arrest at the G0/G1 phase and reduced the expression of the APC/C substrate, Cyclin B1; this finding is different from the conventional concept of the accumulation of Cyclin B1 and cell cycle arrest in metaphase. Further, APC10 was found to interact with glutaminase C (GAC), and the inhibition of APC10 weakened glutamine metabolism and induced excessive autophagy. Taken together, these findings identify a novel function of APC10 in the regulation of NSCLC tumorigenesis and point to the possibility of APC10 as a new target for cancer therapy.
Collapse
Affiliation(s)
- Yanan Wang
- a School of Life Sciences , Nanchang University , Nanchang City , Jiangxi , China.,b School of Basic Medical Sciences , Nanchang University , Nanchang City , Jiangxi , China
| | - Tianyu Han
- c Department of Respiration , The First Affiliated Hospital of Nanchang University , Nanchang City , Jiangxi , China
| | - Mingxi Gan
- b School of Basic Medical Sciences , Nanchang University , Nanchang City , Jiangxi , China
| | - Meng Guo
- b School of Basic Medical Sciences , Nanchang University , Nanchang City , Jiangxi , China
| | - Caifeng Xie
- b School of Basic Medical Sciences , Nanchang University , Nanchang City , Jiangxi , China
| | - Jiangbo Jin
- a School of Life Sciences , Nanchang University , Nanchang City , Jiangxi , China
| | - Song Zhang
- a School of Life Sciences , Nanchang University , Nanchang City , Jiangxi , China
| | - Pengcheng Wang
- a School of Life Sciences , Nanchang University , Nanchang City , Jiangxi , China
| | - Jiaqing Cao
- d Department of Gastrointestinal Surgery , the Second Affiliated Hospital of Nanchang University , Nanchang City , Jiangxi , China
| | - Jian-Bin Wang
- b School of Basic Medical Sciences , Nanchang University , Nanchang City , Jiangxi , China
| |
Collapse
|
18
|
Chen X, Miller NM, Afghah Z, Geiger JD. Development of AD-Like Pathology in Skeletal Muscle. JOURNAL OF PARKINSON'S DISEASE AND ALZHEIMER'S DISEASE 2019; 6:10.13188/2376-922x.1000028. [PMID: 32190732 PMCID: PMC7079679 DOI: 10.13188/2376-922x.1000028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Effective therapeutic strategy against Alzheimer's disease (AD) requires early detection of AD; however, clinical diagnosis of Alzheimer's disease (AD) is not precise and a definitive diagnosis of AD is only possible via postmortem examination for AD pathological hallmarks including senile plaques composed of Aβ and neuro fibrillary tangles composed of phosphorylated tau. Although a variety of biomarker has been developed and used in clinical setting, none of them robustly predicts subsequent clinical course of AD. Thus, it is essential to identify new biomarkers that may facilitate the diagnosis of early stages of AD, prediction of subsequent clinical course, and development of new therapeutic strategies. Given that pathological hallmarks of AD including Aβaccumulation and the presence of phosphorylated tau are also detected in peripheral tissues, AD is considered a systemic disease. Without the protection of blood-brain barrier, systemic factors can affect peripheral tissues much earlier than neurons in brain. Here, we will discuss the development of AD-like pathology in skeletal muscle and the potential use of skeletal muscle biopsy (examination for Aβaccumulation and phosphorylated tau) as a biomarker for AD.
Collapse
Affiliation(s)
- X Chen
- Department of Biomedical Sciences, University of North Dakota, USA
| | - NM Miller
- Department of Biomedical Sciences, University of North Dakota, USA
| | - Z Afghah
- Department of Biomedical Sciences, University of North Dakota, USA
| | - JD Geiger
- Department of Biomedical Sciences, University of North Dakota, USA
| |
Collapse
|
19
|
Lie S, Banks P, Lawless C, Lydall D, Petersen J. The contribution of non-essential Schizosaccharomyces pombe genes to fitness in response to altered nutrient supply and target of rapamycin activity. Open Biol 2019; 8:rsob.180015. [PMID: 29720420 PMCID: PMC5990653 DOI: 10.1098/rsob.180015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022] Open
Abstract
Nutrient fluctuations in the cellular environment promote changes in cell metabolism and growth to adapt cell proliferation accordingly. The target of rapamycin (TOR) signalling network plays a key role in the coordination of growth and cell proliferation with the nutrient environment and, importantly, nutrient limitation reduces TOR complex 1 (TORC1) signalling. We have performed global quantitative fitness profiling of the collection of Schizosaccharomyces pombe strains from which non-essential genes have been deleted. We identified genes that regulate fitness when cells are grown in a nutrient-rich environment compared with minimal environments, with varying nitrogen sources including ammonium, glutamate and proline. In addition, we have performed the first global screen for genes that regulate fitness when both TORC1 and TORC2 signalling is reduced by Torin1. Analysis of genes whose deletions altered fitness when nutrients were limited, or when TOR signalling was compromised, identified a large number of genes that regulate transmembrane transport, transcription and chromatin organization/regulation and vesicle-mediated transport. The ability to tolerate reduced TOR signalling placed demands upon a large number of biological processes including autophagy, mRNA metabolic processing and nucleocytoplasmic transport. Importantly, novel biological processes and all processes known to be regulated by TOR were identified in our screens. In addition, deletion of 62 genes conserved in humans gave rise to strong sensitivity or resistance to Torin1, and 29 of these 62 genes have novel links to TOR signalling. The identification of chromatin and transcriptional regulation, nutritional uptake and transport pathways in this powerful genetic model now paves the way for a molecular understanding of how cells adapt to the chronic and acute fluctuations in nutrient supply that all eukaryotes experience at some stage, and which is a key feature of cancer cells within solid tumours.
