1
|
Ouassou H, Elhouda Daoudi N, Bouknana S, Abdnim R, Bnouham M. A Review of Antidiabetic Medicinal Plants as a Novel Source of Phosphodiesterase Inhibitors: Future Perspective of New Challenges Against Diabetes Mellitus. Med Chem 2024; 20:467-486. [PMID: 38265379 DOI: 10.2174/0115734064255060231116192839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 01/25/2024]
Abstract
Intracellular glucose concentration plays a crucial role in initiating the molecular secretory process of pancreatic β-cells through multiple messengers and signaling pathways. Cyclic nucleotides are key physiological regulators that modulate pathway interactions in β -cells. An increase of cyclic nucleotides is controled by hydrolysed phosphodiesterases (PDEs), which degrades cyclic nucleotides into inactive metabolites. Despite the undeniable therapeutic potential of PDE inhibitors, they are associated with several side effects. The treatment strategy for diabetes based on PDE inhibitors has been proposed for a long time. Hence, the world of natural antidiabetic medicinal plants represents an ideal source of phosphodiesterase inhibitors as a new strategy for developing novel agents to treat diabetes mellitus. This review highlights medicinal plants traditionally used in the treatment of diabetes mellitus that have been proven to have inhibitory effects on PDE activity. The contents of this review were sourced from electronic databases, including Science Direct, PubMed, Springer Link, Web of Science, Scopus, Wiley Online, Scifinder and Google Scholar. These databases were consulted to collect information without any limitation date. After comprehensive literature screening, this paper identified 27 medicinal plants that have been reported to exhibit anti-phosphodiesterase activities. The selection of these plants was based on their traditional uses in the treatment of diabetes mellitus. The review emphasizes the antiphosphodiesterase properties of 31 bioactive components derived from these plant extracts. Many phenolic compounds have been identified as PDE inhibitors: Brazilin, mesozygin, artonin I, chalcomaracin, norartocarpetin, moracin L, moracin M, moracin C, curcumin, gallic acid, caffeic acid, rutin, quercitrin, quercetin, catechin, kaempferol, chlorogenic acid, and ellagic acid. Moreover, smome lignans have reported as PDE inhibitors: (+)-Medioresinol di-O-β-d-glucopyranoside, (+)- Pinoresinol di-O-β-d-glucopyranoside, (+)-Pinoresinol-4-O-β-d-glucopyranosyl (1→6)-β-dglucopyranoside, Liriodendrin, (+)-Pinoresinol 4'-O-β-d-glucopyranoside, and forsythin. This review provides a promising starting point of medicinal plants, which could be further studied for the development of natural phosphodiesterase inhibitors to treat diabetes mellitus. Therefore, it is important to consider clinical studies for the identification of new targets for the treatment of diabetes.
Collapse
Affiliation(s)
- Hayat Ouassou
- Higher Institute of Nurses Professions and Health Techniques, Oujda 60000, Morocco
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| | - Saliha Bouknana
- Department of Biology, Faculty of Sciences, University Mohammed First, Boulevard Mohamed VI BP 717, Oujda 60040, Morocco
| | - Rhizlan Abdnim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| |
Collapse
|
2
|
Kilanowska A, Ziółkowska A. Role of Phosphodiesterase in the Biology and Pathology of Diabetes. Int J Mol Sci 2020; 21:E8244. [PMID: 33153226 PMCID: PMC7662747 DOI: 10.3390/ijms21218244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Glucose metabolism is the initiator of a large number of molecular secretory processes in β cells. Cyclic nucleotides as a second messenger are the main physiological regulators of these processes and are functionally divided into compartments in pancreatic cells. Their intracellular concentration is limited by hydrolysis led by one or more phosphodiesterase (PDE) isoenzymes. Literature data confirmed multiple expressions of PDEs subtypes, but the specific roles of each in pancreatic β-cell function, particularly in humans, are still unclear. Isoforms present in the pancreas are also found in various tissues of the body. Normoglycemia and its strict control are supported by the appropriate release of insulin from the pancreas and the action of insulin in peripheral tissues, including processes related to homeostasis, the regulation of which is based on the PDE- cyclic AMP (cAMP) signaling pathway. The challenge in developing a therapeutic solution based on GSIS (glucose-stimulated insulin secretion) enhancers targeted at PDEs is the selective inhibition of their activity only within β cells. Undeniably, PDEs inhibitors have therapeutic potential, but some of them are burdened with certain adverse effects. Therefore, the chance to use knowledge in this field for diabetes treatment has been postulated for a long time.
Collapse
Affiliation(s)
| | - Agnieszka Ziółkowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-046 Zielona Gora, Poland;
| |
Collapse
|
3
|
Saade M, Cahu A, Moriez R, Neunlist M, Blat S. Diet-induced obesity in young mice: Consequences on the pancreatic intrinsic nervous system control of insulin secretion. Endocrinol Diabetes Metab 2020; 3:e00095. [PMID: 31922022 PMCID: PMC6947694 DOI: 10.1002/edm2.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/12/2019] [Accepted: 08/11/2019] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Obesity has become a pandaemic even in children. We aimed to investigate the impact of obesity in youth on later pancreatic intrinsic nervous system (PINS) phenotype and control of insulin secretion. METHODS Young mice (5-week-old, T0 group) were fed either a normal diet (ND group) or a Western diet (WD group) for 12 weeks. Pancreas nervous system density, PINS phenotype and pancreas anatomy were analysed by immunohistochemistry at T0 and in adulthood (ND and WD groups). Insulin secretion was also studied in these 3 groups using a new model of ex vivo pancreatic culture, where PINS was stimulated by nicotinic and nitrergic agonists with and without antagonists. Insulin was assayed in supernatants by ELISA. RESULTS Pancreas nervous system density decreased with age in ND (P < .01) but not in WD mice (P = .08). Western diet decreased the PINS nitrergic component as compared to normal diet (P < .01) but it did not modify its cholinergic component (P = .50). Nicotinic PINS stimulation induced greater insulin secretion in ND compared to WD mice (P < .001) whereas nitrergic stimulation significantly decreased insulin secretion in ND mice (P < .001) and tended to increase insulin secretion in WD mice (P = .08). Endocrine pancreas anatomy was not modified by the Western diet as compared to the normal diet (P = .93). CONCLUSIONS Early Western diet induced neuronal density and phenotype changes in PINS that might be involved in the pancreas insulin secretion dysfunctions associated with obesity.
Collapse
Affiliation(s)
- Marie‐Béatrice Saade
- Rennes Teaching Hospital, Pediatric and Clinical Genetic CenterRennesFrance
- INRAINSERMUniv RennesNUMECANRennesFrance
| | | | | | | | | |
Collapse
|
4
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 915] [Impact Index Per Article: 183.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
5
|
Pratt EPS, Harvey KE, Salyer AE, Hockerman GH. Regulation of cAMP accumulation and activity by distinct phosphodiesterase subtypes in INS-1 cells and human pancreatic β-cells. PLoS One 2019; 14:e0215188. [PMID: 31442224 PMCID: PMC6707593 DOI: 10.1371/journal.pone.0215188] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/11/2019] [Indexed: 01/09/2023] Open
Abstract
Pancreatic β-cells express multiple phosphodiesterase (PDE) subtypes, but the specific roles for each in β-cell function, particularly in humans, is not clear. We evaluated the cellular role of PDE1, PDE3, and PDE4 activity in the rat insulinoma cell line INS-1 and in primary human β-cells using subtype-selective PDE inhibitors. Using a genetically encoded, FRET-based cAMP sensor, we found that the PDE1 inhibitor 8MM-IBMX, elevated cAMP levels in the absence of glucose to a greater extent than either the PDE3 inhibitor cilostamide or the PDE4 inhibitor rolipram. In 18 mM glucose, PDE1 inhibition elevated cAMP levels to a greater extent than PDE3 inhibition in INS-1 cells, while PDE4 inhibition was without effect. Inhibition of PDE1 or PDE4, but not PDE3, potentiated glucose-stimulated insulin secretion in INS-1 cells. PDE1 inhibition, but not PDE3 or PDE4 inhibition, reduced palmitate-induced caspase-3/7 activation, and enhanced CREB phosphorylation in INS-1 cells. In human β-cells, only PDE3 or PDE4 inhibition increased cAMP levels in 1.7 mM glucose, but PDE1, PDE3, or PDE4 inhibition potentiated cAMP levels in 16.7 mM glucose. Inhibition of PDE1 or PDE4 increased cAMP levels to a greater extent in 16.7 mM glucose than in 1.7 mM glucose in human β-cells. In contrast, elevation of cAMP levels by PDE3 inhibition was not different at these glucose concentrations. PDE1 inhibition also potentiated insulin secretion from human islets, suggesting that the role of PDE1 may be conserved between INS-1 cells and human pancreatic β-cells. Our results suggest that inhibition of PDE1 may be a useful strategy to potentiate glucose-stimulated insulin secretion, and to protect β-cells from the toxic effects of excess fatty acids.
Collapse
Affiliation(s)
- Evan P. S. Pratt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, United States of America
| | - Kyle E. Harvey
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
| | - Amy E. Salyer
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
| | - Gregory H. Hockerman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| |
Collapse
|
6
|
Yasmeen S, Kaur S, Mirza AH, Brodin B, Pociot F, Kruuse C. miRNA-27a-3p and miRNA-222-3p as Novel Modulators of Phosphodiesterase 3a (PDE3A) in Cerebral Microvascular Endothelial Cells. Mol Neurobiol 2019; 56:5304-5314. [PMID: 30603956 DOI: 10.1007/s12035-018-1446-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
Endothelial dysfunction is a key element in cerebral small vessel disease (CSVD), which may cause stroke and cognitive decline. Cyclic nucleotide signaling modulates endothelial function. The cyclic adenosine monophosphate-degrading enzyme phosphodiesterase 3 (PDE3) is an important treatment target which may be modulated by microRNAs (miRNAs) important for regulating gene expression. We aimed to identify PDE3-targeting miRNAs to highlight potential therapeutic targets for endothelial dysfunction and CSVD. PDE3-targeting miRNAs were identified by in silico analysis (TargetScan, miRWalk, miRanda, and RNA22). The identified miRNAs were ranked on the basis of TargetScan context scores and their expression (log2 read counts) in a human brain endothelial cell line (hCMEC/D3) described recently. miRNAs were subjected to co-expression meta-analysis (CoMeTa) to create miRNA clusters. The pathways targeted by the miRNAs were assigned functional annotations via the KEGG pathway and COOL. hCMEC/D3 cells were transfected with miRNA mimics miR-27a-3p and miR-222-3p, and the effect on PDE3A protein expression was analyzed by Western blotting. Only PDE3A is expressed in hCMEC/D3 cells. The in silico prediction identified 67 PDE3A-related miRNAs, of which 49 were expressed in hCMEC/D3 cells. Further analysis of the top two miRNA clusters (miR-221/miR-222 and miR-27a/miR-27b/miR-128) indicated a potential link to pathways relevant to cerebral and vascular integrity and repair. hCMEC/D3 cells transfected with miR-27a-3p and miR-222-3p mimics had reduced relative expression of PDE3A protein. PDE3A-related miRNAs miR-221/miR-222 and miR-27a/miR-27b/miR-128 are potentially linked to pathways essential for immune regulation as well as cerebral and vascular integrity/function. Furthermore, relative PDE3A protein expression was reduced by miR27a-3p and miR-222-3p.
