1
|
Wang YX, Reyes-García J, Di Mise A, Zheng YM. Role of ryanodine receptor 2 and FK506-binding protein 12.6 dissociation in pulmonary hypertension. J Gen Physiol 2023; 155:213798. [PMID: 36625865 PMCID: PMC9836826 DOI: 10.1085/jgp.202213100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease characterized by a progressive increase in pulmonary arterial pressure leading to right ventricular failure and death. A major cellular response in this disease is the contraction of smooth muscle cells (SMCs) of the pulmonary vasculature. Cell contraction is determined by the increase in intracellular Ca2+ concentration ([Ca2+]i), which is generated and regulated by various ion channels. Several studies by us and others have shown that ryanodine receptor 2 (RyR2), a Ca2+-releasing channel in the sarcoplasmic reticulum (SR), is an essential ion channel for the control of [Ca2+]i in pulmonary artery SMCs (PASMCs), thereby mediating the sustained vasoconstriction seen in PH. FK506-binding protein 12.6 (FKBP12.6) strongly associates with RyR2 to stabilize its functional activity. FKBP12.6 can be dissociated from RyR2 by a hypoxic stimulus to increase channel function and Ca2+ release, leading to pulmonary vasoconstriction and PH. More specifically, dissociation of the RyR2-FKBP12.6 complex is a consequence of increased mitochondrial ROS generation mediated by the Rieske iron-sulfur protein (RISP) at the mitochondrial complex III after hypoxia. Overall, RyR2/FKBP12.6 dissociation and the corresponding signaling pathway may be an important factor in the development of PH. Novel drugs and biologics targeting RyR2, FKBP12.6, and related molecules may become unique effective therapeutics for PH.
Collapse
Affiliation(s)
- Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA,Correspondence to Yong-Xiao Wang:
| | - Jorge Reyes-García
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA,Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México,Ciudad de México, México
| | - Annarita Di Mise
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA,Yun-Min Zheng:
| |
Collapse
|
2
|
Lien CF, Chen SJ, Tsai MC, Lin CS. Potential Role of Protein Kinase C in the Pathophysiology of Diabetes-Associated Atherosclerosis. Front Pharmacol 2021; 12:716332. [PMID: 34276388 PMCID: PMC8283198 DOI: 10.3389/fphar.2021.716332] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is a metabolic syndrome that affects millions of people worldwide. Recent studies have demonstrated that protein kinase C (PKC) activation plays an important role in hyperglycemia-induced atherosclerosis. PKC activation is involved in several cellular responses such as the expression of various growth factors, activation of signaling pathways, and enhancement of oxidative stress in hyperglycemia. However, the role of PKC activation in pro-atherogenic and anti-atherogenic mechanisms remains controversial, especially under hyperglycemic condition. In this review, we discuss the role of different PKC isoforms in lipid regulation, oxidative stress, inflammatory response, and apoptosis. These intracellular events are linked to the pathogenesis of atherosclerosis in diabetes. PKC deletion or treatment with PKC inhibitors has been studied in the regulation of atherosclerotic plaque formation and evolution. Furthermore, some preclinical and clinical studies have indicated that PKCβ and PKCδ are potential targets for the treatment of diabetic vascular complications. The current review summarizes these multiple signaling pathways and cellular responses regulated by PKC activation and the potential therapeutic targets of PKC in diabetic complications.
Collapse
Affiliation(s)
- Chih-Feng Lien
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Chen L, Shi D, Guo M. The roles of PKC-δ and PKC-ε in myocardial ischemia/reperfusion injury. Pharmacol Res 2021; 170:105716. [PMID: 34102229 DOI: 10.1016/j.phrs.2021.105716] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/01/2021] [Accepted: 06/03/2021] [Indexed: 01/14/2023]
Abstract
Ischemia and reperfusion (I/R) cause a reduction in arterial blood supply to tissues, followed by the restoration of perfusion and consequent reoxygenation. The reestablishment of blood flow triggers further damage to ischemic tissue through reactive oxygen species (ROS) accumulation, interference with cellular ion homeostasis, opening of mitochondrial permeability transition pores (mPTPs) and promotion of cell death (apoptosis or necrosis). PKC-δ and PKC-ε, belonging to a family of serine/threonine kinases, have been demonstrated to play important roles during I/R injury in cardiovascular diseases. However, the cardioprotective mechanisms of PKC-δ and PKC-ε in I/R injury have not been elaborated until now. This article discusses the roles of PKC-δ and PKC-ε during myocardial I/R in redox regulation (redox signaling and oxidative stress), cell death (apoptosis and necrosis), Ca2+ overload, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Li Chen
- Peking University Traditional Chinese Medicine Clinical Medical School (Xi yuan), Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ming Guo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Pohjolainen L, Easton J, Solanki R, Ruskoaho H, Talman V. Pharmacological Protein Kinase C Modulators Reveal a Pro-hypertrophic Role for Novel Protein Kinase C Isoforms in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Pharmacol 2021; 11:553852. [PMID: 33584253 PMCID: PMC7874215 DOI: 10.3389/fphar.2020.553852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Hypertrophy of cardiomyocytes (CMs) is initially a compensatory mechanism to cardiac overload, but when prolonged, it leads to maladaptive myocardial remodeling, impairing cardiac function and causing heart failure. A key signaling molecule involved in cardiac hypertrophy is protein kinase C (PKC). However, the role of different PKC isoforms in mediating the hypertrophic response remains controversial. Both classical (cPKC) and novel (nPKC) isoforms have been suggested to play a critical role in rodents, whereas the role of PKC in hypertrophy of human CMs remains to be determined. Here, we aimed to investigate the effects of two different types of PKC activators, the isophthalate derivative HMI-1b11 and bryostatin-1, on CM hypertrophy and to elucidate the role of cPKCs and nPKCs in endothelin-1 (ET-1)-induced hypertrophy in vitro. Methods and Results: We used neonatal rat ventricular myocytes (NRVMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to study the effects of pharmacological PKC modulators and ET-1. We used quantitative reverse transcription PCR to quantify hypertrophic gene expression and high-content analysis (HCA) to investigate CM morphology. In both cell types, ET-1, PKC activation (bryostatin-1 and HMI-1b11) and inhibition of cPKCs (Gö6976) increased hypertrophic gene expression. In NRVMs, these treatments also induced a hypertrophic phenotype as measured by increased recognition, intensity and area of α-actinin and F-actin fibers. Inhibition of all PKC isoforms with Gö6983 inhibited PKC agonist-induced hypertrophy, but could not fully block ET-1-induced hypertrophy. The mitogen-activated kinase kinase 1/2 inhibitor U0126 inhibited PKC agonist-induced hypertrophy fully and ET-1-induced hypertrophy partially. While ET-1 induced a clear increase in the percentage of pro-B-type natriuretic peptide-positive hiPSC-CMs, none of the phenotypic parameters used in HCA directly correlated with gene expression changes or with phenotypic changes observed in NRVMs. Conclusion: This work shows similar hypertrophic responses to PKC modulators in NRVMs and hiPSC-CMs. Pharmacological PKC activation induces CM hypertrophy via activation of novel PKC isoforms. This pro-hypertrophic effect of PKC activators should be considered when developing PKC-targeted compounds for e.g. cancer or Alzheimer’s disease. Furthermore, this study provides further evidence on distinct PKC-independent mechanisms of ET-1-induced hypertrophy both in NRVMs and hiPSC-CMs.
Collapse
Affiliation(s)
- Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Julia Easton
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Reesha Solanki
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heikki Ruskoaho
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Marrocco V, Bogomolovas J, Ehler E, Dos Remedios CG, Yu J, Gao C, Lange S. PKC and PKN in heart disease. J Mol Cell Cardiol 2019; 128:212-226. [PMID: 30742812 PMCID: PMC6408329 DOI: 10.1016/j.yjmcc.2019.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The protein kinase C (PKC) and closely related protein kinase N (PKN) families of serine/threonine protein kinases play crucial cellular roles. Both kinases belong to the AGC subfamily of protein kinases that also include the cAMP dependent protein kinase (PKA), protein kinase B (PKB/AKT), protein kinase G (PKG) and the ribosomal protein S6 kinase (S6K). Involvement of PKC family members in heart disease has been well documented over the years, as their activity and levels are mis-regulated in several pathological heart conditions, such as ischemia, diabetic cardiomyopathy, as well as hypertrophic or dilated cardiomyopathy. This review focuses on the regulation of PKCs and PKNs in different pathological heart conditions and on the influences that PKC/PKN activation has on several physiological processes. In addition, we discuss mechanisms by which PKCs and the closely related PKNs are activated and turned-off in hearts, how they regulate cardiac specific downstream targets and pathways, and how their inhibition by small molecules is explored as new therapeutic target to treat cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA
| | - Julius Bogomolovas
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | - Jiayu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA.
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.
