1
|
Udayakumar S, Metkar SK, Girigoswami A, Deepika B, Janani G, Kanakaraj L, Girigoswami K. Exploring the amyloid degradation potential of nanoformulated carrageenan-bridging in vitro and in vivo perspectives. Int J Biol Macromol 2024; 279:134814. [PMID: 39168227 DOI: 10.1016/j.ijbiomac.2024.134814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Amyloids, with their β-sheet-rich structure, contribute to diabetes, neurodegenerative diseases, and amyloidosis by aggregating within diverse anatomical compartments. Insulin amyloid (IA), sharing structural resemblances with amyloids linked to neurological disorders, acts as a prototype, while compounds capable of degrading these fibrils hold promise as therapeutic agents for amyloidosis intervention. In this research, liposomal nanoformulated iota carrageenan (nCG) was formulated to disrupt insulin amyloids, demonstrating about a 17-20 % higher degradation efficacy compared to conventional carrageenan through thioflavin T fluorescence, dynamic light scattering analysis, and turbidity quantification. The biocompatibility of the nCG and nCG-treated insulin amyloids was evaluated through MTT assay, live-dead cell assay on V79 cells, and hemolysis testing on human blood samples to establish their safety for use in vitro. Zebrafish embryos were utilized to assess in vivo biocompatibility, while adult zebrafish were employed to monitor the degradation capacity of IA post subcutaneous injection, with fluorescence emitted by the fish captured via IVIS. This demonstrated that the formulated nCG exhibited superior anti-amyloid efficacy compared to carrageenan alone, while both materials demonstrated biocompatibility. Furthermore, through docking simulations, an exploration was conducted into the molecular mechanisms governing the inhibition of the target protein pancreatic insulin by carrageenan.
Collapse
Affiliation(s)
- Saranya Udayakumar
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai 603103, India
| | - Sanjay Kisan Metkar
- Department of Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, 205 South Orange Avenue, Newark, NJ 07103, USA.
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai 603103, India.
| | - Balasubramanian Deepika
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai 603103, India
| | - Gopalarethinam Janani
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai 603103, India
| | - Lakshmi Kanakaraj
- Chettinad School of Pharmaceutical Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai 603103, India.
| |
Collapse
|
2
|
Lin Y, Wang S, Li Z, Zhou Y, Wang R, Wang Y, Chen Y. Short-Term Statin Therapy Induces Hepatic Insulin Resistance Through HNF4α/PAQR9/PPM1α Axis Regulated AKT Phosphorylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403451. [PMID: 38970167 PMCID: PMC11425881 DOI: 10.1002/advs.202403451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Statins, the first-line medication for dyslipidemia, are linked to an increased risk of type 2 diabetes. But exactly how statins cause diabetes is yet unknown. In this study, a developed short-term statin therapy on hyperlipidemia mice show that hepatic insulin resistance is a cause of statin-induced diabetes. Statin medication raises the expression of progesterone and adiponectin receptor 9 (PAQR9) in liver, which inhibits insulin signaling through degradation of protein phosphatase, Mg2+/Mn2+ dependent 1 (PPM1α) to activate ERK pathway. STIP1 homology and U-box containing protein 1 (STUB1) is found to mediate ubiquitination of PPM1α promoted by PAQR9. On the other hand, decreased activity of hepatocyte nuclear factor 4 alpha (HNF4α) seems to be the cause of PAQR9 expression under statin therapy. The interventions on PAQR9, including deletion of PAQR9, caloric restriction and HNF4α activation, are all effective treatments for statin-induced diabetes, while liver specific over-expression of PPM1α is another possible tactic. The results reveal the importance of HNF4α-PAQR9-STUB1-PPM1α axis in controlling the statin-induced hepatic insulin resistance, offering a fresh insight into the molecular mechanisms underlying statin therapy.
Collapse
Affiliation(s)
- Yijun Lin
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361016, China
| | - Shuying Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zixuan Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuling Zhou
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361016, China
| | - Ruiying Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361016, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361016, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
3
|
Yadav Y, Dey CS. PP2Cα aggravates neuronal insulin resistance leading to AD-like phenotype in vitro. Biochem Biophys Res Commun 2023; 644:49-54. [PMID: 36630734 DOI: 10.1016/j.bbrc.2023.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Neuronal insulin resistance is a major risk for development of Alzheimer's Disease (AD). Studies already reported few kinases participating in neuronal insulin signaling connected with progression of AD pathogenesis, yet complete information is missing. α isoform of Protein Phosphatase-2C (PP2C) is a Ser/Thr phosphatase, only known in 3T3-L1 adipocytes as a positive regulator of insulin signaling. However, many aspects of its function in neuronal insulin signaling and insulin resistance are unidentified. Recently, we reported that PP2Cα positively regulates neuronal glucose uptake possibly by a mechanism of dephosphorylation of IRS-1 at Ser522 and by inactivating AMPK, exacerbating hyperinsulinemia mediated neuronal insulin resistance. Since PP2Cα affected neuronal insulin signaling and AD is connected to neuronal insulin resistance, in the present study, we studied the role of PP2Cα in regulating activities of both isoforms of GSK3α and GSK3β (one of the leading kinases for AD progression). The results led us to test the role of PP2Cα on AD hallmarks. Silencing of PP2Cα caused hyperphosphorylation of a potential kinase Tau, leading to NFT formation and increased Aβ deposition. Our study thereby demonstrates escalation of hyperinsulinemia mediated neuronal insulin resistance leading to AD-like pathogenesis by PP2Cα in vitro and hints a novel molecule, PP2Cα, linking AD pathogenesis.
Collapse
Affiliation(s)
- Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 10016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 10016, India.
| |
Collapse
|
4
|
Yadav Y, Dey CS. PP2Cα positively regulates neuronal insulin signalling and aggravates neuronal insulin resistance. FEBS J 2022; 289:7561-7581. [PMID: 35810470 DOI: 10.1111/febs.16574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023]
Abstract
PP2Cα is one of the newly identified isoforms of metal-dependent protein phosphatases (PPM). The role of this phosphatase in neuronal insulin signalling is completely unknown. In the present study, we show insulin-mediated rapid upregulation of a protein of the insulin signalling cascade, PP2Cα, in mouse N2a cells and human SH-SY5Y cells. By contrast, such PP2Cα upregulation is not observed in insulin-resistant conditions despite insulin stimulation. Here, we report that, under insulin-sensitive and insulin-resistant conditions, the translation of PP2Cα was regulated by insulin through c-Jun N-terminal kinase. PP2Cα in turn dephosphorylated a novel inhibitory site of insulin receptor substrate-1 at Ser522 and AMP-activated protein kinase, hence positively regulating neuronal insulin signalling and insulin resistance.
Collapse
Affiliation(s)
- Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| |
Collapse
|
5
|
Yadav Y, Dey CS. Ser/Thr phosphatases: One of the key regulators of insulin signaling. Rev Endocr Metab Disord 2022; 23:905-917. [PMID: 35697962 DOI: 10.1007/s11154-022-09727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Protein phosphorylation is an important post-translational modification that regulates several cellular processes including insulin signaling. The evidences so far have already portrayed the importance of balanced actions of kinases and phosphatases in regulating the insulin signaling cascade. Therefore, elucidating the role of both kinases and phosphatases are equally important. Unfortunately, the role of phosphatases is less studied as compared to kinases. Since brain responds to insulin and insulin signaling is reported to be crucial for many neuronal processes, it is important to understand the role of neuronal insulin signaling regulators. Ser/Thr phosphatases seem to play significant roles in regulating neuronal insulin signaling. Therefore, in this review, we discussed the involvement of Ser/Thr phosphatases in regulating insulin signaling and insulin resistance in neuronal system at the backdrop of the same phosphatases in peripheral insulin sensitive tissues.
Collapse
Affiliation(s)
- Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
6
|
A selective PPM1A inhibitor activates autophagy to restrict the survival of Mycobacterium tuberculosis. Cell Chem Biol 2022; 29:1126-1139.e12. [PMID: 35320734 DOI: 10.1016/j.chembiol.2022.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022]
Abstract
Metal-dependent protein phosphatases (PPMs) have essential roles in a variety of cellular processes, including inflammation, proliferation, differentiation, and stress responses, which are intensively investigated in cancer and metabolic diseases. Targeting PPMs to modulate host immunity in response to pathogens is an ambitious proposition. The feasibility of such a strategy is unproven because development of inhibitors against PPMs is challenging and suffers from poor selectivity. Combining a biomimetic modularization strategy with function-oriented synthesis, we design, synthesize and screen more than 500 pseudo-natural products, resulting in the discovery of a potent, selective, and non-cytotoxic small molecule inhibitor for PPM1A, SMIP-30. Inhibition of PPM1A with SMIP-30 or its genetic ablation (ΔPPM1A) activated autophagy through a mechanism dependent on phosphorylation of p62-SQSTM1, which restricted the intracellular survival of Mycobacterium tuberculosis in macrophages and in the lungs of infected mice. SMIP-30 provides proof of concept that PPMs are druggable and promising targets for the development of host-directed therapies against tuberculosis.