Collapse
Affiliation(s)
- S Yasmeen
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev and Gentofte Hospital, Herlev ringvej 75, Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S Kaur
- Pediatric Department, Herlev University Hospital, Herlev ringvej 75, Herlev, Denmark.,Steno Diabetes Center Copenhagen, Niels Steensens vej 2-4, 2820, Gentofte, Denmark
| | - A H Mirza
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Pediatric Department, Herlev University Hospital, Herlev ringvej 75, Herlev, Denmark
| | - B Brodin
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,CNS Drug Delivery and Barrier Modelling, University of Copenhagen, Nørre alle 67, Copenhagen, Denmark
| | - F Pociot
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Pediatric Department, Herlev University Hospital, Herlev ringvej 75, Herlev, Denmark.,Steno Diabetes Center Copenhagen, Niels Steensens vej 2-4, 2820, Gentofte, Denmark
| | - C Kruuse
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev and Gentofte Hospital, Herlev ringvej 75, Herlev, Denmark. .,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Sphingosine kinase 1-interacting protein is a novel regulator of glucose-stimulated insulin secretion. Sci Rep 2017; 7:779. [PMID: 28396589 PMCID: PMC5429731 DOI: 10.1038/s41598-017-00900-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) is essential in keeping blood glucose levels within normal range. GSIS is impaired in type 2 diabetes, and its recovery is crucial in treatment of the disease. We find here that sphingosine kinase 1-interacting protein (SKIP, also called Sphkap) is highly expressed in pancreatic β-cells but not in α-cells. Intraperitoneal glucose tolerance test showed that plasma glucose levels were decreased and insulin levels were increased in SKIP−/− mice compared to SKIP+/+ mice, but exendin-4-enhanced insulin secretion was masked. GSIS was amplified more in SKIP−/− but exendin-4-enhanced insulin secretion was masked compared to that in SKIP+/+ islets. The ATP and cAMP content were similarly increased in SKIP+/+ and SKIP−/− islets; depolarization-evoked, PKA and cAMP-mediated insulin secretion were not affected. Inhibition of PDE activity equally augmented GSIS in SKIP+/+ and SKIP−/− islets. These results indicate that SKIP modulates GSIS by a pathway distinct from that of cAMP-, PDE- and sphingosine kinase-dependent pathways.
Collapse
|
8
|
Zhai K, Gu L, Yang Z, Mao Y, Jin M, Chang Y, Yuan Q, Leblais V, Wang H, Fischmeister R, Ji G. RNA-binding protein CUGBP1 regulates insulin secretion via activation of phosphodiesterase 3B in mice. Diabetologia 2016; 59:1959-67. [PMID: 27255754 DOI: 10.1007/s00125-016-4005-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/16/2016] [Indexed: 01/17/2023]
Abstract
AIMS/HYPOTHESIS CUG-binding protein 1 (CUGBP1) is a multifunctional RNA-binding protein that regulates RNA processing at several stages including translation, deadenylation and alternative splicing, as well as RNA stability. Recent studies indicate that CUGBP1 may play a role in metabolic disorders. Our objective was to examine its role in endocrine pancreas function through gain- and loss-of-function experiments and to further decipher the underlying molecular mechanisms. METHODS A mouse model in which type 2 diabetes was induced by a high-fat diet (HFD; 60% energy from fat) and mice on a standard chow diet (10% energy from fat) were compared. Pancreas-specific CUGBP1 overexpression and knockdown mice were generated. Different lengths of the phosphodiesterase subtype 3B (PDE3B) 3' untranslated region (UTR) were cloned for luciferase reporter analysis. Purified CUGBP1 protein was used for gel shift experiments. RESULTS CUGBP1 is present in rodent islets and in beta cell lines; it is overexpressed in the islets of diabetic mice. Compared with control mice, the plasma insulin level after a glucose load was significantly lower and glucose clearance was greatly delayed in mice with pancreas-specific CUGBP1 overexpression; the opposite results were obtained upon pancreas-specific CUGBP1 knockdown. Glucose- and glucagon-like peptide1 (GLP-1)-stimulated insulin secretion was significantly attenuated in mouse islets upon CUGBP1 overexpression. This was associated with a strong decrease in intracellular cAMP levels, pointing to a potential role for cAMP PDEs. CUGBP1 overexpression had no effect on the mRNA levels of PDE1A, 1C, 2A, 3A, 4A, 4B, 4D, 7A and 8B subtypes, but resulted in increased PDE3B expression. CUGBP1 was found to directly bind to a specific ATTTGTT sequence residing in the 3' UTR of PDE3B and stabilised PDE3B mRNA. In the presence of the PDE3 inhibitor cilostamide, glucose- and GLP-1-stimulated insulin secretion was no longer reduced by CUGBP1 overexpression. Similar to CUGBP1, PDE3B was overexpressed in the islets of diabetic mice. CONCLUSIONS/INTERPRETATION We conclude that CUGBP1 is a critical regulator of insulin secretion via activating PDE3B. Repressing this protein might provide a potential strategy for treating type 2 diabetes.
Collapse
Affiliation(s)
- Kui Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Lei Gu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Zhiguang Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yang Mao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Meng Jin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yan Chang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Qi Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Veronique Leblais
- Inserm, UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, 5 rue J.-B. Clément, 92296, Châtenay-Malabry, France
| | - Huiwen Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Rodolphe Fischmeister
- Inserm, UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, 5 rue J.-B. Clément, 92296, Châtenay-Malabry, France.
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
9
|
Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep 2016; 6:28056. [PMID: 27321128 PMCID: PMC4913246 DOI: 10.1038/srep28056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/31/2016] [Indexed: 11/25/2022] Open
Abstract
Activation of inflammation in white adipose tissue (WAT), includes infiltration/expansion of WAT macrophages, contributes pathogenesis of obesity, insulin resistance, and metabolic syndrome. The inflammasome comprises an intracellular sensor (NLR), caspase-1 and the adaptor ASC. Inflammasome activation leads to maturation of caspase-1 and processing of IL1β, contributing to many metabolic disorders and directing adipocytes to a more insulin-resistant phenotype. Ablation of PDE3B in WAT prevents inflammasome activation by reducing expression of NLRP3, caspase-1, ASC, AIM2, TNFα, IL1β and proinflammatory genes. Following IP injection of lipopolysaccharide (LPS), serum levels of IL1β and TNFα were reduced in PDE3B−/−mice compared to WT. Activation of signaling cascades, which mediate inflammasome responses, were modulated in PDE3B−/−mice WAT, including smad, NFAT, NFkB, and MAP kinases. Moreover, expression of chemokine CCL2, MCP-1 and its receptor CCR2, which play an important role in macrophage chemotaxis, were reduced in WAT of PDE3B−/−mice. In addition, atherosclerotic plaque formation was significantly reduced in the aorta of apoE−/−/PDE3B−/−and LDL-R−/−/PDE3B−/−mice compared to apoE−/−and LDL-R−/−mice, respectively. Obesity-induced changes in serum-cholesterol were blocked in PDE3B−/−mice. Collectively, these data establish a role for PDE3B in modulating inflammatory response, which may contribute to a reduced inflammatory state in adipose tissue.
Collapse
|
10
|
Abstract
Resveratrol (RES) and curcumin (CUR) are polyphenols that are found in fruits and turmeric, and possess medicinal properties that are beneficial in various diseases, such as heart disease, cancer, and type 2 diabetes mellitus (T2DM). Results from recent studies have indicated that their therapeutic properties can be attributed to their anti-inflammatory effects. Owing to reports stating that they protect against β-cell dysfunction, we studied their mechanism(s) of action in β-cells. In T2DM, cAMP plays a critical role in glucose- and incretin-stimulated insulin secretion as well as overall pancreatic β-cell health. A potential therapeutic target in the management of T2DM lies in regulating the activity of phosphodiesterases (PDEs), which degrade cAMP. Both RES and CUR have been reported to act as PDE inhibitors in various cell types, but it remains unknown if they do so in pancreatic β-cells. In our current study, we found that both RES (0.1-10 μmol/l) and CUR (1-100 pmol/l)-regulated insulin secretion under glucose-stimulated conditions. Additionally, treating β-cell lines and human islets with these polyphenols led to increased intracellular cAMP levels in a manner similar to 3-isobutyl-1-methylxanthine, a classic PDE inhibitor. When we investigated the effects of RES and CUR on PDEs, we found that treatment significantly downregulated the mRNA expression of most of the 11 PDE isozymes, including PDE3B, PDE8A, and PDE10A, which have been linked previously to regulation of insulin secretion in islets. Furthermore, RES and CUR inhibited PDE activity in a dose-dependent manner in β-cell lines and human islets. Collectively, we demonstrate a novel role for natural-occurring polyphenols as PDE inhibitors that enhance pancreatic β-cell function.
