1
|
Baranova IN, Bocharov AV, Vishnyakova TG, Chen Z, Ke Y, Birukova AA, Yuen PST, Tsuji T, Star RA, Birukov KG, Patterson AP, Eggerman TL. Class B Scavenger Receptor CD36 as a Potential Therapeutic Target in Inflammation Induced by Danger-Associated Molecular Patterns. Cells 2024; 13:1992. [PMID: 39682740 DOI: 10.3390/cells13231992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The class B scavenger receptor CD36 is known to bind and mediate the transport of lipid-related ligands and it functions as a pattern recognition receptor (PRR) for a variety of pathogens, including bacteria and viruses. In this study, we assessed CD36's role as a PRR mediating pro-inflammatory effects of several known Danger-Associated Molecular Patterns (DAMPs) used either as a single preparation or as a combination of DAMPs in the form of total cell/skeletal muscle tissue lysates. Our data demonstrated that multiple DAMPs, including HMGB1, HSPs, histone H3, SAA, and oxPAPC, as well as cell/tissue lysate preparations, induced substantially higher (~7-10-fold) IL-8 cytokine responses in HEK293 cells overexpressing CD36 compared to control WT cells. At the same time, DAMP-induced secretion of IL-6 in bone marrow-derived macrophages (BMDM) from CD36-/- mice was markedly (~2-3 times) reduced, as compared to macrophages from normal mice. Synthetic amphipathic helical peptides (SAHPs), known CD36 ligands, efficiently blocked CD36-dependent inflammatory responses induced by both cell and tissue lysates, HMGB1 and histone H3 in CD36+ cells. IP injection of total cellular lysate preparation induced inflammatory responses that were assessed by the expression of liver and lung pro-inflammatory markers, including IL-6, TNF-α, CD68, and CXCL1, and was reduced by ~50% in CD36-deficient mice compared to normal mice. Our findings demonstrate that CD36 is a PRR contributing to the innate immune response via mediating DAMP-induced inflammatory signaling and highlight the importance of this receptor as a potential therapeutic target in DAMP-associated inflammatory conditions.
Collapse
Affiliation(s)
- Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander V Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tatyana G Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhigang Chen
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peter S T Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Takayuki Tsuji
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Amy P Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Office of the Director, Division of Program Coordination, Planning and Strategic Initiatives, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas L Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Kumar P, Schroder EA, Rajaram MVS, Harris EN, Ganesan LP. The Battle of LPS Clearance in Host Defense vs. Inflammatory Signaling. Cells 2024; 13:1590. [PMID: 39329771 PMCID: PMC11430141 DOI: 10.3390/cells13181590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Lipopolysaccharide (LPS) in blood circulation causes endotoxemia and is linked to various disease conditions. Current treatments focus on preventing LPS from interacting with its receptor Toll-like receptor 4 (TLR4) and reducing inflammation. However, our body has a natural defense mechanism: reticuloendothelial cells in the liver rapidly degrade and inactivate much of the circulating LPS within minutes. But this LPS clearance mechanism is not perfect. Excessive LPS that escape this clearance mechanism cause systemic inflammatory damage through TLR4. Despite its importance, the role of reticuloendothelial cells in LPS elimination is not well-studied, especially regarding the specific cells, receptors, and mechanisms involved. This gap hampers the development of effective therapies for endotoxemia and related diseases. This review consolidates the current understanding of LPS clearance, narrates known and explores potential mechanisms, and discusses the relationship between LPS clearance and LPS signaling. It also aims to highlight key insights that can guide the development of strategies to reduce circulating LPS by way of bolstering host defense mechanisms. Ultimately, we seek to provide a foundation for future research that could lead to innovative approaches for enhancing the body's natural ability to clear LPS and thereby lower the risk of endotoxin-related inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Evan A. Schroder
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA; (E.A.S.); (E.N.H.)
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA; (E.A.S.); (E.N.H.)
| | - Latha P. Ganesan
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
3
|
Chernov AS, Telegin GB, Minakov AN, Kazakov VA, Rodionov MV, Palikov VA, Kudriaeva AA, Belogurov AA. Synthetic Amphipathic Helical Peptide L-37pA Ameliorates the Development of Acute Respiratory Distress Syndrome (ARDS) and ARDS-Induced Pulmonary Fibrosis in Mice. Int J Mol Sci 2024; 25:8384. [PMID: 39125954 PMCID: PMC11312864 DOI: 10.3390/ijms25158384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, we evaluated the ability of the synthetic amphipathic helical peptide (SAHP), L-37pA, which mediates pathogen recognition and innate immune responses, to treat acute respiratory distress syndrome (ARDS) accompanied by diffuse alveolar damage (DAD) and chronic pulmonary fibrosis (PF). For the modeling of ARDS/DAD, male ICR mice were used. Intrabronchial instillation (IB) of 200 µL of inflammatory agents was performed by an intravenous catheter 20 G into the left lung lobe only, leaving the right lobe unaffected. Intravenous injections (IVs) of L-37pA, dexamethasone (DEX) and physiological saline (saline) were used as therapies for ARDS/DAD. L37pA inhibited the circulating levels of inflammatory cytokines, such as IL-8, TNFα, IL1α, IL4, IL5, IL6, IL9 and IL10, by 75-95%. In all cases, the computed tomography (CT) data indicate that L-37pA reduced lung density faster to -335 ± 23 Hounsfield units (HU) on day 7 than with DEX and saline, to -105 ± 29 HU and -23 ± 11 HU, respectively. The results of functional tests showed that L-37pA treatment 6 h after ARDS/DAD initiation resulted in a more rapid improvement in the physiological respiratory lung by 30-45% functions compared with the comparison drugs. Our data suggest that synthetic amphipathic helical peptide L-37pA blocked a cytokine storm, inhibited acute and chronic pulmonary inflammation, prevented fibrosis development and improved physiological respiratory lung function in the ARDS/DAD mouse model. We concluded that a therapeutic strategy using SAHPs targeting SR-B receptors is a potential novel effective treatment for inflammation-induced ARDS, DAD and lung fibrosis of various etiologies.
Collapse
Affiliation(s)
- Aleksandr S. Chernov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Georgii B. Telegin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Alexey N. Minakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Vitaly A. Kazakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Maksim V. Rodionov
- Medical Radiological Research Center (MRRC) Named after A.F. Tsyb-Branch of the National Medical Radiological Research Center of the Ministry of Health of the Russian Federation, Obninsk 249031, Russia;
| | - Viktor A. Palikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
- Department of Biological Chemistry, Russian University of Medicine of the Ministry of Health of the Russian Federation, Moscow 127473, Russia
| |
Collapse
|
4
|
Li Y, Xiong Z, Jiang WL, Tian D, Zhou H, Hou Q, Xiao L, Zhang M, Huang L, Zhong L, Zhou L, Zeng GG. An innovative viewpoint on the existing and prospectiveness of SR-B1. Curr Probl Cardiol 2024; 49:102226. [PMID: 38040207 DOI: 10.1016/j.cpcardiol.2023.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Scavenger Receptor Class B Type 1 (SR-B1), a receptor protein expressed on the cell membrane, plays a crucial role in the metabolism and transport of cholesterol and other lipids, contributing significantly to the homeostasis of lipid levels within the body. Bibliometric analysis involves the application of mathematical and statistical methods to quantitatively analyze different types of documents. It involves the analysis of structural and temporal trends in scholarly articles, coupled with the identification of subject emphasis and variations. Through a bibliometric analysis, this study examines the historical background, current research trends, and future directions in the exploration of SR-B1. By offering insights into the research status and development of SR-B1, this paper aims to assist researchers in identifying novel pathways and areas of investigation in this field of study. Following the screening process, it can be concluded that research on SR-B1 has consistently remained a topic of significant interest over the past 17 years. Interestingly, SR-B1 has recently garnered attention in areas beyond its traditional research focus, including the field of cancer. The primary objective of this review is to provide a concise and accessible overview of the development process of SR-B1 that can help readers who are not well-versed in SR-B1 research quickly grasp its key aspects. Furthermore, this review aims to offer insights and suggestions to researchers regarding potential future research directions and areas of emphasis relating to SR-B1.
Collapse
Affiliation(s)
- Yonggui Li
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhijie Xiong
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wan-Li Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Dandan Tian
- School of Nursing, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Haiyou Zhou
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Qin Hou
- Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Liang Xiao
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Mengjie Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Liubin Huang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Lianping Zhong
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Gastroenterology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Zhou
- Department of Pathology, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Guang-Gui Zeng
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
5
|
Xia L, Zhou Z, Chen X, Luo W, Ding L, Xie H, Zhuang W, Ni K, Li G. Ligand-dependent CD36 functions in cancer progression, metastasis, immune response, and drug resistance. Biomed Pharmacother 2023; 168:115834. [PMID: 37931517 DOI: 10.1016/j.biopha.2023.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
CD36, a multifunctional glycoprotein, has been shown to play critical roles in tumor initiation, progression, metastasis, immune response, and drug resistance. CD36 serves as a receptor for a wide range of ligands, including lipid-related ligands (e.g., long-chain fatty acid (LCFA), oxidized low-density lipoprotein (oxLDL), and oxidized phospholipids), as well as protein-related ligands (e.g., thrombospondins, amyloid proteins, collagens I and IV). CD36 is overexpressed in various cancers and may act as an independent prognostic marker. While it was initially identified as a mediator of anti-angiogenesis through its interaction with thrombospondin-1 (TSP1), recent research has highlighted its role in promoting tumor growth, metastasis, drug resistance, and immune suppression. The varied impact of CD36 on cancer is likely ligand-dependent. Therefore, we focus specifically on the ligand-dependent role of CD36 in cancer to provide a critical review of recent advances, perspectives, and challenges.