Collapse
Affiliation(s)
- Shervi Lie
- Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Peter Banks
- High Throughput Screening Facility, Newcastle Biomedicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Conor Lawless
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - David Lydall
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia .,South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000, Australia
| |
Collapse
|
20
|
Jaber FA, Khan NM, Ansari MY, Al-Adlaan AA, Hussein NJ, Safadi FF. Autophagy plays an essential role in bone homeostasis. J Cell Physiol 2019; 234:12105-12115. [PMID: 30820954 DOI: 10.1002/jcp.27071] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022]
Abstract
Autophagy is very critical for multiple cellular processes. Autophagy plays a critical role in bone cell differentiation and function.
Collapse
Affiliation(s)
- Fatima A Jaber
- Department of Biology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED) School of Medicine, Rootstown, Ohio.,School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Nazir M Khan
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED) School of Medicine, Rootstown, Ohio
| | - Mohammad Y Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED) School of Medicine, Rootstown, Ohio
| | - Asaad A Al-Adlaan
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED) School of Medicine, Rootstown, Ohio.,School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Nazar J Hussein
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED) School of Medicine, Rootstown, Ohio.,School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED) School of Medicine, Rootstown, Ohio.,School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio.,Department of Orthopedic Surgery, SUMMA Health System, Akron, Ohio.,Rebecca D. Considine Research Institute Akron Children's Hospital, Akron, Ohio
| |
Collapse
|
21
|
Kaur P, Choudhury D. Insulin Promotes Wound Healing by Inactivating NFkβP50/P65 and Activating Protein and Lipid Biosynthesis and alternating Pro/Anti-inflammatory Cytokines Dynamics. Biomol Concepts 2019; 10:11-24. [DOI: 10.1515/bmc-2019-0002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
AbstractFour hundred and twenty-two million people have diabetes due to excess free body glucose in their body fluids. Diabetes leads to various problems including retinopathy, neuropathy, arthritis, damage blood vessels etc; it also causes a delay in wound healing. Insufficiency of insulin is the main reason for diabetes-I and systemic insulin treatment is a remedy. The perspective of the potential use of insulin/insulin based drugs to treat chronic wounds in diabetic conditions is focused on in this review. At the site of the wound, TNF-ɑ, IFN-ϒ, IL-1β and IL-6 pro-inflammatory cytokines cause the generation of free radicals, leading to inflammation which becomes persistent in diabetes. Insulin induces expression of IL-4/IL-13, IL-10 anti-inflammatory cytokines etc which further down-regulates NFkβP50/P65 assembly. Insulin shifts the equilibrium towards NFkβP50/P50 which leads to down-regulation of inflammatory cytokines such as IL-6, IL-10 etc through STAT6, STAT3 and c-Maf activation causing nullification of an inflammatory condition. Insulin also promotes protein and lipid biosynthesis which indeed promotes wound recovery. Here, in this article, the contributions of insulin in controlling wound tissue microenvironments and remodulation of tissue have been summarised, which may be helpful to develop novel insulin-based formulation(s) for effective treatment of wounds in diabetic conditions.
Collapse
Affiliation(s)
- Pawandeep Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India
| |
Collapse
|
22
|
Jha Y. Endophytic bacteria mediated anti-autophagy and induced catalase, β-1,3-glucanases gene in paddy after infection with pathogen Pyricularia grisea. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42360-018-00106-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Duan Y, Li F, Guo Q, Wang W, Zhang L, Wen C, Chen X, Yin Y. β-Hydroxy-β-methyl Butyrate Is More Potent Than Leucine in Inhibiting Starvation-Induced Protein Degradation in C2C12 Myotubes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:170-176. [PMID: 29227681 DOI: 10.1021/acs.jafc.7b04841] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Leucine (Leu) and its metabolites α-ketoisocaproate (KIC) and β-hydroxy-β-methyl butyrate (HMB) are potent regulators of protein turnover. The aim of this study was to compare the inhibitory effects of Leu, KIC, and HMB on protein degradation and to investigate the mechanisms involved. The results showed that the inhibitory effect of HMB (0.38 ± 0.04) was more potent than that of Leu (0.76 ± 0.04) and KIC (0.56 ± 0.04, P < 0.01), and was significantly abolished in the presence of LY294002 (1.48 ± 0.02) and rapamycin (1.96 ± 0.02, P < 0.01). In the presence of insulin, the inhibitory effect of HMB (0.34 ± 0.03) was still more effective than that of Leu (0.60 ± 0.04) and KIC (0.57 ± 0.08, P < 0.05). Interestingly, LY294002 treatment markedly attenuated the effect of HMB, while rapamycin treatment failed to exert the same effect. Thus, HMB appears to be more potent than Leu and KIC in inhibiting protein degradation in the absence or presence of insulin, and this inhibitory effect may be dependent on PI3K/Akt signaling pathway regardless of insulin, and mTOR signaling was only involved in this effect of HMB in the absence of insulin.
Collapse
Affiliation(s)
- Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture , Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengna Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture , Changsha 410125, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Qiuping Guo
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture , Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wenlong Wang
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University , Changsha, Hunan 410018, China
| | - Lingyu Zhang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture , Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chaoyue Wen
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University , Changsha, Hunan 410018, China
| | - Xiao'an Chen
- Hunan Shengshi Fenghua Biological Technology Co., Ltd., Longhui 422200, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture , Changsha 410125, China
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University , Changsha, Hunan 410018, China
| |
Collapse
|
24
|
Abstract
Parkinson's disease is a progressive neurodegenerative disease characterized by Lewy body pathology of which the primary constituent is aggregated misfolded alpha-synuclein protein. Currently, there are no clinical therapies for treatment of the underlying alpha-synuclein dysfunction and accumulation, and the standard of care for patients with Parkinson's disease focuses only on symptom management, creating an immense therapeutic gap that needs to be filled. Defects in autophagy have been strongly implicated in Parkinson's disease. Here, we review evidence from human, mouse, and cell culture studies to briefly explain these defects in autophagy in Parkinson's disease and the necessity for autophagy to be carefully and precisely tuned to maintain neuron survival. We summarize recent experimental agents for treating alpha-synuclein accumulation in α-synuclein Parkinson's disease and related synucleinopathies. Most of the efforts for developing experimental agents have focused on immunotherapeutic strategies, but we discuss why those efforts are misplaced. Finally, we emphasize why increasing autophagy flux for alpha-synuclein clearance is the most promising therapeutic strategy. Activating autophagy has been successful in preclinical models of Parkinson's disease and yields promising results in clinical trials.