Collapse
Affiliation(s)
- Michael Rouse
- Laboratory of Clinical InvestigationLaboratory of Cardiovascular ScienceNational Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, Maryland 21224, USA
| | - Antoine Younès
- Laboratory of Clinical InvestigationLaboratory of Cardiovascular ScienceNational Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, Maryland 21224, USA
| | - Josephine M Egan
- Laboratory of Clinical InvestigationLaboratory of Cardiovascular ScienceNational Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, Maryland 21224, USA
| |
Collapse
|
11
|
Farrokhfall K, Khoshbaten A, Zahediasl S, Mehrani H, Karbalaei N. Improved islet function is associated with anti-inflammatory, antioxidant and hypoglycemic potential of cinnamaldehyde on metabolic syndrome induced by high tail fat in rats. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
12
|
Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, de Alexandre RB, Ahmad F, Manganiello V, Stratakis CA. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev 2014; 35:195-233. [PMID: 24311737 PMCID: PMC3963262 DOI: 10.1210/er.2013-1053] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are enzymes that have the unique function of terminating cyclic nucleotide signaling by catalyzing the hydrolysis of cAMP and GMP. They are critical regulators of the intracellular concentrations of cAMP and cGMP as well as of their signaling pathways and downstream biological effects. PDEs have been exploited pharmacologically for more than half a century, and some of the most successful drugs worldwide today affect PDE function. Recently, mutations in PDE genes have been identified as causative of certain human genetic diseases; even more recently, functional variants of PDE genes have been suggested to play a potential role in predisposition to tumors and/or cancer, especially in cAMP-sensitive tissues. Mouse models have been developed that point to wide developmental effects of PDEs from heart function to reproduction, to tumors, and beyond. This review brings together knowledge from a variety of disciplines (biochemistry and pharmacology, oncology, endocrinology, and reproductive sciences) with emphasis on recent research on PDEs, how PDEs affect cAMP and cGMP signaling in health and disease, and what pharmacological exploitations of PDEs may be useful in modulating cyclic nucleotide signaling in a way that prevents or treats certain human diseases.
Collapse
Affiliation(s)
- Monalisa F Azevedo
- Section on Endocrinology Genetics (M.F.A., F.R.F., E.B., A.H., I.L., R.B.d.A., C.A.S.), Program on Developmental Endocrinology Genetics, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland 20892; Section of Endocrinology (M.F.A.), University Hospital of Brasilia, Faculty of Medicine, University of Brasilia, Brasilia 70840-901, Brazil; Group for Advanced Molecular Investigation (F.R.F., R.B.d.A.), Graduate Program in Health Science, Medical School, Pontificia Universidade Catolica do Paraná, Curitiba 80215-901, Brazil; Cardiovascular Pulmonary Branch (F.A., V.M.), National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland 20892; and Pediatric Endocrinology Inter-Institute Training Program (C.A.S.), NICHD, NIH, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Suk HY, Zhou C, Yang TTC, Zhu H, Yu RYL, Olabisi O, Yang X, Brancho D, Kim JY, Scherer PE, Frank PG, Lisanti MP, Calvert JW, Lefer DJ, Molkentin JD, Ghigo A, Hirsch E, Jin J, Chow CW. Ablation of calcineurin Aβ reveals hyperlipidemia and signaling cross-talks with phosphodiesterases. J Biol Chem 2013; 288:3477-88. [PMID: 23258544 PMCID: PMC3561567 DOI: 10.1074/jbc.m112.419150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/18/2012] [Indexed: 01/26/2023] Open
Abstract
Insulin resistance, hyperlipidemia, and cardiovascular complications are common dysregulations of metabolic syndrome. Transplant patients treated with immunosuppressant drugs such as cyclosporine A (CsA), an inhibitor of calcineurin phosphatase, frequently develop similar metabolic complications. Although calcineurin is known to mediate insulin sensitivity by regulating β-cell growth and adipokine gene transcription, its role in lipid homeostasis is poorly understood. Here, we examined lipid homeostasis in mice lacking calcineurin Aβ (CnAβ(-/-)). We show that mice lacking calcineurin Aβ are hyperlipidemic and develop age-dependent insulin resistance. Hyperlipidemia found in CnAβ(-/-) mice is, in part, due to increased lipolysis in adipose tissues, a process mediated by β-adrenergic G-protein-coupled receptor signaling pathways. CnAβ(-/-) mice also exhibit additional pathophysiological phenotypes caused by the potentiated GPCR signaling pathways. A cell autonomous mechanism with sustained cAMP/PKA activation is found in CnAβ(-/-) mice or upon CsA treatment to inhibit calcineurin. Increased PKA activation and cAMP accumulation in CnAβ(-/-) mice, however, are sensitive to phosphodiesterase inhibitor. Indeed, we show that calcineurin regulates degradation of phosphodiesterase 3B, in addition to phosphodiesterase 4D. These results establish a role for calcineurin in lipid homeostasis. These data also indicate that potentiated cAMP signaling pathway may provide an alternative molecular pathogenesis for the metabolic complications elicited by CsA in transplant patients.
Collapse
Affiliation(s)
- Hee Yun Suk
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Chen Zhou
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Teddy T. C. Yang
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hong Zhu
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Raymond Y. L. Yu
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Opeyemi Olabisi
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - XiaoYong Yang
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Deborah Brancho
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ja-Young Kim
- the Touchstone Diabetes Center, Department of Internal Medicine & Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Philipp E. Scherer
- the Touchstone Diabetes Center, Department of Internal Medicine & Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Philippe G. Frank
- the Kimmel Cancer Center, Departments of Cancer Biology & Molecular Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Michael P. Lisanti
- the Kimmel Cancer Center, Departments of Cancer Biology & Molecular Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - John W. Calvert
- the Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, Georgia 30308
| | - David J. Lefer
- the Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, Georgia 30308
| | - Jeffery D. Molkentin
- the Molecular Cardiovascular Biology Program, Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio 45229
| | - Alessandra Ghigo
- the Department of Genetics, Biology and Biochemistry, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy, and
| | - Emilio Hirsch
- the Department of Genetics, Biology and Biochemistry, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy, and
| | - Jianping Jin
- the Department of Biochemistry & Molecular Biology, University of Texas Medical School of Houston, Houston, Texas 77030
| | - Chi-Wing Chow
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
14
|
Kroupa O, Vorrsjö E, Stienstra R, Mattijssen F, Nilsson SK, Sukonina V, Kersten S, Olivecrona G, Olivecrona T. Linking nutritional regulation of Angptl4, Gpihbp1, and Lmf1 to lipoprotein lipase activity in rodent adipose tissue. BMC PHYSIOLOGY 2012; 12:13. [PMID: 23176178 PMCID: PMC3562520 DOI: 10.1186/1472-6793-12-13] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 11/09/2012] [Indexed: 12/17/2022]
Abstract
Background Lipoprotein lipase (LPL) hydrolyzes triglycerides in lipoproteins and makes fatty acids available for tissue metabolism. The activity of the enzyme is modulated in a tissue specific manner by interaction with other proteins. We have studied how feeding/fasting and some related perturbations affect the expression, in rat adipose tissue, of three such proteins, LMF1, an ER protein necessary for folding of LPL into its active dimeric form, the endogenous LPL inhibitor ANGPTL4, and GPIHBP1, that transfers LPL across the endothelium. Results The system underwent moderate circadian oscillations, for LPL in phase with food intake, for ANGPTL4 and GPIHBP1 in the opposite direction. Studies with cycloheximide showed that whereas LPL protein turns over rapidly, ANGPTL4 protein turns over more slowly. Studies with the transcription blocker Actinomycin D showed that transcripts for ANGPTL4 and GPIHBP1, but not LMF1 or LPL, turn over rapidly. When food was withdrawn the expression of ANGPTL4 and GPIHBP1 increased rapidly, and LPL activity decreased. On re-feeding and after injection of insulin the expression of ANGPTL4 and GPIHBP1 decreased rapidly, and LPL activity increased. In ANGPTL4−/− mice adipose tissue LPL activity did not show these responses. In old, obese rats that showed signs of insulin resistance, the responses of ANGPTL4 and GPIHBP1 mRNA and of LPL activity were severely blunted (at 26 weeks of age) or almost abolished (at 52 weeks of age). Conclusions This study demonstrates directly that ANGPTL4 is necessary for rapid modulation of LPL activity in adipose tissue. ANGPTL4 message levels responded very rapidly to changes in the nutritional state. LPL activity always changed in the opposite direction. This did not happen in Angptl4−/− mice. GPIHBP1 message levels also changed rapidly and in the same direction as ANGPTL4, i.e. increased on fasting when LPL activity decreased. This was unexpected because GPIHBP1 is known to stabilize LPL. The plasticity of the LPL system is severely blunted or completely lost in insulin resistant rats.
Collapse
Affiliation(s)
- Olessia Kroupa
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå SE-90187, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Insulin secretion from pancreatic β-cells is tightly regulated by glucose and other nutrients, hormones, and neural factors. The exocytosis of insulin granules is triggered by an elevation of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) and is further amplified by cyclic AMP (cAMP). Cyclic AMP is formed primarily in response to glucoincretin hormones and other G(s)-coupled receptor agonists, but generation of the nucleotide is critical also for an optimal insulin secretory response to glucose. Nutrient and receptor stimuli trigger oscillations of the cAMP concentration in β-cells. The oscillations arise from variations in adenylyl cyclase-mediated cAMP production and phosphodiesterase-mediated degradation, processes controlled by factors like cell metabolism and [Ca(2+)](i). Protein kinase A and the guanine nucleotide exchange factor Epac2 mediate the actions of cAMP in β-cells and operate at multiple levels to promote exocytosis and pulsatile insulin secretion. The cAMP signaling system contains important targets for pharmacological improvement of insulin secretion in type 2 diabetes.