Collapse
Affiliation(s)
- Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhenwei Zhou
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianjiong Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyun Xie
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhuang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Kangxin Ni
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Wang C, Yin L, Fu P, Lu G, Zhai X, Yang C. Anti-inflammatory effect of ApoE23 on Salmonella typhimurium-induced sepsis in mice. Open Med (Wars) 2023; 18:20230767. [PMID: 37533741 PMCID: PMC10390754 DOI: 10.1515/med-2023-0767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Two independent experiments were performed with three groups each (sepsis control, sepsis, and sepsis with apoE23 treatment) to investigate the anti-inflammatory effect of apolipoprotein 23 (apoE23) in a mouse model of sepsis induced by S. typhimurium. Survival rates; plasma level variations in tumor necrosis factor (TNF)-α, interleukin (IL)-6, and lipopolysaccharide (LPS); S. typhimurium colony-forming units in the spleen tissue; and mRNA and protein expression levels of low-density lipoprotein receptor (LDLR), LDLR-related protein (LRP), syndecan-1, and scavenger receptor B1 were evaluated in the livers of mice from the three groups. Results found that the survival rate of septic mice treated with apoE23 was 100% within 48 h, while it was only 40% in septic mice without apoE23 treatment (P < 0.001). The plasma LPS, TNF-α, and IL-6 levels and the S. typhimurium load in mice in the apoE23-treated group were significantly lower than those in septic mice (P < 0.05). Moreover, apoE23 restored the downregulated expression of LDLR and LRP in the liver tissue of septic mice. So apoE23 exhibits an anti-inflammatory effect in the mouse model of S. typhimurium-induced sepsis. Further studies are required to understand the mechanisms underlying the anti-inflammatory effects of apoE23.
Collapse
Affiliation(s)
- Chuanqing Wang
- Department of Nosocomial Infection Control and the Clinical Microbiology Laboratory, Children’s Hospital of Fudan University, Shanghai200032, China
- Department of Nosocomial Infection Control, Children’s Hospital of Fudan University, Shanghai200032, China
| | - Lijun Yin
- Department of Nosocomial Infection Control, Children’s Hospital of Fudan University, Shanghai200032, China
| | - Pan Fu
- Department of the Clinical Microbiology Laboratory, Children’s Hospital of Fudan University, Shanghai200032, China
| | - Guoping Lu
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai200032, China
| | - Xiaowen Zhai
- Department of Hematology, Children’s Hospital of Fudan University, Shanghai, 399 Wanyuan Road, Shanghai200032, China
| | - Changsheng Yang
- The Institute of Cardiovascular Diseases of Shanghai, Key Laboratory of Viral Heart Diseases, Ministry of Health, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai200032, China
| |
Collapse
|
7
|
Taban Q, Ahmad SM, Mumtaz PT, Bhat B, Haq E, Magray S, Saleem S, Shabir N, Muhee A, Kashoo ZA, Zargar MH, Malik AA, Ganai NA, Shah RA. Scavenger receptor B1 facilitates the endocytosis of Escherichia coli via TLR4 signaling in mammary gland infection. Cell Commun Signal 2023; 21:3. [PMID: 36604713 PMCID: PMC9813905 DOI: 10.1186/s12964-022-01014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/11/2022] [Indexed: 01/06/2023] Open
Abstract
SCARB1 belongs to class B of Scavenger receptors (SRs) that are known to be involved in binding and endocytosis of various pathogens. SRs have emerging role in regulating innate immunity and host-pathogen interactions by acting in co-ordination with Toll-like receptors.Query Little is known about the function of SCARB1 in milk-derived mammary epithelial cells (MECs). This study reports the role of SCARB1 in infection and its potential association in TLR4 signaling on bacterial challenge in Goat mammary epithelial cells (GMECs). The novelty in the establishment of MEC culture lies in the method that aims to enhance the viability of the cells with intact characteristics upto a higher passage number. We represent MEC culture to be used as a potential infection model for deeper understanding of animal physiology especially around the mammary gland. On E.coli challenge the expression of SCARB1 was significant in induced GMECs at 6 h. Endoribonuclease-esiRNA based silencing of SCARB1 affects the expression of TLR4 and its pathways i.e. MyD88 and TRIF pathways on infection. Knockdown also affected the endocytosis of E.coli in GMECs demonstrating that E.coli uses SCARB1 function to gain entry in cells. Furthermore, we predict 3 unique protein structures of uncharacterized SCARB1 (Capra hircus) protein. Overall, we highlight SCARB1 as a main participant in host defence and its function in antibacterial advances to check mammary gland infections. Video Abstract.
Collapse
Affiliation(s)
- Qamar Taban
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India.
| | | | - Basharat Bhat
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Ehtishamul Haq
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir, India
| | - Suhail Magray
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Sahar Saleem
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Amatul Muhee
- Department of Clinical Veterinary Medicine, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Zahid Amin Kashoo
- Department of Veterinary Microbiology & Immunology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Mahrukh Hameed Zargar
- Department of Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Abrar A Malik
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Nazir A Ganai
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Riaz A Shah
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| |
Collapse
|
8
|
Fernandez-Sendin M, Di Trani CA, Bella A, Vasquez M, Ardaiz N, Gomar C, Arrizabalaga L, Ciordia S, Corrales FJ, Aranda F, Berraondo P. Long-Term Liver Expression of an Apolipoprotein A-I Mimetic Peptide Attenuates Interferon-Alpha-Induced Inflammation and Promotes Antiviral Activity. Front Immunol 2021; 11:620283. [PMID: 33708194 PMCID: PMC7940203 DOI: 10.3389/fimmu.2020.620283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/29/2020] [Indexed: 01/25/2023] Open
Abstract
Apolipoprotein A-I mimetic peptides are amphipathic alpha-helix peptides that display similar functions to apolipoprotein A-I. Preclinical and clinical studies have demonstrated the safety and efficacy of apolipoprotein A-I mimetic peptides in multiple indications associated with inflammatory processes. In this study, we evaluated the effect of the long-term expression of L37pA in the liver by an adeno-associated virus (AAV-L37pA) on the expression of an adeno-associated virus encoding interferon-alpha (AAV-IFNα). Long-term IFNα expression in the liver leads to lethal hematological toxicity one month after AAV administration. Concomitant administration of AAV-L37pA prevented the lethal toxicity since the IFNα expression was reduced one month after AAV administration. To identify the mechanism of action of L37pA, a genomic and proteomic analysis was performed 15 days after AAV administration when a similar level of IFNα and interferon-stimulated genes were observed in mice treated with AAV-IFNα alone and in mice treated with AAV-IFNα and AAV-L37pA. The coexpression of the apolipoprotein A-I mimetic peptide L37pA with IFNα modulated the gene expression program of IFNα, inducing a significant reduction in inflammatory pathways affecting pathogen-associated molecular patterns receptor, dendritic cells, NK cells and Th1 immune response. The proteomic analysis confirmed the impact of the L37pA activity on several inflammatory pathways and indicated an activation of LXR/RXR and PPPARα/γ nuclear receptors. Thus, long-term expression of L37pA induces an anti-inflammatory effect in the liver that allows silencing of IFNα expression mediated by an adeno-associated virus.
Collapse
Affiliation(s)
- Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Angela Bella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Marcos Vasquez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Nuria Ardaiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Fernando J Corrales
- Functional Proteomics Laboratory, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
9
|
Banesh S, Trivedi V. Therapeutic Potentials of Scavenger Receptor CD36 Mediated Innate Immune Responses Against Infectious and Non-Infectious Diseases. Curr Drug Discov Technol 2020; 17:299-317. [PMID: 31376823 DOI: 10.2174/1570163816666190802153319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/18/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
CD36 is a multifunctional glycoprotein, expressed in different types of cells and known to play a significant role in the pathophysiology of the host. The structural studies revealed that the scavenger receptor consists of short cytosolic domains, two transmembrane domains, and a large ectodomain. The ectodomain serves as a receptor for a diverse number of endogenous and exogenous ligands. The CD36-specific ligands are involved in regulating the immune response during infectious and non-infectious diseases in the host. The role of CD36 in regulating the innate immune response during Pneumonia, Tuberculosis, Malaria, Leishmaniasis, HIV, and Sepsis in a ligand- mediated fashion. Apart from infectious diseases, it is also considered to be involved in metabolic disorders such as Atherosclerosis, Alzheimer's, cancer, and Diabetes. The ligand binding to scavenger receptor modulates the CD36 down-stream innate immune response, and it can be exploited to design suitable immuno-modulators. Hence, the current review focused on the role of the CD36 in innate immune response and therapeutic potentials of novel heterocyclic compounds as CD36 ligands during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Sooram Banesh
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
10
|
Khan HS, Nair VR, Ruhl CR, Alvarez-Arguedas S, Galvan Rendiz JL, Franco LH, Huang L, Shaul PW, Kim J, Xie Y, Mitchell RB, Shiloh MU. Identification of scavenger receptor B1 as the airway microfold cell receptor for Mycobacterium tuberculosis. eLife 2020; 9:52551. [PMID: 32134383 PMCID: PMC7065847 DOI: 10.7554/elife.52551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can enter the body through multiple routes, including via specialized transcytotic cells called microfold cells (M cell). However, the mechanistic basis for M cell entry remains undefined. Here, we show that M cell transcytosis depends on the Mtb Type VII secretion machine and its major virulence factor EsxA. We identify scavenger receptor B1 (SR-B1) as an EsxA receptor on airway M cells. SR-B1 is required for Mtb binding to and translocation across M cells in mouse and human tissue. Together, our data demonstrate a previously undescribed role for Mtb EsxA in mucosal invasion and identify SR-B1 as the airway M cell receptor for Mtb.