| |
Collapse
|
6
|
Kumar V, Weng YC, Wu YC, Huang YT, Liu TH, Kristian T, Liu YL, Tsou HH, Chou WH. Genetic inhibition of PKCε attenuates neurodegeneration after global cerebral ischemia in male mice. J Neurosci Res 2018; 97:444-455. [PMID: 30488977 DOI: 10.1002/jnr.24362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 11/08/2022]
Abstract
Global cerebral ischemia that accompanies cardiac arrest is a major cause of morbidity and mortality. Protein Kinase C epsilon (PKCε) is a member of the novel PKC subfamily and plays a vital role in ischemic preconditioning. Pharmacological activation of PKCε before cerebral ischemia confers neuroprotection. The role of endogenous PKCε after cerebral ischemia remains elusive. Here we used male PKCε-null mice to assess the effects of PKCε deficiency on neurodegeneration after transient global cerebral ischemia (tGCI). We found that the cerebral vasculature, blood flow, and the expression of other PKC isozymes were not altered in the PKCε-null mice. Spatial learning and memory was impaired after tGCI, but the impairment was attenuated in male PKCε-null mice as compared to male wild-type controls. A significant reduction in Fluoro-Jade C labeling and mitochondrial release of cytochrome C in the hippocampus was found in male PKCε-null mice after tGCI. Male PKCε-null mice expressed increased levels of PKCδ in the mitochondria, which may prevent the translocation of PKCδ from the cytosol to the mitochondria after tGCI. Our results demonstrate the neuroprotective effects of PKCε deficiency on neurodegeneration after tGCI, and suggest that reduced mitochondrial translocation of PKCδ may contribute to the neuroprotective action in male PKCε-null mice.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Yi-Chinn Weng
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Chieh Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Ting Huang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Tung-Hsia Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Tibor Kristian
- Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Hsiao-Hui Tsou
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.,Graduate Institute of Biostatistics, College of Public Health, China Medical University, Taichung, Taiwan
| | - Wen-Hai Chou
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio.,Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
7
|
Nowak G, Bakajsova-Takacsova D. Protein kinase Cε targets respiratory chain and mitochondrial membrane potential but not F 0 F 1 -ATPase in renal cells injured by oxidant. J Cell Biochem 2018; 119:9394-9407. [PMID: 30074270 PMCID: PMC6298597 DOI: 10.1002/jcb.27256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/21/2018] [Indexed: 01/12/2023]
Abstract
We have previously shown that protein kinase Cε (PKCε) is involved in mitochondrial dysfunction in renal proximal tubular cells (RPTC). This study examined mitochondrial targets of active PKCε in RPTC injured by the model oxidant tert-butyl hydroperoxide (TBHP). TBHP exposure augmented the levels of phosphorylated (active) PKCε in mitochondria, which suggested translocation of PKCε to mitochondria after oxidant exposure. Oxidant injury decreased state 3 respiration, adenosine triphosphate (ATP) production, ATP content, and complex I activity. Further, TBHP exposure increased ΔΨm and production of reactive oxygen species (ROS), and induced mitochondrial fragmentation and RPTC death. PKCε activation by overexpressing constitutively active PKCε exacerbated decreases in state 3 respiration, complex I activity, ATP content, and augmented RPTC death. In contrast, inhibition of PKCε by overexpressing dnPKCε mutant restored state 3 respiration, respiratory control ratio, complex I activity, ΔΨm , and ATP production and content, but did not prevent decreases in F0 F1 -ATPase activity. Inhibition of PKCε prevented oxidant-induced production of ROS and mitochondrial fragmentation, and reduced RPTC death. We conclude that activation of PKCε mediates: (a) oxidant-induced changes in ΔΨm , decreases in mitochondrial respiration, complex I activity, and ATP content; (b) mitochondrial fragmentation; and (c) RPTC death. In contrast, oxidant-induced inhibition of F0 F1 -ATPase activity is not mediated by PKCε. These results show that, in contrast to the protective effects of PKCε in the heart, PKCε activation is detrimental to mitochondrial function and viability in RPTC and mediates oxidant-induced injury.
Collapse
Affiliation(s)
- Grazyna Nowak
- University of Arkansas for Medical Sciences, College of Pharmacy,
Department of Pharmaceutical Sciences, 4301 West Markham St., Little Rock, AR
72205
| | - Diana Bakajsova-Takacsova
- University of Arkansas for Medical Sciences, College of Pharmacy,
Department of Pharmaceutical Sciences, 4301 West Markham St., Little Rock, AR
72205
| |
Collapse
|
8
|
Awad MA, Aldosari SR, Abid MR. Genetic Alterations in Oxidant and Anti-Oxidant Enzymes in the Vascular System. Front Cardiovasc Med 2018; 5:107. [PMID: 30140678 PMCID: PMC6095034 DOI: 10.3389/fcvm.2018.00107] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular diseases (CVD) are one of the prime causes of mortality worldwide. Experimental animal models have become a valuable tool to investigate and further advance our knowledge on etiology, pathophysiology and intervention. They also provide a great opportunity to understand the contribution of different genes and effector molecules in the pathogenesis and development of diseases at the sub-cellular levels. High levels of reactive oxygen species (ROS) have been associated with the progression of CVD such as ischemic heart disease (IHD), myocardial infarction, hypertension, atherosclerosis, aortic aneurysm, aortic dissection and others. On the contrary, low levels of antioxidants were associated with exacerbated cardiovascular event. Major focus of this review is on vascular pathogenesis that leads to CVD, with special emphasis on the roles of oxidant/antioxidant enzymes in health and disease progression in vascular cells including vascular endothelium. The major oxidant enzymes that have been implicated with the progression of CVD include NADPH Oxidase, nitric oxide synthase, monoamine oxidase, and xanthine oxidoreductase. The major antioxidant enzymes that have been attributed to normalizing the levels of oxidative stress include superoxide dismutases, catalase and glutathione peroxidases (GPx), and thioredoxin. Cardiovascular phenotypes of major oxidants and antioxidants knockout and transgenic animal models are discussed here.
Collapse
Affiliation(s)
- Maan A Awad
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| | - Sarah R Aldosari
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| |
Collapse
|
9
|
Novel Small-Molecule Inhibitors of Protein Kinase C Epsilon Reduce Ethanol Consumption in Mice. Biol Psychiatry 2018; 84:193-201. [PMID: 29198469 PMCID: PMC5984071 DOI: 10.1016/j.biopsych.2017.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite the high cost and widespread prevalence of alcohol use disorders, treatment options are limited, underscoring the need for new, effective medications. Previous results using protein kinase C epsilon (PKCε) knockout mice, RNA interference against PKCε, and peptide inhibitors of PKCε predict that small-molecule inhibitors of PKCε should reduce alcohol consumption in humans. METHODS We designed a new class of PKCε inhibitors based on the Rho-associated protein kinase (ROCK) inhibitor Y-27632. In vitro kinase and binding assays were used to identify the most potent compounds. Their effects on ethanol-stimulated synaptic transmission; ethanol, sucrose, and quinine consumption; ethanol-induced loss of righting; and ethanol clearance were studied in mice. RESULTS We identified two compounds that inhibited PKCε with Ki <20 nM, showed selectivity for PKCε over other kinases, crossed the blood-brain barrier, achieved effective concentrations in mouse brain, prevented ethanol-stimulated gamma-aminobutyric acid release in the central amygdala, and reduced ethanol consumption when administered intraperitoneally at 40 mg/kg in wild-type but not in Prkce-/- mice. One compound also reduced sucrose and saccharin consumption, while the other was selective for ethanol. Both transiently impaired locomotion through an off-target effect that did not interfere with their ability to reduce ethanol intake. One compound prolonged recovery from ethanol-induced loss of righting but this was also due to an off-target effect since it was present in Prkce-/- mice. Neither altered ethanol clearance. CONCLUSIONS These results identify lead compounds for development of PKCε inhibitors that reduce alcohol consumption.
Collapse
|
10
|
Zhang P, Ke J, Li Y, Huang L, Chen Z, Huang X, Zhang L, Xiao D. Long-term exposure to high altitude hypoxia during pregnancy increases fetal heart susceptibility to ischemia/reperfusion injury and cardiac dysfunction. Int J Cardiol 2018; 274:7-15. [PMID: 30017521 DOI: 10.1016/j.ijcard.2018.07.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/15/2018] [Accepted: 07/06/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND High altitude hypoxia (HAH) exposure affects fetal development. However, the fetal cardiovascular responses to the HAH are not well understood. We have tested the hypothesis that long-term HAH exposure alters the hypoxia/ischemia-sensitive gene expressions, leading to an increase in fetal heart susceptibility to ischemia/reperfusion (I/R) injury and cardiac dysfunction. METHODS Time-dated pregnant sheep were exposed to high-altitude (3820 m) or were maintained at sea level (~300 m) for 110 days. Fetal hearts were isolated from the near-term ewes and subjected to I/R in a Langendorff preparation. RESULTS HAH decreased the fetal body and heart weights in the female but not male fetuses. HAH had no effect on the left ventricle (LV) function at baseline, but increased the LV infarct size and attenuated the post-ischemic recovery of LV function in both male and female fetuses, as compared with the normoxic groups. HAH increased the protein levels of hypoxia-inducible factor (HIF)-1α and DNA methyltransferases type 3b (DNMT3b), but attenuated protein kinase C epsilon (PKCε) levels in the fetal hearts. AHA induced a 4.3 fold increase of miR-210 in the males and a 2.9 fold increase in female hearts. In addition, HAH had no effect on mTOR protein and phosphorylation levels but increased the autophagy biomarker, LC3B-II protein levels and LC3B-II/LC3B-I ratio in the fetal hearts. CONCLUSION The results suggest that gestational HAH exposure induces in utero programming of the hypoxia/ischemia-sensitive gene expression pattern in the developing heart and increases cardiac susceptibility to I/R injury.
Collapse
Affiliation(s)
- Peng Zhang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jun Ke
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Li
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lei Huang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zewen Chen
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaohui Huang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Daliao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
11
|
Nitric oxide, PKC-ε, and connexin43 are crucial for ischemic preconditioning-induced chemical gap junction uncoupling. Oncotarget 2018; 7:69243-69255. [PMID: 27655723 PMCID: PMC5342474 DOI: 10.18632/oncotarget.12087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/05/2016] [Indexed: 12/26/2022] Open
Abstract
Ischemic preconditioning (IPC) maintains connexin43 (Cx43) phosphorylation and reduces chemical gap junction (GJ) coupling in cardiomyocytes to protect against ischemic damage. However, the signal transduction pathways underlying these effects are not fully understood. Here, we investigated whether nitric oxide (NO) and protein kinase C-ε (PKC-ε) contribute to IPC-induced cardioprotection by maintaining Cx43 phosphorylation and inhibiting chemical GJ coupling. IPC reduced ischemia-induced myocardial infarction and increased cardiomyocyte survival; phosphorylated Cx43, eNOS, and PKC-ε levels; and chemical GJ uncoupling. Administration of the NO donor SNAP mimicked the effects of IPC both in vivo and in vitro, maintaining Cx43 phosphorylation, promoting chemical GJ uncoupling, and reducing myocardial infarction. Preincubation with the NO synthase inhibitor L-NAME or PKC-ε translocation inhibitory peptide (PKC-ε-TIP) abolished these effects of IPC. Additionally, by inducing NO production, IPC induced translocation of PKC-ε, but not PKC-δ, from the cytosolic to the membrane fraction in primary cardiac myocytes. IPC-induced cardioprotection thus involves increased NO production, PKC-ε translocation, Cx43 phosphorylation, and chemical GJ uncoupling.