Collapse
Affiliation(s)
- Alan J Fowler
- Department of Neurology, Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Room 203-C, Building D, 4000 Reservoir Rd. NW, Washington, DC, USA
| | - Charbel E-H Moussa
- Department of Neurology, Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Room 203-C, Building D, 4000 Reservoir Rd. NW, Washington, DC, USA.
| |
Collapse
|
25
|
Compensatory role of Neuroglobin in nervous and non-nervous cancer cells in response to the nutrient deprivation. PLoS One 2017; 12:e0189179. [PMID: 29216269 PMCID: PMC5720711 DOI: 10.1371/journal.pone.0189179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/21/2017] [Indexed: 12/19/2022] Open
Abstract
Environmental factors or adverse growth conditions that may reduce cell function or viability are considered stress. The cell ability to sense and respond to environmental stresses determine its function and survival destiny. We recently defined Neuroglobin (NGB), a heme-protein, as a compensatory protein in the 17β-Estradiol (E2) anti-apoptotic activity and as a sensor of oxidative stress in both neurons and breast cancer cells. Here, the possibility that NGB levels could represent a pivotal regulator of integrated response of cancer cells to stress has been evaluated. Data obtained in neuroblastoma and in breast cancer cell lines evidence that nutrient deprivation significantly up-regulated NGB levels at different time points. However, the analysis of autophagy activation led to exclude any possible role of stress- or E2-induced NGB in the upstream regulation of general autophagy. However, the over-expression of Flag-NGB in ERα stable transfected HEK-293 cells completely affects nutrient deprivation-induced decrease in cell number. In addition, reported results indicate that modulation of the anti-apoptotic Bcl-2 level may play a key role in the protective NGB function against energetic stress. Overall, these data define a role of NGB as compensatory protein in the cell machinery activated in response to stress and as general stress adaptation marker of cancer cells susceptible to oxidative stress, oxygen and, as demonstrated here for the first time, even to nutrient willingness. Despite the lacking of any direct NGB role on autophagic flux activated by energetic stress, NGB upregulation appears functional in delaying stress-related cell death allowing an appropriate cell response and adaptation to the changing extracellular conditions.
Collapse
|
26
|
Zhu S, Lin G, Song C, Wu Y, Feng N, Chen W, He Z, Chen YQ. RA and ω-3 PUFA co-treatment activates autophagy in cancer cells. Oncotarget 2017; 8:109135-109150. [PMID: 29312596 PMCID: PMC5752509 DOI: 10.18632/oncotarget.22629] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
Retinoic acid (RA), is a promising therapeutic agent for the treatment of breast cancer. However, metabolic disorders and drug resistance reduce the efficacy of RA. In this study, we found that RA and ω-3 polyunsaturated fatty acids (ω-3 PUFAs) synergistically induced cell death in vitro and in vivo and autophagy activation. Moreover, RA-induced hypercholesterolemia was completely corrected by ω-3 PUFA supplementation. In addition, we demonstrated that the effects of this combination on the autophagic flux were independent of the two major canonic regulatory complexes controlling autophagic vesicle formation. The treatment activated Gαq-p38 MAPK signaling pathways, which resulted in autophagy of breast cancer cells. Knockdown of Gαq or P38 expression prevented RA and ω-3 PUFAs from inducing autophagy. Data indicated that Gαq-p38activation was mediated by the co-activation of GPR40 and RARα in lipid rafts, rather than by the activation of GPR120, RARβ, or RARγ. The results of this study suggest that hyperlipidemic drug side effects may be ameliorated by the administration of ω-3 PUFAs. Thus, the therapeutic indexes of the corresponding drugs may be increased.
Collapse
Affiliation(s)
- Shenglong Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Guangxiao Lin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ci Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yikuan Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ninghan Feng
- Wuxi Medical School, Jiangnan University, Wuxi, China.,Wuxi No. 2 Hospital, Jiangsu, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineer Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Zhao He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Wuxi Medical School, Jiangnan University, Wuxi, China.,National Engineer Research Center for Functional Food, Jiangnan University, Wuxi, China.,School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| |
Collapse
|
27
|
Yuan R, Hou Y, Sun W, Yu J, Liu X, Niu Y, Lu JJ, Chen X. Natural products to prevent drug resistance in cancer chemotherapy: a review. Ann N Y Acad Sci 2017; 1401:19-27. [DOI: 10.1111/nyas.13387] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/22/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Renyikun Yuan
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Wen Sun
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Yanan Niu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| |
Collapse
|
28
|
Karim MR, Kadowaki M. Effect and proposed mechanism of vitamin C modulating amino acid regulation of autophagic proteolysis. Biochimie 2017; 142:51-62. [PMID: 28804003 DOI: 10.1016/j.biochi.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Abstract
Autophagy is an intracellular bulk degradation process, induced under nutrient starvation. Failure of autophagy has been recognized as a contributor to aging and multiple age related neurodegenerative diseases. Improving autophagy is a beneficial anti-aging strategy, however very few physiological regulators have been identified. Here, we demonstrate that vitamin C is a nutritional stimulator of autophagy. Supplementation of fresh hepatocytes with vitamin C increased autophagic proteolysis significantly in the presence of amino acids in a dose- and time-dependent manner, although no effect was observed in the absence of amino acids. In addition, inhibitor studies with 3-methyladenine, chloroquine, leupeptin and β-lactone confirmed that vitamin C is active through the lysosomal autophagy and not the proteasome pathway. Furthermore, the autophagy marker LC3 protein was significantly increased by vitamin C, suggesting its possible site of action is at the formation step. Both the reduced (ascorbic acid, AsA) and oxidized form (dehydroascorbic acid, DHA) of vitamin C exhibited equal enhancing effect, indicating that the effect does not depend on the anti-oxidation functionality of vitamin C. To understand the mechanism, we established that the effective dose (50 μM) was 15× lower than the intracellular content suggesting these would be only a minor influx from the extracellular pool. Moreover, transporter inhibitor studies in an AsA deficient ODS model rat revealed more accurately that the enhancing effect on autophagic proteolysis still existed, even though the intracellular influx of AsA was blocked. Taken together, these results provide evidence that vitamin C can potentially act through extracellular signaling.