Collapse
Affiliation(s)
- Haaris S Khan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Vidhya R Nair
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Cody R Ruhl
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Samuel Alvarez-Arguedas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jorge L Galvan Rendiz
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Luis H Franco
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Linzhang Huang
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ron B Mitchell
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
11
|
Shen WJ, Asthana S, Kraemer FB, Azhar S. Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. J Lipid Res 2018; 59:1114-1131. [PMID: 29720388 DOI: 10.1194/jlr.r083121] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Cholesterol is required for maintenance of plasma membrane fluidity and integrity and for many cellular functions. Cellular cholesterol can be obtained from lipoproteins in a selective pathway of HDL-cholesteryl ester (CE) uptake without parallel apolipoprotein uptake. Scavenger receptor B type 1 (SR-B1) is a cell surface HDL receptor that mediates HDL-CE uptake. It is most abundantly expressed in liver, where it provides cholesterol for bile acid synthesis, and in steroidogenic tissues, where it delivers cholesterol needed for storage or steroidogenesis in rodents. SR-B1 transcription is regulated by trophic hormones in the adrenal gland, ovary, and testis; in the liver and elsewhere, SR-B1 is subject to posttranscriptional and posttranslational regulation. SR-B1 operates in several metabolic processes and contributes to pathogenesis of atherosclerosis, inflammation, hepatitis C virus infection, and other conditions. Here, we summarize characteristics of the selective uptake pathway and involvement of microvillar channels as facilitators of selective HDL-CE uptake. We also present the potential mechanisms of SR-B1-mediated selective cholesterol transport; the transcriptional, posttranscriptional, and posttranslational regulation of SR-B1; and the impact of gene variants on expression and function of human SR-B1. A better understanding of this unique pathway and SR-B1's role may yield improved therapies for a wide variety of conditions.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Shailendra Asthana
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Fredric B Kraemer
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Salman Azhar
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
12
|
Schachter J, Martel J, Lin CS, Chang CJ, Wu TR, Lu CC, Ko YF, Lai HC, Ojcius DM, Young JD. Effects of obesity on depression: A role for inflammation and the gut microbiota. Brain Behav Immun 2018; 69:1-8. [PMID: 28888668 DOI: 10.1016/j.bbi.2017.08.026] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
Depression is a mental disorder associated with environmental, genetic and psychological factors. Recent studies indicate that chronic neuro-inflammation may affect brain physiology and alter mood and behavior. Consumption of a high-fat diet leads to obesity and chronic systemic inflammation. The gut microbiota mediates many effects of a high-fat diet on human physiology and may also influence the mood and behavior of the host. We review here recent studies suggesting the existence of a link between obesity, the gut microbiota and depression, focusing on the mechanisms underlying the effects of a high-fat diet on chronic inflammation and brain physiology. This body of research suggests that modulating the composition of the gut microbiota using prebiotics and probiotics may produce beneficial effects on anxiety and depression.
Collapse
Affiliation(s)
- Julieta Schachter
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, 21941-902, 373 Avenida Carlos Chagas Filho, Cidade Universitária - Ilha do Fundão, Rio de Janeiro, Brazil; Center for Molecular and Clinical Immunology, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan
| | - Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan
| | - Chuan-Sheng Lin
- Center for Molecular and Clinical Immunology, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Research Center of Bacterial Pathogenesis, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan
| | - Chih-Jung Chang
- Center for Molecular and Clinical Immunology, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Research Center of Bacterial Pathogenesis, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan
| | - Tsung-Ru Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, 510 Zhong-Zheng Street, New Taipei City 24205, Taiwan
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan; Chang Gung Biotechnology Corporation, 201 Tung-Hua North Road, Taipei 10508, Taiwan; Biochemical Engineering Research Center, Ming Chi University of Technology, 84 Gungjuan Road, New Taipei City 24301, Taiwan
| | - Hsin-Chih Lai
- Center for Molecular and Clinical Immunology, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Research Center of Bacterial Pathogenesis, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan; Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, 261 Wen-Hua First Road, Taoyuan 33303, Taiwan; Graduate Institute of Health Industry and Technology, College of Human Ecology, Chang Gung University of Science and Technology, 261 Wen-Hua First Road, Taoyuan 33303, Taiwan
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan; Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, 155 Fifth Street, San Francisco, CA 94103, USA
| | - John D Young
- Center for Molecular and Clinical Immunology, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan; Chang Gung Biotechnology Corporation, 201 Tung-Hua North Road, Taipei 10508, Taiwan; Biochemical Engineering Research Center, Ming Chi University of Technology, 84 Gungjuan Road, New Taipei City 24301, Taiwan; Laboratory of Cellular Physiology and Immunology, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
13
|
Yang D, Zheng X, Wang N, Fan S, Yang Y, Lu Y, Chen Q, Liu X, Zheng J. Kukoamine B promotes TLR4-independent lipopolysaccharide uptake in murine hepatocytes. Oncotarget 2018; 7:57498-57513. [PMID: 27542278 PMCID: PMC5295368 DOI: 10.18632/oncotarget.11292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/11/2016] [Indexed: 12/30/2022] Open
Abstract
Free bacterial lipopolysaccharide (LPS) is generally removed from the bloodstream through hepatic uptake via TLR4, the LPS pattern recognition receptor, but mechanisms for internalization and clearance of conjugated LPS are less clear. Kukoamine B (KB) is a novel cationic alkaloid that interferes with LPS binding to TLR4. In this study, KB accelerated blood clearance of LPS. KB also enhanced LPS distribution in the hepatic tissues of C57 BL/6 mice, along with LPS uptake in primary hepatocytes and HepG2 cells. By contrast, KB inhibited LPS internalization in Kupffer and RAW 264.7 cells. Loss of TLR4 did not affect LPS uptake into KB-treated hepatocytes. We also detected selective upregulation of the asialoglycoprotein receptor (ASGPR) upon KB treatment, and ASGPR colocalized with KB in cultured hepatocytes. Molecular docking showed that KB bound to ASGPR in a manner similar to GalNAc, a known ASGPR agonist. GalNAc dose-dependently reduced KB internalization, suggesting it competes with KB for ASGPR binding, and ASGPR knockdown also impaired LPS uptake into hepatocytes. Finally, while KB enhanced LPS uptake, it was protective against LPS-induced inflammation and hepatocyte injury. Our study provides a new mechanism for conjugated LPS hepatic uptake induced by the LPS neutralizer KB and mediated by membrane ASGPR binding.
Collapse
Affiliation(s)
- Dong Yang
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xinchuan Zheng
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ning Wang
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
14
|
Shen WJ, Azhar S, Kraemer FB. SR-B1: A Unique Multifunctional Receptor for Cholesterol Influx and Efflux. Annu Rev Physiol 2017; 80:95-116. [PMID: 29125794 DOI: 10.1146/annurev-physiol-021317-121550] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The scavenger receptor, class B type 1 (SR-B1), is a multiligand membrane receptor protein that functions as a physiologically relevant high-density lipoprotein (HDL) receptor whose primary role is to mediate selective uptake or influx of HDL-derived cholesteryl esters into cells and tissues. SR-B1 also facilitates the efflux of cholesterol from peripheral tissues, including macrophages, back to liver. As a regulator of plasma membrane cholesterol content, SR-B1 promotes the uptake of lipid soluble vitamins as well as viral entry into host cells. These collective functions of SR-B1 ultimately affect programmed cell death, female fertility, platelet function, vasculature inflammation, and diet-induced atherosclerosis and myocardial infarction. SR-B1 has also been identified as a potential marker for cancer diagnosis and prognosis. Finally, the SR-B1-linked selective HDL-cholesteryl ester uptake pathway is now being evaluated as a gateway for the delivery of therapeutic and diagnostic agents. In this review, we focus on the regulation and functional significance of SR-B1 in mediating cholesterol movement into and out of cells.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California 94305; .,VA Palo Alto Health Care System, Palo Alto, California 94304
| | - Salman Azhar
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California 94305; .,VA Palo Alto Health Care System, Palo Alto, California 94304
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California 94305; .,VA Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
15
|
CD36 in chronic kidney disease: novel insights and therapeutic opportunities. Nat Rev Nephrol 2017; 13:769-781. [DOI: 10.1038/nrneph.2017.126] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Baranova IN, Souza ACP, Bocharov AV, Vishnyakova TG, Hu X, Vaisman BL, Amar MJ, Chen Z, Remaley AT, Patterson AP, Yuen PST, Star RA, Eggerman TL. Human SR-BII mediates SAA uptake and contributes to SAA pro-inflammatory signaling in vitro and in vivo. PLoS One 2017; 12:e0175824. [PMID: 28423002 PMCID: PMC5396919 DOI: 10.1371/journal.pone.0175824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/01/2017] [Indexed: 12/13/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein with cytokine-like and chemotactic properties, that is markedly up-regulated during various inflammatory conditions. Several receptors, including FPRL-1, TLR2, TLR4, RAGE, class B scavenger receptors, SR-BI and CD36, have been identified as SAA receptors. This study provides new evidence that SR-BII, splice variant of SR-BI, could function as an SAA receptor mediating its uptake and pro-inflammatory signaling. The uptake of Alexa Fluor488 SAA was markedly (~3 fold) increased in hSR-BII-expressing HeLa cells when compared with mock-transfected cells. The levels of SAA-induced interleukin-8 secretion by hSR-BII-expressing HEK293 cells were also significantly (~3-3.5 fold) higher than those detected in control cells. Moderately enhanced levels of phosphorylation of all three mitogen-activated protein kinases, ERK1/2, and p38 and JNK, were observed in hSR-BII-expressing cells following SAA stimulation when compared with control wild type cells. Transgenic mice with pLiv-11-directed liver/kidney overexpression of hSR-BI or hSR-BII were used to assess the in vivo role of each receptor in SAA-induced pro-inflammatory response in these organs. Six hours after intraperitoneal SAA injection both groups of transgenic mice demonstrated markedly higher (~2-5-fold) expression levels of inflammatory mediators in the liver and kidney compared to wild type mice. Histological examinations of hepatic and renal tissue from SAA-treated mice revealed moderate level of damage in the liver of both transgenic but not in the wild type mice. Activities of plasma transaminases, biomarkers of liver injury, were also moderately higher in hSR-B transgenic mice when compared to wild type mice. Our findings identify hSR-BII as a functional SAA receptor that mediates SAA uptake and contributes to its pro-inflammatory signaling via the MAPKs-mediated signaling pathways.