Collapse
|
12
|
Hepatoma-Derived Growth Factor Secreted from Mesenchymal Stem Cells Reduces Myocardial Ischemia-Reperfusion Injury. Stem Cells Int 2017; 2017:1096980. [PMID: 29358952 PMCID: PMC5735317 DOI: 10.1155/2017/1096980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/04/2017] [Indexed: 12/14/2022] Open
Abstract
Objectives The present study aimed to explore the major factors that account for the beneficial effects of mesenchymal stem cells (MSCs). Methods Using isobaric tags for relative and absolute quantitation method, hepatoma-derived growth factor (HDGF) was identified as an important factor secreted by MSCs, but not by cardiac fibroblasts (CFs). The protective effects of conditioned medium (CdM) from MSCs or CFs were tested by using either H9C2 cells that were exposed by hypoxia-reoxygenation (H/R) insult or an in vivo mouse model of myocardial ischemia-reperfusion. Results Compared to CF-CdM, MSC-CdM conferred protection against reperfusion injury. CdM obtained from MSCs that were treated with HDGF-targeted shRNA failed to offer any protection in vitro. In addition, administration of recombinant HDGF alone recapitulated the beneficial effects of MSC-CdM, which was associated with increased protein kinase C epsilon (PKCε) phosphorylation, enhanced mitochondria aldehyde dehydrogenase family 2 activity, and decreased 4-hydroxy-2-nonenal accumulation. A significant decrease in infarct size and ameliorated cardiac dysfunction was achieved by administration of HDGF in wild-type mice, which was absent in PKCε dominant negative mice, indicating the essential roles of PKCε in HDGF-mediated protection. Conclusions HDGF secreted from MSCs plays a key role in the protection against reperfusion injury through PKCε activation.
Collapse
|
13
|
Ke J, Dong N, Wang L, Li Y, Dasgupta C, Zhang L, Xiao D. Role of DNA methylation in perinatal nicotine-induced development of heart ischemia-sensitive phenotype in rat offspring. Oncotarget 2017; 8:76865-76880. [PMID: 29100355 PMCID: PMC5652749 DOI: 10.18632/oncotarget.20172] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/30/2017] [Indexed: 02/04/2023] Open
Abstract
Background and purpose Maternal cigarette smoking increases the risk of cardiovascular disease in offspring. Recently, we have demonstrated that perinatal nicotine exposure alters heart development and increases heart susceptibility to ischemia/reperfusion (I/R) injury in rat offspring. The present study tested the hypothesis that DNA methylation plays a key role in the nicotine-induced development of heart ischemia-sensitive phenotype in offspring. Experimental approach Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from gestational day 4 until postnatal day 10. After birth, the postnatal offspring were treated with the DNA methylation inhibitor, 5-aza-2'-deoxycytidine (5-Aza) or saline from postnatal day 3 to day 10. Experiments were conducted in 1 month old offspring. Key results Perinatal nicotine increased I/R-induced left ventricular (LV) injury, and decreased post-ischemic recovery of the LV function and coronary flow rate in both male and female offspring. Nicotine differentially increased DNMT3a expression and global DNA methylation levels in LV tissues. Treatment with 5-Aza inhibited nicotine-induced an increase in DNMT3a and global DNA methylation, and blocked the nicotine-induced increase in I/R injury and dysfunction in the heart. In addition, nicotine attenuated protein kinases Cε and large-conductance Ca(2+)-activated K(+) (BKca) channel β1 subunit protein abundances in the heart, which were reversed by 5-Aza treatment. Conclusions and implications The present findings provide novel evidence that the increased DNA methylation plays a causal role in nicotine-induced development of heart ischemic sensitive phenotype, and suggest a potential therapeutic target of DNA demethylation for the fetal programming of heart ischemic disease later in life.
Collapse
Affiliation(s)
- Jun Ke
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Department of Traditional Chinese Medicine, People's Hospital of Shanghai Putuo District, Shanghai, China.,Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yong Li
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Chiranjib Dasgupta
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Daliao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
14
|
Protein kinase C mechanisms that contribute to cardiac remodelling. Clin Sci (Lond) 2017; 130:1499-510. [PMID: 27433023 DOI: 10.1042/cs20160036] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/18/2016] [Indexed: 12/12/2022]
Abstract
Protein phosphorylation is a highly-regulated and reversible process that is precisely controlled by the actions of protein kinases and protein phosphatases. Factors that tip the balance of protein phosphorylation lead to changes in a wide range of cellular responses, including cell proliferation, differentiation and survival. The protein kinase C (PKC) family of serine/threonine kinases sits at nodal points in many signal transduction pathways; PKC enzymes have been the focus of considerable attention since they contribute to both normal physiological responses as well as maladaptive pathological responses that drive a wide range of clinical disorders. This review provides a background on the mechanisms that regulate individual PKC isoenzymes followed by a discussion of recent insights into their role in the pathogenesis of diseases such as cancer. We then provide an overview on the role of individual PKC isoenzymes in the regulation of cardiac contractility and pathophysiological growth responses, with a focus on the PKC-dependent mechanisms that regulate pump function and/or contribute to the pathogenesis of heart failure.
Collapse
|
15
|
Xie F, Rong B, Wang TC, Hao L, Lin MJ, Zhong JQ. Interaction between nitric oxide signaling and gap junctions during ischemic preconditioning: Importance of S-nitrosylation vs. protein kinase G activation. Nitric Oxide 2017; 65:37-42. [PMID: 28216239 DOI: 10.1016/j.niox.2017.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/18/2016] [Accepted: 02/03/2017] [Indexed: 12/13/2022]
Abstract
Much effort has been dedicated to exploring the mechanisms of IPC, and the GJ is one of the proposed targets of IPC. Several lines of evidence have indicated that NO affects GJ permeability regulation and expression of connexin isoforms. NO-induced stimulation of the sGC-cGMP pathway and the subsequent PKG activation could lead directly to connexin phosphorylation and GJ coupling modification. Additionally, because NO-induced cardioprotection against I/R injury beyond the cGMP/PKG-dependent pathway has been reported in isolated cardiomyocytes, it has been posited that NO-mediated GJ coupling might be independent from the activation of the NO-induced cGMP/PKG pathway during IPC. S-nitrosylation by NO exerts a major influence in IPC-induced cardioprotection. It has been suggested that NO-mediated cardioprotection during IPC was not dependent on sGC/cGMP/PKG but on SNO signaling. We need more researches to prove that which signaling pathway (S-nitrosylation or protein kinase G activation) is the major one modulating GJ coupling during IPC. The aim of review article is to discuss the possible signaling pathways of NO in regulating GJ during IPC.
Collapse
Affiliation(s)
- Fei Xie
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China; Emergency Department, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Bing Rong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China; Cadre Health Department, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tian-Cheng Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Li Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China; School of Medicine, Shandong University, Jinan, China
| | - Ming-Jie Lin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China; School of Medicine, Shandong University, Jinan, China
| | - Jing-Quan Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
16
|
Nowak G, Takacsova-Bakajsova D, Megyesi J. Deletion of protein kinase C-ε attenuates mitochondrial dysfunction and ameliorates ischemic renal injury. Am J Physiol Renal Physiol 2016; 312:F109-F120. [PMID: 27760765 DOI: 10.1152/ajprenal.00115.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 10/11/2016] [Indexed: 02/08/2023] Open
Abstract
Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia.
Collapse
Affiliation(s)
- Grazyna Nowak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Diana Takacsova-Bakajsova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Judit Megyesi
- Division of Nephrology, Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
17
|
Lin YH, Warren CM, Li J, McKinsey TA, Russell B. Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ. Cell Signal 2016; 28:1015-24. [PMID: 27185186 DOI: 10.1016/j.cellsig.2016.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/08/2023]
Abstract
The mechanotransduction signaling pathways initiated in heart muscle by increased mechanical loading are known to lead to long-term transcriptional changes and hypertrophy, but the rapid events for adaptation at the sarcomeric level are not fully understood. The goal of this study was to test the hypothesis that actin filament assembly during cardiomyocyte growth is regulated by post-translational modifications (PTMs) of CapZβ1. In rapidly hypertrophying neonatal rat ventricular myocytes (NRVMs) stimulated by phenylephrine (PE), two-dimensional gel electrophoresis (2DGE) of CapZβ1 revealed a shift toward more negative charge. Consistent with this, mass spectrometry identified CapZβ1 phosphorylation on serine-204 and acetylation on lysine-199, two residues which are near the actin binding surface of CapZβ1. Ectopic expression of dominant negative PKCɛ (dnPKCɛ) in NRVMs blunted the PE-induced increase in CapZ dynamics, as evidenced by the kinetic constant (Kfrap) of fluorescence recovery after photobleaching (FRAP), and concomitantly reduced phosphorylation and acetylation of CapZβ1. Furthermore, inhibition of class I histone deacetylases (HDACs) increased lysine-199 acetylation on CapZβ1, which increased Kfrap of CapZ and stimulated actin dynamics. Finally, we show that PE treatment of NRVMs results in decreased binding of HDAC3 to myofibrils, suggesting a signal-dependent mechanism for the regulation of sarcomere-associated CapZβ1 acetylation. Taken together, this dual regulation through phosphorylation and acetylation of CapZβ1 provides a novel model for the regulation of myofibril growth during cardiac hypertrophy.
Collapse
Affiliation(s)
- Ying-Hsi Lin
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612-7342, United States; Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612-7342, United States
| | - Chad M Warren
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612-7342, United States; Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612-7342, United States
| | - Jieli Li
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612-7342, United States; Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612-7342, United States
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology and Center for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045-0508, United States
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612-7342, United States; Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612-7342, United States.