Collapse
Affiliation(s)
- Md Razaul Karim
- Department of Applied Biological Chemistry, Graduate School of Science and Technology, Niigata University, Nishi-Ku, Niigata, 950-2181, Japan.
| | - Motoni Kadowaki
- Department of Applied Biological Chemistry, Graduate School of Science and Technology, Niigata University, Nishi-Ku, Niigata, 950-2181, Japan; Center for Transdisciplinary Research, Niigata University, Nishi-Ku, Niigata, 950-2181, Japan
| |
Collapse
|
29
|
Faleo G, Russ HA, Wisel S, Parent AV, Nguyen V, Nair GG, Freise JE, Villanueva KE, Szot GL, Hebrok M, Tang Q. Mitigating Ischemic Injury of Stem Cell-Derived Insulin-Producing Cells after Transplant. Stem Cell Reports 2017; 9:807-819. [PMID: 28803916 PMCID: PMC5599226 DOI: 10.1016/j.stemcr.2017.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022] Open
Abstract
The advent of large-scale in vitro differentiation of human stem cell-derived insulin-producing cells (SCIPC) has brought us closer to treating diabetes using stem cell technology. However, decades of experiences from islet transplantation show that ischemia-induced islet cell death after transplant severely limits the efficacy of the therapy. It is unclear to what extent human SCIPC are susceptible to ischemia. In this study, we show that more than half of SCIPC die shortly after transplantation. Nutrient deprivation and hypoxia acted synergistically to kill SCIPC in vitro. Amino acid supplementation rescued SCIPC from nutrient deprivation, likely by providing cellular energy. Generating SCIPC under physiological oxygen tension of 5% conferred hypoxia resistance without affecting their differentiation or function. A two-pronged strategy of physiological oxygen acclimatization during differentiation and amino acid supplementation during transplantation significantly improved SCIPC survival after transplant. Stem cell-derived insulin-producing cells (SCIPC) are susceptible to ischemic injury Amino acid supplementation prevents nutrient-deprivation-induced SCIPC death Generation of SCIPC at physiological oxygen levels protects them against hypoxia Both strategies combined preserve SCIPC graft viability in vivo upon transplant
Collapse
Affiliation(s)
- Gaetano Faleo
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Holger A Russ
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA; Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Steven Wisel
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Audrey V Parent
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Vinh Nguyen
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Gopika G Nair
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jonathan E Freise
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Karina E Villanueva
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Gregory L Szot
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA; UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
30
|
Huang FC. The Role of Sphingolipids on Innate Immunity to Intestinal Salmonella Infection. Int J Mol Sci 2017; 18:ijms18081720. [PMID: 28783107 PMCID: PMC5578110 DOI: 10.3390/ijms18081720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023] Open
Abstract
Salmonella spp. remains a major public health problem for the whole world. To reduce the use of antimicrobial agents and drug-resistant Salmonella, a better strategy is to explore alternative therapy rather than to discover another antibiotic. Sphingolipid- and cholesterol-enriched lipid microdomains attract signaling proteins and orchestrate them toward cell signaling and membrane trafficking pathways. Recent studies have highlighted the crucial role of sphingolipids in the innate immunity against infecting pathogens. It is therefore mandatory to exploit the role of the membrane sphingolipids in the innate immunity of intestinal epithelia infected by this pathogen. In the present review, we focus on the role of sphingolipids in the innate immunity of intestinal epithelia against Salmonella infection, including adhesion, autophagy, bactericidal effect, barrier function, membrane trafficking, cytokine and antimicrobial peptide expression. The intervention of sphingolipid-enhanced foods to make our life healthy or pharmacological agents regulating sphingolipids is provided at the end.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
31
|
Sung JY, Lee KY, Kim JR, Choi HC. Interaction between mTOR pathway inhibition and autophagy induction attenuates adriamycin-induced vascular smooth muscle cell senescence through decreased expressions of p53/p21/p16. Exp Gerontol 2017; 109:51-58. [PMID: 28797827 DOI: 10.1016/j.exger.2017.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 01/18/2023]
Abstract
Cellular senescence is related to aging and extremely stable proliferative arrest with active metabolism. Senescent cells can activate mammalian target of rapamycin (mTOR) pathway, which plays a crucial role in the regulation of cell metabolism, cellular growth, and autophagy in senescence-associated cardiovascular diseases. Therefore, we examined whether mTOR pathway could induce cellular senescence by inhibition of autophagy in vascular smooth muscle cells (VSMCs). We found that adriamycin-induced VSMC senescence is accompanied by increased activity of mTOR, a major controller of cell growth and a negative regulator of autophagy. VSMC senescence induced by activation of mTOR pathway led to reduced levels of signal-associated autophagy proteins, and inhibition of mTOR pathway resulted in a drastic decrease in the number of senescence-associated β-galactosidase (SA-β-gal)-stained cells and increased levels of signal-associated autophagy proteins. Autophagic inhibition potentiated adriamycin-induced mTOR pathway activation as well as increase in the number of SA-β-gal-stained VSMCs. Results of further experiments showed that mTOR pathway inhibition regulates adriamycin-induced expression of senescence markers (p53/p21/p16), which plays an important role in different aspects of cellular aging. Taken together, these results support the idea that intervention to modulate the interaction between mTOR pathway and autophagy could be a potential strategy for longevity.