Collapse
Affiliation(s)
- Irina N. Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ana C. P. Souza
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander V. Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tatyana G. Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Boris L. Vaisman
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcelo J. Amar
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhigang Chen
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan T. Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amy P. Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter S. T. Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas L. Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
17
|
The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis. Nat Commun 2016; 7:13436. [PMID: 27824038 PMCID: PMC5105176 DOI: 10.1038/ncomms13436] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/04/2016] [Indexed: 02/06/2023] Open
Abstract
Sustained low-grade inflammation mediated by non-resolving inflammatory monocytes has long been suspected in the pathogenesis of atherosclerosis; however, the molecular mechanisms responsible for the sustainment of non-resolving inflammatory monocytes during atherosclerosis are poorly understood. Here we observe that subclinical endotoxemia, often seen in humans with chronic inflammation, aggravates murine atherosclerosis through programming monocytes into a non-resolving inflammatory state with elevated Ly6C, CCR5, MCP-1 and reduced SR-B1. The sustainment of inflammatory monocytes is due to the disruption of homeostatic tolerance through the elevation of miR-24 and reduction of the key negative-feedback regulator IRAK-M. miR-24 reduces the levels of Smad4 required for the expression of IRAK-M and also downregulates key lipid-processing molecule SR-B1. IRAK-M deficiency in turn leads to elevated miR-24 levels, sustains disruption of monocyte homeostasis and aggravates atherosclerosis. Our data define an integrated feedback circuit in monocytes and its disruption may lead to non-resolving low-grade inflammation conducive to atherosclerosis.
Collapse
|
18
|
Extracellular HSP60 triggers tissue regeneration and wound healing by regulating inflammation and cell proliferation. NPJ Regen Med 2016; 1. [PMID: 28936359 PMCID: PMC5605149 DOI: 10.1038/npjregenmed.2016.13] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After injury, zebrafish can restore many tissues that do not regenerate well in mammals, making it a useful vertebrate model for studying regenerative biology. We performed a systematic screen to identify genes essential for hair cell regeneration in zebrafish, and found that the heat shock protein Hspd1 (Hsp60) has a critical role in the regeneration of hair cells and amputated caudal fins. We showed HSP60-injected extracellularly promoted cell proliferation and regeneration in both hair cells and caudal fins. We showed that hspd1 mutant was deficient in leukocyte infiltration at the site of injury. Topical application of HSP60 in a diabetic mouse skin wound model dramatically accelerated wound healing compared with controls. Stimulation of human peripheral blood mononuclear cells with HSP60 triggered a specific induction of M2 phase CD163-positive monocytes. Our results demonstrate that the normally intracellular chaperonin HSP60 has an extracellular signalling function in injury inflammation and tissue regeneration, likely through promoting the M2 phase for macrophages.
Collapse
|
19
|
Vasquez M, Fioravanti J, Aranda F, Paredes V, Gomar C, Ardaiz N, Fernandez-Ruiz V, Méndez M, Nistal-Villan E, Larrea E, Gao Q, Gonzalez-Aseguinolaza G, Prieto J, Berraondo P. Interferon alpha bioactivity critically depends on Scavenger receptor class B type I function. Oncoimmunology 2016; 5:e1196309. [PMID: 27622065 PMCID: PMC5007953 DOI: 10.1080/2162402x.2016.1196309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/10/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022] Open
Abstract
Scavenger receptor class B type I (SR-B1) binds pathogen-associated molecular patterns participating in the regulation of the inflammatory reaction but there is no information regarding potential interactions between SR-B1 and the interferon system. Herein, we report that SR-B1 ligands strongly regulate the transcriptional response to interferon α (IFNα) and enhance its antiviral and antitumor activity. This effect was mediated by the activation of TLR2 and TLR4 as it was annulled by the addition of anti-TLR2 or anti-TLR4 blocking antibodies. In vivo, we maximized the antitumor activity of IFNα co-expressing in the liver a SR-B1 ligand and IFNα by adeno-associated viruses. This gene therapy strategy eradicated liver metastases from colon cancer with reduced toxicity. On the other hand, genetic and pharmacological inhibition of SR-B1 blocks the clathrin-dependent interferon receptor recycling pathway with a concomitant reduction in IFNα signaling and bioactivity. This effect can be applied to enhance cancer immunotherapy with oncolytic viruses. Indeed, SR-B1 antagonists facilitate replication of oncolytic viruses amplifying their tumoricidal potential. In conclusion, SR-B1 agonists behave as IFNα enhancers while SR-B1 inhibitors dampen IFNα activity. These results demonstrate that SR-B1 is a suitable pharmacology target to enhance cancer immunotherapy based on IFNα and oncolytic viruses.
Collapse
Affiliation(s)
- Marcos Vasquez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Jessica Fioravanti
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Vladimir Paredes
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, Spain; Centro Médico Nacional La Raza, IMSS, México DF, Mexico
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Nuria Ardaiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Veronica Fernandez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Miriam Méndez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Estanislao Nistal-Villan
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Esther Larrea
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, Spain; Instituto de Salud Tropical, University of Navarra, Pamplona, Navarra, Spain
| | - Qinshan Gao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Gloria Gonzalez-Aseguinolaza
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Jesus Prieto
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| |
Collapse
|
20
|
Bocharov AV, Wu T, Baranova IN, Birukova AA, Sviridov D, Vishnyakova TG, Remaley AT, Eggerman TL, Patterson AP, Birukov KG. Synthetic Amphipathic Helical Peptides Targeting CD36 Attenuate Lipopolysaccharide-Induced Inflammation and Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2016; 197:611-9. [PMID: 27316682 DOI: 10.4049/jimmunol.1401028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 04/28/2016] [Indexed: 01/07/2023]
Abstract
Synthetic amphipathic helical peptides (SAHPs) designed as apolipoprotein A-I mimetics are known to bind to class B scavenger receptors (SR-Bs), SR-BI, SR-BII, and CD36, receptors that mediate lipid transport and facilitate pathogen recognition. In this study, we evaluated SAHPs, selected for targeting human CD36, by their ability to attenuate LPS-induced inflammation, endothelial barrier dysfunction, and acute lung injury (ALI). L37pA, which targets CD36 and SR-BI equally, inhibited LPS-induced IL-8 secretion and barrier dysfunction in cultured endothelial cells while reducing lung neutrophil infiltration by 40% in a mouse model of LPS-induced ALI. A panel of 20 SAHPs was tested in HEK293 cell lines stably transfected with various SR-Bs to identify SAHPs with preferential selectivity toward CD36. Among several SAHPs targeting both SR-BI/BII and CD36 receptors, ELK-B acted predominantly through CD36. Compared with L37pA, 5A, and ELK SAHPs, ELK-B was most effective in reducing the pulmonary barrier dysfunction, neutrophil migration into the lung, and lung inflammation induced by LPS. We conclude that SAHPs with relative selectivity toward CD36 are more potent at inhibiting acute pulmonary inflammation and dysfunction. These data indicate that therapeutic strategies using SAHPs targeting CD36, but not necessarily mimicking all apolipoprotein A-I functions, may be considered a possible new treatment approach for inflammation-induced ALI and pulmonary edema.
Collapse
Affiliation(s)
- Alexander V Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; National Heart, Lung, and Blood Institute, Bethesda, MD 20892;
| | - Tinghuai Wu
- Lung Injury Center, The University of Chicago, Chicago, IL 60637
| | - Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Anna A Birukova
- Lung Injury Center, The University of Chicago, Chicago, IL 60637
| | - Denis Sviridov
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892; and
| | - Tatyana G Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Alan T Remaley
- National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Thomas L Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892; and
| | - Amy P Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
21
|
Suzuki K, Murakami T, Hu Z, Tamura H, Kuwahara-Arai K, Iba T, Nagaoka I. Human Host Defense Cathelicidin Peptide LL-37 Enhances the Lipopolysaccharide Uptake by Liver Sinusoidal Endothelial Cells without Cell Activation. THE JOURNAL OF IMMUNOLOGY 2016; 196:1338-1347. [DOI: 10.4049/jimmunol.1403203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The liver is a major organ that removes waste substances from the blood, and liver sinusoidal endothelial cells (LSECs) are professional scavenger cells, which incorporate and degrade various endogenous and exogenous molecules including pathogenic factor LPS. Mammalian cells express a number of peptide antibiotics that function as effectors in the innate host defense systems. LL-37, a human cathelicidin antimicrobial peptide, has a potent LPS-neutralizing activity and exhibits protective actions on various infection models. However, the effect of LL-37 on the LPS clearance has not been clarified. In this study, to further understand the host-protective mechanism of LL-37, we evaluated the effect of LL-37 on the LPS clearance in vitro. LL-37 enhanced the LPS uptake by human LSECs. Of interest, LL-37 was similarly incorporated into LSECs both in the presence and the absence of LPS, and the incorporated LPS and LL-37 were colocalized in LSECs. Importantly, the uptake of LPS and LL-37 was inhibited by endocytosis inhibitors, heparan sulfate proteoglycan analogs, and glycosaminoglycan lyase treatment of the cells. Moreover, the uptake of LL-37-LPS did not activate TLR4 signaling in both MyD88-dependent and -independent pathways. In addition, the incorporated LL-37-LPS was likely transported to the lysosomes in LSECs. Together these observations suggest that LL-37 enhances the LPS uptake by LSECs via endocytosis through the complex formation with LPS and the interaction with cell-surface heparan sulfate proteoglycans, thereby facilitating the intracellular incorporation and degradation of LPS without cell activation. In this article, we propose a novel function of LL-37 in enhancing LPS clearance.