| |
Collapse
|
18
|
Xiao D, Wang L, Huang X, Li Y, Dasgupta C, Zhang L. Protective Effect of Antenatal Antioxidant on Nicotine-Induced Heart Ischemia-Sensitive Phenotype in Rat Offspring. PLoS One 2016; 11:e0150557. [PMID: 26918336 PMCID: PMC4769226 DOI: 10.1371/journal.pone.0150557] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/15/2016] [Indexed: 01/19/2023] Open
Abstract
Fetal nicotine exposure increased risk of developing cardiovascular disease later in life. The present study tested the hypothesis that perinatal nicotine-induced programming of heart ischemia-sensitive phenotype is mediated by enhanced reactive oxygen species (ROS) in offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth, in the absence or presence of a ROS inhibitor, N-acetyl-cysteine (NAC) in drinking water. Experiments were conducted in 8 month old age male offspring. Isolated hearts were perfused in a Langendorff preparation. Perinatal nicotine treatment significantly increased ischemia and reperfusion-induced left ventricular injury, and decreased post-ischemic recovery of left ventricular function and coronary flow rate. In addition, nicotine enhanced cardiac ROS production and significantly attenuated protein kinase Cε (PKCε) protein abundance in the heart. Although nicotine had no effect on total cardiac glycogen synthase kinase-3β (GSK3β) protein expression, it significantly increased the phosphorylation of GSK3β at serine 9 residue in the heart. NAC inhibited nicotine-mediated increase in ROS production, recovered PKCε gene expression and abrogated increased phosphorylation of GSK3β. Of importance, NAC blocked perinatal nicotine-induced increase in ischemia and reperfusion injury in the heart. These findings provide novel evidence that increased oxidative stress plays a causal role in perinatal nicotine-induced developmental programming of ischemic sensitive phenotype in the heart, and suggest potential therapeutic targets of anti-oxidative stress in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- DaLiao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Lei Wang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Traditional Chinese Medicine, Shanghai Putuo District People’s Hospital, Shanghai, PR China
| | - Xiaohui Huang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Yong Li
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Chiranjib Dasgupta
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Lubo Zhang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| |
Collapse
|
19
|
Xue Q, Xiao D, Zhang L. Estrogen Regulates Angiotensin II Receptor Expression Patterns and Protects the Heart from Ischemic Injury in Female Rats. Biol Reprod 2015; 93:6. [PMID: 25972014 DOI: 10.1095/biolreprod.115.129619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/07/2015] [Indexed: 12/26/2022] Open
Abstract
Previous studies have shown that female offspring are resistant to fetal stress-induced programming of ischemic-sensitive phenotype in the heart; however, the mechanisms responsible remain unclear. The present study tested the hypothesis that estrogen plays a role in protecting females in fetal programming of increased heart vulnerability. Pregnant rats were divided into normoxic and hypoxic (10.5% O2 from Day 15 to 21 of gestation) groups. Ovariectomy (OVX) and estrogen (E2) replacement were performed in 8-wk-old female offspring. Hearts of 4-mo-old females were subjected to ischemia and reperfusion injury in a Langendorff preparation. OVX significantly decreased postischemic recovery of left ventricular function and increased myocardial infarction, and no difference was observed between normoxic and hypoxic groups. The effect of OVX was rescued by E2 replacement. OVX decreased the binding of glucocorticoid receptor (GR) to glucocorticoid response elements at angiotensin II type 1 (Agtr1) and type 2 (Agtr2) receptor promoters, resulting in a decrease in Agtr1 and an increase in Agtr2 in the heart. Additionally, OVX decreased estrogen receptor (ER) expression in the heart and inhibited ER/GR interaction in binding to glucocorticoid response elements at the promoters. Consistent with the changes in Agtrs, OVX significantly decreased Prkce abundance in the heart. These OVX-induced changes were abrogated by E2 replacement. The results indicate that estrogen is not directly responsible for the sex dimorphism in fetal programming of heart ischemic vulnerability but suggest a novel mechanism of estrogen in regulating cardiac Agtr1/Agtr2 expression patterns and protecting female hearts against ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Qin Xue
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Daliao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
20
|
Lu XL, Tong YF, Liu Y, Xu YL, Yang H, Zhang GY, Li XH, Zhang HG. Gαq protein carboxyl terminus imitation polypeptide GCIP-27 improves cardiac function in chronic heart failure rats. PLoS One 2015; 10:e0121007. [PMID: 25822412 PMCID: PMC4379177 DOI: 10.1371/journal.pone.0121007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 02/03/2015] [Indexed: 11/24/2022] Open
Abstract
Background Gαq protein carboxyl terminus imitation polypeptide (GCIP)-27 has been shown to alleviate pathological cardiomyocyte hypertrophy induced by various factors. Pathological cardiac hypertrophy increases the morbidity and mortality of cardiovascular diseases while it compensates for poor heart function. This study was designed to investigate the effects of GCIP-27 on heart function in rats with heart failure induced by doxorubicin. Methods and Results Forty-eight rats were randomly divided into the following six groups receiving vehicle (control), doxorubicin (Dox), losartan (6 mg/kg, i.g.) and three doses of GCIP-27 (10, 30, 90 μg/kg; i.p., bid), respectively. Heart failure was induced by Dox, which was administered at a 20 mg/kg cumulative dose. After 10 weeks of treatment, we observed that GCIP-27 (30, 90 μg/kg) significantly increased ejection fraction, fraction shortening, stroke volume and sarcoplasmic reticulum Ca2+ ATPase activity of Dox-treated hearts. Additionally, GCIP-27 decreased myocardial injury, heart weight index and left ventricular weight index, fibrosis and serum cardiac troponin-I concentration in Dox-treated mice. Immunohistochemistry, western blotting and real-time PCR experiments indicated that GCIP-27 (10–90 μg/kg) could markedly upregulate the protein expression of myocardial α-myosin heavy chain (MHC), Bcl-2, protein kinase C (PKC) ε and phosphorylated extracellular signal-regulated kinase (p-ERK) 1/2 as well as the mRNA expression of α-MHC, but downregulated the expression of β-MHC, Bax and PKC βII, and the mRNA expression levels of β-MHC in Dox-treated mice. It was also found that GCIP-27 (30, 90 μg/L) decreased cell size and protein content of cardiomyocytes significantly in vitro by comparison of Dox group. Conclusions GCIP-27 could effectively ameliorate heart failure development induced by Dox. PKC–ERK1/2 signaling might represent the underlying mechanism of the beneficial effects of GCIP-27.
Collapse
Affiliation(s)
- Xiao Lan Lu
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
- Department of Clinical Laboratory, First Affiliated Hospital of North Sichuan Medical College, Sichuan Nanchong 637000, China
| | - Yang Fei Tong
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Ya Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 40038, China
| | - Ya Li Xu
- Department of Ultrasound, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hua Yang
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Guo Yuan Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of North Sichuan Medical College, Sichuan Nanchong 637000, China
| | - Xiao-Hui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 40038, China
| | - Hai-Gang Zhang
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
- * E-mail:
| |
Collapse
|
21
|
Tham YK, Bernardo BC, Ooi JYY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015; 89:1401-38. [DOI: 10.1007/s00204-015-1477-x] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
|
22
|
Fan HC, Fernández-Hernando C, Lai JH. Protein kinase C isoforms in atherosclerosis: Pro- or anti-inflammatory? Biochem Pharmacol 2014; 88:139-49. [DOI: 10.1016/j.bcp.2014.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/12/2022]
|
23
|
Xiao D, Dasgupta C, Chen M, Zhang K, Buchholz J, Xu Z, Zhang L. Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats. Cardiovasc Res 2014; 101:373-82. [PMID: 24272874 PMCID: PMC3927999 DOI: 10.1093/cvr/cvt264] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/15/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022] Open
Abstract
AIMS The mechanisms of heart failure remain largely elusive. The present study determined a causative role of DNA methylation in norepinephrine-induced heart hypertrophy and reduced cardiac contractility. METHODS AND RESULTS Male adult rats were subjected to norepinephrine infusion for 28 days, some of which were treated with 5-aza-2'-deoxycytidine for the last 6 days of norepinephrine treatment. At the end of the treatment, hearts were isolated and left ventricular morphology and function as well as molecular assessments was determined. Animals receiving chronic norepinephrine infusion showed a sustained increase in blood pressure, heightened global genomic DNA methylation and changes in the expression of subsets of proteins in the left ventricle, left ventricular hypertrophy, and impaired contractility with an increase in the susceptibility to ischaemic injury. Treatment of animals with 5-aza-2'-deoxycytidine for the last 6 days of norepinephrine infusion reversed norepinephrine-induced hypermethylation, corrected protein expression patterns, and rescued the phenotype of heart hypertrophy and failure. CONCLUSIONS The findings provide novel evidence of a causative role of increased DNA methylation in programming of heart hypertrophy and reduced cardiac contractility, and suggest potential therapeutic targets of demethylation in the treatment of failing heart and ischaemic heart disease.
Collapse
Affiliation(s)
- DaLiao Xiao
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou 215006, China
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Chiranjib Dasgupta
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Man Chen
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Kangling Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - John Buchholz
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Zhice Xu
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou 215006, China
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou 215006, China
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
24
|
Zhong GQ, Tu RH, Zeng ZY, Li QJ, He Y, Li S, He Y, Xiao F. Novel functional role of heat shock protein 90 in protein kinase C-mediated ischemic postconditioning. J Surg Res 2014; 189:198-206. [PMID: 24742623 DOI: 10.1016/j.jss.2014.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/19/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Previous studies have shown that heat shock protein 90 (HSP90) plays a vital role in ischemic preconditioning. The present study was designed to explore whether HSP90 might be responsible for cardioprotection in ischemic postconditioning (PostC). MATERIALS AND METHODS Rat hearts underwent 30 min of regional ischemia and 2 h of reperfusion in situ, and PostC was effected with three cycles of 30-s reperfusion and 30-s coronary artery occlusion at the end of ischemia. Ninety rats were randomized into five groups: sham; ischemia-reperfusion (I/R); PostC; 1 mg/kg HSP90 inhibitor geldanamycin (GA) plus PostC (PostC + GA1); and 5 mg/kg GA plus PostC (PostC + GA5). The GA was administered 10 min before reperfusion. RESULTS Compared with the I/R group, the PostC group exhibited lower infarct size (46.7 ± 3.0% versus 27.4 ± 4.0%, respectively), release of lactate dehydrogenase and creatine kinase-MB (2252.6 ± 350.8 versus 1713.7 ± 202.4 IU/L, 2804.3 ± 315.7 versus 1846.2 ± 238.0 IU/L, respectively), cardiomyocyte apoptosis (48.4 ± 5.6% versus 27.6 ± 3.8%, respectively), and mitochondrial damage. These beneficial effects were accompanied by an increase in mitochondrial Bcl-2 levels and a decrease in Bax levels. In addition, mitochondrial protein kinase Cepsilon (PKCepsilon) was relatively low in the I/R group but significantly higher in the PostC group, whereas cytosolic PKCepsilon was relatively high in the I/R group but significantly lower in the PostC group, suggesting the translocation of PKCepsilon from cytosol to mitochondria during PostC. However, blocking HSP90 function with GA inhibited the protection of PostC and PKCepsilon mitochondrial translocation. CONCLUSIONS HSP90 is critical in PostC-induced cardioprotection, and its activity might be linked to mitochondrial targeting of PKCepsilon, the activation of which results in upregulation of its target gene, Bcl-2, and the inhibition of proapoptotic Bax in mitochondria.