Collapse
Affiliation(s)
- Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre , Box 571, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
16
|
Tian G, Sågetorp J, Xu Y, Shuai H, Degerman E, Tengholm A. Role of phosphodiesterases in the shaping of sub-plasma-membrane cAMP oscillations and pulsatile insulin secretion. J Cell Sci 2012; 125:5084-95. [PMID: 22946044 DOI: 10.1242/jcs.107201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Specificity and versatility in cyclic AMP (cAMP) signalling are governed by the spatial localisation and temporal dynamics of the signal. Phosphodiesterases (PDEs) are important for shaping cAMP signals by hydrolyzing the nucleotide. In pancreatic β-cells, glucose triggers sub-plasma-membrane cAMP oscillations, which are important for insulin secretion, but the mechanisms underlying the oscillations are poorly understood. Here, we investigated the role of different PDEs in the generation of cAMP oscillations by monitoring the concentration of cAMP in the sub-plasma-membrane space ([cAMP](pm)) with ratiometric evanescent wave microscopy in MIN6 cells or mouse pancreatic β-cells expressing a fluorescent translocation biosensor. The general PDE inhibitor IBMX increased [cAMP](pm), and whereas oscillations were frequently observed at 50 µM IBMX, 300 µM-1 mM of the inhibitor caused a stable increase in [cAMP](pm). The [cAMP](pm) was nevertheless markedly suppressed by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine, indicating IBMX-insensitive cAMP degradation. Among IBMX-sensitive PDEs, PDE3 was most important for maintaining a low basal level of [cAMP](pm) in unstimulated cells. After glucose induction of [cAMP](pm) oscillations, inhibitors of PDE1, PDE3 and PDE4 inhibitors the average cAMP level, often without disturbing the [cAMP](pm) rhythmicity. Knockdown of the IBMX-insensitive PDE8B by shRNA in MIN6 cells increased the basal level of [cAMP](pm) and prevented the [cAMP](pm)-lowering effect of 2',5'-dideoxyadenosine after exposure to IBMX. Moreover, PDE8B-knockdown cells showed reduced glucose-induced [cAMP](pm) oscillations and loss of the normal pulsatile pattern of insulin secretion. It is concluded that [cAMP](pm) oscillations in β-cells are caused by periodic variations in cAMP generation, and that several PDEs, including PDE1, PDE3 and the IBMX-insensitive PDE8B, are required for shaping the sub-membrane cAMP signals and pulsatile insulin release.
Collapse
Affiliation(s)
- Geng Tian
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre Box 571, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Lugnier C. PDE inhibitors: a new approach to treat metabolic syndrome? Curr Opin Pharmacol 2011; 11:698-706. [PMID: 22018840 DOI: 10.1016/j.coph.2011.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/27/2011] [Indexed: 01/16/2023]
Abstract
About one third of people in the world suffer from metabolic syndrome (MetS), with symptoms such as hypertension and elevated blood cholesterol, and with increased risk of developing additional diseases such as diabetes mellitus and heart disease. The progression of this multifactorial pathology, which targets various tissues and organs, might necessitate a renewal in therapeutic approaches. Since cyclic nucleotide phosphodiesterases (PDEs), enzymes which hydrolyze cyclic AMP and cyclic GMP, play a crucial role in regulating endocrine and cardiovascular functions, inflammation, oxidative stress, and cell proliferation, all of which contribute to MetS, we wonder whether PDE inhibitors might represent new therapeutic approaches for preventing and treating MetS.
Collapse
Affiliation(s)
- Claire Lugnier
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
18
|
Degerman E, Ahmad F, Chung YW, Guirguis E, Omar B, Stenson L, Manganiello V. From PDE3B to the regulation of energy homeostasis. Curr Opin Pharmacol 2011; 11:676-82. [PMID: 22001403 DOI: 10.1016/j.coph.2011.09.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 09/28/2011] [Indexed: 12/13/2022]
Abstract
The incidence of obesity in the developed world is increasing at an alarming rate. Concurrent with the increase in the incidence of obesity is an increase in the incidence of type 2 diabetes. Cyclic AMP (cAMP) and cGMP are key second messengers in all cells; for example, when it comes to processes of relevance for the regulation of energy metabolism, cAMP is a key mediator in the regulation of lipolysis, glycogenolysis, gluconeogenesis and pancreatic β cell insulin secretion. PDE3B, one of several enzymes which hydrolyze cAMP and cGMP, is expressed in cells of importance for the regulation of energy homeostasis, including adipocytes, hepatocytes, hypothalamic cells and β cells. It has been shown, using PDE3 inhibitors and gene targeting approaches in cells and animals, that altered levels of PDE3B result in a number of changes in the regulation of glucose and lipid metabolism and in overall energy homeostasis. This article highlights the complexity involved in the regulation of PDE3B by hormones, and in the regulation of downstream metabolic effects by PDE3B in several interacting tissues.
Collapse
Affiliation(s)
- Eva Degerman
- Department of Experimental Medical Science, Division for Diabetes, Metabolism and Endocrinology, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
19
|
Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Breast Cancer Res Treat 2011; 128:783-94. [PMID: 21655990 DOI: 10.1007/s10549-011-1612-1] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
Abstract
Metformin may reduce the incidence of breast cancer and enhance response to neoadjuvant chemotherapy in diabetic women. This trial examined the effects of metformin on Ki67 and gene expression in primary breast cancer. Non-diabetic women with operable invasive breast cancer received pre-operative metformin. A pilot cohort of eight patients had core biopsy of the cancer at presentation, a week later (without treatment; internal control), then following metformin 500-mg o.d. for 1 week increased to 1-g b.d. for a further week continued to surgery. A further 47 patients had core biopsy at diagnosis were randomized to metformin (the same dose regimen) or no drug, and 2 weeks later had core biopsy at surgery. Ki67 immunohistochemistry, transcriptome analysis on formalin-fixed paraffin-embedded cores and serum insulin determination were performed blinded to treatment. Seven patients (7/32, 21.9%) receiving metformin withdrew because of gastrointestinal upset. The mean percentage of cells staining for Ki67 fell significantly following metformin treatment in both the pilot cohort (P = 0.041, paired t-test) and in the metformin arm (P = 0.027, Wilcoxon rank test) but was unchanged in the internal control or metformin control arms. Messenger RNA expression was significantly downregulated by metformin for PDE3B (phosphodiesterase 3B, cGMP-inhibited; a critical regulator of cAMP levels that affect activation of AMP-activated protein kinase, AMPK), confirmed by immunohistochemistry, SSR3, TP53 and CCDC14. By ingenuity pathway analysis, the tumour necrosis factor receptor 1 (TNFR1) signaling pathway was most affected by metformin: TGFB and MEKK were upregulated and cdc42 downregulated; mTOR and AMPK pathways were also affected. Gene set analysis additionally revealed that p53, BRCA1 and cell cycle pathways also had reduced expression following metformin. Mean serum insulin remained stable in patients receiving metformin but rose in control patients. This trial presents biomarker evidence for anti-proliferative effects of metformin in women with breast cancer and provides support for therapeutic trials of metformin.
Collapse
|
20
|
Chen LL, Yang WH, Zheng J, Zhang JY, Yue L. Influence of catch-up growth on islet function and possible mechanisms in rats. Nutrition 2011; 27:456-62. [PMID: 21333493 DOI: 10.1016/j.nut.2010.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/07/2010] [Accepted: 09/29/2010] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The purpose of this study was to examine how catch-up growth modulated islet function and what the detailed mechanisms were, especially at various stages and in different forms, of catch-up growth. METHODS We examined the modulation of islet function during catch-up growth by employing an oral glucose tolerance test and gained some insight into the possible mechanisms involved by measuring general physiologic parameters, pancreatic morphometry, insulin content, and the state of chronic oxidative stress. Correlation analyses were used to assess the correlation of insulin/glucose incremental area ratio to other parameters. RESULTS The catch-up growth groups resulted in damage to islet function as shown by an increased insulin/glucose incremental area ratio (P ≤ 0.05), smaller relative area of β-cells (P ≤ 0.05), larger relative area of α-cells (P ≤ 0.05), lower insulin content (P ≤ 0.05), increased nitric oxide and malondialdehyde concentrations, and decreased superoxide dismutase concentration (P ≤ 0.05, respectively). With time these changes became increasingly unmarked. CONCLUSION Catch-up growth in different stages and forms induces varying degrees of islet dysfunction, possibly by corresponding changes in general physiologic parameters, pancreatic morphometry, insulin content, and the state of chronic oxidative stress.
Collapse
Affiliation(s)
- Lu-Lu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | |
Collapse
|
21
|
Egerod KL, Jin C, Petersen PS, Wierup N, Sundler F, Holst B, Schwartz TW. β-Cell Specific Overexpression of GPR39 Protects against Streptozotocin-Induced Hyperglycemia. Int J Endocrinol 2011; 2011:401258. [PMID: 22164158 PMCID: PMC3227460 DOI: 10.1155/2011/401258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/07/2011] [Indexed: 12/19/2022] Open
Abstract
Mice deficient in the zinc-sensor GPR39, which has been demonstrated to protect cells against endoplasmatic stress and cell death in vitro, display moderate glucose intolerance and impaired glucose-induced insulin secretion. Here, we use the Tet-On system under the control of the proinsulin promoter to selectively overexpress GPR39 in the β cells in a double transgenic mouse strain and challenge them with multiple low doses of streptozotocin, which in the wild-type littermates leads to a gradual increase in nonfasting glucose levels and glucose intolerance observed during both food intake and OGTT. Although the overexpression of the constitutively active GPR39 receptor in animals not treated with streptozotocin appeared by itself to impair the glucose tolerance slightly and to decrease the β-cell mass, it nevertheless totally protected against the gradual hyperglycemia in the steptozotocin-treated animals. It is concluded that GPR39 functions in a β-cell protective manner and it is suggested that it is involved in some of the beneficial, β-cell protective effects observed for Zn(++) and that GPR39 may be a target for antidiabetic drug intervention.
Collapse
Affiliation(s)
- Kristoffer L. Egerod
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- *Kristoffer L. Egerod:
| | - Chunyu Jin
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Pia Steen Petersen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Nils Wierup
- Division of Diabetes, Metabolism, and Endocrinology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Frank Sundler
- Division of Diabetes, Metabolism, and Endocrinology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Birgitte Holst
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Thue W. Schwartz
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
22
|
Heimann E, Jones HA, Resjö S, Manganiello VC, Stenson L, Degerman E. Expression and regulation of cyclic nucleotide phosphodiesterases in human and rat pancreatic islets. PLoS One 2010; 5:e14191. [PMID: 21152070 PMCID: PMC2995729 DOI: 10.1371/journal.pone.0014191] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 11/11/2010] [Indexed: 11/18/2022] Open
Abstract
As shown by transgenic mouse models and by using phosphodiesterase 3 (PDE3) inhibitors, PDE3B has an important role in the regulation of insulin secretion in pancreatic β-cells. However, very little is known about the regulation of the enzyme. Here, we show that PDE3B is activated in response to high glucose, insulin and cAMP elevation in rat pancreatic islets and INS-1 (832/13) cells. Activation by glucose was not affected by the presence of diazoxide. PDE3B activation was coupled to an increase as well as a decrease in total phosphorylation of the enzyme. In addition to PDE3B, several other PDEs were detected in human pancreatic islets: PDE1, PDE3, PDE4C, PDE7A, PDE8A and PDE10A. We conclude that PDE3B is activated in response to agents relevant for β-cell function and that activation is linked to increased as well as decreased phosphorylation of the enzyme. Moreover, we conclude that several PDEs are present in human pancreatic islets.