Collapse
Affiliation(s)
- Kaori Suzuki
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Taisuke Murakami
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Zhongshuang Hu
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hiroshi Tamura
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
- †Laboratory Program Support Consulting Office, Tokyo 160-0023, Japan
| | - Kyoko Kuwahara-Arai
- ‡Department of Bacteriology, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan; and
| | - Toshiaki Iba
- §Department of Emergency and Disaster Medicine, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Isao Nagaoka
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
22
|
Abstract
The adrenal gland is one of the prominent sites for steroid hormone synthesis. Lipoprotein-derived cholesterol esters (CEs) delivered via SR-B1 constitute the dominant source of cholesterol for steroidogenesis, particularly in rodents. Adrenocorticotropic hormone (ACTH) stimulates steroidogenesis through downstream actions on multiple components involved in steroidogenesis. Both acute and chronic ACTH treatments can modulate SR-B1 function, including its transcription, posttranscriptional stability, phosphorylation and dimerization status, as well as the interaction with other protein partners, all of which result in changes in the ability of SR-B1 to mediate HDL-CE uptake and the supply of cholesterol for conversion to steroids. Here, we provide a review of the recent findings on the regulation of adrenal SR-B1 function by ACTH.
Collapse
Affiliation(s)
- Wen-Jun Shen
- The Division of Endocrinology, Stanford University, Stanford, CA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Salman Azhar
- The Division of Endocrinology, Stanford University, Stanford, CA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Fredric B. Kraemer
- The Division of Endocrinology, Stanford University, Stanford, CA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- *Correspondence: Fredric B. Kraemer,
| |
Collapse
|
23
|
Shao M, Yu L, Zhang F, Lu X, Li X, Cheng P, Lin X, He L, Jin S, Tan Y, Yang H, Zhang C, Cai L. Additive protection by LDR and FGF21 treatment against diabetic nephropathy in type 2 diabetes model. Am J Physiol Endocrinol Metab 2015; 309:E45-54. [PMID: 25968574 PMCID: PMC4490332 DOI: 10.1152/ajpendo.00026.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022]
Abstract
The onset of diabetic nephropathy (DN) is associated with both systemic and renal changes. Fibroblast growth factor (FGF)-21 prevents diabetic complications mainly by improving systemic metabolism. In addition, low-dose radiation (LDR) protects mice from DN directly by preventing renal oxidative stress and inflammation. In the present study, we tried to define whether the combination of FGF21 and LDR could further prevent DN by blocking its systemic and renal pathogeneses. To this end, type 2 diabetes was induced by feeding a high-fat diet for 12 wk followed by a single dose injection of streptozotocin. Diabetic mice were exposed to 50 mGy LDR every other day for 4 wk with and without 1.5 mg/kg FGF21 daily for 8 wk. The changes in systemic parameters, including blood glucose levels, lipid profiles, and insulin resistance, as well as renal pathology, were examined. Diabetic mice exhibited renal dysfunction and pathological abnormalities, all of which were prevented significantly by LDR and/or FGF21; the best effects were observed in the group that received the combination treatment. Our studies revealed that the additive renal protection conferred by the combined treatment against diabetes-induced renal fibrosis, inflammation, and oxidative damage was associated with the systemic improvement of hyperglycemia, hyperlipidemia, and insulin resistance. These results suggest that the combination treatment with LDR and FGF21 prevented DN more efficiently than did either treatment alone. The mechanism behind these protective effects could be attributed to the suppression of both systemic and renal pathways.
Collapse
Affiliation(s)
- Minglong Shao
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Fangfang Zhang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xuemian Lu
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Peng Cheng
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xiufei Lin
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Luqing He
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Shunzi Jin
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health of Jilin University, Changchun, China; and
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, Kentucky
| | - Hong Yang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China;
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
24
|
Key role for scavenger receptor B-I in the integrative physiology of host defense during bacterial pneumonia. Mucosal Immunol 2015; 8:559-71. [PMID: 25336169 PMCID: PMC4406784 DOI: 10.1038/mi.2014.88] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 08/16/2014] [Indexed: 02/04/2023]
Abstract
Scavenger receptor B-I (SR-BI) is a multirecognition receptor that regulates cholesterol trafficking and cardiovascular inflammation. Although it is expressed by neutrophils (PMNs) and lung-resident cells, no role for SR-BI has been defined in pulmonary immunity. Herein, we report that, compared with SR-BI(+/+) counterparts, SR-BI(-/-) mice suffer markedly increased mortality during bacterial pneumonia associated with higher bacterial burden in the lung and blood, deficient induction of the stress glucocorticoid corticosterone, higher serum cytokines, and increased organ injury. SR-BI(-/-) mice had significantly increased PMN recruitment and cytokine production in the infected airspace. This was associated with defective hematopoietic cell-dependent clearance of lipopolysaccharide from the airspace and increased cytokine production by SR-BI(-/-) macrophages. Corticosterone replacement normalized alveolar neutrophilia but not alveolar cytokines, bacterial burden, or mortality, suggesting that adrenal insufficiency derepresses PMN trafficking to the SR-BI(-/-) airway in a cytokine-independent manner. Despite enhanced alveolar neutrophilia, SR-BI(-/-) mice displayed impaired phagocytic killing. Bone marrow chimeras revealed this defect to be independent of the dyslipidemia and adrenal insufficiency of SR-BI(-/-) mice. During infection, SR-BI(-/-) PMNs displayed deficient oxidant production and CD11b externalization, and increased surface L-selectin, suggesting defective activation. Taken together, SR-BI coordinates several steps in the integrated neutrophilic host defense response to pneumonia.
Collapse
|
25
|
Jin X, Xu Q, Champion K, Kruth HS. Endotoxin contamination of apolipoprotein A-I: effect on macrophage proliferation--a cautionary tale. Atherosclerosis 2015; 240:121-4. [PMID: 25778625 DOI: 10.1016/j.atherosclerosis.2015.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
This technical report addresses the problem of endotoxin contamination of apolipoprotein reagents. Using a bromodeoxyuridine incorporation cell proliferation assay, we observed that human plasma ApoA-I as low as 1 μg/ml resulted in a >90% inhibition in macrophage proliferation. However, not all ApoA-I from different sources showed this effect. We considered the possibility that endotoxin contamination of the apolipoproteins contributed to the differential inhibition of macrophage cell proliferation. Endotoxin alone very potently inhibited macrophage proliferation (0.1 ng/ml inhibited macrophage proliferation>90%). Measurement of endotoxin levels in the apolipoprotein products, including an analysis of free versus total endotoxin, the latter which included endotoxin that was masked due to binding to protein, suggested that free endotoxin mediated inhibition of macrophage proliferation. Despite the use of an advanced endotoxin removal procedure and agents commonly used to inhibit endotoxin action, the potency of endotoxin precluded successful elimination of endotoxin effect. Our findings show that endotoxin contamination can significantly influence apparent apolipoprotein-mediated cell effects (or effects of any other biological products), especially when these products are tested on highly endotoxin-sensitive cells, such as macrophages.
Collapse
Affiliation(s)
- Xueting Jin
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qing Xu
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Howard S Kruth
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Shen WJ, Hu J, Hu Z, Kraemer FB, Azhar S. Scavenger receptor class B type I (SR-BI): a versatile receptor with multiple functions and actions. Metabolism 2014; 63:875-86. [PMID: 24854385 PMCID: PMC8078058 DOI: 10.1016/j.metabol.2014.03.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 11/16/2022]
Abstract
Scavenger receptor class B type I (SR-BI), is a physiologically relevant HDL receptor that mediates selective uptake of lipoprotein (HDL)-derived cholesteryl ester (CE) in vitro and in vivo. Mammalian SR-BI is a 509-amino acid, ~82 kDa glycoprotein that contains N- and C-terminal cytoplasmic domains, two-transmembrane domains, as well as a large extracellular domain containing 5-6 cysteine residues and multiple sites for N-linked glycosylation. The size and structural characteristics of SR-BI, however, vary considerably among lower vertebrates and insects. Recently, significant progress has been made in understanding the molecular mechanisms involved in the posttranscriptional/posttranslational regulation of SR-BI in a tissue specific manner. The purpose of this review is to summarize the current body of knowledge about the events and molecules connected with the posttranscriptional/posttranslational regulation of SR-BI and to update the molecular and functional characteristics of the insect SR-BI orthologs.