Collapse
Affiliation(s)
- Guo-Qiang Zhong
- Department of Geriatric Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China; Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China.
| | - Rong-Hui Tu
- Department of Geriatric Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Zhi-Yu Zeng
- Department of Geriatric Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Qing-Jie Li
- Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Yan He
- Department of Geriatric Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Shuo Li
- Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Yan He
- Department of Geriatric Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Fei Xiao
- Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| |
Collapse
|
25
|
Krenz M, Baines C, Kalogeris T, Korthuis R. Cell Survival Programs and Ischemia/Reperfusion: Hormesis, Preconditioning, and Cardioprotection. ACTA ACUST UNITED AC 2013. [DOI: 10.4199/c00090ed1v01y201309isp044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Kawabori M, Kacimi R, Karliner JS, Yenari MA. Sphingolipids in cardiovascular and cerebrovascular systems: Pathological implications and potential therapeutic targets. World J Cardiol 2013; 5:75-86. [PMID: 23675553 PMCID: PMC3653015 DOI: 10.4330/wjc.v5.i4.75] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/01/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023] Open
Abstract
The sphingolipid metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P) and its enzyme sphingosine kinase (SphK) play an important role in the regulation of cell proliferation, survival, inflammation, and cell death. Ceramide and sphingosine usually inhibit proliferation and promote apoptosis, while its metabolite S1P phosphorylated by SphK stimulates growth and suppresses apoptosis. Because these metabolites are interconvertible, it has been proposed that it is not the absolute amounts of these metabolites but rather their relative levels that determine cell fate. The relevance of this “sphingolipid rheostat” and its role in regulating cell fate has been borne out by work in many labs using many different cell types and experimental manipulations. A central finding of these studies is that SphK is a critical regulator of the sphingolipid rheostat, as it not only produces the pro-growth, anti-apoptotic messenger S1P, but also decreases levels of pro-apoptotic ceramide and sphingosine. Activation of bioactive sphingolipid S1P signaling has emerged as a critical protective pathway in response to acute ischemic injury in both cardiac and cerebrovascular disease, and these observations have considerable relevance for future potential therapeutic targets.
Collapse
|
27
|
Lin CS, Ho LJ, Yang SP, Lai JH. A role for PKCδ in foam cell formation: reply. Cardiovasc Res 2013; 97:389-90. [PMID: 23172709 DOI: 10.1093/cvr/cvs342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Abstract
Sphingosine-1-phosphate (S1P) regulates important functions in cardiac and vascular homeostasis. It has been implied to play causal roles in the pathogenesis of many cardiovascular disorders such as coronary artery disease, atherosclerosis, myocardial infarction, and heart failure. The majority of S1P in plasma is associated with high-density lipoproteins (HDL), and their S1P content has been shown to be responsible, at least in part, for several of the beneficial effects of HDL on cardiovascular risk. The attractiveness of S1P-based drugs for potential cardiovascular applications is increasing in the wake of the clinical approval of FTY720, but answers to important questions on the effects of S1P in cardiovascular biology and medicine must still be found. This chapter focuses on the current understanding of the role of S1P and its receptors in cardiovascular physiology, pathology, and disease.
Collapse
Affiliation(s)
- Bodo Levkau
- University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
29
|
Abstract
Protein kinase C (PKC) isoforms have emerged as important regulators of cardiac contraction, hypertrophy, and signaling pathways that influence ischemic/reperfusion injury. This review focuses on newer concepts regarding PKC isoform-specific activation mechanisms and actions that have implications for the development of PKC-targeted therapeutics.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, Columbia University, New York, New York, USA.
| |
Collapse
|
30
|
Fenton RA, Dobson JG. Reduced adenosine release from the aged mammalian heart. J Cell Physiol 2012; 227:3709-14. [PMID: 22378276 DOI: 10.1002/jcp.24079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Adenosine (ADO) released in the heart results in enhanced coronary blood flow and reduced catecholamine release and myocardial responsiveness to adrenergic stimulation (anti-adrenergic action). ADO release from the adrenergic-stimulated aged heart is less than that from the young adult heart. Because adrenergic signaling in the aged heart is impaired, this study was conducted to determine if reduced ADO release from the aged heart results from this reduced adrenergic responsiveness. Hearts of 3-4 months (young adult) and 21-22 months (aged) Fischer-344 rats were perfused with ADO deamination and re-phosphorylation inhibited. Coronary effluent ADO levels were determined. Cellular-free ADO levels with and without sodium acetate (NaAc)-induced mitochondrial AMP synthesis were assessed using formed S-adenosylhomocysteine (SAH) in L-homocysteine thiolactone (L-HC)-treated hearts. The activities of SAH-hydrolase were determined. Aged heart ADO release was 61% less than from young hearts. NaAc augmented young heart ADO release by 104%, while that of aged hearts remained unchanged. SAH synthesis was 51% and 56% lower in the aged heart in the absence and presence of NaAc, respectively, despite an 89% greater SAH hydrolase activity found in the aged hearts. Since synthesized AMP may be diverted to IMP and ultimately inosine by AMP deaminase, inosine release was determined. Aged heart inosine levels in the absence and presence of NaAc were 74% and 59% less than for the young hearts. It is concluded that a reduced mitochondrial AMP synthesis is in part responsible for the attenuation in ADO release from the adrenergic-stimulated aged heart.
Collapse
Affiliation(s)
- Richard A Fenton
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|
31
|
Protein kinase C depresses cardiac myocyte power output and attenuates myofilament responses induced by protein kinase A. J Muscle Res Cell Motil 2012; 33:439-48. [PMID: 22527640 DOI: 10.1007/s10974-012-9294-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/09/2012] [Indexed: 01/13/2023]
Abstract
Following activation by G-protein-coupled receptor agonists, protein kinase C (PKC) modulates cardiac myocyte function by phosphorylation of intracellular targets including myofilament proteins cardiac troponin I (cTnI) and cardiac myosin binding protein C (cMyBP-C). Since PKC phosphorylation has been shown to decrease myofibril ATPase activity, we hypothesized that PKC phosphorylation of cTnI and cMyBP-C will lower myocyte power output and, in addition, attenuate the elevation in power in response to protein kinase A (PKA)-mediated phosphorylation. We compared isometric force and power generating capacity of rat skinned cardiac myocytes before and after treatment with the catalytic subunit of PKC. PKC increased phosphorylation levels of cMyBP-C and cTnI and decreased both maximal Ca(2+) activated force and Ca(2+) sensitivity of force. Moreover, during submaximal Ca(2+) activations PKC decreased power output by 62 %, which arose from both the fall in force and slower loaded shortening velocities since depressed power persisted even when force levels were matched before and after PKC. In addition, PKC blunted the phosphorylation of cTnI by PKA, reduced PKA-induced spontaneous oscillatory contractions, and diminished PKA-mediated elevations in myocyte power. To test whether altered thin filament function plays an essential role in these contractile changes we investigated the effects of chronic cTnI pseudo-phosphorylation on myofilament function using myocyte preparations from transgenic animals in which either only PKA phosphorylation sites (Ser-23/Ser-24) (PP) or both PKA and PKC phosphorylation sites (Ser-23/Ser-24/Ser-43/Ser-45/T-144) (All-P) were replaced with aspartic acid. Cardiac myocytes from All-P transgenic mice exhibited reductions in maximal force, Ca(2+) sensitivity of force, and power. Similarly diminished power generating capacity was observed in hearts from All-P mice as determined by in situ pressure-volume measurements. These results imply that PKC-mediated phosphorylation of cTnI plays a dominant role in depressing contractility, and, thus, increased PKC isozyme activity may contribute to maladaptive behavior exhibited during the progression to heart failure.
Collapse
|
32
|
Xiong F, Xiao D, Zhang L. Norepinephrine causes epigenetic repression of PKCε gene in rodent hearts by activating Nox1-dependent reactive oxygen species production. FASEB J 2012; 26:2753-63. [PMID: 22441984 DOI: 10.1096/fj.11-199422] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heart disease is the leading cause of death in the United States. Recent studies demonstrate that fetal programming of PKCε gene repression results in ischemia-sensitive phenotype in the heart. The present study tests the hypothesis that increased norepinephrine causes epigenetic repression of PKCε gene in the heart via Nox1-dependent reactive oxygen species (ROS) production. Prolonged norepinephrine treatment increased ROS production in fetal rat hearts and embryonic ventricular myocyte H9c2 cells via a selective increase in Nox1 expression. Norepinephrine-induced ROS resulted in an increase in PKCε promoter methylation at Egr-1 and Sp-1 binding sites, leading to PKCε gene repression. N-acetylcysteine, diphenyleneiodonium, and apocynin blocked norepinephrine-induced ROS production and the promoter methylation, and also restored PKCε mRNA and protein to control levels in vivo in fetal hearts and in vitro in embryonic myocyte cells. Accordingly, norepinephrine-induced ROS production, promoter methylation, and PKCε gene repression were completely abrogated by knockdown of Nox1 in cardiomyocytes. These findings provide evidence of a novel interaction between elevated norepinephrine and epigenetic repression of PKCε gene in the heart mediated by Nox1-dependent oxidative stress and suggest new insights of molecular mechanisms linking the heightened sympathetic activity to aberrant cardioprotection and increased ischemic vulnerability in the heart.
Collapse
Affiliation(s)
- Fuxia Xiong
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
33
|
Lorenzen JM, Martino F, Thum T. Epigenetic modifications in cardiovascular disease. Basic Res Cardiol 2012; 107:245. [PMID: 22234702 PMCID: PMC3329881 DOI: 10.1007/s00395-012-0245-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/12/2011] [Accepted: 12/31/2011] [Indexed: 01/29/2023]
Abstract
Epigenetics represents a phenomenon of altered heritable phenotypic expression of genetic information occurring without changes in DNA sequence. Epigenetic modifications control embryonic development, differentiation and stem cell (re)programming. These modifications can be affected by exogenous stimuli (e.g., diabetic milieu, smoking) and oftentimes culminate in disease initiation. DNA methylation has been studied extensively and represents a well-understood epigenetic mechanism. During this process cytosine residues preceding a guanosine in the DNA sequence are methylated. CpG-islands are short-interspersed DNA sequences with clusters of CG sequences. The abnormal methylation of CpG islands in the promoter region of genes leads to a silencing of genetic information and finally to alteration of biological function. Emerging data suggest that these epigenetic modifications also impact on the development of cardiovascular disease. Histone modifications lead to the modulation of the expression of genetic information through modification of DNA accessibility. In addition, RNA-based mechanisms (e.g., microRNAs and long non-coding RNAs) influence the development of disease. We here outline the recent work pertaining to epigenetic changes in a cardiovascular disease setting.