Collapse
|
7
|
Gambioli R, Montanino Oliva M, Nordio M, Chiefari A, Puliani G, Unfer V. New Insights into the Activities of D-Chiro-Inositol: A Narrative Review. Biomedicines 2021; 9:biomedicines9101378. [PMID: 34680494 PMCID: PMC8533370 DOI: 10.3390/biomedicines9101378] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
D-chiro-inositol (DCI) is a natural compound detectable in cell membranes, which is highly conserved as a biological signaling molecule. In mammals, its function is primarily characterized in the intracellular transduction cascade of insulin. In particular, insulin signal promotes the release of pivotal DCI-containing molecules. In fact, impaired release of DCI is a common feature of insulin-resistant tissues, and insulin-sensitizing pharmaceuticals induce higher concentrations of free DCI. Moreover, it also plays important roles in several other processes. DCI is involved in the regulation of steroidogenesis, due to its regulatory effects on steroidogenic enzymes, including 17α-hydroxylase, 3β-hydroxysteroid dehydrogenase, and aromatase. Such regulation of various enzymes indicates a mechanism by which the body regulates different processes via a single molecule, depending on its concentration. DCI also reduces the expression of integrin β3, which is an adhesion molecule involved in embryo implantation and cellular phenomena such as survival, stemness, and invasiveness. In addition, DCI seems to have important anti-inflammatory activities, like its 3-O-methyl-ether, called pinitol. In vitro evidence demonstrates that treatment with both compounds induces a reduction in pro-inflammatory factors—such as Nf-κB—and cytokines—such as TNF-α. DCI then plays important roles in several fundamental processes in physiology. Therefore, research on such molecule is of primary importance.
Collapse
Affiliation(s)
| | - Mario Montanino Oliva
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- Department of Obstetrics and Gynecology, Santo Spirito Hospital, 00193 Rome, Italy
| | - Maurizio Nordio
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| | - Alfonsina Chiefari
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.); (G.P.)
| | - Giulia Puliani
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.); (G.P.)
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- System Biology Group Lab, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
8
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
9
|
López-Gambero AJ, Sanjuan C, Serrano-Castro PJ, Suárez J, Rodríguez de Fonseca F. The Biomedical Uses of Inositols: A Nutraceutical Approach to Metabolic Dysfunction in Aging and Neurodegenerative Diseases. Biomedicines 2020; 8:biomedicines8090295. [PMID: 32825356 PMCID: PMC7554709 DOI: 10.3390/biomedicines8090295] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/05/2023] Open
Abstract
Inositols are sugar-like compounds that are widely distributed in nature and are a part of membrane molecules, participating as second messengers in several cell-signaling processes. Isolation and characterization of inositol phosphoglycans containing myo- or d-chiro-inositol have been milestones for understanding the physiological regulation of insulin signaling. Other functions of inositols have been derived from the existence of multiple stereoisomers, which may confer antioxidant properties. In the brain, fluctuation of inositols in extracellular and intracellular compartments regulates neuronal and glial activity. Myo-inositol imbalance is observed in psychiatric diseases and its use shows efficacy for treatment of depression, anxiety, and compulsive disorders. Epi- and scyllo-inositol isomers are capable of stabilizing non-toxic forms of β-amyloid proteins, which are characteristic of Alzheimer’s disease and cognitive dementia in Down’s syndrome, both associated with brain insulin resistance. However, uncertainties of the intrinsic mechanisms of inositols regarding their biology are still unsolved. This work presents a critical review of inositol actions on insulin signaling, oxidative stress, and endothelial dysfunction, and its potential for either preventing or delaying cognitive impairment in aging and neurodegenerative diseases. The biomedical uses of inositols may represent a paradigm in the industrial approach perspective, which has generated growing interest for two decades, accompanied by clinical trials for Alzheimer’s disease.
Collapse
Affiliation(s)
- Antonio J. López-Gambero
- Departamento de Biología Celular, Genética y Fisiología, Campus de Teatinos s/n, Universidad de Málaga, Andalucia Tech, 29071 Málaga, Spain;
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
| | | | - Pedro Jesús Serrano-Castro
- UGC Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
- Correspondence: (J.S.); (F.R.d.F.); Tel.: +34-952614012 (J.S.)
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
- Correspondence: (J.S.); (F.R.d.F.); Tel.: +34-952614012 (J.S.)
| |
Collapse
|
10
|
Shimizu E, Koshino H, Noro A, Maruyama M, Shimoda N, Uesugi S, Ohnishi M, Kimura KI. Isolation of a spirolactone norditerpenoid as a yeast Ca 2+ signal transduction inhibitor from Kuji amber and evaluation of its effects on PPM1A activity. Fitoterapia 2019; 134:290-296. [PMID: 30831200 DOI: 10.1016/j.fitote.2019.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 01/18/2023]
Abstract
A different type of biologically active compound from Kuji amber (Late Cretaceous, Japan) before the K-Pg boundary [65 million years ago (Ma)] was isolated based on the growth-restoring activity of a mutant yeast involving Ca2+ signal transduction. It was identified as a spirolactone norditerpenoid, (4R*, 5S*, 8R*, 9R*, 10S*)-14,15,16,19-tetranor-labdan-13,9-olide (1) from spectral analyses with high-resolution electron ionization mass spectrometry (HREIMS), 1D and 2D nuclear magnetic resonance (NMR). Although the planar structure of 1 is known as an artificial derivative from marrubiin, it was isolated as a natural product from Kuji amber and its structure was elucidated for the first time. It had a growth-restoring activity against the mutant yeast through the direct or indirect inhibition of calcineurin activity [protein phosphatase, Mg2+/Mn2+-dependent 1A (PPM1A) activation]. Furthermore, the compound had potent inhibitory effect against the degranulation of rat basophilic leukemia 2H3 (RBL-2H3) cells.
Collapse
Affiliation(s)
- Eisaku Shimizu
- Chemical Biology Laboratory, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Aoi Noro
- Chemical Biology Laboratory, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Miku Maruyama
- Chemical Biology Laboratory, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Nozomu Shimoda
- Chemical Biology Laboratory, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Shota Uesugi
- Chemical Biology Laboratory, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Motoko Ohnishi
- Department of Biological Chemistry, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Ken-Ichi Kimura
- Chemical Biology Laboratory, Iwate University, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
11
|
Debnath S, Kosek D, Tagad HD, Durell SR, Appella DH, Acevedo R, Grishaev A, Dyda F, Appella E, Mazur SJ. A trapped human PPM1A-phosphopeptide complex reveals structural features critical for regulation of PPM protein phosphatase activity. J Biol Chem 2018; 293:7993-8008. [PMID: 29602904 DOI: 10.1074/jbc.ra117.001213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/29/2018] [Indexed: 01/09/2023] Open
Abstract
Metal-dependent protein phosphatases (PPM) are evolutionarily unrelated to other serine/threonine protein phosphatases and are characterized by their requirement for supplementation with millimolar concentrations of Mg2+ or Mn2+ ions for activity in vitro The crystal structure of human PPM1A (also known as PP2Cα), the first PPM structure determined, displays two tightly bound Mn2+ ions in the active site and a small subdomain, termed the Flap, located adjacent to the active site. Some recent crystal structures of bacterial or plant PPM phosphatases have disclosed two tightly bound metal ions and an additional third metal ion in the active site. Here, the crystal structure of the catalytic domain of human PPM1A, PPM1Acat, complexed with a cyclic phosphopeptide, c(MpSIpYVA), a cyclized variant of the activation loop of p38 MAPK (a physiological substrate of PPM1A), revealed three metal ions in the active site. The PPM1Acat D146E-c(MpSIpYVA) complex confirmed the presence of the anticipated third metal ion in the active site of metazoan PPM phosphatases. Biophysical and computational methods suggested that complex formation results in a slightly more compact solution conformation through reduced conformational flexibility of the Flap subdomain. We also observed that the position of the substrate in the active site allows solvent access to the labile third metal-binding site. Enzyme kinetics of PPM1Acat toward a phosphopeptide substrate supported a random-order, bi-substrate mechanism, with substantial interaction between the bound substrate and the labile metal ion. This work illuminates the structural and thermodynamic basis of an innate mechanism regulating the activity of PPM phosphatases.
Collapse
Affiliation(s)
- Subrata Debnath
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, Maryland 20892
| | - Dalibor Kosek
- Laboratories of Molecular Biology, Bethesda, Maryland 20892
| | - Harichandra D Tagad
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, Maryland 20892
| | - Stewart R Durell
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, Maryland 20892
| | - Daniel H Appella
- Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Roderico Acevedo
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Alexander Grishaev
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850; National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Fred Dyda
- Laboratories of Molecular Biology, Bethesda, Maryland 20892
| | - Ettore Appella
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, Maryland 20892
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, Maryland 20892.
| |
Collapse
|
12
|
A single amino acid substitution confers B-cell clonogenic activity to the HIV-1 matrix protein p17. Sci Rep 2017; 7:6555. [PMID: 28747658 PMCID: PMC5529431 DOI: 10.1038/s41598-017-06848-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022] Open
Abstract
Recent data highlight the presence, in HIV-1-seropositive patients with lymphoma, of p17 variants (vp17s) endowed with B-cell clonogenicity, suggesting a role of vp17s in lymphomagenesis. We investigated the mechanisms responsible for the functional disparity on B cells between a wild-type p17 (refp17) and a vp17 named S75X. Here, we show that a single Arginine (R) to Glycine (G) mutation at position 76 in the refp17 backbone (p17R76G), as in the S75X variant, is per se sufficient to confer a B-cell clonogenic potential to the viral protein and modulate, through activation of the PTEN/PI3K/Akt signaling pathway, different molecules involved in apoptosis inhibition (CASP-9, CASP-7, DFF-45, NPM, YWHAZ, Src, PAX2, MAPK8), cell cycle promotion and cancer progression (CDK1, CDK2, CDK8, CHEK1, CHEK2, GSK-3 beta, NPM, PAK1, PP2C-alpha). Moreover, the only R to G mutation at position 76 was found to strongly impact on protein folding and oligomerization by altering the hydrogen bond network. This generates a conformational shift in the p17 R76G mutant which enables a functional epitope(s), masked in refp17, to elicit B-cell growth-promoting signals after its interaction with a still unknown receptor(s). Our findings offer new opportunities to understand the molecular mechanisms accounting for the B-cell growth-promoting activity of vp17s.