Collapse
Affiliation(s)
- Emilia Heimann
- Department of Experimental Medical Science, Division for Diabetes, Metabolism and Endocrinology, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
23
|
Cyclic AMP signaling in pancreatic islets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:281-304. [PMID: 20217503 DOI: 10.1007/978-90-481-3271-3_13] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclic 3'5'AMP (cAMP) is an important physiological amplifier of glucose-induced insulin secretion by the pancreatic islet beta-cell, where it is formed by the activity of adenylyl cyclases, which are stimulated by glucose, through elevation in intracellular calcium concentrations, and by the incretin hormones (GLP-1 and GIP). cAMP is rapidly degraded in the pancreatic islet beta-cell by various cyclic nucleotide phosphodiesterase (PDE) enzymes. Many steps involved in glucose-induced insulin secretion are modulated by cAMP, which is also important in regulating pancreatic islet beta-cell differentiation, growth and survival. This chapter discusses the formation, destruction and actions of cAMP in the islets with particular emphasis on the beta-cell.
Collapse
|
24
|
Ong WK, Gribble FM, Reimann F, Lynch MJ, Houslay MD, Baillie GS, Furman BL, Pyne NJ. The role of the PDE4D cAMP phosphodiesterase in the regulation of glucagon-like peptide-1 release. Br J Pharmacol 2009; 157:633-44. [PMID: 19371330 PMCID: PMC2707975 DOI: 10.1111/j.1476-5381.2009.00194.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/09/2008] [Accepted: 01/13/2009] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Increases in intracellular cyclic AMP (cAMP) augment the release/secretion of glucagon-like peptide-1 (GLP-1). As cAMP is hydrolysed by cAMP phosphodiesterases (PDEs), we determined the role of PDEs and particularly PDE4 in regulating GLP-1 release. EXPERIMENTAL APPROACH GLP-1 release, PDE expression and activity were investigated using rats and GLUTag cells, a GLP-1-releasing cell line. The effects of rolipram, a selective PDE4 inhibitor both in vivo and in vitro and stably overexpressed catalytically inactive PDE4D5 (D556A-PDE4D5) mutant in vitro on GLP-1 release were investigated. KEY RESULTS Rolipram (1.5 mg x kg(-1) i.v.) increased plasma GLP-1 concentrations approximately twofold above controls in anaesthetized rats and enhanced glucose-induced GLP-1 release in GLUTag cells (EC(50) approximately 1.2 nmol x L(-1)). PDE4D mRNA transcript and protein were detected in GLUTag cells using RT-PCR with gene-specific primers and Western blotting with a specific PDE4D antibody respectively. Moreover, significant PDE activity was inhibited by rolipram in GLUTag cells. A GLUTag cell clone (C1) stably overexpressing the D556A-PDE4D5 mutant, exhibited elevated intracellular cAMP levels and increased basal and glucose-induced GLP-1 release compared with vector-transfected control cells. A role for intracellular cAMP/PKA in enhancing GLP-1 release in response to overexpression of D556A-PDE4D5 mutant was demonstrated by the finding that the PKA inhibitor H89 reduced both basal and glucose-induced GLP-1 release by 37% and 39%, respectively, from C1 GLUTag cells. CONCLUSIONS AND IMPLICATIONS PDE4D may play an important role in regulating intracellular cAMP linked to the regulation of GLP-1 release.
Collapse
Affiliation(s)
- W K Ong
- Strathclyde Institute of Pharmacy, Cell Biology Group, University of Strathclyde, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Berger K, Lindh R, Wierup N, Zmuda-Trzebiatowska E, Lindqvist A, Manganiello VC, Degerman E. Phosphodiesterase 3B is localized in caveolae and smooth ER in mouse hepatocytes and is important in the regulation of glucose and lipid metabolism. PLoS One 2009; 4:e4671. [PMID: 19262749 PMCID: PMC2650791 DOI: 10.1371/journal.pone.0004671] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 01/28/2009] [Indexed: 11/19/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are important regulators of signal transduction processes mediated by cAMP and cGMP. One PDE family member, PDE3B, plays an important role in the regulation of a variety of metabolic processes such as lipolysis and insulin secretion. In this study, the cellular localization and the role of PDE3B in the regulation of triglyceride, cholesterol and glucose metabolism in hepatocytes were investigated. PDE3B was identified in caveolae, specific regions in the plasma membrane, and smooth endoplasmic reticulum. In caveolin-1 knock out mice, which lack caveolae, the amount of PDE3B protein and activity were reduced indicating a role of caveolin-1/caveolae in the stabilization of enzyme protein. Hepatocytes from PDE3B knock out mice displayed increased glucose, triglyceride and cholesterol levels, which was associated with increased expression of gluconeogenic and lipogenic genes/enzymes including, phosphoenolpyruvate carboxykinase, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein 1c and hydroxyl-3-methylglutaryl coenzyme A reductase. In conclusion, hepatocyte PDE3B is localized in caveolae and smooth endoplasmic reticulum and plays important roles in the regulation of glucose, triglyceride and cholesterol metabolism. Dysregulation of PDE3B could have a role in the development of fatty liver, a condition highly relevant in the context of type 2 diabetes.
Collapse
Affiliation(s)
- Karin Berger
- Department of Experimental Medical Sciences, Lund University, BMC C11, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
26
|
Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cell Signal 2009; 21:760-6. [PMID: 19167487 DOI: 10.1016/j.cellsig.2009.01.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 01/03/2009] [Indexed: 11/23/2022]
Abstract
AMP-activated protein kinase (AMPK) is an important regulator of cellular energy status. In adipocytes, stimuli that increase intracellular cyclic AMP (cAMP) have also been shown to increase the activity of AMPK. The precise molecular mechanisms responsible for cAMP-induced AMPK activation are not clear. Phosphodiesterase 3B (PDE3B) is a critical regulator of cAMP signaling in adipocytes. Here we investigated the roles of PDE3B, PDE4, protein kinase B (PKB) and the exchange protein activated by cAMP 1 (Epac1), as well as lipolysis, in the regulation of AMPK in primary rat adipocytes. We demonstrate that the increase in phosphorylation of AMPK at T172 induced by the adrenergic agonist isoproterenol can be diminished by co-incubation with insulin. The diminishing effect of insulin on AMPK activation was reversed upon treatment with the PDE3B specific inhibitor OPC3911 but not with the PDE4 inhibitor Rolipram. Adenovirus-mediated overexpression of PDE3B and constitutively active PKB both resulted in greatly reduced isoproterenol-induced phosphorylation of AMPK at T172. Co-incubation of adipocytes with isoproterenol and the PKA inhibitor H89 resulted in a total ablation of lipolysis and a reduction in AMPK phosphorylation/activation. Stimulation of adipocytes with the Epac1 agonist 8-pCPT-2'O-Me-cAMP led to increased phosphorylation of AMPK at T172. The general lipase inhibitor Orlistat decreased isoproterenol-induced phosphorylation of AMPK at T172. This decrease corresponded to a reduction of lipolysis from adipocytes. Taken together, these data suggest that PDE3B and PDE4 regulate cAMP pools that affect the activation/phosphorylation state of AMPK and that the effects of cyclic AMP on AMPK involve Epac1, PKA and lipolysis.
Collapse
|
27
|
Waddleton D, Wu W, Feng Y, Thompson C, Wu M, Zhou YP, Howard A, Thornberry N, Li J, Mancini JA. Phosphodiesterase 3 and 4 comprise the major cAMP metabolizing enzymes responsible for insulin secretion in INS-1 (832/13) cells and rat islets. Biochem Pharmacol 2008; 76:884-93. [PMID: 18706893 DOI: 10.1016/j.bcp.2008.07.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 01/18/2023]
Abstract
cAMP is a key modulator for glucose-dependent insulin secretion (GDIS). Members of the phosphodiesterase (PDEs) gene family regulate intracellular levels of cAMP by hydrolyzing cAMP to the corresponding inactive 5'AMP derivative. These studies examined the expression and function of all 18 cAMP-specific PDEs in the rat insulinoma derived INS-1 (832/13) cell and isolated rat islets using quantitative PCR and siRNA-mediated gene-specific knockdown. PDE1C, PDE3B, PDE4C, PDE8B, PDE10A, and PDE11A were significantly expressed in rat islets and INS-1 (832/13) cells at the mRNA level. PDE1C, PDE10A and PDE11A were also expressed in brain, along with PDE3B, PDE4C and PDE8B which were also highly expressed in liver, and PDE3B was present in adipose tissue and PDE4C in skeletal muscle. siRNA mediated knockdown of PDE1C, PDE3B, PDE8B and PDE4C, but not PDE10A and PDE11A, significantly enhanced GDIS in rat INS-1 (832/13) cells. Also, selective inhibitors of PDE3 (trequinsin) and PDE4 (roflumilast and L-826,141) significantly augmented GDIS in both INS-1 (832/13) cells and rat islets. The combination of PDE3 and PDE4 selective inhibitors demonstrate that these enzymes comprise a significant proportion of the cAMP metabolizing activity in INS-1 cells and rat islets.
Collapse
Affiliation(s)
- Deena Waddleton
- Department of Biochemistry and Molecular Biology, Merck Frosst Center for Therapeutic Research, Kirkland, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Islet beta-cell area and hormone expression are unaltered in Huntington's disease. Histochem Cell Biol 2008; 129:623-9. [PMID: 18259770 DOI: 10.1007/s00418-008-0393-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2008] [Indexed: 02/05/2023]
Abstract
Neurodegenerative disorders are often associated with metabolic alterations. This has received little attention, but might be clinically important because it can contribute to symptoms and influence the course of the disease. Patients with Huntington's disease (HD) exhibit increased incidence of diabetes mellitus (DM). This is replicated in mouse models of HD, e.g., the R6/2 mouse, in which DM is primarily caused by a deficiency of beta-cells with impaired insulin secretion. Pancreatic tissue from HD patients has previously not been studied and, thus, the pathogenesis of DM in HD is unclear. To address this issue, we examined pancreatic tissue sections from HD patients at different disease stages. We found that the pattern of insulin immunostaining, levels of insulin transcripts and islet beta-cell area were similar in HD patients and controls. Further, there was no sign of amyloid deposition in islets from HD patients. Thus, our data show that pancreatic islets in HD patients appear histologically normal. Functional studies of HD patients with respect to insulin secretion and islet function are required to elucidate the pathogenesis of DM in HD. This may lead to a better understanding of HD and provide novel therapeutic targets for symptomatic treatment in HD.