Collapse
Affiliation(s)
- Johan M Lorenzen
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
| | | | | |
Collapse
|
34
|
Perkins KAA, Pershad S, Chen Q, McGraw S, Adams JS, Zambrano C, Krass S, Emrich J, Bell B, Iyamu M, Prince C, Kay H, Teng JCW, Young LH. The effects of modulating eNOS activity and coupling in ischemia/reperfusion (I/R). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2012; 385:27-38. [PMID: 21947254 DOI: 10.1007/s00210-011-0693-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 09/12/2011] [Indexed: 11/24/2022]
Abstract
The in vivo role of endothelial nitric oxide synthase (eNOS) uncoupling mediating oxidative stress in ischemia/reperfusion (I/R) injury has not been well established. In vitro, eNOS coupling refers to the reduction of molecular oxygen to L-arginine oxidation and generation of L-citrulline and nitric oxide NO synthesis in the presence of an essential cofactor, tetrahydrobiopterin (BH(4)). Whereas uncoupled eNOS refers to that the electron transfer becomes uncoupled to L-arginine oxidation and superoxide is generated when the dihydrobiopterin (BH(2)) to BH(4) ratio is increased. Superoxide is subsequently converted to hydrogen peroxide (H(2)O(2)). We tested the hypothesis that promoting eNOS coupling or attenuating uncoupling after I/R would decrease H(2)O(2)/increase NO release in blood and restore postreperfused cardiac function. We combined BH(4) or BH(2) with eNOS activity enhancer, protein kinase C epsilon (PKC ε) activator, or eNOS activity reducer, PKC ε inhibitor, in isolated rat hearts (ex vivo) and femoral arteries/veins (in vivo) subjected to I(20 min)/R(45 min). When given during reperfusion, PKC ε activator combined with BH(4), not BH(2), significantly restored postreperfused cardiac function and decreased leukocyte infiltration (p < 0.01) while increasing NO (p < 0.05) and reducing H(2)O(2) (p < 0.01) release in femoral I/R veins. These results provide indirect evidence suggesting that PKC ε activator combined with BH(4) enhances coupled eNOS activity, whereas it enhanced uncoupled eNOS activity when combined with BH(2). By contrast, the cardioprotective and anti-oxidative effects of the PKC ε inhibitor were unaffected by BH(4) or BH(2) suggesting that inhibition of eNOS uncoupling during reperfusion following sustained ischemia may be an important mechanism.
Collapse
Affiliation(s)
- Kerry-Anne A Perkins
- Department of Pathology, Microbiology, Immunology and Forensic Medicine, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131-1694, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Alipour MR, Aliparasti MR, Keyhanmanesh R, Almasi S, Halimi M, Ansarin K, Feizi H. Effect of ghrelin on protein kinase C-ε and protein kinase C-δ gene expression in the pulmonary arterial smooth muscles of chronic hypoxic rats. J Endocrinol Invest 2011; 34:e369-73. [PMID: 22067223 DOI: 10.3275/8056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Protein kinase C (PKC), can be activated in pulmonary arterial smooth muscle cells during hypoxia, leading to hypoxic pulmonary vasoconstriction (HPV). Studies are going on to detect the strict PKC isoform involved in the phenomenon. It has been shown that ghrelin, a 28-amino-acid peptide, may protect lungs from HPV side effects, to some extent. The aim of study was to evaluate the effect of exogenous ghrelin on PKC-ε and PKC-δ gene expression during chronic hypoxia. MATERIAL AND METHODS Twenty-four adult male Wistar rats were divided randomly in 3 groups. Hypoxic rats with saline or ghrelin treatment were placed in a normobaric hypoxic chamber for 2 weeks. Controls remained in room air. PKC-ε and PKC-δ gene expression was measured by real-time RT-PCR. RESULTS Morphometric analysis showed that ghrelin reversed the hypoxia induced pulmonary artery wall thickness. In hypoxic animals, there was a 2- and 4-fold increment in PKC-ε and PKC- δ gene expression, respectively. Ghrelin treatment reduced the overexpression of PKC-ε and PKC-δ to control animals' value. CONCLUSION Ghrelin by decreasing the expression of PKC-ε and PKC-δ in hypoxic animals reduces the HPV. Although more studies are needed, it could be an honest deduction that ghrelin affects HPV in a multifunctional manner and might be used as a therapeutic agent in the future.
Collapse
Affiliation(s)
- M R Alipour
- Tuberculosis and Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | | | | | |
Collapse
|
36
|
Mirandola P, Gobbi G, Masselli E, Micheloni C, Di Marcantonio D, Queirolo V, Chiodera P, Meschi T, Vitale M. Protein kinase Cε regulates proliferation and cell sensitivity to TGF-1β of CD4+ T lymphocytes: implications for Hashimoto thyroiditis. THE JOURNAL OF IMMUNOLOGY 2011; 187:4721-32. [PMID: 21964026 DOI: 10.4049/jimmunol.1003258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have studied the functional role of protein kinase Cε (PKCε) in the control of human CD4(+) T cell proliferation and in their response to TGF-1β. We demonstrate that PKCε sustains CD4(+) T cell proliferation triggered in vitro by CD3 stimulation. Transient knockdown of PKCε expression decreases IL-2R chain transcription, and consequently cell surface expression levels of CD25. PKCε silencing in CD4 T cells potentiates the inhibitory effects of TGF-1β, whereas in contrast, the forced expression of PKCε virtually abrogates the inhibitory effects of TGF-1β. Being that PKCε is therefore implicated in the response of CD4 T cells to both CD3-mediated proliferative stimuli and TGF-1β antiproliferative signals, we studied it in Hashimoto thyroiditis (HT), a pathology characterized by abnormal lymphocyte proliferation and activation. When we analyzed CD4 T cells from HT patients, we found a significant increase of PKCε expression, accounting for their enhanced survival, proliferation, and decreased sensitivity to TGF-1β. The increased expression of PKCε in CD4(+) T cells of HT patients, which is described for the first time, to our knowledge, in this article, viewed in the perspective of the physiological role of PKCε in normal Th lymphocytes, adds knowledge to the molecular pathophysiology of HT and creates potentially new pharmacological targets for the therapy of this disease.
Collapse
Affiliation(s)
- Prisco Mirandola
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Parma, 43126 Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Anderson JD, Honigman B. The effect of altitude-induced hypoxia on heart disease: do acute, intermittent, and chronic exposures provide cardioprotection? High Alt Med Biol 2011; 12:45-55. [PMID: 21452965 DOI: 10.1089/ham.2010.1021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With the global prevalence of heart disease continuing to increase and large populations living at altitude around the world, we review the concept of altitude and cardioprotection. Current epidemiologic data, as well as the basic science and molecular mechanisms involved in acute, intermittent, and chronic exposure to altitude, are discussed. Intermittent and chronic exposures have been demonstrated to increase coronary vasculature, decrease infarction size, and provide more efficient metabolism and better cardiac functional recovery postischemia. Mechanisms demonstrated in these situations include those mediated by the hypoxia inducible factor, as well as reactive oxygen species, certain ion channels, and protein kinases. Although current epidemiologic studies are difficult to interpret owing to many confounders, many studies point to the possibility that living at altitude provides cardiovascular protection. Further research is needed to determine if the bench studies showing mechanisms consistent with cardioprotection translate to the population living at altitude.
Collapse
Affiliation(s)
- John D Anderson
- Department of Emergency Medicine, Denver Health Medical Center, Denver, Colorado, USA.
| | | |
Collapse
|
38
|
Márquez-Rosado L, Solan JL, Dunn CA, Norris RP, Lampe PD. Connexin43 phosphorylation in brain, cardiac, endothelial and epithelial tissues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1985-92. [PMID: 21819962 DOI: 10.1016/j.bbamem.2011.07.028] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/14/2011] [Accepted: 07/19/2011] [Indexed: 11/30/2022]
Abstract
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in essentially all tissues. There are 21 connexin genes in the human genome and different tissues express different connexin genes. Most connexins are known to be phosphoproteins. Phosphorylation can regulate connexin assembly into gap junctions, gap junction turnover and channel gating. Given the importance of gap junctions in development, proliferation and carcinogenesis, regulation of gap junction phosphorylation in response to wounding, hypoxia and other tissue insults is proving to be critical for cellular response and return to homeostasis. Connexin43 (Cx43) is the most widely and highly expressed gap junction protein, both in cell culture models and in humans, thus more research has been done on it and more reagents to it are available. In particular, antibodies that can report Cx43 phosphorylation status have been created allowing temporal examination of specific phosphorylation events in vivo. This review is focused on the use of these antibodies in tissue in situ, predominantly looking at Cx43 phosphorylation in brain, heart, endothelium and epithelium with reference to other connexins where data is available. These data allow us to begin to correlate specific phosphorylation events with changes in cell and tissue function. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
|
39
|
Xue Q, Dasgupta C, Chen M, Zhang L. Foetal hypoxia increases cardiac AT(2)R expression and subsequent vulnerability to adult ischaemic injury. Cardiovasc Res 2010; 89:300-8. [PMID: 20870653 DOI: 10.1093/cvr/cvq303] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIMS Hypoxia is a common stress to the foetus and results in increased cardiac vulnerability to adult ischaemic injury. This study tested the hypothesis that foetal hypoxia causes programming of increased AT(2) receptor (AT(2)R) expression in the heart, resulting in the heightened cardiac susceptibility to adult ischaemic injury. METHODS AND RESULTS Time-dated pregnant rats were divided between normoxic and hypoxic (10.5% O(2) from days 15 to 21 of gestation) groups. Hypoxia resulted in significantly increased AT(2)R in the heart of adult offspring. Multiple glucocorticoid response elements (GREs) were identified at the AT(2)R promoter, deletion of which increased the promoter activity. Consistently, ex vivo treatment of isolated foetal hearts with dexamethasone for 48 h decreased AT(2)R expression, which was inhibited by RU 486. Hypoxia decreased glucocorticoid receptors (GRs) in the hearts of foetal, 3-week-old and 3-month-old offspring, resulting in decreased GR binding to the GREs at the AT(2)R promoter. The inhibition of AT(2)R improved postischaemic recovery of left ventricular function and rescued the foetal hypoxia-induced cardiac ischaemic vulnerability in male adult animals. In contrast, the inhibition of AT(1) receptors decreased the postischaemic recovery. CONCLUSION The results demonstrate that in utero hypoxia causes programming of increased AT(2)R gene expression in the heart by downregulating GR, which contributes to the increased cardiac vulnerability to adult ischaemic injury caused by prenatal hypoxic exposure.