Collapse
Affiliation(s)
- Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Kyung Young Lee
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea.
| |
Collapse
|
32
|
Madrigal-Matute J. Bile Acids: The Hidden Gateway Behind Autophagy Modulation in the Liver. Cell Mol Gastroenterol Hepatol 2017; 3:133-134. [PMID: 28275678 PMCID: PMC5331776 DOI: 10.1016/j.jcmgh.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Julio Madrigal-Matute
- Correspondence Address correspondence to: Julio Madrigal-Matute, PhD, Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461.Department of Developmental and Molecular BiologyInstitute for Aging StudiesAlbert Einstein College of Medicine1300 Morris Park AvenueBronxNew York 10461
| |
Collapse
|
33
|
van Niekerk G, Loos B, Nell T, Engelbrecht AM. Autophagy--A free meal in sickness-associated anorexia. Autophagy 2016; 12:727-34. [PMID: 27050464 DOI: 10.1080/15548627.2016.1147672] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Activation of the immune system is metabolically costly, yet a hallmark of an infection is a reduction in appetite with a subsequent reduction in metabolite provision. What is the functional value of decreasing nutrient intake when an infection imposes large demands on metabolic parameters? Here, we propose that sickness-associated anorexia (SAA) upregulates the ancient process of autophagy systemically, thereby profoundly controlling not only immune- but also nonimmune-competent cells. This allows an advanced impact on the resolution of an infection through direct pathogen killing, enhancement of epitope presentation and the contribution toward the clearance of noxious factors. By rendering a 'free meal,' autophagy is thus most fundamentally harnessed during an anorexic response in order to promote both host tolerance and resistance. These findings strongly suggest a reassessment of numerous SAA-related clinical applications and a re-evaluation of current efforts in patient care.
Collapse
Affiliation(s)
- Gustav van Niekerk
- a Department of Physiological Sciences , Stellenbosch University , Stellenbosch , South Africa
| | - Ben Loos
- b Department of Physiological Sciences , Faculty of Natural Sciences, Stellenbosch University , Stellenbosch , South Africa
| | - Theo Nell
- b Department of Physiological Sciences , Faculty of Natural Sciences, Stellenbosch University , Stellenbosch , South Africa
| | - Anna-Mart Engelbrecht
- b Department of Physiological Sciences , Faculty of Natural Sciences, Stellenbosch University , Stellenbosch , South Africa
| |
Collapse
|
34
|
Carbohydrate intake and resistance-based exercise: are current recommendations reflective of actual need? Br J Nutr 2016; 116:2053-2065. [PMID: 27993175 DOI: 10.1017/s0007114516003949] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Substantial research has been completed examining the impact of carbohydrate (CHO) intake on endurance exercise, whereas its role in resistance-based exercise performance, adaptation and cell signalling has yet to be fully characterised. This empirical shortcoming has precluded the ability to establish specific CHO recommendations for resistance exercise. This results in recommendations largely stemming from findings based on endurance exercise and/or anecdotal evidence despite the distinct energetic demands and molecular responses mediating adaptation from endurance- and resistance-based exercise. Moreover, the topic of CHO and exercise has become one of polarising nature with divergent views - some substantiated, others lacking evidence. Current literature suggests a moderately high daily CHO intake (3-7 g/kg per d) for resistance training, which is thought to prevent glycogen depletion and facilitate performance and adaptation. However, contemporary investigation, along with an emerging understanding of the molecular underpinnings of resistance exercise adaptation, may suggest that such an intake may not be necessary. In addition to the low likelihood of true glycogen depletion occurring in response to resistance exercise, a diet restrictive in CHO may not be detrimental to acute resistance exercise performance or the cellular signalling activity responsible for adaptation, even when muscle glycogen stores are reduced. Current evidence suggests that signalling of the mammalian target of rapamycin complex 1, the key regulatory kinase for gene translation (protein synthesis), is unaffected by CHO restriction or low muscular glycogen concentrations. Such findings may call into question the current view and subsequent recommendations of CHO intake with regard to resistance-based exercise.
Collapse
|
35
|
van Niekerk G, Isaacs AW, Nell T, Engelbrecht AM. Sickness-Associated Anorexia: Mother Nature's Idea of Immunonutrition? Mediators Inflamm 2016; 2016:8071539. [PMID: 27445441 PMCID: PMC4942670 DOI: 10.1155/2016/8071539] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023] Open
Abstract
During an infection, expansion of immune cells, assembly of antibodies, and the induction of a febrile response collectively place continual metabolic strain on the host. These considerations also provide a rationale for nutritional support in critically ill patients. Yet, results from clinical and preclinical studies indicate that aggressive nutritional support does not always benefit patients and may occasionally be detrimental. Moreover, both vertebrates and invertebrates exhibit a decrease in appetite during an infection, indicating that such sickness-associated anorexia (SAA) is evolutionarily conserved. It also suggests that SAA performs a vital function during an infection. We review evidence signifying that SAA may present a mechanism by which autophagic flux is upregulated systemically. A decrease in serum amino acids during an infection promotes autophagy not only in immune cells, but also in nonimmune cells. Similarly, bile acids reabsorbed postprandially inhibit hepatic autophagy by binding to farnesoid X receptors, indicating that SAA may be an attempt to conserve autophagy. In addition, augmented autophagic responses may play a critical role in clearing pathogens (xenophagy), in the presentation of epitopes in nonprovisional antigen presenting cells and the removal of damaged proteins and organelles. Collectively, these observations suggest that some patients might benefit from permissive underfeeding.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| | - Ashwin W. Isaacs
- Department of Physiological Sciences, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| | - Theo Nell
- Department of Physiological Sciences, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| |
Collapse
|
36
|
Choi SR, Chung BY, Kim SW, Kim CD, Yun WJ, Lee MW, Choi JH, Chang SE. Activation of autophagic pathways is related to growth inhibition and senescence in cutaneous squamous cell carcinoma. Exp Dermatol 2016; 23:718-24. [PMID: 25046976 DOI: 10.1111/exd.12515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2014] [Indexed: 12/21/2022]
Abstract
Cutaneous squamous cell carcinoma (SCC) is a very common resectable cancer; however, cutaneous SCC is highly resistant to chemotherapy if metastasis develops. Activating transcription factor 3 (ATF3) has been suggested as a marker of advanced or metastatic cutaneous SCC. Autophagy is one of the most important mechanisms in cancer biology and commonly induced by in vitro serum starvation. To investigate the role of autophagy activation in cutaneous SCC, we activated autophagic pathways by serum starvation in SCC13 and ATF3-overexpressing SCC13 (ATF3-SCC13) cell lines. ATF3-SCC13 cells demonstrated high proliferative capacity and low p53 and autophagy levels in comparison with control SCC13 cells under basal conditions. Intriguingly, autophagic stimulation via serum starvation resulted in growth inhibition and senescence in both cells, while ATF3-SCC13 cells further demonstrated growth inhibition and senescence. Apoptosis was not significantly induced by autophagy activation. Taken together, autophagy activation may be a promising antitumor approach for advanced cutaneous SCC.