Collapse
MESH Headings
- Animals
- Biological Transport
- Gene Expression Regulation
- Glycosylation
- Humans
- Insect Proteins/chemistry
- Insect Proteins/genetics
- Insect Proteins/metabolism
- Lipoproteins, HDL/chemistry
- Lipoproteins, HDL/genetics
- Lipoproteins, HDL/metabolism
- Liver/metabolism
- Organ Specificity
- Protein Conformation
- Protein Processing, Post-Translational
- Receptors, Lipoprotein/chemistry
- Receptors, Lipoprotein/genetics
- Receptors, Lipoprotein/metabolism
- Scavenger Receptors, Class B/chemistry
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/metabolism
- Species Specificity
Collapse
Affiliation(s)
- Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California 94304; Division of Endocrinology, Stanford University, Stanford, California 94305
| | - Jie Hu
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California 94304
| | - Zhigang Hu
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California 94304; Division of Endocrinology, Stanford University, Stanford, California 94305
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California 94304; Division of Endocrinology, Stanford University, Stanford, California 94305
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California 94304; Division of Gastroenterology and Hepatology, Stanford University, Stanford, California 94305.
| |
Collapse
|
27
|
Gilibert S, Galle-Treger L, Moreau M, Saint-Charles F, Costa S, Ballaire R, Couvert P, Carrié A, Lesnik P, Huby T. Adrenocortical Scavenger Receptor Class B Type I Deficiency Exacerbates Endotoxic Shock and Precipitates Sepsis-Induced Mortality in Mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:817-26. [DOI: 10.4049/jimmunol.1303164] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Blanchet C, Jouvion G, Fitting C, Cavaillon JM, Adib-Conquy M. Protective or deleterious role of scavenger receptors SR-A and CD36 on host resistance to Staphylococcus aureus depends on the site of infection. PLoS One 2014; 9:e87927. [PMID: 24498223 PMCID: PMC3909292 DOI: 10.1371/journal.pone.0087927] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 01/01/2014] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is a major human opportunistic pathogen responsible for a broad spectrum of infections ranging from benign skin infection to more severe life threatening disorders (e.g. pneumonia, sepsis), particularly in intensive care patients. Scavenger receptors (SR-A and CD36) are known to be involved in S. aureus recognition by immune cells in addition to MARCO, TLR2, NOD2 and α5β1 integrin. In the present study, we further deciphered the contribution of SR-A and CD36 scavenger receptors in the control of infection of mice by S. aureus. Using double SR-A/CD36 knockout mice (S/C-KO) and S. aureus strain HG001, a clinically relevant non-mutagenized strain, we showed that the absence of these two scavenger receptors was protective in peritoneal infection. In contrast, the deletion of these two receptors was detrimental in pulmonary infection following intranasal instillation. For pulmonary infection, susceptible mice (S/C-KO) had more colony-forming units (CFU) in their broncho-alveolar lavages fluids, associated with increased recruitment of macrophages and neutrophils. For peritoneal infection, susceptible mice (wild-type) had more CFU in their blood, but recruited less macrophages and neutrophils in the peritoneal cavity than resistant mice. Exacerbated cytokine levels were often observed in the susceptible mice in the infected compartment as well as in the plasma. The exception was the enhanced compartmentalized expression of IL-1β for the resistant mice (S/C-KO) after peritoneal infection. A similar mirrored susceptibility to S. aureus infection was also observed for MARCO and TLR2. Marco and tlr2 -/- mice were more resistant to peritoneal infection but more susceptible to pulmonary infection than wild type mice. In conclusion, our results show that innate immune receptors can play distinct and opposite roles depending on the site of infection. Their presence is protective for local pulmonary infection, whereas it becomes detrimental in the peritoneal infection.
Collapse
Affiliation(s)
- Charlène Blanchet
- Institut Pasteur, Cytokines & Inflammation, Département Infection et Epidemiologie, Paris, France
| | - Gregory Jouvion
- Institut Pasteur, Unité d'Histopathologie humaine et modèles animaux, Département Infection et Epidemiologie, Paris, France
| | - Catherine Fitting
- Institut Pasteur, Cytokines & Inflammation, Département Infection et Epidemiologie, Paris, France
| | - Jean-Marc Cavaillon
- Institut Pasteur, Cytokines & Inflammation, Département Infection et Epidemiologie, Paris, France
- * E-mail:
| | - Minou Adib-Conquy
- Institut Pasteur, Cytokines & Inflammation, Département Infection et Epidemiologie, Paris, France
| |
Collapse
|
29
|
Zheng Y, Liu Y, Jin H, Pan S, Qian Y, Huang C, Zeng Y, Luo Q, Zeng M, Zhang Z. Scavenger receptor B1 is a potential biomarker of human nasopharyngeal carcinoma and its growth is inhibited by HDL-mimetic nanoparticles. Am J Cancer Res 2013; 3:477-86. [PMID: 23843895 PMCID: PMC3706691 DOI: 10.7150/thno.6617] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 06/04/2013] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a very regional malignant head and neck cancer that has attracted widespread attention for its unique etiology, epidemiology and therapeutic options. To achieve high cure rates in NPC patients, theranostic approaches are actively being pursued and improved efforts remain desirable in identifying novel biomarkers and establishing effective therapeutic approaches with low long-term toxicities. Here, we discovered that the scavenger receptor class B type I (SR-B1) was overexpressed in all investigated NPC cell lines and 75% of NPC biopsies, demonstrating that SR-B1 is a potential biomarker of NPC. Additional functional analysis showed that SR-B1 has great effect on cell motility while showing no significant impact on cell proliferation. As high-density lipoproteins (HDL) exhibit strong binding affinities to SR-B1 and HDL mimetic peptides are reportedly capable of inhibiting tumor growth, we further examined the SR-B1 targeting ability of a highly biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier and investigated its therapeutic effect on NPC. Results show that NPC cells with higher SR-B1 expression have superior ability in taking up the core constituents of HPPS. Moreover, HPPS inhibited the motility and colony formation of 5-8F cells, and significantly suppressed the NPC cell growth in nude mice without inducing tumor cell necrosis or apoptosis. These results indicate that HPPS is not only a NPC-targeting nanocarrier but also an effective anti-NPC drug. Together, the identification of SR-B1 as a potential biomarker and the use of HPPS as an effective anti-NPC agent may shed new light on the diagnosis and therapeutics of NPC.
Collapse
|
30
|
Madenspacher JH, Azzam KM, Gong W, Gowdy KM, Vitek MP, Laskowitz DT, Remaley AT, Wang JM, Fessler MB. Apolipoproteins and apolipoprotein mimetic peptides modulate phagocyte trafficking through chemotactic activity. J Biol Chem 2012; 287:43730-40. [PMID: 23118226 DOI: 10.1074/jbc.m112.377192] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasma lipoprotein-associated apolipoproteins (apo) A-I and apoE have well described anti-inflammatory actions in the cardiovascular system, and mimetic peptides that retain these properties have been designed as therapeutics. The anti-inflammatory mechanisms of apolipoprotein mimetics, however, are incompletely defined. Whether circulating apolipoproteins and their mimetics regulate innate immune responses at mucosal surfaces, sites where transvascular emigration of leukocytes is required during inflammation, remains unclear. Herein, we report that Apoai(-/-) and Apoe(-/-) mice display enhanced recruitment of neutrophils to the airspace in response to both inhaled lipopolysaccharide and direct airway inoculation with CXCL1. Conversely, treatment with apoA-I (L-4F) or apoE (COG1410) mimetic peptides reduces airway neutrophilia. We identify suppression of CXCR2-directed chemotaxis as a mechanism underlying the apolipoprotein effect. Pursuing the possibility that L-4F might suppress chemotaxis through heterologous desensitization, we confirmed that L-4F itself induces chemotaxis of human PMNs and monocytes. L-4F, however, fails to induce a calcium flux. Further exploring structure-function relationships, we studied the alternate apoA-I mimetic L-37pA, a bihelical analog of L-4F with two Leu-Phe substitutions. We find that L-37pA induces calcium and chemotaxis through formyl peptide receptor (FPR)2/ALX, whereas its D-stereoisomer (i.e. D-37pA) blocks L-37pA signaling and induces chemotaxis but not calcium flux through an unidentified receptor. Taken together, apolipoprotein mimetic peptides are novel chemotactic agents that possess complex structure-activity relationships to multiple receptors, displaying anti-inflammatory efficacy against innate immune responses in the airway.