Collapse
|
29
|
Dov A, Abramovitch E, Warwar N, Nesher R. Diminished phosphodiesterase-8B potentiates biphasic insulin response to glucose. Endocrinology 2008; 149:741-8. [PMID: 17991719 DOI: 10.1210/en.2007-0968] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
cAMP activates multiple signal pathways, crucial for the pancreatic beta-cells function and survival and is a major potentiator of insulin release. A family of phosphodiesterases (PDEs) terminate the cAMP signals. We examined the expression of PDEs in rat beta-cells and their role in the regulation of insulin response. Using RT-PCR and Western blot analyses, we identified PDE3A, PDE3B, PDE4B, PDE4D, and PDE8B in rat islets and in INS-1E cells and several possible splice variants of these PDEs. Specific depletion of PDE3A with small interfering (si) RNA (siPDE3A) led to a small (67%) increase in the insulin response to glucose in INS-1E cells but not rat islets. siPDE3A had no effect on the glucagon-like peptide-1 (10 nmol/liter) potentiated insulin response in rat islets. Depletion in PDE8B levels in rat islets using similar technology (siPDE8B) increased insulin response to glucose by 70%, the potentiation being of similar magnitude during the first and second phase insulin release. The siPDE8B-potentiated insulin response was further increased by 23% when glucagon-like peptide-1 was included during the glucose stimulus. In conclusion, PDE8B is expressed in a small number of tissues unrelated to glucose or fat metabolism. We propose that PDE8B, an 3-isobutyl-1-methylxanthine-insensitive cAMP-specific phosphodiesterase, could prove a novel target for enhanced insulin response, affecting a specific pool of cAMP involved in the control of insulin granule trafficking and exocytosis. Finally, we discuss evidence for functional compartmentation of cAMP in pancreatic beta-cells.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Animals
- Cell Line, Tumor
- Cyclic Nucleotide Phosphodiesterases, Type 3/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Glucagon-Like Peptide 1/metabolism
- Glucagon-Like Peptide 1/pharmacology
- Glucose/metabolism
- Glucose/pharmacology
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/enzymology
- Insulin-Secreting Cells/metabolism
- Insulinoma
- Male
- Pancreatic Neoplasms
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Avital Dov
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah, The Hebrew University Medical Center, 91120, Jerusalem, Israel
| | | | | | | |
Collapse
|
30
|
Compartmentalized cAMP signalling in regulated exocytic processes in non-neuronal cells. Cell Signal 2007; 20:590-601. [PMID: 18061403 DOI: 10.1016/j.cellsig.2007.10.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 10/16/2007] [Indexed: 01/04/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) is a central second messenger controlling a plethora of vital functions. Studies of cAMP dynamics in living cells have revealed markedly inhomogeneous concentrations of the second messenger in different compartments. Moreover, cAMP effectors such as cAMP-dependent protein kinase (PKA) and cAMP-activated GTP-exchange factors (Epacs) are tethered to specific cellular sites. Both the tailoring of cAMP concentrations, and the activities of cAMP-dependent signalling systems at specific cellular locations are prerequisites for most, if not all, cAMP-dependent processes. This review focuses on the role of compartmentalized cAMP signalling in exocytic processes in non-neuronal cells. Particularly, the insertion of aquaporin-2 into the plasma membrane of renal principal cells as an example for a cAMP-dependent exocytic process in a non-secretory cell type, renin secretion from juxtaglomerular cells as a cAMP-triggered exocytosis from an endocrine cell, insulin release from pancreatic beta-cells as a Ca2+-mediated and cAMP-potentiated exocytic processes in an endocrine cell, and cAMP- or Ca2+ -triggered H+ secretion from gastric parietal cells as an exocytic process in an exocrine cell are discussed. The selected examples of cAMP-regulated exocytic pathways are reviewed with regard to key proteins involved: adenylyl cyclases, phosphodiesterases, PKA, A kinase anchoring proteins (AKAPs) and Epacs.
Collapse
|
31
|
Winzell MS, Brand CL, Wierup N, Sidelmann UG, Sundler F, Nishimura E, Ahrén B. Glucagon receptor antagonism improves islet function in mice with insulin resistance induced by a high-fat diet. Diabetologia 2007; 50:1453-62. [PMID: 17479245 DOI: 10.1007/s00125-007-0675-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 03/05/2007] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Increased glucagon secretion predicts deterioration of glucose tolerance, and high glucagon levels contribute to hyperglycaemia in type 2 diabetes. Inhibition of glucagon action may therefore be a potential novel target to reduce hyperglycaemia. Here, we investigated whether chronic treatment with a glucagon receptor antagonist (GRA) improves islet dysfunction in female mice on a high-fat diet (HFD). MATERIALS AND METHODS After 8 weeks of HFD, mice were treated with a small molecule GRA (300 mg/kg, gavage once daily) for up to 30 days. Insulin secretion was studied after oral and intravenous administration of glucose and glucagon secretion after intravenous arginine. Islet morphology was examined and insulin secretion and glucose oxidation were measured in isolated islets. RESULTS Fasting plasma glucose levels were reduced by GRA (6.0 +/- 0.2 vs 7.4 +/- 0.5 mmol/l; p = 0.017). The acute insulin response to intravenous glucose was augmented (1,300 +/- 110 vs 790 +/- 64 pmol/l; p < 0.001). The early insulin response to oral glucose was reduced in mice on HFD + GRA (1,890 +/- 160 vs 3,040 +/- 420 pmol/l; p = 0.012), but glucose excursions were improved. Intravenous arginine significantly increased the acute glucagon response (129 +/- 12 vs 36 +/- 6 ng/l in controls; p < 0.01), notably without affecting plasma glucose. GRA caused a modest increase in alpha cell mass, while beta cell mass was similar to that in mice on HFD + vehicle. Isolated islets displayed improved glucose-stimulated insulin secretion after GRA treatment (0.061 +/- 0.007 vs 0.030 +/- 0.004 pmol islet(-1) h(-1) at 16.7 mmol/l glucose; p < 0.001), without affecting islet glucose oxidation. CONCLUSIONS/INTERPRETATION Chronic glucagon receptor antagonism in HFD-fed mice improves islet sensitivity to glucose and increases insulin secretion, suggesting improvement of key defects underlying impaired glucose tolerance and type 2 diabetes.
Collapse
Affiliation(s)
- M Sörhede Winzell
- Department of Clinical Sciences, Lund, Division of Medicine, BMC, B11, Lund University, 221 84, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Contraction and relaxation of vascular smooth muscle and cardiac myocytes are key physiological events in the cardiovascular system. These events are regulated by second messengers, cAMP and cGMP, in response to extracellular stimulants. The strength of signal transduction is controlled by intracellular cyclic nucleotide concentrations, which are determined by a balance in production and degradation of cAMP and cGMP. Degradation of cyclic nucleotides is catalyzed by 3',5'-cyclic nucleotide phosphodiesterases (PDEs), and therefore regulation of PDEs hydrolytic activity is important for modulation of cellular functions. Mammalian PDEs are composed of 21 genes and are categorized into 11 families based on sequence homology, enzymatic properties, and sensitivity to inhibitors. PDE families contain many splice variants that mostly are unique in tissue-expression patterns, gene regulation, enzymatic regulation by phosphorylation and regulatory proteins, subcellular localization, and interaction with association proteins. Each unique variant is closely related to the regulation of a specific cellular signaling. Thus, multiple PDEs function as a particular modulator of each cardiovascular function and regulate physiological homeostasis.
Collapse
MESH Headings
- Animals
- Binding Sites
- Cyclic AMP/physiology
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic GMP/physiology
- Female
- Gene Expression Regulation, Enzymologic
- Humans
- Isoenzymes/metabolism
- Male
- Mammals/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Muscle Cells/enzymology
- Muscle Cells/physiology
- Muscle Contraction/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Myocardial Contraction/physiology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/physiology
- Phenotype
- Phosphoproteins/metabolism
- Phosphoric Diester Hydrolases/classification
- Phosphoric Diester Hydrolases/genetics
- Phosphoric Diester Hydrolases/physiology
- Phosphorylation
- Phylogeny
- Protein Interaction Mapping
- Protein Kinases/physiology
- Protein Processing, Post-Translational/physiology
- Protein Structure, Tertiary
- Rats
- Signal Transduction/physiology
- Subcellular Fractions/enzymology
Collapse
Affiliation(s)
- Kenji Omori
- Discovery Research Laboratories, Tanabe Seiyaku Co Ltd, 2-50 Kawagishi 2-chome, Toda, Saitama 335-8505, Japan.
| | | |
Collapse
|
33
|
Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 2007; 113:546-93. [PMID: 17306374 PMCID: PMC1934514 DOI: 10.1016/j.pharmthera.2006.11.007] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 11/27/2006] [Indexed: 12/13/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a hormone that is encoded in the proglucagon gene. It is mainly produced in enteroendocrine L cells of the gut and is secreted into the blood stream when food containing fat, protein hydrolysate, and/or glucose enters the duodenum. Its particular effects on insulin and glucagon secretion have generated a flurry of research activity over the past 20 years culminating in a naturally occurring GLP-1 receptor (GLP-1R) agonist, exendin 4 (Ex-4), now being used to treat type 2 diabetes mellitus (T2DM). GLP-1 engages a specific guanine nucleotide-binding protein (G-protein) coupled receptor (GPCR) that is present in tissues other than the pancreas (brain, kidney, lung, heart, and major blood vessels). The most widely studied cell activated by GLP-1 is the insulin-secreting beta cell where its defining action is augmentation of glucose-induced insulin secretion. Upon GLP-1R activation, adenylyl cyclase (AC) is activated and cAMP is generated, leading, in turn, to cAMP-dependent activation of second messenger pathways, such as the protein kinase A (PKA) and Epac pathways. As well as short-term effects of enhancing glucose-induced insulin secretion, continuous GLP-1R activation also increases insulin synthesis, beta cell proliferation, and neogenesis. Although these latter effects cannot be currently monitored in humans, there are substantial improvements in glucose tolerance and increases in both first phase and plateau phase insulin secretory responses in T2DM patients treated with Ex-4. This review will focus on the effects resulting from GLP-1R activation in the pancreas.