Collapse
Affiliation(s)
- So Ra Choi
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) has gained importance in recent decades due to drastic changes in diet, especially in Western countries. NAFLD occurs as a spectrum from simple hepatic steatosis, steatohepatitis to cirrhosis, and even hepatocellular carcinoma. Although the molecular mechanisms underlying the development of NAFLD have been intensively investigated, many issues remain to be resolved. Autophagy is a cell survival mechanism for disposing of excess or defective organelles, and has become a hot spot for research. Recent studies have revealed that autophagy is linked to the development of NAFLD and regulation of autophagy has therapeutic potential. Autophagy reduces intracellular lipid droplets by enclosing them and fusing with lysosomes for degradation. Furthermore, autophagy is involved in attenuating inflammation and liver injury. However, autophagy is regarded as a double-edged sword, as it may also affect adipogenesis and adipocyte differentiation. Moreover, it is unclear as to whether autophagy protects the body from injury or causes diseases and even death, and the association between autophagy and NAFLD remains controversial. This review is intended to discuss, comment, and outline the progress made in this field and establish the possible molecular mechanism involved.
Collapse
Affiliation(s)
- Yuqing Mao
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Fujun Yu
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jianbo Wang
- Department of Gastroenterology and Hepatology, The Central Hospital of Lishui City, Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology and Hepatology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - Xiaoming Fan
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
38
|
Brain metabolism as a modulator of autophagy in neurodegeneration. Brain Res 2016; 1649:158-165. [PMID: 26970520 DOI: 10.1016/j.brainres.2016.02.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/03/2016] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
Emerging evidence that autophagy serves as a sweeper for toxic materials in the brain gives us new insight into the pathophysiology of neurodegenerative diseases. Autophagy is important for maintaining cellular homeostasis associated with metabolism. Some neurodegenerative diseases such as Alzheimer׳s and Parkinson׳s diseases are accompanied by altered metabolism and autophagy in the brain. In this review, we discuss how hormones and nutrients regulate autophagy in the brain and affect neurodegeneration. This article is part of a Special Issue entitled SI:Autophagy.
Collapse
|
39
|
Liu Y, Takahashi Y, Desai N, Zhang J, Serfass JM, Shi YG, Lynch CJ, Wang HG. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci Rep 2016; 6:20453. [PMID: 26857140 PMCID: PMC4746598 DOI: 10.1038/srep20453] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/04/2016] [Indexed: 12/27/2022] Open
Abstract
Bif-1 is a membrane-curvature inducing protein that is implicated in the regulation of autophagy and tumorigenesis. Here, we report that Bif-1 plays a critical role in regulating lipid catabolism to control the size of lipid droplets and prevent the development of obesity and insulin resistance upon aging or dietary challenge. Our data show that Bif-1 deficiency promotes the expansion of adipose tissue mass without altering food intake or physical activities. While Bif-1 is dispensable for adipose tissue development, its deficiency reduces the basal rate of adipose tissue lipolysis and results in adipocyte hypertrophy upon aging. The importance of Bif-1 in lipid turnover is not limited to adipose tissue since fasting and refeeding-induced lipid droplet clearance is also attenuated by Bif-1 loss in the liver. Interestingly, obesity induced by a high fat-diet or Bif-1 deficiency downregulates the expression of proteins involved in the autophagy-lysosomal pathway, including Atg9a and Lamp1 in the adipose tissue. These findings thus identify Bif-1 as a novel regulator of lipid homeostasis to prevent the pathogenesis of obesity and its associated metabolic complications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Yoshinori Takahashi
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Neelam Desai
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Jun Zhang
- Department of Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Jacob M. Serfass
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Yu-Guang Shi
- Department of Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Christopher J. Lynch
- Department of Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Hong-Gang Wang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
40
|
Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. Gastroenterology 2016; 150:328-39. [PMID: 26453774 PMCID: PMC4728051 DOI: 10.1053/j.gastro.2015.09.042] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/27/2015] [Accepted: 09/17/2015] [Indexed: 02/06/2023]
Abstract
Intracellular components must be recycled for cells to maintain energy and ensure quality control of proteins and organelles. Autophagy is a highly conserved recycling process that involves degradation of cellular constituents in lysosomes. Although autophagy regulates a number of cell functions, it was first found to maintain energy balance in liver cells. As our understanding of autophagy has increased, we have found its connections to energy regulation in liver cells to be tight and complex. We review 3 mechanisms by which hepatic autophagy monitors and regulates cellular metabolism. Autophagy provides essential components (amino acids, lipids, and carbohydrates) required to meet the cell's energy needs, and it also regulates energy supply by controlling the number, quality, and dynamics of the mitochondria. Finally, autophagy also modulates levels of enzymes in metabolic pathways. In light of the multiple ways in which autophagy participates to control liver metabolism, it is no surprise that dysregulation of autophagy has been associated with metabolic diseases such as obesity, diabetes, or metabolic syndrome, as well as liver-specific disorders such as fatty liver, nonalcoholic steatohepatitis, and hepatocellular carcinoma. We discuss some of these connections and how hepatic autophagy might serve as a therapeutic target in common metabolic disorders.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