Collapse
Affiliation(s)
- Qin Xue
- Institute for Fetal Origin Diseases, First Hospital of Soochow University, Suzhou 215000, China
| | | | | | | |
Collapse
|
40
|
Acin-Perez R, Hoyos B, Gong J, Vinogradov V, Fischman DA, Leitges M, Borhan B, Starkov A, Manfredi G, Hammerling U. Regulation of intermediary metabolism by the PKCdelta signalosome in mitochondria. FASEB J 2010; 24:5033-42. [PMID: 20798245 DOI: 10.1096/fj.10-166934] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PKCδ has emerged as a novel regulatory molecule of oxidative phosphorylation by targeting the pyruvate dehydrogenase complex (PDHC). We showed that activation of PKCδ leads to the dephosphorylation of pyruvate dehydrogenase kinase 2 (PDK2), thereby decreasing PDK2 activity and increasing PDH activity, accelerating oxygen consumption, and augmenting ATP synthesis. However, the molecular components that mediate PKCδ signaling in mitochondria have remained elusive so far. Here, we identify for the first time a functional complex, which includes cytochrome c as the upstream driver of PKCδ, and uses the adapter protein p66Shc as a platform with vitamin A (retinol) as a fourth partner. All four components are necessary for the activation of the PKCδ signal chain. Genetic ablation of any one of the three proteins, or retinol depletion, silences signaling. Furthermore, mutations that disrupt the interaction of cytochrome c with p66Shc, of p66Shc with PKCδ, or the deletion of the retinol-binding pocket on PKCδ, attenuate signaling. In cytochrome c-deficient cells, reintroduction of cytochrome c Fe(3+) protein restores PKCδ signaling. Taken together, these results indicate that oxidation of PKCδ is key to the activation of the pathway. The PKCδ/p66Shc/cytochrome c signalosome might have evolved to effect site-directed oxidation of zinc-finger structures of PKCδ, which harbor the activation centers and the vitamin A binding sites. Our findings define the molecular mechanisms underlying the signaling function of PKCδ in mitochondria.
Collapse
Affiliation(s)
- Rebeca Acin-Perez
- Department of Neurology and Neurobiology, Weill-Cornell Medical School, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Acin-Perez R, Hoyos B, Gong J, Vinogradov V, Fischman DA, Leitges M, Borhan B, Starkov A, Manfredi G, Hammerling U. Regulation of intermediary metabolism by the PKCδ signalosome in mitochondria. FASEB J 2010. [DOI: 10.1096/fj.10.166934] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rebeca Acin-Perez
- Department of Neurology and NeurobiologyWeill‐Cornell Medical School New York New York USA
| | - Beatrice Hoyos
- Immunology Program, Sloan‐Kettering Institute for Cancer Research New York New York USA
| | - Jianli Gong
- Immunology Program, Sloan‐Kettering Institute for Cancer Research New York New York USA
| | - Valerie Vinogradov
- Immunology Program, Sloan‐Kettering Institute for Cancer Research New York New York USA
| | - Donald A. Fischman
- Department of Cell and Developmental BiologyWeill‐Cornell Medical School New York New York USA
| | - Michael Leitges
- The Biotechnology Centre of Oslo, University of Oslo Oslo Norway
| | - Babak Borhan
- Department of ChemistryMichigan State University East Lansing Michigan USA
| | - Anatoly Starkov
- Department of Neurology and NeurobiologyWeill‐Cornell Medical School New York New York USA
| | - Giovanni Manfredi
- Department of Neurology and NeurobiologyWeill‐Cornell Medical School New York New York USA
| | - Ulrich Hammerling
- Department of Cell and Developmental BiologyWeill‐Cornell Medical School New York New York USA
| |
Collapse
|
42
|
Lawrence J, Chen M, Xiong F, Xiao D, Zhang H, Buchholz JN, Zhang L. Foetal nicotine exposure causes PKCε gene repression by promoter methylation in rat hearts. Cardiovasc Res 2010; 89:89-97. [PMID: 20733009 DOI: 10.1093/cvr/cvq270] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIMS foetal nicotine exposure results in decreased protein kinase C epsilon (PKCε) expression and increased cardiac vulnerability to ischaemia and reperfusion injury in adult rat offspring. The present study tested the hypothesis that maternal nicotine administration causes increased promoter methylation of the PKCε gene resulting in PKCε repression in the heart. METHODS AND RESULTS nicotine treatment of pregnant rats starting at day 4 of gestation increased the methylation of the Egr-1 binding site at the PKCε gene promoter and decreased PKCε protein and mRNA abundance in near-term foetal hearts. Methylation of the Egr-1 binding site reduced Egr-1 binding to the PKCε promoter in the heart. Site-specific deletion of the Egr-1 binding site significantly decreased PKCε promoter activity. The effects of nicotine were sustained in the heart of adult offspring. Ex vivo studies found no direct effect of nicotine on PKCε gene expression. However, maternal nicotine administration increased norepinephrine content in the foetal heart. Treatment of isolated foetal hearts with norepinephrine resulted in the same effects of increased methylation of the Egr-1 binding site and PKCε gene repression in the heart. 5-Aza-2'-deoxycytidine inhibited the norepinephrine-induced increase in methylation of the Egr-1 binding site and restored Egr-1 binding and PKCε gene expression to the control levels. CONCLUSION this study demonstrates that prolonged nicotine exposure increases the sympathetic neurotransmitter release in the foetal heart and causes programming of PKCε gene repression through promoter methylation, linking maternal smoking to pathophysiological consequences in the offspring heart.
Collapse
Affiliation(s)
- Jennifer Lawrence
- Department of Physiology and Pharmacology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Patterson AJ, Chen M, Xue Q, Xiao D, Zhang L. Chronic prenatal hypoxia induces epigenetic programming of PKC{epsilon} gene repression in rat hearts. Circ Res 2010; 107:365-73. [PMID: 20538683 DOI: 10.1161/circresaha.110.221259] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RATIONALE Epidemiological studies demonstrate a clear association of adverse intrauterine environment with an increased risk of ischemic heart disease in adulthood. Hypoxia is a common stress to the fetus and results in decreased protein kinase C epsilon (PKCepsilon) expression in the heart and increased cardiac vulnerability to ischemia and reperfusion injury in adult offspring in rats. OBJECTIVES The present study tested the hypothesis that fetal hypoxia-induced methylation of cytosine-phosphate-guanine dinucleotides at the PKCepsilon promoter is repressive and contributes to PKCepsilon gene repression in the heart of adult offspring. METHODS AND RESULTS Hypoxic treatment of pregnant rats from days 15 to 21 of gestation resulted in significant decreases in PKCepsilon protein and mRNA in fetal hearts. Similar results were obtained in ex vivo hypoxic treatment of isolated fetal hearts and rat embryonic ventricular myocyte cell line H9c2. Increased methylation of PKCepsilon promoter at SP1 binding sites, -346 and -268, were demonstrated in both fetal hearts of maternal hypoxia and H9c2 cells treated with 1% O(2) for 24 hours. Whereas hypoxia had no significant effect on the binding affinity of SP1 to the unmethylated sites in H9c2 cells, hearts of fetuses and adult offspring, methylation of both SP1 sites reduced SP1 binding. The addition of 5-aza-2'-deoxycytidine blocked the hypoxia-induced increase in methylation of both SP1 binding sites and restored PKCepsilon mRNA and protein to the control levels. In hearts of both fetuses and adult offspring, hypoxia-induced methylation of SP1 sites was significantly greater in males than in females, and decreased PKCepsilon mRNA was seen only in males. In fetal hearts, there was significantly higher abundance of estrogen receptor alpha and beta isoforms in females than in males. Both estrogen receptor alpha and beta interacted with the SP1 binding sites in the fetal heart, which may explain the sex differences in SP1 methylation in the fetal heart. Additionally, selective activation of PKCepsilon restored the hypoxia-induced cardiac vulnerability to ischemic injury in offspring. CONCLUSIONS The findings demonstrate a direct effect of hypoxia on epigenetic modification of DNA methylation and programming of cardiac PKCepsilon gene repression in a sex-dependent manner, linking fetal hypoxia and pathophysiological consequences in the hearts of adult offspring.
Collapse
Affiliation(s)
- Andrew J Patterson
- Center for Perinatal Biology, Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA 92350, USA
| | | | | | | | | |
Collapse
|
44
|
Paoletti R, Maffei A, Madaro L, Notte A, Stanganello E, Cifelli G, Carullo P, Molinaro M, Lembo G, Bouché M. Protein kinase Cθ is required for cardiomyocyte survival and cardiac remodeling. Cell Death Dis 2010; 1:e45. [PMID: 21364651 PMCID: PMC3032313 DOI: 10.1038/cddis.2010.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinase Cs (PKCs) constitute a family of serine/threonine kinases, which has distinguished and specific roles in regulating cardiac responses, including those associated with heart failure. We found that the PKCθ isoform is expressed at considerable levels in the cardiac muscle in mouse, and that it is rapidly activated after pressure overload. To investigate the role of PKCθ in cardiac remodeling, we used PKCθ−/− mice. In vivo analyses of PKCθ−/− hearts showed that the lack of PKCθ expression leads to left ventricular dilation and reduced function. Histological analyses showed a reduction in the number of cardiomyocytes, combined with hypertrophy of the remaining cardiomyocytes, cardiac fibrosis, myofibroblast hyper-proliferation and matrix deposition. We also observed p38 and JunK activation, known to promote cell death in response to stress, combined with upregulation of the fetal pattern of gene expression, considered to be a feature of the hemodynamically or metabolically stressed heart. In keeping with these observations, cultured PKCθ−/− cardiomyocytes were less viable than wild-type cardiomyocytes, and, unlike wild-type cardiomyocytes, underwent programmed cell death upon stimulation with α1-adrenergic agonists and hypoxia. Taken together, these results show that PKCθ maintains the correct structure and function of the heart by preventing cardiomyocyte cell death in response to work demand and to neuro-hormonal signals, to which heart cells are continuously exposed.