Collapse
|
13
|
Zhou Y, Zhao Y, Gao Y, Hu W, Qu Y, Lou N, Zhu Y, Zhang X, Yang H. Hepatitis C virus NS3 protein enhances hepatocellular carcinoma cell invasion by promoting PPM1A ubiquitination and degradation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:42. [PMID: 28283039 PMCID: PMC5345236 DOI: 10.1186/s13046-017-0510-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/23/2017] [Indexed: 01/03/2023]
Abstract
Background Growing evidence suggests that hepatitis C virus (HCV) contributes to hepatocellular carcinoma (HCC) by directly modulating oncogenic signaling pathways. Protein phosphatase magnesium-dependent 1A (PPM1A) has recently emerged as an important tumor suppressor as it can block a range of tumor-centric signaling pathways through protein dephosphorylation. However, the role and regulatory mechanisms of PPM1A in HCV-infected cells have not been reported. Methods Total, cytoplasmic, and nuclear PPM1A protein after HCV infection or overexpression of HCV nonstructural protein 3 (NS3) were detected by western blotting. The expression of PPM1A in normal liver and HCV-related HCC tissues was quantified by immunohistochemistry. The effects of HCV infection and NS3 expression on the PPM1A protein level were systematically analyzed, and the ubiquitination level of PPM1A was determined by precipitation with anti-PPM1A and immunoblotting with either anti-ubiquitin or anti-PPM1A antibody. Finally, the roles of NS3 and PPM1A in hepatoma cell migration and invasion were assessed by wound healing and transwell assays, respectively. Results HCV infection and replication decreased PPM1A abundance, mediated by NS3, in hepatoma cells. Compared to normal liver tissues, the expression of PPM1A was significantly decreased in the HCC tumor tissues and adjacent non-tumor tissues. NS3 directly interacted with PPM1A to promote PPM1A ubiquitination and degradation, which was dependent on its protease domain. Blockade of PPM1A through small interfering RNA significantly promoted HCC cell migration, invasion, and epithelial mesenchymal transition (EMT), which were further intensified by TGF-β1 stimulation, in vitro. Furthermore, restoration of PPM1A abrogated the NS3-mediated promotion of HCC migration and invasion to a great extent, which was dependent on its protein phosphatase function. Conclusions Our findings demonstrate that the HCV protein NS3 can downregulate PPM1A by promoting its ubiquitination and proteasomal degradation, which might contribute to the migration and invasion of hepatoma cells and may represent a new strategy of HCV in carcinogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0510-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yali Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yan Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yaoying Gao
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Wenjun Hu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yan Qu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Ning Lou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Ying Zhu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China.
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
14
|
Jeon Y, Aja S, Ronnett GV, Kim EK. D-chiro-inositol glycan reduces food intake by regulating hypothalamic neuropeptide expression via AKT-FoxO1 pathway. Biochem Biophys Res Commun 2016; 470:818-23. [PMID: 26802467 DOI: 10.1016/j.bbrc.2016.01.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 01/12/2023]
Abstract
The regulation of food intake is important for body energy homeostasis. Hypothalamic insulin signaling decreases food intake by upregulating the expression of anorexigenic neuropeptides and downregulating the expression of orexigenic neuropeptides. INS-2, a Mn(2+) chelate of 4-O-(2-amino-2-deoxy-β-D-galactopyranosyl)-3-O-methyl-D-chiro-inositol, acts as an insulin mimetic and sensitizer. We found that intracerebroventricular injection of INS-2 decreased body weight and food intake in mice. In hypothalamic neuronal cell lines, INS-2 downregulated the expression of neuropeptide Y (NPY), an orexigenic neuropeptide, but upregulated the expression of proopiomelanocortin (POMC), an anorexigenic neuropeptide, via modulation of the AKT-forkhead box-containing protein-O1 (FoxO1) pathway. Pretreatment of these cells with INS-2 enhanced the action of insulin on downstream signaling, leading to a further decrease in NPY expression and increase in POMC expression. These data indicate that INS-2 reduces food intake by regulating the expression of the hypothalamic neuropeptide genes through the AKT-FoxO1 pathway downstream of insulin.
Collapse
Affiliation(s)
- Yoonjeong Jeon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gabriele V Ronnett
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea; Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea.
| |
Collapse
|
15
|
Geng J, Fan J, Ouyang Q, Zhang X, Zhang X, Yu J, Xu Z, Li Q, Yao X, Liu X, Zheng J. Loss of PPM1A expression enhances invasion and the epithelial-to-mesenchymal transition in bladder cancer by activating the TGF-β/Smad signaling pathway. Oncotarget 2015; 5:5700-11. [PMID: 25026293 PMCID: PMC4170610 DOI: 10.18632/oncotarget.2144] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signaling pathway is believed to contribute to carcinoma development by increasing cell invasiveness and metastasis and inducing the epithelial-to-mesenchymal transition (EMT). Protein phosphatase PPM1A has been reported to dephosphorylate TGF-β-activated Smad2/3, thus inhibiting the TGF-β signaling pathway. In this study, we investigated the role of PPM1A in bladder cancer. PPM1A protein expression was analyzed in 145 bladder cancer specimens. The loss of PPM1A expression was predictive of poor survival and high muscle-invasiveness. PPM1A was more commonly deficient among muscle-invasive relapse samples compared to primary tumors in twenty paired bladder cancer tissues. Functional studies indicated that blockade of PPM1A through lentivirus-mediated RNA interference significantly promoted urinary bladder cancer (BCa) cell motility, the EMT in vitro and metastasis in vivo, and these effects were dependent on the TGF-β/Smad signaling pathway. The increase in p-Smad2/3 induced by TGF-β1 correlated with the degree of PPM1A depletion in BCa cells, which resulted in an altered expression profile of TGF-β-inducible genes. The correlations between PPM1A and biomarkers related to the TGF-β signaling pathway and tumor invasion were also detected in BCa samples. These results demonstrate that loss of PPM1A is associated with the development of tumor invasion in bladder cancer.
Collapse
Affiliation(s)
- Jiang Geng
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Jie Fan
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Huashan Hospital; Fudan University, Shanghai, China
| | - Qi Ouyang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Huashan Hospital; Fudan University, Shanghai, China
| | - Xiaopeng Zhang
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Xiaolong Zhang
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Juan Yu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zude Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Huashan Hospital; Fudan University, Shanghai, China
| | - Qianyu Li
- Department of Pathology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Fifth People's Hospital, Fudan University, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| |
Collapse
|
16
|
Kiely M, Kiely PA. PP2A: The Wolf in Sheep's Clothing? Cancers (Basel) 2015; 7:648-69. [PMID: 25867001 PMCID: PMC4491676 DOI: 10.3390/cancers7020648] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/16/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022] Open
Abstract
Protein Phosphatase 2A (PP2A) is a major serine/threonine phosphatase in cells. It consists of a catalytic subunit (C), a structural subunit (A), and a regulatory/variable B-type subunit. PP2A has a critical role to play in homeostasis where its predominant function is as a phosphatase that regulates the major cell signaling pathways in cells. Changes in the assembly, activity and substrate specificity of the PP2A holoenzyme have a direct role in disease and are a major contributor to the maintenance of the transformed phenotype in cancer. We have learned a lot about how PP2A functions from specific mutations that disrupt the core assembly of PP2A and from viral proteins that target PP2A and inhibit its effect as a phosphatase. This prompted various studies revealing that restoration of PP2A activity benefits some cancer patients. However, our understanding of the mechanism of action of this is limited because of the complex nature of PP2A holoenzyme assembly and because it acts through a wide variety of signaling pathways. Information on PP2A is also conflicting as there are situations whereby inactivation of PP2A induces apoptosis in many cancer cells. In this review we discuss this relationship and we also address many of the pertinent and topical questions that relate to novel therapeutic strategies aimed at altering PP2A activity.
Collapse
Affiliation(s)
- Maeve Kiely
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick 78666, Ireland.
| | - Patrick A Kiely
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick 78666, Ireland.