41
|
Structure–activity relations of leucine derivatives reveal critical moieties for cellular uptake and activation of mTORC1-mediated signaling. Amino Acids 2016; 48:1045-1058. [DOI: 10.1007/s00726-015-2158-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 12/16/2015] [Indexed: 01/21/2023]
|
42
|
Rosiglitazone improves learning and memory ability in rats with type 2 diabetes through the insulin signaling pathway. Am J Med Sci 2015; 350:121-8. [PMID: 25973687 DOI: 10.1097/maj.0000000000000499] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus (DM) is associated with moderate cognitive deficits and neurophysiologic and structural changes in the brain, a condition that is referred to as diabetic encephalopathy. This study was performed to investigate the effect of rosiglitazone (RSG) on learning and memory in rats with DM and elucidate possible mechanisms underlying this condition. Thirty-two male Sprague-Dawley rats were randomly divided into 4 groups: control (C, n = 8), DM (n = 8), RSG-administered control (C + RSG, n = 8) and RSG-administered DM groups (DM + RSG, n = 8). At 8 weeks after drug administration, Morris water maze was used to perform a training and probe trial to detect spatial learning and memory abilities. Western blot and immunohistochemistry were also used to detect changes in proteins involved in the insulin signal transduction pathway, such as the insulin receptor, insulin receptor substrate-1, protein kinase B, phosphorylated cAMP response element-binding protein and B-cell lymphoma 2, in the hippocampus of the rats. This study found that RSG could normalize the impaired insulin signal transduction in type 2 DM. The authors showed that RSG modulated the central insulin signaling axis.
Collapse
|
43
|
Meijer AJ, Lorin S, Blommaart EF, Codogno P. Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids 2015; 47:2037-63. [PMID: 24880909 PMCID: PMC4580722 DOI: 10.1007/s00726-014-1765-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/12/2014] [Indexed: 01/05/2023]
Abstract
Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins and of the elimination of damaged or functionally redundant organelles. Proper functioning of this process is essential for cell survival. Dysregulation of autophagy has been implicated in the etiology of several pathologies. The history of the studies on the interrelationship between amino acids, MTOR signaling and autophagy is the subject of this review. The mechanisms responsible for the stimulation of MTOR-mediated signaling, and the inhibition of autophagy, by amino acids have been studied intensively in the past but are still not completely clarified. Recent developments in this field are discussed.
Collapse
Affiliation(s)
- Alfred J Meijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | - Séverine Lorin
- UPRES EA4530, Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Edward F Blommaart
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Patrice Codogno
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, 14 rue Maria Helena Vieira Da Silva CS61431, 75993, Paris Cedex 14, France
| |
Collapse
|
44
|
Kuhn H, Sopko R, Coughlin M, Perrimon N, Mitchison T. The Atg1-Tor pathway regulates yolk catabolism in Drosophila embryos. Development 2015; 142:3869-78. [PMID: 26395483 DOI: 10.1242/dev.125419] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/01/2015] [Indexed: 01/31/2023]
Abstract
Yolk provides an important source of nutrients during the early development of oviparous organisms. It is composed mainly of vitellogenin proteins packed into membrane-bound compartments called yolk platelets. Catabolism of yolk is initiated by acidification of the yolk platelet, leading to the activation of Cathepsin-like proteinases, but it is unknown how this process is triggered. Yolk catabolism initiates at cellularization in Drosophila melanogaster embryos. Using maternal shRNA technology we found that yolk catabolism depends on the Tor pathway and on the autophagy-initiating kinase Atg1. Whereas Atg1 was required for a burst of spatially regulated autophagy during late cellularization, autophagy was not required for initiating yolk catabolism. We propose that the conserved Tor metabolic sensing pathway regulates yolk catabolism, similar to Tor-dependent metabolic regulation on the lysosome.
Collapse
Affiliation(s)
- Hallie Kuhn
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Richelle Sopko
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Margaret Coughlin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Tim Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
45
|
The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 2015; 48:41-51. [DOI: 10.1007/s00726-015-2067-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/29/2015] [Indexed: 01/30/2023]
|
46
|
Chandra V, Bhagyaraj E, Parkesh R, Gupta P. Transcription factors and cognate signalling cascades in the regulation of autophagy. Biol Rev Camb Philos Soc 2015; 91:429-51. [PMID: 25651938 DOI: 10.1111/brv.12177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 01/04/2015] [Accepted: 01/11/2015] [Indexed: 12/11/2022]
Abstract
Autophagy is a process that maintains the equilibrium between biosynthesis and the recycling of cellular constituents; it is critical for avoiding the pathophysiology that results from imbalance in cellular homeostasis. Recent reports indicate the need for the design of high-throughput screening assays to identify targets and small molecules for autophagy modulation. For such screening, however, a better understanding of the regulation of autophagy is essential. In addition to regulation by various signalling cascades, regulation of gene expression by transcription factors is also critical. This review focuses on the various transcription factors as well as the corresponding signalling molecules that act together to translate the stimuli to effector molecules that up- or downregulate autophagy. This review rationalizes the importance of these transcription factors functioning in tandem with cognate signalling molecules and their interfaces as possible therapeutic targets for more specific pharmacological interventions.