Collapse
Affiliation(s)
- Jennifer H Madenspacher
- Laboratory of Respiratory Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Leelahavanichkul A, Bocharov AV, Kurlander R, Baranova IN, Vishnyakova TG, Souza AC, Hu X, Doi K, Vaisman B, Amar M, Sviridov D, Chen Z, Remaley AT, Csako G, Patterson AP, Yuen PST, Star RA, Eggerman TL. Class B scavenger receptor types I and II and CD36 targeting improves sepsis survival and acute outcomes in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:2749-58. [PMID: 22327076 PMCID: PMC3859147 DOI: 10.4049/jimmunol.1003445] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Class B scavenger receptors (SR-Bs), such as SR-BI/II or CD36, bind lipoproteins but also mediate bacterial recognition and phagocytosis. In evaluating whether blocking receptors can prevent intracellular bacterial proliferation, phagocyte cytotoxicity, and proinflammatory signaling in bacterial infection/sepsis, we found that SR-BI/II- or CD36-deficient phagocytes are characterized by a reduced intracellular bacterial survival and a lower cytokine response and were protected from bacterial cytotoxicity in the presence of antibiotics. Mice deficient in either SR-BI/II or CD36 are protected from antibiotic-treated cecal ligation and puncture (CLP)-induced sepsis, with greatly increased peritoneal granulocytic phagocyte survival (8-fold), a drastic diminution in peritoneal bacteria counts, and a 50-70% reduction in systemic inflammation (serum levels of IL-6, TNF-α, and IL-10) and organ damage relative to CLP in wild-type mice. The survival rate of CD36-deficient mice after CLP was 58% compared with 17% in control mice. When compensated for mineralocorticoid and glucocorticoid deficiency, SR-BI/II-deficient mice had nearly a 50% survival rate versus 5% in mineralo-/glucocorticoid-treated controls. Targeting SR-B receptors with L-37pA, a peptide that functions as an antagonist of SR-BI/II and CD36 receptors, also increased peritoneal granulocyte counts, as well as reduced peritoneal bacteria and bacterium-induced cytokine secretion. In the CLP mouse sepsis model, L-37pA improved survival from 6 to 27%, reduced multiple organ damage, and improved kidney function. These results demonstrate that the reduction of both SR-BI/II- and CD36-dependent bacterial invasion and inflammatory response in the presence of antibiotic treatment results in granulocyte survival and local bacterial containment, as well as reduces systemic inflammation and organ damage and improves animal survival during severe infections.
Collapse
Affiliation(s)
- Asada Leelahavanichkul
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alexander V. Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Roger Kurlander
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Irina N. Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Tatyana G. Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Ana C.P. Souza
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Kent Doi
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Boris Vaisman
- National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Marcelo Amar
- National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Denis Sviridov
- National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Zhigang Chen
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Alan T. Remaley
- National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Gyorgy Csako
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Amy P. Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
- Office of Biotechnology Activities, Office of the Director, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Peter S. T. Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Thomas L. Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
- Division of Diabetes, Endocrinology, and Metabolic Diseases, NIDDK, National Institutes of Health (NIH), Bethesda, MD 20892
| |
Collapse
|
32
|
Baranova IN, Vishnyakova TG, Bocharov AV, Leelahavanichkul A, Kurlander R, Chen Z, Souza ACP, Yuen PST, Star RA, Csako G, Patterson AP, Eggerman TL. Class B scavenger receptor types I and II and CD36 mediate bacterial recognition and proinflammatory signaling induced by Escherichia coli, lipopolysaccharide, and cytosolic chaperonin 60. THE JOURNAL OF IMMUNOLOGY 2011; 188:1371-80. [PMID: 22205027 DOI: 10.4049/jimmunol.1100350] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Class B scavenger receptors (SR-B) are lipoprotein receptors that also mediate pathogen recognition, phagocytosis, and clearance as well as pathogen-induced signaling. In this study we report that three members of the SR-B family, namely, CLA-1, CLA-2, and CD36, mediate recognition of bacteria not only through interaction with cell wall LPS but also with cytosolic chaperonin 60. HeLa cells stably transfected with any of these SR-Bs demonstrated markedly (3- to 5-fold) increased binding and endocytosis of Escherichia coli, LPS, and chaperonin 60 (GroEL) as revealed by both FACS analysis and confocal microscopy imaging. Increased pathogen (E. coli, LPS, and GroEL) binding to SR-Bs was also associated with the dose-dependent stimulation of cytokine secretion in the order of CD36 > CLA-2 > CLA-1 in HEK293 cells. Pathogen-induced IL-6-secretion was reduced in macrophages from CD36- and SR-BI/II-null mice by 40-50 and 30-40%, respectively. Intravenous GroEL administration increased plasma IL-6 and CXCL1 levels in mice. The cytokine responses were 40-60% lower in CD36(-/-) relative to wild-type mice, whereas increased cytokine responses were found in SR-BI/II(-/-) mice. While investigating the discrepancy of in vitro versus in vivo data in SR-BI/II deficiency, SR-BI/II(-/-) mice were found to respond to GroEL administration without increases in either plasma corticosterone or aldosterone as normally seen in wild-type mice. SR-BI/II(-/-) mice with mineralocorticoid replacement demonstrated an ∼40-50% reduction in CXCL1 and IL-6 responses. These results demonstrate that, by recognizing and mediating inflammatory signaling of both bacterial cell wall LPS and cytosolic GroEL, all three SR-B family members play important roles in innate immunity and host defense.
Collapse
Affiliation(s)
- Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fioravanti J, Medina-Echeverz J, Berraondo P. Scavenger receptor class B, type I: a promising immunotherapy target. Immunotherapy 2011; 3:395-406. [DOI: 10.2217/imt.10.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Scavenger receptor class B, type I (SR-BI) is a crucial molecule in lipid metabolism, since the interaction of high-density lipoproteins (HDLs) with SR-BI is involved in reverse cholesterol transport and cholesterol efflux. Recent findings also underscore a critical role of SR-BI in antimicrobial and immune responses. SR-BI is not only highly expressed in liver and steroidogenic glands, but also in endothelial cells, macrophages and dendritic cells. SR-BI mainly mediates anti-inflammatory responses, which may be altered by dysfunctional HDLs produced in several diseases. Moreover, SR-BI has been involved in the capture and cross-presentation of antigens from viruses, bacteria and parasites. It thus works as a pattern-recognition receptor that interacts with both damage-associated molecular patterns and pathogen-associated molecular patterns. These new findings in the microbiology and immunology fields present SR-BI as an unexplored therapeutic target that warrants further basic and applied research.
Collapse
Affiliation(s)
- Jessica Fioravanti
- Division of Hepatology & Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra, Spain
| | - José Medina-Echeverz
- Division of Hepatology & Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra, Spain
| | | |
Collapse
|
34
|
Yin K, Deng X, Mo ZC, Zhao GJ, Jiang J, Cui LB, Tan CZ, Wen GB, Fu Y, Tang CK. Tristetraprolin-dependent post-transcriptional regulation of inflammatory cytokine mRNA expression by apolipoprotein A-I: role of ATP-binding membrane cassette transporter A1 and signal transducer and activator of transcription 3. J Biol Chem 2011; 286:13834-45. [PMID: 21339300 DOI: 10.1074/jbc.m110.202275] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is an inflammatory disease characterized by the accumulation of macrophages in the arterial intima. The activated macrophages secreted more pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, which promote the development of the disease. Apolipoprotein A-I (apoA-I), the major component of high density lipoprotein, is involved in reverse cholesterol transport of lipid metabolism. Recently, it has been found that apoA-I suppresses inflammation via repression of inflammatory cytokine expression; the mechanisms of the apoA-I-suppressive action, however, are not yet well characterized. In this study, we have for the first time found that apoA-I suppresses the expression of some inflammatory cytokines induced by lipopolysaccharide via a specific post-transcriptional regulation process, namely mRNA destabilization, in macrophages. Our further studies have also shown that AU-rich elements in the 3'-untranslated region of TNF-α mRNA are responsive to the apoA-I-mediated mRNA destabilization. The apoA-I-induced inflammatory cytokine mRNA destabilization was associated with increased expression of mRNA-destabilizing protein tristetraprolin through a JAK2/STAT3 signaling pathway-dependent manner. When blocking interaction of apoA-I with ATP-binding membrane cassette transporter A1 (ABCA1), a major receptor for apoA-I in macrophages, it would almost totally abolish the effect of apoA-I on tristetraprolin expression. These results present not only a novel mechanism for the apoA-I-mediated inflammation suppression in macrophages but also provide new insights for developing strategies for modulating vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Kai Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, 421001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cholesterol efflux from lipid-loaded cells is a key athero-protective event that counteracts cholesterol uptake. The imbalance between cholesterol efflux and uptake determines the prevention or development of atherosclerosis. Many proteins and factors participate in the cholesterol efflux event. However, there are currently no systematic models of reverse cholesterol transport (RCT) that include most RCT-related factors and events. On the basis of recent research findings from other and our laboratories, we propose a novel model of one center and four systems with coupling transportation and networking regulation. This model represents a common way of cholesterol efflux; however, the systems in the model consist of different proteins/factors in different cells. In this review, we evaluate the novel model in vascular smooth muscle cells (VSMCs) and macrophages, which are the most important original cells of foam cells. This novel model consists of 1) a caveolae transport center, 2) an intracellular trafficking system of the caveolin-1 complex, 3) a transmembrane transport system of the ABC-A1 complex, 4) a transmembrane transport system of the SR-B1 complex, and 5) an extracelluar trafficking system of HDL/Apo-A1. In brief, the caveolin-1 system transports cholesterol from intracellular compartments to caveolae. Subsequently, both ABC-A1 and SR-B1 complex systems transfer cholesterol from caveolae to extracellular HDL/Apo-A1. The four systems are linked by a regulatory network. This model provides a simple and concise way to understand the dynamic process of atherosclerosis.
Collapse
|
36
|
Cormode DP, Chandrasekar R, Delshad A, Briley-Saebo KC, Calcagno C, Barazza A, Mulder WJM, Fisher EA, Fayad ZA. Comparison of synthetic high density lipoprotein (HDL) contrast agents for MR imaging of atherosclerosis. Bioconjug Chem 2010; 20:937-43. [PMID: 19378935 DOI: 10.1021/bc800520d] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Determining arterial macrophage expression is an important goal in the molecular imaging of atherosclerosis. Here, we compare the efficacy of two synthetic, high density lipoprotein (HDL) based contrast agents for magnetic resonance imaging (MRI) of macrophage burden. Each form of HDL was labeled with gadolinium and rhodamine to allow MRI and fluorescence microscopy. Either the 37 or 18 amino acid peptide replaced the apolipoprotein A-I in these agents, which were termed 37pA-Gd or 18A-Gd. The diameters of 37pA-Gd and 18A-Gd are 7.6 and 8.0 nm, respectively, while the longitudinal relaxivities are 9.8 and 10.0 (mM s)(-1). 37pA has better lipid binding properties. In vitro tests with J774A.1 macrophages proved the particles possessed the functionality of HDL by eliciting cholesterol efflux and were taken up in a receptor-like fashion by the cells. Both agents produced enhancements in atherosclerotic plaques of apolipoprotein E knockout mice of approximately 90% (n = 7 per agent) and are macrophage specific as evidenced by confocal microscopy on aortic sections. The half-lives of 37pA-Gd and 18A-Gd are 2.6 and 2.1 h, respectively. Despite the more favorable lipid interactions of 37pA, both agents gave similar, excellent contrast for the detection of atherosclerotic macrophages using MRI.