- Stokes Institute, University of Limerick 78666, Limerick, Ireland.
| |
Collapse
|
17
|
Protein phosphatase magnesium dependent 1A governs the wound healing-inflammation-angiogenesis cross talk on injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2936-50. [PMID: 25196308 DOI: 10.1016/j.ajpath.2014.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 06/25/2014] [Accepted: 07/18/2014] [Indexed: 01/09/2023]
Abstract
Protein phosphatase magnesium dependent 1A (PPM1A) has been implicated in fibrosis and skin wounding. We generated PPM1A knockout mice to study the role of PPM1A in the wound healing-inflammation-angiogenesis cross talk. The role of PPM1A in these processes was studied using the ocular alkali burn model system. In the injured cornea the absence of PPM1A led to enhanced inflammatory response, stromal keratocyte transactivation, fibrosis, increased p38 mitogen-activated protein kinase phosphorylation, elevated expression of transforming growth factor-β-related genes (including Acta2, TGF-β, Col1, MMP9, and VEGF) and subsequently to neovascularization. Augmented angiogenesis in the absence of PPM1A is a general process occurring in vivo in PPM1A knockout mice upon subcutaneous Matrigel injection and ex vivo in aortic ring Matrigel cultures. Using primary keratocyte cultures and various experimental approaches, we found that phospho-p38 is a favored PPM1A substrate and that by its dephosphorylation PPM1A participates in the regulation of the transforming growth factor-β signaling cascade, the hallmark of inflammation and the angiogenic process. On the whole, the studies presented here position PPM1A as a new player in the wound healing-inflammation-angiogenesis axis in mouse, reveal its crucial role in homeostasis on injury, and highlight its potential as a therapeutic mediator in pathologic conditions, such as inflammation and angiogenesis disorders, including cancer.
Collapse
|
18
|
Hu S, Xu H, Chen R, Wang J, Li Z, Xu J. Activation of PKB and ERK, but not PI3K, is involved in fucosylated chondroitin sulphate from Acaudina molpadioides induced glucose uptake. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
19
|
Lazarenko R, Geisler J, Bayliss D, Larner J, Li C. D-chiro-inositol glycan stimulates insulin secretion in pancreatic β cells. Mol Cell Endocrinol 2014; 387:1-7. [PMID: 24530497 PMCID: PMC4366192 DOI: 10.1016/j.mce.2014.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/30/2014] [Accepted: 02/07/2014] [Indexed: 12/25/2022]
Abstract
Insulin has been shown to act on pancreatic β cells to regulate its own secretion. Currently the mechanism underlying this effect is unclear. INS-2, a novel inositol glycan pseudo-disaccharide containing D-chiro-inositol and galactosamine, has been shown to function as an insulin mimetic and a putative insulin mediator. In the present study we found that INS-2 stimulates insulin secretion in MIN6 β cells and potentiates glucose stimulated insulin secretion in isolated mouse islets. Importantly, INS-2 failed to potentiate insulin secretion induced by tolbutamide, which stimulates insulin release by closing ATP sensitive potassium channels (KATP). Electrophysiological studies showed that INS-2 inhibited sulfonylurea-sensitive KATP conductance. The effect of INS-2 on inhibiting KATP channel is mediated by protein phosphatase 2C (PP2C), as knocking down PP2C expression in MIN6 cells by PP2C small hairpin RNA completely abolished the effect of INS-2 on KATP and consequently attenuated INS-2 induced insulin secretion. In conclusion, the present study identifies a novel mechanism involving PP2C in regulating KATP channel activity and consequently insulin secretion.
Collapse
Affiliation(s)
- Roman Lazarenko
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, United States
| | - Jessica Geisler
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, United States
| | - Douglas Bayliss
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, United States
| | - Joseph Larner
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, United States
| | - Chien Li
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, United States.
| |
Collapse
|
20
|
Organista-Juárez D, Carretero-Ortega J, Vicente-Fermín O, Vázquez-Victorio G, Sosa-Garrocho M, Vázquez-Prado J, Macías-Silva M, Reyes-Cruz G. Calcium-sensing receptor inhibits TGF-β-signaling by decreasing Smad2 phosphorylation. IUBMB Life 2013; 65:1035-42. [DOI: 10.1002/iub.1232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/12/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Diana Organista-Juárez
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Apartado postal 14-740 México D.F. 07000 Mexico
| | - Jorge Carretero-Ortega
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. 04510 Mexico
| | - Onasis Vicente-Fermín
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Apartado postal 14-740 México D.F. 07000 Mexico
| | - Genaro Vázquez-Victorio
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. 04510 Mexico
| | - Marcela Sosa-Garrocho
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. 04510 Mexico
| | - José Vázquez-Prado
- Department of Pharmacology; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Apartado postal 14-740 México D.F. 07000 Mexico
| | - Marina Macías-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. 04510 Mexico
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Apartado postal 14-740 México D.F. 07000 Mexico
| |
Collapse
|
21
|
Tanoue K, Miller Jenkins LM, Durell SR, Debnath S, Sakai H, Tagad HD, Ishida K, Appella E, Mazur SJ. Binding of a third metal ion by the human phosphatases PP2Cα and Wip1 is required for phosphatase activity. Biochemistry 2013; 52:5830-43. [PMID: 23906386 DOI: 10.1021/bi4005649] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The PPM phosphatases require millimolar concentrations of Mg²⁺ or Mn²⁺ to activate phosphatase activity in vitro. The human phosphatases PP2Cα (PPM1A) and Wip1 (PPM1D) differ in their physiological function, substrate specificity, and apparent metal affinity. A crystallographic structure of PP2Cα shows only two metal ions in the active site. However, recent structural studies of several bacterial PP2C phosphatases have indicated three metal ions in the active site. Two residues that coordinate the third metal ion are highly conserved, suggesting that human PP2C phosphatases may also bind a third ion. Here, isothermal titration calorimetry analysis of Mg²⁺ binding to PP2Cα distinguished binding of two ions to high affinity sites from the binding of a third ion with a millimolar affinity, similar to the apparent metal affinity required for catalytic activity. Mutational analysis indicated that Asp239 and either Asp146 or Asp243 was required for low-affinity binding of Mg²⁺, but that both Asp146 and Asp239 were required for catalysis. Phosphatase activity assays in the presence of MgCl₂, MnCl₂, or mixtures of the two, demonstrate high phosphatase activity toward a phosphopeptide substrate when Mg²⁺ was bound to the low-affinity site, whether Mg²⁺ or Mn²⁺ ions were bound to the high affinity sites. Mutation of the corresponding putative third metal ion-coordinating residues of Wip1 affected catalytic activity similarly both in vitro and in human cells. These results suggest that phosphatase activity toward phosphopeptide substrates by PP2Cα and Wip1 requires the binding of a Mg²⁺ ion to the low-affinity site.
Collapse
Affiliation(s)
- Kan Tanoue
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Conklin PL, DePaolo D, Wintle B, Schatz C, Buckenmeyer G. Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase::protein phosphatase involved in the regulation of the ascorbic acid pool in plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2793-804. [PMID: 23749562 DOI: 10.1093/jxb/ert140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ascorbic acid (AsA) is present at high levels in plants and is a potent antioxidant and cellular reductant. The major plant AsA biosynthetic pathway is through the intermediates D-mannose and L-galactose. Although there is ample evidence that plants respond to fluctuating environmental conditions with changes in the pool size of AsA, it is unclear how this regulation occurs. The AsA-deficient Arabidopsis thaliana mutants vtc3-1 and vtc3-2 define a locus that has been identified by positional cloning as At2g40860. Confirmation of this identification was through the study of AsA-deficient At2g40860 insertion mutants and by transgenic complementation of the AsA deficiency in vtc3-1 and vtc3-2 with wild-type At2g40860 cDNA. The very unusual VTC3 gene is predicted to encode a novel polypeptide with an N-terminal protein kinase domain tethered covalently to a C-terminal protein phosphatase type 2C domain. Homologues of this gene exist only within the Viridiplantae/Chloroplastida and the gene may therefore have arisen along with the D-mannose/L-galactose AsA biosynthetic pathway. The vtc3 mutant plants are defective in the ability to elevate the AsA pool in response to light and heat, suggestive of an important role for VTC3 in the regulation of the AsA pool size.
Collapse
Affiliation(s)
- Patricia L Conklin
- Biological Sciences Department, State University of New York at Cortland, Bowers Hall, Cortland, NY 13045, USA.
| | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Joseph Larner
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| |
Collapse
|
24
|
Yu Y, Li J, Wan Y, Lu J, Gao J, Huang C. GADD45α induction by nickel negatively regulates JNKs/p38 activation via promoting PP2Cα expression. PLoS One 2013; 8:e57185. [PMID: 23536762 PMCID: PMC3594291 DOI: 10.1371/journal.pone.0057185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 01/15/2013] [Indexed: 12/20/2022] Open
Abstract
Growth arrest and DNA damage (GADD) 45α is a member of GADD inducible gene family, and is inducible in cell response to oxidative stress. GADD45α upregulation induces MKK4/JNK activation in some published experimental systems. However, we found here that the depletion of GADD45α (GADD45α−/−) in mouse embryonic fibroblasts (MEFs) resulted in an increase in the phosphorylation of MKK4/7, MKK3/6 and consequently specific up-regulated the activation of JNK/p38 and their downstream transcription factors, such as c-Jun and ATF2, in comparison to those in GADD45α+/+ MEFs cell following nickel exposure. This up-regulation of MKK-JNK/p38 pathway in GADD45α−/− cell could be rescued by the reconstitutional expression of HA-GADD45α in GADD45α−/− MEFs, GADD45α−/−(HA-GADD45α). Subsequent studies indicated that GADD45α deletion repressed expression of PP2Cα, the phosphotase of MKK3/6 and MKK4/7, whereas ectopic expression of HA-PP2Cα in GADD45α−/− cells attenuated activation of MKK3/6-p38 and MKK4/7-JNK pathways. Collectively, our results demonstrate a novel function and mechanism responsible for GADD45α regulation of MKK/MAPK pathway, further provides insight into understanding the big picture of GADD45α in the regulation of cellular responses to oxidative stress and environmental carcinogens.