Collapse
Affiliation(s)
- Vemika Chandra
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Ella Bhagyaraj
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Raman Parkesh
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Pawan Gupta
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
47
|
Zhang Y, Wu L, Jiang C, Yan B. Reprogramming Cellular Signaling Machinery Using Surface-Modified Carbon Nanotubes. Chem Res Toxicol 2015; 28:296-305. [DOI: 10.1021/tx500480d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yi Zhang
- School of Chemistry
and Chemical
Engineering, Shandong University, Jinan 250100, China
| | - Ling Wu
- School of Chemistry
and Chemical
Engineering, Shandong University, Jinan 250100, China
| | - Cuijuan Jiang
- School of Chemistry
and Chemical
Engineering, Shandong University, Jinan 250100, China
| | - Bing Yan
- School of Chemistry
and Chemical
Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
48
|
Delorme-Axford E, Guimaraes RS, Reggiori F, Klionsky DJ. The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression. Methods 2014; 75:3-12. [PMID: 25526918 DOI: 10.1016/j.ymeth.2014.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022] Open
Abstract
Macroautophagy (hereafter autophagy) is a highly evolutionarily conserved process essential for sustaining cellular integrity, homeostasis, and survival. Most eukaryotic cells constitutively undergo autophagy at a low basal level. However, various stimuli, including starvation, organelle deterioration, stress, and pathogen infection, potently upregulate autophagy. The hallmark morphological feature of autophagy is the formation of the double-membrane vesicle known as the autophagosome. In yeast, flux through the pathway culminates in autophagosome-vacuole fusion, and the subsequent degradation of the resulting autophagic bodies and cargo by vacuolar hydrolases, followed by efflux of the breakdown products. Importantly, aberrant autophagy is associated with diverse human pathologies. Thus, there is a need for ongoing work in this area to further understand the cellular factors regulating this process. The field of autophagy research has grown exponentially in recent years, and although numerous model organisms are being used to investigate autophagy, the baker's yeast Saccharomyces cerevisiae remains highly relevant, as there are significant and unique benefits to working with this organism. In this review, we will focus on the current methods available to evaluate and monitor autophagy in S. cerevisiae, which in several cases have also been subsequently exploited in higher eukaryotes.
Collapse
Affiliation(s)
| | - Rodrigo Soares Guimaraes
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Cell Biology, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Cell Biology, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
49
|
Nakaoka M, Iwai-Kanai E, Katamura M, Okawa Y, Mita Y, Matoba S. An alpha-adrenergic agonist protects hearts by inducing Akt1-mediated autophagy. Biochem Biophys Res Commun 2014; 456:250-6. [PMID: 25446079 DOI: 10.1016/j.bbrc.2014.11.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 01/07/2023]
Abstract
Alpha-adrenergic agonists is known to be protective in cardiac myocytes from apoptosis induced by beta-adrenergic stimulation. Although there has been a recent focus on the role of cardiac autophagy in heart failure, its role in heart failure with adrenergic overload has not yet been elucidated. In the present study, we investigated the contribution of autophagy to cardiac failure during adrenergic overload both in vitro and in vivo. Neonatal rat cardiac myocytes overexpressing GFP-tagged LC3 were prepared and stimulated with the alpha1-adrenergic agonist, phenylephrine (PE), the beta-adrenergic agonist, isoproterenol (ISO), or norepinephrine (NE) in order to track changes in the formation of autophagosomes in vitro. All adrenergic stimulators increased cardiac autophagy by stimulating autophagic flux. Blocking autophagy by the knockdown of autophagy-related 5 (ATG5) exacerbated ISO-induced apoptosis and negated the anti-apoptotic effects of PE, which indicated the cardioprotective role of autophagy during adrenergic overload. PE-induced cardiac autophagy was mediated by the PI3-kinase/Akt pathway, but not by MEK/ERK, whereas both pathways mediated the anti-apoptotic effects of PE. Knock down of Akt1 was the most essential among the three Akt family members examined for the induction of cardiac autophagy. The four-week administration of PE kept the high level of cardiac autophagy without heart failure in vivo, whereas autophagy levels in a myocardium impaired by four-week persistent administration of ISO or NE were the same with the control state. These present study indicated that cardiac autophagy played a protective role during adrenergic overload and also that the Akt pathway could mediate cardiac autophagy for the anti-apoptotic effects of the alpha-adrenergic pathway.
Collapse
Affiliation(s)
- Mikihiko Nakaoka
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eri Iwai-Kanai
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; Faculty of Health Care, Tenri Health Care University, 80-1 Bessho-cho, Tenri, Nara 632-0018, Japan.
| | - Maki Katamura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshifumi Okawa
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yuichiro Mita
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
50
|
Lim YM, Lim H, Hur KY, Quan W, Lee HY, Cheon H, Ryu D, Koo SH, Kim HL, Kim J, Komatsu M, Lee MS. Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat Commun 2014; 5:4934. [PMID: 25255859 DOI: 10.1038/ncomms5934] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/06/2014] [Indexed: 02/06/2023] Open
Abstract
Despite growing interest in the relationship between autophagy and systemic metabolism, how global changes in autophagy affect metabolism remains unclear. Here we show that mice with global haploinsufficiency of an essential autophagy gene (Atg7(+/-) mice) do not show metabolic abnormalities but develop diabetes when crossed with ob/ob mice. Atg7(+/-)-ob/ob mice show aggravated insulin resistance with increased lipid content and inflammatory changes, suggesting that autophagy haploinsufficiency impairs the adaptive response to metabolic stress. We further demonstrate that intracellular lipid content and insulin resistance after lipid loading are increased as a result of autophagy insufficiency, and provide evidence for increased inflammasome activation in Atg7(+/-)-ob/ob mice. Imatinib or trehalose improves metabolic parameters of Atg7(+/-)-ob/ob mice and enhances autophagic flux. These results suggest that systemic autophagy insufficiency could be a factor in the progression from obesity to diabetes, and autophagy modulators have therapeutic potential against diabetes associated with obesity and inflammation.
Collapse
Affiliation(s)
- Yu-Mi Lim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Hyejin Lim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Kyu Yeon Hur
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Wenying Quan
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Hae-Youn Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Hwanju Cheon
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Dongryeol Ryu
- Department of Molecular Cellular Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Seung-Hoi Koo
- Division of Life Science, Korea University, Seoul 136-713, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Jin Kim
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University School of Medicine, Niigata 950-2181, Japan
| | - Myung-Shik Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| |
Collapse
|