Collapse
Affiliation(s)
- Máire E Doyle
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
34
|
Walz HA, Wierup N, Vikman J, Manganiello VC, Degerman E, Eliasson L, Holst LS. Beta-cell PDE3B regulates Ca2+-stimulated exocytosis of insulin. Cell Signal 2007; 19:1505-13. [PMID: 17368848 DOI: 10.1016/j.cellsig.2007.01.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 01/17/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
cAMP signaling is important for the regulation of insulin secretion in pancreatic beta-cells. The level of intracellular cAMP is controlled through its production by adenylyl cyclases and its breakdown by cyclic nucleotide phosphodiesterases (PDEs). We have previously shown that PDE3B is involved in the regulation of nutrient-stimulated insulin secretion. Here, aiming at getting deeper functional insights, we have examined the role of PDE3B in the two phases of insulin secretion as well as its localization in the beta-cell. Depolarization-induced insulin secretion was assessed and in models where PDE3B was overexpressed [islets from transgenic RIP-PDE3B/7 mice and adenovirally (AdPDE3B) infected INS-1 (832/13) cells], the first phase of insulin secretion, occurring in response to stimulation with high K(+) for 5 min, was significantly reduced ( approximately 25% compared to controls). In contrast, in islets from PDE3B(-/-) mice the response to high K(+) was increased. Further, stimulation of isolated beta-cells from RIP-PDE3B/7 islets, using successive trains of voltage-clamped depolarizations, resulted in reduced Ca(2+)-triggered first phase exocytotic response as well as reduced granule mobilization-dependent second phase, compared to wild-type beta-cells. Using sub-cellular fractionation, confocal microscopy and transmission electron microscopy of isolated mouse islets and INS-1 (832/13) cells, we show that endogenous and overexpressed PDE3B is localized to insulin granules and plasma membrane. We conclude that PDE3B, through hydrolysis of cAMP in pools regulated by Ca(2+), plays a regulatory role in depolarization-induced insulin secretion and that the enzyme is associated with the exocytotic machinery in beta-cells.
Collapse
Affiliation(s)
- Helena A Walz
- Department of Experimental Medical Science, Biomedical Center C11, Lund University, SE-221 84 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
35
|
Choi YH, Park S, Hockman S, Zmuda-Trzebiatowska E, Svennelid F, Haluzik M, Gavrilova O, Ahmad F, Pepin L, Napolitano M, Taira M, Sundler F, Stenson Holst L, Degerman E, Manganiello VC. Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice. J Clin Invest 2007; 116:3240-51. [PMID: 17143332 PMCID: PMC1678809 DOI: 10.1172/jci24867] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 10/10/2006] [Indexed: 02/01/2023] Open
Abstract
Cyclic nucleotide phosphodiesterase 3B (PDE3B) has been suggested to be critical for mediating insulin/IGF-1 inhibition of cAMP signaling in adipocytes, liver, and pancreatic beta cells. In Pde3b-KO adipocytes we found decreased adipocyte size, unchanged insulin-stimulated phosphorylation of protein kinase B and activation of glucose uptake, enhanced catecholamine-stimulated lipolysis and insulin-stimulated lipogenesis, and blocked insulin inhibition of catecholamine-stimulated lipolysis. Glucose, alone or in combination with glucagon-like peptide-1, increased insulin secretion more in isolated pancreatic KO islets, although islet size and morphology and immunoreactive insulin and glucagon levels were unchanged. The beta(3)-adrenergic agonist CL 316,243 (CL) increased lipolysis and serum insulin more in KO mice, but blood glucose reduction was less in CL-treated KO mice. Insulin resistance was observed in KO mice, with liver an important site of alterations in insulin-sensitive glucose production. In KO mice, liver triglyceride and cAMP contents were increased, and the liver content and phosphorylation states of several insulin signaling, gluconeogenic, and inflammation- and stress-related components were altered. Thus, PDE3B may be important in regulating certain cAMP signaling pathways, including lipolysis, insulin-induced antilipolysis, and cAMP-mediated insulin secretion. Altered expression and/or regulation of PDE3B may contribute to metabolic dysregulation, including systemic insulin resistance.
Collapse
Affiliation(s)
- Young Hun Choi
- Pulmonary-Critical Care Medicine Branch, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ahrén B, Pacini G. A novel approach to assess insulin sensitivity reveals no increased insulin sensitivity in mice with a dominant-negative mutant hepatocyte nuclear factor-1α. Am J Physiol Regul Integr Comp Physiol 2006; 291:R131-7. [PMID: 16469839 DOI: 10.1152/ajpregu.00519.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In phenotype experiments in mice, determination of dynamic insulin sensitivity often uses the insulin tolerance test. However, the interpretation of this test is complicated by the counterregulation occurring at low glucose. To overcome this problem, we determined the dynamic insulin sensitivity after inhibition of endogenous insulin secretion by diazoxide (25 mg/kg) in association with intravenous administration of glucose plus insulin (the DSGIT technique). Estimation of insulin sensitivity index (SI) by this technique showed good correlation to SI from a regular intravenous glucose tolerance test ( r = 0.87; P < 0.001; n = 15). With DSGIT, we evaluated dynamic insulin sensitivity in mice with a rat insulin promoter (β-cell-targeted) dominant-negative mutation of hepatic nuclear factor (HNF)-1α [RIP-DN HNF-1α (Tg) mice]. When insulin was administered exogenously at the same dose in Tg and wild-type (WT) mice, plasma insulin levels were higher in WT, indicating an increased insulin clearance in Tg mice. When the diazoxide test was used, different doses of insulin were therefore administered (0.1 and 0.15 U/kg in WT and 0.2 and 0.25 U/kg in Tg) to achieve similar insulin levels in the groups. Minimal model analysis showed that SI was the same in the two groups (0.78 ± 0.21 × 10−4 min·pmol−1·l−1 in WT vs. 0.60 ± 0.11 in Tg; P = 0.45) as was the glucose elimination rate ( P = 0.27). We conclude that 1) the DSGIT technique determines the in vivo dynamic insulin action in mice, 2) insulin clearance is increased in Tg mice, and 3) chronic islet dysfunction in RIP-DN HNF-1α mice is not compensated with increased insulin sensitivity.
Collapse
Affiliation(s)
- B Ahrén
- Department of Medicine, Lund University, Lund, Sweden.
| | | |
Collapse
|
37
|
Li LX, MacDonald PE, Ahn DS, Oudit GY, Backx PH, Brubaker PL. Role of phosphatidylinositol 3-kinasegamma in the beta-cell: interactions with glucagon-like peptide-1. Endocrinology 2006; 147:3318-25. [PMID: 16574789 DOI: 10.1210/en.2006-0155] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) increases beta-cell function and growth through protein kinase A- and phosphatidylinositol-3-kinase (PI3-K)/protein kinase B, respectively. GLP-1 acts via a G protein-coupled receptor, and PI3-Kgamma is known to be activated by G(betagamma.) Therefore, the role of PI3-Kgamma in the chronic effects of GLP-1 on the beta-cell was investigated using PI3-Kgamma knockout (KO) mice treated with the GLP-1 receptor agonist, exendin-4 (Ex4; 1 nmol/kg sc every 24 h for 14 d). In vivo, glucose and insulin responses were similar in PBS- and Ex4-treated KO and wild-type (WT) mice. However, glucose-stimulated insulin secretion was markedly impaired in islets from PBS-KO mice (P < 0.05), and this was partially normalized by chronic Ex4 treatment (P < 0.05). In contrast, insulin content was increased in PBS-KO islets, and this was paradoxically decreased by Ex4 treatment, compared with the stimulatory effect of Ex4 on WT islets (P < 0.05-0.01). Transfection of INS-1E beta-cells with small interfering RNA for PI3-Kgamma similarly decreased glucose-stimulated insulin secretion (P < 0.01) and increased insulin content. Basal values for beta-cell mass, islet number and proliferation, glucose transporter 2, glucokinase, and insulin receptor substrate-2 were increased in PBS-KO mice (P < 0.05-0.001) and, although they were increased by Ex4 treatment of WT animals (P < 0.05), they were decreased in Ex4-KO mice (P < 0.05-0.01). These findings indicate that PI3-Kgamma deficiency impairs insulin secretion, resulting in compensatory islet growth to maintain normoglycemia. Chronic Ex4 treatment normalizes the secretory defect, thereby relieving the pressure for expansion of beta-cell mass. These studies reveal a new role for PI3-Kgamma as a positive regulator of insulin secretion, and reinforce the importance of GLP-1 for the maintenance of normal beta-cell function.
Collapse
Affiliation(s)
- Li-Xin Li
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
38
|
Pozuelo Rubio M, Campbell D, Morrice N, Mackintosh C. Phosphodiesterase 3A binds to 14-3-3 proteins in response to PMA-induced phosphorylation of Ser428. Biochem J 2006; 392:163-72. [PMID: 16153182 PMCID: PMC1317675 DOI: 10.1042/bj20051103] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PDE3A (phosphodiesterase 3A) was identified as a phosphoprotein that co-immunoprecipitates with endogenous 14-3-3 proteins from HeLa cell extracts, and binds directly to 14-3-3 proteins in a phosphorylation-dependent manner. Among cellular stimuli tested, PMA promoted maximal binding of PDE3A to 14-3-3 proteins. While p42/p44 MAPK (mitogen-activated protein kinase), SAPK2 (stress-activated protein kinase 2)/p38 and PKC (protein kinase C) were all activated by PMA in HeLa cells, the PMA-induced binding of PDE3A to 14-3-3 proteins was inhibited by the non-specific PKC inhibitors Ro 318220 and H-7, but not by PD 184352, which inhibits MAPK activation, nor by SB 203580 and BIRB0796, which inhibit SAPK2 activation. Binding of PDE3A to 14-3-3 proteins was also blocked by the DNA replication inhibitors aphidicolin and mimosine, but the PDE3A-14-3-3 interaction was not cell-cycle-regulated. PDE3A isolated from cells was able to bind to 14-3-3 proteins after in vitro phosphorylation with PKC isoforms. Using MS/MS of IMAC (immobilized metal ion affinity chromatography)-enriched tryptic phosphopeptides and phosphospecific antibodies, at least five sites on PDE3A were found to be phosphorylated in vivo, of which Ser428 was selectively phosphorylated in response to PMA and dephosphorylated in cells treated with aphidicolin and mimosine. Phosphorylation of Ser428 therefore correlated with 14-3-3 binding to PDE3A. Ser312 of PDE3A was phosphorylated in an H-89-sensitive response to forskolin, indicative of phosphorylation by PKA (cAMP-dependent protein kinase), but phosphorylation at this site did not stimulate 14-3-3 binding. Thus 14-3-3 proteins can discriminate between sites in a region of multisite phosphorylation on PDE3A. An additional observation was that the cytoskeletal cross-linker protein plectin-1 coimmunoprecipitated with PDE3A independently of 14-3-3 binding.