Collapse
Affiliation(s)
- R Paoletti
- Department of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Huang C, Liu W, Perry CN, Yitzhaki S, Lee Y, Yuan H, Tsukada YT, Hamacher-Brady A, Mentzer RM, Gottlieb RA. Autophagy and protein kinase C are required for cardioprotection by sulfaphenazole. Am J Physiol Heart Circ Physiol 2009; 298:H570-9. [PMID: 20008275 DOI: 10.1152/ajpheart.00716.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previously, we showed that sulfaphenazole (SUL), an antimicrobial agent that is a potent inhibitor of cytochrome P4502C9, is protective against ischemia-reperfusion (I/R) injury (Ref. 15). The mechanism, however, underlying this cardioprotection, is largely unknown. With evidence that activation of autophagy is protective against simulated I/R in HL-1 cells, and evidence that autophagy is upregulated in preconditioned hearts, we hypothesized that SUL-mediated cardioprotection might resemble ischemic preconditioning with respect to activation of protein kinase C and autophagy. We used the Langendorff model of global ischemia to assess the role of autophagy and protein kinase C in myocardial protection by SUL during I/R. We show that SUL enhanced recovery of function, reduced creatine kinase release, decreased infarct size, and induced autophagy. SUL also triggered PKC translocation, whereas inhibition of PKC with chelerythrine blocked the activation of autophagy in adult rat cardiomyocytes. In the Langendorff model, chelerythrine suppressed autophagy and abolished the protection mediated by SUL. SUL increased autophagy in adult rat cardiomyocytes infected with GFP-LC3 adenovirus, in isolated perfused rat hearts, and in mCherry-LC3 transgenic mice. To establish the role of autophagy in cardioprotection, we used the cell-permeable dominant-negative inhibitor of autophagy, Tat-Atg5(K130R). Autophagy and cardioprotection were abolished in rat hearts perfused with recombinant Tat-Atg5(K130R). Taken together, these studies indicate that cardioprotection mediated by SUL involves a PKC-dependent induction of autophagy. The findings suggest that autophagy may be a fundamental process that enhances the heart's tolerance to ischemia.
Collapse
Affiliation(s)
- Chengqun Huang
- BioScience Center, San Diego State University, San Diego, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Frangioudakis G, Burchfield JG, Narasimhan S, Cooney GJ, Leitges M, Biden TJ, Schmitz-Peiffer C. Diverse roles for protein kinase C delta and protein kinase C epsilon in the generation of high-fat-diet-induced glucose intolerance in mice: regulation of lipogenesis by protein kinase C delta. Diabetologia 2009; 52:2616-20. [PMID: 19809797 DOI: 10.1007/s00125-009-1543-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS This study aimed to determine whether protein kinase C (PKC) delta plays a role in the glucose intolerance caused by a high-fat diet, and whether it could compensate for loss of PKCepsilon in the generation of insulin resistance in skeletal muscle. METHODS Prkcd (-/-), Prkce (-/-) and wild-type mice were fed high-fat diets and subjected to glucose tolerance tests. Blood glucose levels and insulin responses were determined during the tests. Insulin signalling in liver and muscle was assessed after acute in vivo insulin stimulation by immunoblotting with phospho-specific antibodies. Activation of PKC isoforms in muscle from Prkce (-/-) mice was assessed by determining intracellular distribution. Tissues and plasma were assayed for triacylglycerol accumulation, and hepatic production of lipogenic enzymes was determined by immunoblotting. RESULTS Both Prkcd (-/-) and Prkce (-/-) mice were protected against high-fat-diet-induced glucose intolerance. In Prkce (-/-) mice this was mediated through enhanced insulin availability, while in Prkcd (-/-) mice the reversal occurred in the absence of elevated insulin. Neither the high-fat diet nor Prkcd deletion affected maximal insulin signalling. The activation of PKCdelta in muscle from fat-fed mice was enhanced by Prkce deletion. PKCdelta-deficient mice exhibited reduced liver triacylglycerol accumulation and diminished production of lipogenic enzymes. CONCLUSIONS/INTERPRETATION Deletion of genes encoding isoforms of PKC can improve glucose intolerance, either by enhancing insulin availability in the case of Prkce, or by reducing lipid accumulation in the case of Prkcd. The absence of PKCepsilon in muscle may be compensated by increased activation of PKCdelta in fat-fed mice, suggesting that an additional role for PKCepsilon in this tissue is masked.
Collapse
Affiliation(s)
- G Frangioudakis
- Diabetes and Obesity Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales, 2010, Australia
| | | | | | | | | | | | | |
Collapse
|
47
|
Budas GR, Disatnik MH, Chen CH, Mochly-Rosen D. Activation of aldehyde dehydrogenase 2 (ALDH2) confers cardioprotection in protein kinase C epsilon (PKCvarepsilon) knockout mice. J Mol Cell Cardiol 2009; 48:757-64. [PMID: 19913552 DOI: 10.1016/j.yjmcc.2009.10.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/25/2009] [Accepted: 10/27/2009] [Indexed: 12/17/2022]
Abstract
Acute administration of ethanol can reduce cardiac ischemia/reperfusion injury. Previous studies demonstrated that the acute cytoprotective effect of ethanol on the myocardium is mediated by protein kinase C epsilon (PKCvarepsilon). We recently identified aldehyde dehydrogenase 2 (ALDH2) as a PKCvarepsilon substrate, whose activation is necessary and sufficient to confer cardioprotection in vivo. ALDH2 metabolizes cytotoxic reactive aldehydes, such as 4-hydroxy-2-nonenal (4-HNE), which accumulate during cardiac ischemia/reperfusion. Here, we used a combination of PKCvarepsilon knockout mice and a direct activator of ALDH2, Alda-44, to further investigate the interplay between PKCvarepsilon and ALDH2 in cardioprotection. We report that ethanol preconditioning requires PKCvarepsilon, whereas direct activation of ALDH2 reduces infarct size in both wild type and PKCvarepsilon knockout hearts. Our data suggest that ALDH2 is downstream of PKCvarepsilon in ethanol preconditioning and that direct activation of ALDH2 can circumvent the requirement of PKCvarepsilon to induce cytoprotection. We also report that in addition to ALDH2 activation, Alda-44 prevents 4-HNE induced inactivation of ALDH2 by reducing the formation of 4-HNE-ALDH2 protein adducts. Thus, Alda-44 promotes metabolism of cytotoxic reactive aldehydes that accumulate in ischemic myocardium. Taken together, our findings suggest that direct activation of ALDH2 may represent a method of harnessing the cardioprotective effect of ethanol without the side effects associated with alcohol consumption.
Collapse
Affiliation(s)
- Grant R Budas
- Department of Chemical and Systems Biology, Stanford University School of Medicine, CCSR, Rm 3145A, 269 Campus Drive, Stanford, CA 94305-5174, USA
| | | | | | | |
Collapse
|
48
|
Cardiomyocyte S1P1 receptor-mediated extracellular signal-related kinase signaling and desensitization. J Cardiovasc Pharmacol 2009; 53:486-94. [PMID: 19433984 DOI: 10.1097/fjc.0b013e3181a7b58a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We examined the ability of sphingosine-1-phosphate (S1P) to desensitize extracellular signal-related kinase (ERK), a mitogen-activated protein kinase linked to antiapoptotic responses in the heart. In isolated adult mouse cardiomyocytes, S1P (10 nM-5 microM) induced ERK phosphorylation in a time- and dose-dependent manner. S1P stimulation of ERK was completely inhibited by an S1P1/3 subtype receptor antagonist (VPC23019), by a Gi protein inhibitor (pertussis toxin) and by a mitogen-activated protein kinase/ERK kinase inhibitor (PD98059). A selective S1P3 receptor antagonist (CAY10444) had no effect on S1P-induced ERK activation. The selective S1P1 agonist SEW2871 also induced ERK phosphorylation. Activation of ERK by restimulation with 100 nM S1P was suppressed after 1 hour of preincubation with 100 nM S1P but recovered fully the next day, suggesting receptor recycling. Similar results were obtained in protein kinase C epsilon-null cardiomyocytes. Treatment with the nonselective S1P receptor agonist FTY720 for 1 hour also reduced phospho-ERK expression in response to subsequent S1P stimulation. In contrast to S1P, some desensitization to FTY720 persisted after overnight exposure. Cell death induced by hypoxia/reoxygenation was reduced by pretreatment with exogenous S1P. This enhanced survival was abrogated by pretreatment with PD98059, VPC23019, or pertussis toxin. Thus, exogenous S1P induces rapid and reversible S1P1-mediated ERK phosphorylation. S1P-induced adult mouse cardiomyocyte survival requires ERK activation mediated via an S1P1-Gi pathway.
Collapse
|
49
|
Xue Q, Zhang L. Prenatal hypoxia causes a sex-dependent increase in heart susceptibility to ischemia and reperfusion injury in adult male offspring: role of protein kinase C epsilon. J Pharmacol Exp Ther 2009; 330:624-32. [PMID: 19470841 PMCID: PMC2713094 DOI: 10.1124/jpet.109.153239] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 05/22/2009] [Indexed: 01/21/2023] Open
Abstract
The present study tested the hypothesis that protein kinase C (PKC) epsilon plays a key role in the sex dichotomy of heart susceptibility to ischemia and reperfusion injury in adult offspring resulting from prenatal hypoxic exposure. Time-dated pregnant rats were divided between normoxic and hypoxic (10.5% O(2) on days 15-21 of gestation) groups. Hearts of 3-month-old progeny were subjected to ischemia and reperfusion (I/R) injury in a Langendorff preparation. Preischemic values of left ventricle (LV) function were the same between control and hypoxic animals. Prenatal hypoxia significantly decreased postischemic recovery of LV function and increased cardiac enzyme release and infarct size in adult male, but not female, rats. This was associated with significant decreases in PKC(epsilon) and phospho-PKC(epsilon) levels in the LV of the male, but not female, rats. The PKC(epsilon) translocation inhibitor peptide (PKC(epsilon)-TIP) significantly decreased phospho-PKC(epsilon) in control male rats to the levels found in the hypoxic animals and abolished the difference in I/R injury observed between the control and hypoxic rats. In females, PKC(epsilon)-TIP inhibited PKC(epsilon) phosphorylation and decreased postischemic recovery of LV function equally well in both control and hypoxic animals. PKC(epsilon)-TIP had no effect on PKCdelta activation in either male or female hearts. The results demonstrated that prenatal hypoxia caused an increase in heart susceptibility to ischemia and reperfusion injury in offspring in a sex-dependent manner, which was due to fetal programming of PKC(epsilon) gene repression resulting in a down-regulation of PKC(epsilon) function in the heart of adult male offspring.
Collapse
Affiliation(s)
- Qin Xue
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Center for Perinatal Biology, Loma Linda, California 92350, USA
| | | |
Collapse
|
50
|
Acute memory phase of sevoflurane preconditioning is associated with sustained translocation of protein kinase C-α and ϵ, but not δ, in isolated guinea pig hearts. Eur J Anaesthesiol 2009; 26:582-8. [DOI: 10.1097/eja.0b013e32832a22c2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|