Collapse
Affiliation(s)
- Yonghui Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
- Oversea Laboratory, Center for Medical Research, Wuhan University, Wuhan, Hubei, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Yu Wan
- Oversea Laboratory, Center for Medical Research, Wuhan University, Wuhan, Hubei, China
| | - Jianyi Lu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
- * E-mail: (JG); (CH)
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
- * E-mail: (JG); (CH)
| |
Collapse
|
25
|
Kusunoki C, Yang L, Yoshizaki T, Nakagawa F, Ishikado A, Kondo M, Morino K, Sekine O, Ugi S, Nishio Y, Kashiwagi A, Maegawa H. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2013; 430:225-30. [DOI: 10.1016/j.bbrc.2012.10.115] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 10/27/2012] [Indexed: 12/21/2022]
|
26
|
Pitt J, Thorner M, Brautigan D, Larner J, Klein WL. Protection against the synaptic targeting and toxicity of Alzheimer's-associated Aβ oligomers by insulin mimetic chiro-inositols. FASEB J 2013; 27:199-207. [PMID: 23073831 PMCID: PMC3528307 DOI: 10.1096/fj.12-211896] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/24/2012] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a progressive dementia that correlates highly with synapse loss. This loss appears due to the synaptic accumulation of toxic Aβ oligomers (ADDLs), which damages synapse structure and function. Although it has been reported that oligomer binding and toxicity can be prevented by stimulation of neuronal insulin signaling with PPARγ agonists, these agonists have problematic side effects. We therefore investigated the therapeutic potential of chiro-inositols, insulin-sensitizing compounds safe for human consumption. Chiro-inositols have been studied extensively for treatment of diseases associated with peripheral insulin resistance, but their insulin mimetic function in memory-relevant central nervous system (CNS) cells is unknown. Here we demonstrate that mature cultures of hippocampal neurons respond to d-chiro-inositol (DCI), pinitol (3-O-methyl DCI), and the inositol glycan INS-2 (pinitol β-1-4 galactosamine) with increased phosphorylation in key upstream components in the insulin-signaling pathway (insulin receptor, insulin receptor substrate-1, and Akt). Consistent with insulin stimulation, DCI treatment promotes rapid withdrawal of dendritic insulin receptors. With respect to neuroprotection, DCI greatly enhances the ability of insulin to prevent ADDL-induced synapse damage (EC(50) of 90 nM). The mechanism comprises inhibition of oligomer binding at synapses and requires insulin/IGF signaling. DCI showed no effects on Aβ oligomerization. We propose that inositol glycans and DCI, a compound already established as safe for human consumption, have potential as AD therapeutics by protecting CNS synapses against Aβ oligomers through their insulin mimetic activity.
Collapse
Affiliation(s)
- Jason Pitt
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Michael Thorner
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - David Brautigan
- Department of Microbiology
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia, USA; and
| | - Joseph Larner
- Department of Pharmacology, and
- Allomed Pharmaceuticals, Charlottesville, Virginia, USA
| | - William L. Klein
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
27
|
Shohat M, Ben-Meir D, Lavi S. Protein phosphatase magnesium dependent 1A (PPM1A) plays a role in the differentiation and survival processes of nerve cells. PLoS One 2012; 7:e32438. [PMID: 22384250 PMCID: PMC3288098 DOI: 10.1371/journal.pone.0032438] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/27/2012] [Indexed: 12/22/2022] Open
Abstract
The serine/threonine phosphatase type 2C (PPM1A) has a broad range of substrates, and its role in regulating stress response is well established. We have investigated the involvement of PPM1A in the survival and differentiation processes of PC6-3 cells, a subclone of the PC12 cell line. This cell line can differentiate into neuron like cells upon exposure to nerve growth factor (NGF). Overexpression of PPM1A in naive PC6-3 cells caused cell cycle arrest at the G2/M phase followed by apoptosis. Interestingly, PPM1A overexpression did not affect fully differentiated cells. Using PPM1A overexpressing cells and PPM1A knockdown cells, we show that this phosphatase affects NGF signaling in PC6-3 cells and is engaged in neurite outgrowth. In addition, the ablation of PPM1A interferes with NGF-induced growth arrest during differentiation of PC6-3 cells.
Collapse
Affiliation(s)
| | | | - Sara Lavi
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
28
|
Multiple roles for the p85α isoform in the regulation and function of PI3K signalling and receptor trafficking. Biochem J 2011; 441:23-37. [DOI: 10.1042/bj20111164] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The p85α protein is best known as the regulatory subunit of class 1A PI3Ks (phosphoinositide 3-kinases) through its interaction, stabilization and repression of p110-PI3K catalytic subunits. PI3Ks play multiple roles in the regulation of cell survival, signalling, proliferation, migration and vesicle trafficking. The present review will focus on p85α, with special emphasis on its important roles in the regulation of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and Rab5 functions. The phosphatidylinositol-3-phosphatase PTEN directly counteracts PI3K signalling through dephosphorylation of PI3K lipid products. Thus the balance of p85α–p110 and p85α–PTEN complexes determines the signalling output of the PI3K/PTEN pathway, and under conditions of reduced p85α levels, the p85α–PTEN complex is selectively reduced, promoting PI3K signalling. Rab5 GTPases are important during the endocytosis, intracellular trafficking and degradation of activated receptor complexes. The p85α protein helps switch off Rab5, and if defective in this p85α function, results in sustained activated receptor tyrosine kinase signalling and cell transformation through disrupted receptor trafficking. The central role for p85α in the regulation of PTEN and Rab5 has widened the scope of p85α functions to include integration of PI3K activation (p110-mediated), deactivation (PTEN-mediated) and receptor trafficking/signalling (Rab5-mediated) functions, all with key roles in maintaining cellular homoeostasis.
Collapse
|
29
|
Yoshizaki T, Kusunoki C, Kondo M, Yasuda M, Kume S, Morino K, Sekine O, Ugi S, Uzu T, Nishio Y, Kashiwagi A, Maegawa H. Autophagy regulates inflammation in adipocytes. Biochem Biophys Res Commun 2011; 417:352-7. [PMID: 22155234 DOI: 10.1016/j.bbrc.2011.11.114] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
Autophagy is an essential process for both the maintenance and the survival of cells, with homeostatic low levels of autophagy being critical for intracellular organelles and proteins. In insulin resistant adipocytes, various dysfunctional/damaged molecules, organelles, proteins, and end-products accumulate. However, the role of autophagy (in particular, whether autophagy is activated or not) is poorly understood. In this study we found that in adipose tissue of insulin resistant mice and hypertrophic 3T3-L1 adipocytes autophagy was suppressed. Also in hypertrophic adipocytes, autophagy-related gene expression, such as LAMP1, LAMP2, and Atg5 was reduced, whereas gene expression in the inflammatory-related genes, such as MCP-1, IL-6, and IL-1β was increased. To find out whether suppressed autophagy was linked to inflammation we used the autophagy inhibitor, 3-methyladenine, to inhibit autophagy. Our results suggest that such inhibition leads to an increase in inflammatory gene expression and causes endoplasmic reticulum (ER) stress (which can be attenuated by treatment with the ER stress inhibitor, Tauroursodeoxycholic Acid). Conversely, the levels of inflammatory gene expression were reduced by the activation of autophagy or by the inhibition of ER stress. The results indicate that the suppression of autophagy increases inflammatory responses via ER stress, and also defines a novel role of autophagy as an important regulator of adipocyte inflammation in systemic insulin resistance.