Collapse
Affiliation(s)
- Mercedes Pozuelo Rubio
- MRC Protein Phosphorylation Unit, Faculty of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - David G. Campbell
- MRC Protein Phosphorylation Unit, Faculty of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Nicholas A. Morrice
- MRC Protein Phosphorylation Unit, Faculty of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Carol Mackintosh
- MRC Protein Phosphorylation Unit, Faculty of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
39
|
Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 2005; 109:366-98. [PMID: 16102838 DOI: 10.1016/j.pharmthera.2005.07.003] [Citation(s) in RCA: 643] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/12/2005] [Indexed: 01/08/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs), which are ubiquitously distributed in mammalian tissues, play a major role in cell signaling by hydrolyzing cAMP and cGMP. Due to their diversity, which allows specific distribution at cellular and subcellular levels, PDEs can selectively regulate various cellular functions. Their critical role in intracellular signaling has recently designated them as new therapeutic targets for inflammation. The PDE superfamily represents 11 gene families (PDE1 to PDE11). Each family encompasses 1 to 4 distinct genes, to give more than 20 genes in mammals encoding the more than 50 different PDE proteins probably produced in mammalian cells. Although PDE1 to PDE6 were the first well-characterized isoforms because of their predominance in various tissues and cells, their specific contribution to tissue function and their regulation in pathophysiology remain open research fields. This concerns particularly the newly discovered families, PDE7 to PDE11, for which roles are not yet established. In many pathologies, such as inflammation, neurodegeneration, and cancer, alterations in intracellular signaling related to PDE deregulation may explain the difficulties observed in the prevention and treatment of these pathologies. By inhibiting specifically the up-regulated PDE isozyme(s) with newly synthesized potent and isozyme-selective PDE inhibitors, it may be potentially possible to restore normal intracellular signaling selectively, providing therapy with reduced adverse effects.
Collapse
Affiliation(s)
- Claire Lugnier
- CNRS UMR, 7034, Pharmacologie et Physicochimie des Interactions Moléculaires et Cellulaires, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, 74 route du Rhin, BP 60024, 67401 Illkirch, France.
| |
Collapse
|
40
|
Wierup N, Richards WG, Bannon AW, Kuhar MJ, Ahrén B, Sundler F. CART knock out mice have impaired insulin secretion and glucose intolerance, altered beta cell morphology and increased body weight. ACTA ACUST UNITED AC 2005; 129:203-11. [PMID: 15927717 DOI: 10.1016/j.regpep.2005.02.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 02/04/2005] [Indexed: 11/20/2022]
Abstract
CART peptides are anorexigenic and are widely expressed in the central and peripheral nervous systems, as well as in endocrine cells in the pituitary, adrenal medulla and the pancreatic islets. To study the role of CART in islet function, we used CART null mutant mice (CART KO mice) and examined insulin secretion in vivo and in vitro, and expression of islet hormones and markers of beta-cell function using immunocytochemistry. We also studied CART expression in the normal pancreas. In addition, body weight development and food intake were documented. We found that in the normal mouse pancreas, CART was expressed in numerous pancreatic nerve fibers, both in the exocrine and endocrine portion of the gland. CART was also expressed in nerve cell bodies in the ganglia. Double immunostaining revealed expression in parasympathetic (vasoactive intestinal polypeptide (VIP)-containing) and in fewer sensory fibers (calcitonin gene-related peptide (CGRP)-containing). Although the expression of islet hormones appeared normal, CART KO islets displayed age dependent reduction of pancreatic duodenal homeobox 1 (PDX-1) and glucose transporter-2 (GLUT-2) immunoreactivity, indicating beta-cell dysfunction. Consistent with this, CART KO mice displayed impaired glucose-stimulated insulin secretion both in vivo after an intravenous glucose challenge and in vitro following incubation of isolated islets in the presence of glucose. The impaired insulin secretion in vivo was associated with impaired glucose elimination, and was apparent already in young mice with no difference in body weight. In addition, CART KO mice displayed increased body weight at the age of 40 weeks, without any difference in food intake. We conclude that CART is required for maintaining normal islet function in mice.
Collapse
Affiliation(s)
- N Wierup
- Department of Physiological Sciences, Lund University, Section for Neuroendocrine Cell Biology, BMC F10, 22 184, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
41
|
Furman B, Pyne N, Flatt P, O'Harte F. Targeting beta-cell cyclic 3'5' adenosine monophosphate for the development of novel drugs for treating type 2 diabetes mellitus. A review. J Pharm Pharmacol 2005; 56:1477-92. [PMID: 15563754 DOI: 10.1211/0022357044805] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cyclic 3'5'AMP is an important physiological amplifier of glucose-induced insulin secretion by the pancreatic islet beta-cell, where it is formed by the activity of adenylyl cyclase, especially in response to the incretin hormones GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insulinotropic peptide). These hormones are secreted from the small intestine during and following a meal, and are important in producing a full insulin secretory response to nutrient stimuli. Cyclic AMP influences many steps involved in glucose-induced insulin secretion and may be important in regulating pancreatic islet beta-cell differentiation, growth and survival. Cyclic AMP (cAMP) itself is rapidly degraded in the pancreatic islet beta-cell by cyclic nucleotide phosphodiesterase (PDE) enzymes. This review discusses the possibility of targeting cAMP mechanisms in the treatment of type 2 diabetes mellitus, in which insulin release in response to glucose is impaired. This could be achieved by the use of GLP-1 or GIP to elevate cAMP in the pancreatic islet beta-cell. However, these peptides are normally rapidly degraded by dipeptidyl peptidase IV (DPP IV). Thus longer-acting analogues of GLP-1 and GIP, resistant to enzymic degradation, and orally active inhibitors of DPP IV have also been developed, and these agents were found to improve metabolic control in experimentally diabetic animals and in patients with type 2 diabetes. The use of selective inhibitors of type 3 phosphodiesterase (PDE3B), which is probably the important pancreatic islet beta-cell PDE isoform, would require their targeting to the islet beta-cell, because inhibition of PDE3B in adipocytes and hepatocytes would induce insulin resistance.
Collapse
Affiliation(s)
- Brian Furman
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, Taylor Street, Glasgow G4 ONR, UK.
| | | | | | | |
Collapse
|
42
|
Abstract
Physiologically, insulin secretion is subject to a dual, hierarchal control by triggering and amplifying pathways. By closing ATP-sensitive K+ channels (KATP channels) in the plasma membrane, glucose and other metabolized nutrients depolarize beta-cells, stimulate Ca2+ influx, and increase the cytosolic concentration of free Ca2+ ([Ca2+]i), which constitutes the indispensable triggering signal to induce exocytosis of insulin granules. The increase in beta-cell metabolism also generates amplifying signals that augment the efficacy of Ca2+ on the exocytotic machinery. Stimulatory hormones and neurotransmitters modestly increase the triggering signal and strongly activate amplifying pathways biochemically distinct from that set into operation by nutrients. Many drugs can increase insulin secretion in vitro, but only few have a therapeutic potential. This review identifies six major pathways or sites of stimulus-secretion coupling that could be aimed by potential insulin-secreting drugs and describes several strategies to reach these targets. It also discusses whether these perspectives are realistic or theoretical only. These six possible beta-cell targets are 1) stimulation of metabolism, 2) increase of [Ca2+]i by closure of K+ ATP channels, 3) increase of [Ca2+]i by other means, 4) stimulation of amplifying pathways, 5) action on membrane receptors, and 6) action on nuclear receptors. The theoretical risk of inappropriate insulin secretion and, hence, of hypoglycemia linked to these different approaches is also envisaged.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unité d'Endocrinologie et Métabolisme, UCL 55.30, avenue Hippocrate 55, B-1200 Brussels, Begium.
| |
Collapse
|
43
|
Masciarelli S, Horner K, Liu C, Park SH, Hinckley M, Hockman S, Nedachi T, Jin C, Conti M, Manganiello V. Cyclic nucleotide phosphodiesterase 3A-deficient mice as a model of female infertility. J Clin Invest 2004; 114:196-205. [PMID: 15254586 PMCID: PMC449752 DOI: 10.1172/jci21804] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 05/18/2004] [Indexed: 11/17/2022] Open
Abstract
Since cAMP blocks meiotic maturation of mammalian and amphibian oocytes in vitro and cyclic nucleotide phosphodiesterase 3A (PDE3A) is primarily responsible for oocyte cAMP hydrolysis, we generated PDE3A-deficient mice by homologous recombination. The Pde3a(-/-) females were viable and ovulated a normal number of oocytes but were completely infertile, because ovulated oocytes were arrested at the germinal vesicle stage and, therefore, could not be fertilized. Pde3a(-/-) oocytes lacked cAMP-specific PDE activity, contained increased cAMP levels, and failed to undergo spontaneous maturation in vitro (up to 48 hours). Meiotic maturation in Pde3a(-/-) oocytes was restored by inhibiting protein kinase A (PKA) with adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS) or by injection of protein kinase inhibitor peptide (PKI) or mRNA coding for phosphatase CDC25, which confirms that increased cAMP-PKA signaling is responsible for the meiotic blockade. Pde3a(-/-) oocytes that underwent germinal vesicle breakdown showed activation of MPF and MAPK, completed the first meiotic division extruding a polar body, and became competent for fertilization by spermatozoa. We believe that these findings provide the first genetic evidence indicating that resumption of meiosis in vivo and in vitro requires PDE3A activity. Pde3a(-/-) mice represent an in vivo model where meiotic maturation and ovulation are dissociated, which underscores inhibition of oocyte maturation as a potential strategy for contraception.
Collapse
Affiliation(s)
- Silvia Masciarelli
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|