Collapse
Affiliation(s)
- Takeshi Yoshizaki
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang X, Teng Y, Hou N, Fan X, Cheng X, Li J, Wang L, Wang Y, Wu X, Yang X. Delayed re-epithelialization in Ppm1a gene-deficient mice is mediated by enhanced activation of Smad2. J Biol Chem 2011; 286:42267-42273. [PMID: 21990361 DOI: 10.1074/jbc.m111.292284] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Protein phosphatase magnesium-dependent 1A (PPM1A), a protein serine/threonine phosphatase, controls several signal pathways through cleavage of phosphate from its substrates. However, the in vivo function of Ppm1a in mammals remains unknown. Here we reported that mice lacking Ppm1a developed normally but were impaired in re-epithelialization process during cutaneous wound healing. Specifically, complete or keratinocyte-specific deletion of Ppm1a led to delayed re-epithelialization with reduced keratinocyte migration upon wounding. We showed that this effect was the result of an increase in Smad2/3 phosphorylation in keratinocytes. Keratinocyte-specific Smad2 deficient mice displayed accelerated re-epithelialization with enhanced keratinocyte migration. Importantly, Smad2 and Ppm1a double mutant mice also exhibited accelerated re-epithelialization, demonstrating that the effect of Ppm1a on promoting re-epithelialization is mediated by Smad2 signaling. Furthermore, the decreased expression of specific integrins and matrix metalloproteinases (MMPs) may contribute to the retarded re-epithelialization in Ppm1a mutant mice. These data indicate that Ppm1a, through suppressing Smad2 signaling, plays a critical role in re-epithelialization during wound healing.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China; Model Organism Division, E-institutes of Shanghai Universities, Shanghai JiaoTong University, Shanghai 200025, P.R. China
| | - Yan Teng
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China.
| | - Ning Hou
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China
| | - Xiongwei Fan
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China; College of Life Sciences, Hunan Normal University, Changsha 410081, P.R. China
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China
| | - Jun Li
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China
| | - Lijuan Wang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China
| | - Youliang Wang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China
| | - Xiushan Wu
- College of Life Sciences, Hunan Normal University, Changsha 410081, P.R. China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China; Model Organism Division, E-institutes of Shanghai Universities, Shanghai JiaoTong University, Shanghai 200025, P.R. China.
| |
Collapse
|
31
|
Larner J, Brautigan DL, Thorner MO. D-chiro-inositol glycans in insulin signaling and insulin resistance. Mol Med 2010; 16:543-52. [PMID: 20811656 DOI: 10.2119/molmed.2010.00107] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 08/26/2010] [Indexed: 11/06/2022] Open
Abstract
Classical actions of insulin involve increased glucose uptake from the bloodstream and its metabolism in peripheral tissues, the most important and relevant effects for human health. However, nonoxidative and oxidative glucose disposal by activation of glycogen synthase (GS) and mitochondrial pyruvate dehydrogenase (PDH) remain incompletely explained by current models for insulin action. Since the discovery of insulin receptor Tyr kinase activity about 25 years ago, the dominant paradigm for intracellular signaling by insulin invokes protein phosphorylation downstream of the receptor and its primary Tyr phosphorylated substrates-the insulin receptor substrate family of proteins. This scheme accounts for most, but not all, intracellular actions of insulin. Essentially forgotten is the previous literature and continuing work on second messengers generated in cells in response to insulin. Treatment and even prevention of diabetes and metabolic syndrome will benefit from a more complete elucidation of cellular-signaling events activated by insulin, to include the actions of second messengers such as glycan molecules that contain D-chiro-inositol (DCI). The metabolism of DCI is associated with insulin sensitivity and resistance, supporting the concept that second messengers have a role in responses to and resistance to insulin.
Collapse
Affiliation(s)
- Joseph Larner
- Allomed Pharmaceuticals, Charlottesville, Virginia, United States of America.
| | | | | |
Collapse
|
32
|
Rotman T, Etkovitz N, Spiegel A, Rubinstein S, Breitbart H. Protein kinase A and protein kinase C(alpha)/PPP1CC2 play opposing roles in the regulation of phosphatidylinositol 3-kinase activation in bovine sperm. Reproduction 2010; 140:43-56. [PMID: 20442273 DOI: 10.1530/rep-09-0314] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In order to acquire fertilization competence, spermatozoa have to undergo biochemical changes in the female reproductive tract, known as capacitation. Signaling pathways that take place during the capacitation process are much investigated issue. However, the role and regulation of phosphatidylinositol 3-kinase (PI3K) in this process are still not clear. Previously, we reported that short-time activation of protein kinase A (PRKA, PKA) leads to PI3K activation and protein kinase C(alpha)(PRKCA, PKC(alpha)) inhibition. In the present study, we found that during the capacitation PI3K phosphorylation/activation increases. PI3K activation was PRKA dependent, and down-regulated by PRKCA. PRKCA is found to be highly active at the beginning of the capacitation, conditions in which PI3K is not active. Moreover, inhibition of PRKCA causes significant activation of PI3K. Similar activation of PI3K is seen when the phosphatase PPP1 is blocked suggesting that PPP1 regulates PI3K activity. We found that during the capacitation PRKCA and PPP1CC2 (PP1gamma2) form a complex, and the two enzymes were degraded during the capacitation, suggesting that this degradation enables the activation of PI3K. This degradation is mediated by PRKA, indicating that in addition to the direct activation of PI3K by PRKA, this kinase can enhance PI3K phosphorylation indirectly by enhancing the degradation and inactivation of PRKCA and PPP1CC2.
Collapse
Affiliation(s)
- T Rotman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
33
|
Yoshizaki T, Schenk S, Imamura T, Babendure JL, Sonoda N, Bae EJ, Oh DY, Lu M, Milne JC, Westphal C, Bandyopadhyay G, Olefsky JM. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab 2010; 298:E419-28. [PMID: 19996381 PMCID: PMC2838524 DOI: 10.1152/ajpendo.00417.2009] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic inflammation is an important etiology underlying obesity-related disorders such as insulin resistance and type 2 diabetes, and recent findings indicate that the macrophage can be the initiating cell type responsible for this chronic inflammatory state. The mammalian silent information regulator 2 homolog SIRT1 modulates several physiological processes important for life span, and a potential role of SIRT1 in the regulation of insulin sensitivity has been shown. However, with respect to inflammation, the role of SIRT1 in regulating the proinflammatory pathway within macrophages is poorly understood. Here, we show that knockdown of SIRT1 in the mouse macrophage RAW264.7 cell line and in intraperitoneal macrophages broadly activates the JNK and IKK inflammatory pathways and increases LPS-stimulated TNFalpha secretion. Moreover, gene expression profiles reveal that SIRT1 knockdown leads to an increase in inflammatory gene expression. We also demonstrate that SIRT1 activators inhibit LPS-stimulated inflammatory pathways, as well as secretion of TNFalpha, in a SIRT1-dependent manner in RAW264.7 cells and in primary intraperitoneal macrophages. Treatment of Zucker fatty rats with a SIRT1 activator leads to greatly improved glucose tolerance, reduced hyperinsulinemia, and enhanced systemic insulin sensitivity during glucose clamp studies. These in vivo insulin-sensitizing effects were accompanied by a reduction in tissue inflammation markers and a decrease in the adipose tissue macrophage proinflammatory state, fully consistent with the in vitro effects of SIRT1 in macrophages. In conclusion, these results define a novel role for SIRT1 as an important regulator of macrophage inflammatory responses in the context of insulin resistance and raise the possibility that targeting of SIRT1 might be a useful strategy for treating the inflammatory component of metabolic diseases.
Collapse
Affiliation(s)
- Takeshi Yoshizaki
- Department of Medicine, Univ. of California, San Diego, La Jolla, 92037-0673, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Transcription factor AP-2beta inhibits expression and secretion of leptin, an insulin-sensitizing hormone, in 3T3-L1 adipocytes. Int J Obes (Lond) 2010; 34:670-8. [PMID: 20065963 DOI: 10.1038/ijo.2009.295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND We have previously reported an association between the activator protein-2beta (AP-2beta) transcription factor gene and type 2 diabetes. This gene is preferentially expressed in adipose tissue, and subjects with a disease-susceptible allele of AP-2beta showed stronger AP-2beta expression in adipose tissue than those without the susceptible allele. Furthermore, overexpression of AP-2beta led to lipid accumulation and induced insulin resistance in 3T3-L1 adipocytes. RESULT We found that overexpression of AP-2beta in 3T3-L1 adipocytes decreased the promoter activity of leptin, and subsequently decreased both messenger RNA (mRNA) and protein expression and secretion. Furthermore, knockdown of endogenous AP-2beta by RNA-interference increased mRNA and protein expression of leptin. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed specific binding of AP-2beta to leptin promoter regions in vitro and in vivo. In addition, site-directed mutagenesis of the AP-2-binding site located between position +34 and +42 relative to the transcription start site abolished the inhibitory effect of AP-2beta. Our results clearly showed that AP-2beta directly inhibited insulin-sensitizing hormone leptin expression by binding to its promoter. CONCLUSION AP-2beta modulated the expression of leptin through direct interaction with its promoter region.
Collapse
|
35
|
SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab 2009. [PMID: 19996381 DOI: 10.1152/ajpendo.00417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic inflammation is an important etiology underlying obesity-related disorders such as insulin resistance and type 2 diabetes, and recent findings indicate that the macrophage can be the initiating cell type responsible for this chronic inflammatory state. The mammalian silent information regulator 2 homolog SIRT1 modulates several physiological processes important for life span, and a potential role of SIRT1 in the regulation of insulin sensitivity has been shown. However, with respect to inflammation, the role of SIRT1 in regulating the proinflammatory pathway within macrophages is poorly understood. Here, we show that knockdown of SIRT1 in the mouse macrophage RAW264.7 cell line and in intraperitoneal macrophages broadly activates the JNK and IKK inflammatory pathways and increases LPS-stimulated TNFalpha secretion. Moreover, gene expression profiles reveal that SIRT1 knockdown leads to an increase in inflammatory gene expression. We also demonstrate that SIRT1 activators inhibit LPS-stimulated inflammatory pathways, as well as secretion of TNFalpha, in a SIRT1-dependent manner in RAW264.7 cells and in primary intraperitoneal macrophages. Treatment of Zucker fatty rats with a SIRT1 activator leads to greatly improved glucose tolerance, reduced hyperinsulinemia, and enhanced systemic insulin sensitivity during glucose clamp studies. These in vivo insulin-sensitizing effects were accompanied by a reduction in tissue inflammation markers and a decrease in the adipose tissue macrophage proinflammatory state, fully consistent with the in vitro effects of SIRT1 in macrophages. In conclusion, these results define a novel role for SIRT1 as an important regulator of macrophage inflammatory responses in the context of insulin resistance and raise the possibility that targeting of SIRT1 might be a useful strategy for treating the inflammatory component of metabolic diseases.
Collapse
|
36
|
Zhang B, Zhou Z, Lin H, Lv X, Fu J, Lin P, Zhu C, Wang H. Protein phosphatase 1A (PPM1A) is involved in human cytotrophoblast cell invasion and migration. Histochem Cell Biol 2009; 132:169-79. [PMID: 19404668 DOI: 10.1007/s00418-009-0601-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2009] [Indexed: 11/25/2022]
Abstract
Trophoblast invasion is crucial for embryo implantation and placentation. Excessive trophoblast invasion leads to hydatidiform moles and choriocarcinoma. PPM1A is a phosphatase which dephosphorylates and inactivates a broad range of substrates, including TGF-beta, MAP kinases, p38 and JNK kinase cascades, and is involved in tumor suppression. The objective of this study was to investigate the expression of PPM1A in normal and malignant human placenta and its role in trophoblast invasion, which shares many similarities with invasion of tumor cells. By Western blotting and immunocytochemistry, significantly higher expression of PPM1A in human placental villi at term was found as compared with that during the first trimester. Furthermore, the expression level of PPM1A protein in hydatidiform moles was lower compared with that during normal pregnancy. We further investigated the function of PPM1A in extravillous trophoblast cell line HTR8/SVneo. Transwell migration and Matrigel invasion assays demonstrated that PPM1A siRNA significantly promoted the motility and invasiveness of the cells. Gelatin zymography showed that knockdown of PPM1A with siRNA elevated the expression of pro-matrix metalloproteinase pro-(MMP)-9, but down-regulated tissue inhibitors of metalloproteinases (TIMP)-2. The present data indicate that PPM1A plays a critical role in the regulation of normal placentation by inhibiting trophoblast migration and invasion.
Collapse
Affiliation(s)
- Baohua Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, 100101, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 2008; 29:1363-74. [PMID: 19103747 DOI: 10.1128/mcb.00705-08] [Citation(s) in RCA: 332] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
SIRT1 is a prominent member of a family of NAD(+)-dependent enzymes and affects a variety of cellular functions ranging from gene silencing, regulation of the cell cycle and apoptosis, to energy homeostasis. In mature adipocytes, SIRT1 triggers lipolysis and loss of fat content. However, the potential effects of SIRT1 on insulin signaling pathways are poorly understood. To assess this, we used RNA interference to knock down SIRT1 in 3T3-L1 adipocytes. SIRT1 depletion inhibited insulin-stimulated glucose uptake and GLUT4 translocation. This was accompanied by increased phosphorylation of JNK and serine phosphorylation of insulin receptor substrate 1 (IRS-1), along with inhibition of insulin signaling steps, such as tyrosine phosphorylation of IRS-1, and phosphorylation of Akt and ERK. In contrast, treatment of cells with specific small molecule SIRT1 activators led to an increase in glucose uptake and insulin signaling as well as a decrease in serine phosphorylation of IRS-1. Moreover, gene expression profiles showed that SIRT1 expression was inversely related to inflammatory gene expression. Finally, we show that treatment of 3T3-L1 adipocytes with a SIRT1 activator attenuated tumor necrosis factor alpha-induced insulin resistance. Taken together, these data indicate that SIRT1 is a positive regulator of insulin signaling at least partially through the anti-inflammatory actions in 3T3-L1 adipocytes.
Collapse
|
38
|
Lu G, Wang Y. FUNCTIONAL DIVERSITY OF MAMMALIAN TYPE 2C PROTEIN PHOSPHATASE ISOFORMS: NEW TALES FROM AN OLD FAMILY. Clin Exp Pharmacol Physiol 2008; 35:107-12. [DOI: 10.1111/j.1440-1681.2007.04843.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 2007; 8:970-82. [PMID: 18000526 DOI: 10.1038/nrm2297] [Citation(s) in RCA: 971] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ligands of the transforming growth factor-beta (TGFbeta) superfamily of growth factors initiate signal transduction through a bewildering complexity of ligand-receptor interactions. Signalling then converges to nuclear accumulation of transcriptionally active SMAD complexes and gives rise to a plethora of specific functional responses in both embryos and adult organisms. Current research is focused on the mechanisms that regulate SMAD activity to evoke cell-type-specific and context-dependent transcriptional programmes. An equally important challenge is understanding the functional role of signal strength and duration. How are these quantitative aspects of the extracellular signal regulated? How are they then sensed and interpreted, and how do they affect responses?
Collapse
|
40
|
|
41
|
Yoshizaki T, Imamura T, Babendure JL, Lu JC, Sonoda N, Olefsky JM. Myosin 5a is an insulin-stimulated Akt2 (protein kinase Bbeta) substrate modulating GLUT4 vesicle translocation. Mol Cell Biol 2007; 27:5172-83. [PMID: 17515613 PMCID: PMC1951956 DOI: 10.1128/mcb.02298-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylinositol 3-kinase activation of Akt signaling is critical to insulin-stimulated glucose transport and GLUT4 translocation. However, the downstream signaling events following Akt activation which mediate glucose transport stimulation remain relatively unknown. Here we identify an Akt consensus phosphorylation motif in the actin-based motor protein myosin 5a and show that insulin stimulation leads to phosphorylation of myosin 5a at serine 1650. This Akt-mediated phosphorylation event enhances the ability of myosin 5a to interact with the actin cytoskeleton. Small interfering RNA-induced inhibition of myosin 5a and expression of dominant-negative myosin 5a attenuate insulin-stimulated glucose transport and GLUT4 translocation. Furthermore, knockdown of Akt2 or expression of dominant-negative Akt (DN-Akt) abolished insulin-stimulated phosphorylation of myosin 5a, inhibited myosin 5a binding to actin, and blocked insulin-stimulated glucose transport. Taken together, these data indicate that myosin 5a is a newly identified direct substrate of Akt2 and, upon insulin stimulation, phosphorylated myosin 5a facilitates anterograde movement of GLUT4 vesicles along actin to the cell surface.
Collapse
Affiliation(s)
- Takeshi Yoshizaki
- Department of Medicine (0673), University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0673, USA
| | | | | | | | | | | |
Collapse
|
42
|
Rosivatz E, Matthews JG, McDonald NQ, Mulet X, Ho KK, Lossi N, Schmid AC, Mirabelli M, Pomeranz KM, Erneux C, Lam EWF, Vilar R, Woscholski R. A small molecule inhibitor for phosphatase and tensin homologue deleted on chromosome 10 (PTEN). ACS Chem Biol 2006; 1:780-90. [PMID: 17240976 DOI: 10.1021/cb600352f] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN), a phosphoinositide 3-phosphatase, is an important regulator of insulin-dependent signaling. The loss or impairment of PTEN results in an antidiabetic impact, which led to the suggestion that PTEN could be an important target for drugs against type II diabetes. Here we report the design and validation of a small- molecule inhibitor of PTEN. Compared with other cysteine-based phosphatases, PTEN has a much wider active site cleft enabling it to bind the PtdIns(3,4,5)P3 substrate. We have exploited this feature in the design of vanadate scaffolds complexed to a range of different organic ligands, some of which show potent inhibitory activity. A vanadyl complexed to hydroxypicolinic acid was found to be a highly potent and specific inhibitor of PTEN that increases cellular PtdIns(3,4,5)P3 levels, phosphorylation of Akt, and glucose uptake in adipocytes at nanomolar concentrations. The findings presented here demonstrate the applicability of a novel and specific chemical inhibitor against PTEN in research and drug development.
Collapse
Affiliation(s)
- Erika Rosivatz
- Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Steinberg GR, Michell BJ, van Denderen BJW, Watt MJ, Carey AL, Fam BC, Andrikopoulos S, Proietto J, Görgün CZ, Carling D, Hotamisligil GS, Febbraio MA, Kay TW, Kemp BE. Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metab 2006; 4:465-74. [PMID: 17141630 DOI: 10.1016/j.cmet.2006.11.005] [Citation(s) in RCA: 316] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 08/29/2006] [Accepted: 11/09/2006] [Indexed: 02/06/2023]
Abstract
Elevated levels of tumor necrosis factor (TNFalpha) are implicated in the development of insulin resistance, but the mechanisms mediating these chronic effects are not completely understood. We demonstrate that TNFalpha signaling through TNF receptor (TNFR) 1 suppresses AMPK activity via transcriptional upregulation of protein phosphatase 2C (PP2C). This in turn reduces ACC phosphorylation, suppressing fatty-acid oxidation, increasing intramuscular diacylglycerol accumulation, and causing insulin resistance in skeletal muscle, effects observed both in vitro and in vivo. Importantly even at pathologically elevated levels of TNFalpha observed in obesity, the suppressive effects of TNFalpha on AMPK signaling are reversed in mice null for both TNFR1 and 2 or following treatment with a TNFalpha neutralizing antibody. Our data demonstrate that AMPK is an important TNFalpha signaling target and is a contributing factor to the suppression of fatty-acid oxidation and the development of lipid-induced insulin resistance in obesity.
Collapse
MESH Headings
- Adenylate Kinase/biosynthesis
- Adenylate Kinase/genetics
- Animals
- Insulin Resistance/genetics
- Lipid Metabolism/genetics
- Mice
- Mice, Mutant Strains
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Obesity/enzymology
- Obesity/genetics
- Obesity/pathology
- Oxidation-Reduction
- Phosphoprotein Phosphatases/genetics
- Phosphoprotein Phosphatases/metabolism
- Protein Phosphatase 2C
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Signal Transduction/genetics
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Gregory R Steinberg
- St Vincent's Institute and Department of Medicine, University of Melbourne, Fitzroy, Vic, 3065, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
In this issue of Cell, Lin et al. (2006) answer one of the long-standing questions in the TGFbeta field by identifying a phosphatase, PPM1A, that directly dephosphorylates Smad2 and Smad3 to limit their activation.
Collapse
Affiliation(s)
- Stephen H Schilling
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
45
|
Lin X, Duan X, Liang YY, Su Y, Wrighton KH, Long J, Hu M, Davis CM, Wang J, Brunicardi FC, Shi Y, Chen YG, Meng A, Feng XH. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell 2006; 125:915-28. [PMID: 16751101 PMCID: PMC6309366 DOI: 10.1016/j.cell.2006.03.044] [Citation(s) in RCA: 381] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 01/31/2006] [Accepted: 03/23/2006] [Indexed: 01/07/2023]
Abstract
TGFbeta signaling controls diverse normal developmental processes and pathogenesis of diseases including cancer and autoimmune and fibrotic diseases. TGFbeta responses are generally mediated through transcriptional functions of Smads. A key step in TGFbeta signaling is ligand-induced phosphorylation of receptor-activated Smads (R-Smads) catalyzed by the TGFbeta type I receptor kinase. However, the potential of Smad dephosphorylation as a regulatory mechanism of TGFbeta signaling and the identity of Smad-specific phosphatases remain elusive. Using a functional genomic approach, we have identified PPM1A/PP2Calpha as a bona fide Smad phosphatase. PPM1A dephosphorylates and promotes nuclear export of TGFbeta-activated Smad2/3. Ectopic expression of PPM1A abolishes TGFbeta-induced antiproliferative and transcriptional responses, whereas depletion of PPM1A enhances TGFbeta signaling in mammalian cells. Smad-antagonizing activity of PPM1A is also observed during Nodal-dependent early embryogenesis in zebrafish. This work demonstrates that PPM1A/PP2Calpha, through dephosphorylation of Smad2/3, plays a critical role in terminating TGFbeta signaling.
Collapse
Affiliation(s)
- Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xueyan Duan
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yao-Yun Liang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying Su
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Katharine H. Wrighton
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianyin Long
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Min Hu
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Candi M. Davis
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jinrong Wang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - F. Charles Brunicardi
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yigong Shi
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Ye-Guang Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Xin-Hua Feng
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
46
|
Tao Y, Maegawa H, Ugi S, Ikeda K, Nagai Y, Egawa K, Nakamura T, Tsukada S, Nishio Y, Maeda S, Kashiwagi A. The transcription factor AP-2beta causes cell enlargement and insulin resistance in 3T3-L1 adipocytes. Endocrinology 2006; 147:1685-96. [PMID: 16373417 DOI: 10.1210/en.2005-1304] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have reported the association of variations in the activating protein-2beta (AP-2beta) transcription factor gene with type 2 diabetes. This gene was preferentially expressed in 3T3-L1 adipocytes in a differentiation stage-dependent manner, and preliminary experiments showed that subjects with the disease-susceptible allele showed stronger expression in adipose tissue than those without the susceptible allele. Thus, we overexpressed the AP-2beta gene in 3T3-L1 adipocytes to clarify whether AP-2beta might play a crucial role in the pathogenesis of type 2 diabetes through dysregulation of adipocyte function. In cells overexpressing AP-2beta, cells increased in size by accumulation of triglycerides accompanied by enhanced glucose uptake. On the contrary, suppression of AP-2beta expression by small interfering RNA inhibited glucose uptake. Enhancement of glucose uptake by AP-2beta overexpression was attenuated by inhibitors of phospholipase C (PLC) and atypical protein kinase Czeta/lambda (PKCzeta/lambda), but not by a phosphatidylinositol 3-kinase (PI3-K) inhibitor. Consistently, we found activation of PLC and atypical PKC, but not PI3-K, by AP-2beta expression. Furthermore, overexpression of PLCgamma enhanced glucose uptake, and this activation was inhibited by an atypical PKC inhibitor, suggesting that the enhanced glucose uptake may be mediated through PLC and atypical PKCzeta/lambda, but not PI3-K. Moreover, we observed the increased tyrosine phosphorylation of Grb2-associated binder-1 (Gab1) and its association with PLCgamma, indicating that Gab1 may be involved in AP-2beta-induced PLCgamma activation. Finally, AP-2beta overexpression was found to relate to the impaired insulin signaling. We propose that AP-2beta is a candidate gene for producing adipocyte hypertrophy and may relate to the abnormal characteristics of adipocytes observed in obesity.
Collapse
Affiliation(s)
- Yukari Tao
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kwon M, Ling Y, Maile LA, Badley-Clark J, Clemmons DR. Recruitment of the tyrosine phosphatase Src homology 2 domain tyrosine phosphatase-2 to the p85 subunit of phosphatidylinositol-3 (PI-3) kinase is required for insulin-like growth factor-I-dependent PI-3 kinase activation in smooth muscle cells. Endocrinology 2006; 147:1458-65. [PMID: 16306077 DOI: 10.1210/en.2005-1115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-I stimulates smooth muscle cell (SMC) migration and the phosphatidylinositol-3 (PI-3) kinase pathway plays an important role in mediating the IGF-I-induced migratory response. Prior studies have shown that the tyrosine phosphatase Src homology 2 domain tyrosine phosphatase (SHP)-2 is necessary to activate PI-3 kinase in response to growth factors and expression of a phosphatase inactive form of SHP-2 (SHP-2/C459S) impairs IGF-I-stimulated cell migration. However, the mechanism by which SHP-2 phosphatase activity or the recruitment of SHP-2 to other signaling molecules contributes to IGF-I stimulated PI-3 kinase activation has not been determined. SMCs that had stable expression of SHP-2/C459S had reduced cell migration and Akt activation in response to IGF-I, compared with SMC-expressing native SHP-2. Similarly in cells expressing native SHP-2, IGF-I induced SHP-2 binding to p85, whereas in cells expressing SHP-2/C459S, there was no increase. Because the C459S substitution results in loss of the ability of SHP-2 to disassociate from its substrates, making it inaccessible not only to p85 but also the other proteins, a p85 mutant in which tyrosines 528 and 556 were changed to phenylalanines was prepared to determine whether this would disrupt the p85/SHP-2 interaction and whether the loss of this specific interaction would alter IGF-I stimulated the cell migration. Substitution for these tyrosines in p85 resulted in loss of SHP-2 recruitment and was associated with a reduction in association of the p85/p110 complex with insulin receptor substrate-1. Cells stably expressing this p85 mutant also showed a decrease in IGF-I-stimulated PI-3 kinase activity and cell migration. Preincubation of cells with a cell-permeable peptide that contains the tyrosine556 motif of p85 also disrupted SHP-2 binding to p85 and inhibited the IGF-I-induced increase in cell migration. The findings indicate that tyrosines 528 and 556 in p85 are required for SHP-2 association. SHP-2 recruitment to p85 is required for IGF-I-stimulated association of the p85/p110 complex with insulin receptor substrate-1 and for the subsequent activation of the PI-3 kinase pathway leading to increased cell migration.
Collapse
Affiliation(s)
- Mijin Kwon
- Division of Endocrinology, 6111 Thurston-Bowles, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7170, USA
| | | | | | | | | |
Collapse
|
48
|
Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 2005; 18:13-24. [PMID: 15808505 DOI: 10.1016/j.molcel.2005.03.008] [Citation(s) in RCA: 713] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 01/26/2005] [Accepted: 03/11/2005] [Indexed: 11/24/2022]
Abstract
Akt/protein kinase B critically regulates the balance between cell survival and apoptosis. Phosphorylation of Akt at two key sites, the activation loop and the hydrophobic motif, activates the kinase and promotes cell survival. The mechanism of dephosphorylation and signal termination is unknown. Here, we identify a protein phosphatase, PH domain leucine-rich repeat protein phosphatase (PHLPP), that specifically dephosphorylates the hydrophobic motif of Akt (Ser473 in Akt1), triggering apoptosis and suppressing tumor growth. The effects of PHLPP on apoptosis are prevented in cells expressing an S473D construct of Akt, revealing that the hydrophobic motif is the primary cellular target of PHLPP. PHLPP levels are markedly reduced in several colon cancer and glioblastoma cell lines that have elevated Akt phosphorylation. Reintroduction of PHLPP into a glioblastoma cell line causes a dramatic suppression of tumor growth. These data are consistent with PHLPP terminating Akt signaling by directly dephosphorylating and inactivating Akt.
Collapse
Affiliation(s)
- Tianyan Gao
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|