Collapse
Affiliation(s)
- David P Cormode
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Berbée JFP, Coomans CP, Westerterp M, Romijn JA, Havekes LM, Rensen PCN. Apolipoprotein CI enhances the biological response to LPS via the CD14/TLR4 pathway by LPS-binding elements in both its N- and C-terminal helix. J Lipid Res 2010; 51:1943-52. [PMID: 20335569 DOI: 10.1194/jlr.m006809] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Timely sensing of lipopolysaccharide (LPS) is critical for the host to fight invading Gram-negative bacteria. We recently showed that apolipoprotein CI (apoCI) (apoCI1-57) avidly binds to LPS, involving an LPS-binding motif (apoCI48-54), and thereby enhances the LPS-induced inflammatory response. Our current aim was to further elucidate the structure and function relationship of apoCI with respect to its LPS-modulating characteristics and to unravel the mechanism by which apoCI enhances the biological activity of LPS. We designed and generated N- and C-terminal apoCI-derived peptides containing varying numbers of alternating cationic/hydrophobic motifs. ApoCI1-38, apoCI1-30, and apoCI35-57 were able to bind LPS, whereas apoCI1-23 and apoCI46-57 did not bind LPS. In line with their LPS-binding characteristics, apoCI1-38, apoCI1-30, and apoCI35-57 prolonged the serum residence of 125I-LPS by reducing its association with the liver. Accordingly, both apoCI1-30 and apoCI35-57 enhanced the LPS-induced TNFalpha response in vitro (RAW 264.7 macrophages) and in vivo (C57Bl/6 mice). Additional in vitro studies showed that the stimulating effect of apoCI on the LPS response resembles that of LPS-binding protein (LBP) and depends on CD14/ Toll-like receptor 4 signaling. We conclude that apoCI contains structural elements in both its N-terminal and C-terminal helix to bind LPS and to enhance the proinflammatory response toward LPS via a mechanism similar to LBP.
Collapse
Affiliation(s)
- Jimmy F P Berbée
- Department of General Internal Medicine, Endocrinology and Metabolic Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Mullan RH, McCormick J, Connolly M, Bresnihan B, Veale DJ, Fearon U. A role for the high-density lipoprotein receptor SR-B1 in synovial inflammation via serum amyloid-A. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1999-2008. [PMID: 20304957 DOI: 10.2353/ajpath.2010.090014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acute phase apoprotein Serum Amyloid A (A-SAA), which is strongly expressed in rheumatoid arthritis synovial membrane (RA SM), induces angiogenesis, adhesion molecule expression, and matrix metalloproteinase production through the G-coupled receptor FPRL-1. Here we report alternative signaling through the high-density lipoprotein receptor scavenger receptor-class B type 1 (SR-B1). Quantitative expression/localization of SR-B1 in RA SM, RA fibroblast-like cells (FLCs), and microvascular endothelial cells (ECs) was assessed by Western blotting and immunohistology/fluorescence. A-SAA-mediated effects were examined using a specific antibody against SR-B1 or amphipathic alpha-Helical Peptides (the SR-B1 antagonists L-37pA and D-37pA), in RA FLCs and ECs. Adhesion molecule expression and cytokine production were quantified using flow cytometry and ELISA. SR-B1 was strongly expressed in the RA SM lining layer and endothelial/perivascular regions compared with osteoarthritis SM or normal control synovium. Differential SR-B1 expression in RA FLC lines (n = 5) and ECs correlated closely with A-SAA, but not tumor necrosis factor alpha-induced intercellular adhesion molecule-1 upregulation. A-SAA-induced interleukin-6 and -8 production was inhibited in the presence of anti-SR-B1 in human microvascular endothelial cells and RA FLCs. Moreover, D-37pA and L-37pA inhibited A-SAA-induced vascular cell adhesion molecule-1 and intercellular adhesion molecule expression from ECs in a dose-dependent manner. As SR-B1 is expressed in RA synovial tissue and mediates A-SAA-induced pro-inflammatory pathways, a better understanding of A-SAA-mediated inflammatory pathways may lead to novel treatment strategies for RA.
Collapse
Affiliation(s)
- Ronan Hugh Mullan
- Education and Research Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
39
|
Zhang Z, Chen J, Ding L, Jin H, Lovell JF, Corbin IR, Cao W, Lo PC, Yang M, Tsao MS, Luo Q, Zheng G. HDL-mimicking peptide-lipid nanoparticles with improved tumor targeting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:430-7. [PMID: 19957284 DOI: 10.1002/smll.200901515] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Targeted delivery of intracellularly active diagnostics and therapeutics in vivo is a major challenge in cancer nanomedicine. A nanocarrier should possess long circulation time yet be small and stable enough to freely navigate through interstitial space to deliver its cargo to targeted cells. Herein, it is shown that by adding targeting ligands to nanoparticles that mimic high-density lipoprotein (HDL), tumor-targeted sub-30-nm peptide-lipid nanocarriers are created with controllable size, cargo loading, and shielding properties. The size of the nanocarrier is tunable between 10 and 30 nm, which correlates with a payload of 15-100 molecules of fluorescent dye. Ligand-directed nanocarriers targeting epidermal growth factor receptor (EGFR) are confirmed both in vitro and in vivo. The nanocarriers show favorable circulation time, tumor accumulation, and biodistribution with or without the targeting ligand. The EGFR targeting ligand is proved to be essential for the EGFR-mediated tumor cell uptake of the nanocarriers, a prerequisite of intracellular delivery. The results demonstrate that targeted HDL-mimetic nanocarriers are useful delivery vehicles that could open new avenues for the development of clinically viable targeted nanomedicine.
Collapse
Affiliation(s)
- Zhihong Zhang
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, ON M5G 1L7, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Baranova IN, Bocharov AV, Vishnyakova TG, Kurlander R, Chen Z, Fu D, Arias IM, Csako G, Patterson AP, Eggerman TL. CD36 is a novel serum amyloid A (SAA) receptor mediating SAA binding and SAA-induced signaling in human and rodent cells. J Biol Chem 2010; 285:8492-506. [PMID: 20075072 DOI: 10.1074/jbc.m109.007526] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Serum amyloid A (SAA) is a major acute phase protein involved in multiple physiological and pathological processes. This study provides experimental evidence that CD36, a phagocyte class B scavenger receptor, functions as a novel SAA receptor mediating SAA proinflammatory activity. The uptake of Alexa Fluor 488 SAA as well as of other well established CD36 ligands was increased 5-10-fold in HeLa cells stably transfected with CD36 when compared with mock-transfected cells. Unlike other apolipoproteins that bind to CD36, only SAA induced a 10-50-fold increase of interleukin-8 secretion in CD36-overexpressing HEK293 cells when compared with control cells. SAA-mediated effects were thermolabile, inhibitable by anti-SAA antibody, and also neutralized by association with high density lipoprotein but not by association with bovine serum albumin. SAA-induced cell activation was inhibited by a CD36 peptide based on the CD36 hexarelin-binding site but not by a peptide based on the thrombospondin-1-binding site. A pronounced reduction (up to 60-75%) of SAA-induced pro-inflammatory cytokine secretion was observed in cd36(-/-) rat macrophages and Kupffer cells when compared with wild type rat cells. The results of the MAPK phosphorylation assay as well as of the studies with NF-kappaB and MAPK inhibitors revealed that two MAPKs, JNK and to a lesser extent ERK1/2, primarily contribute to elevated cytokine production in CD36-overexpressing HEK293 cells. In macrophages, four signaling pathways involving NF-kappaB and three MAPKs all appeared to contribute to SAA-induced cytokine release. These observations indicate that CD36 is a receptor mediating SAA binding and SAA-induced pro-inflammatory cytokine secretion predominantly through JNK- and ERK1/2-mediated signaling.
Collapse
Affiliation(s)
- Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, NICHD,National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Huang CB, Emerson KA, Gonzalez OA, Ebersole JL. Oral bacteria induce a differential activation of human immunodeficiency virus-1 promoter in T cells, macrophages and dendritic cells. ACTA ACUST UNITED AC 2009; 24:401-7. [PMID: 19702954 DOI: 10.1111/j.1399-302x.2009.00533.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The human immunodeficiency virus (HIV) can integrate into T cells, macrophages and dendritic cells resulting in a latent infection. Reports have also demonstrated that various microbial and host cell factors can trigger HIV reactivation leading to HIV recrudescence, potentially undermining highly active antiretroviral therapies. METHODS This study evaluated the capacity of oral bacteria associated with chronic periodontal infections to stimulate HIV promoter activation in various cell models of HIV latency. RESULTS T cells (1G5) challenged with oral bacteria demonstrated a dose-response of HIV promoter activation with a subset of the bacteria, as well as kinetics that were generally similar irrespective of the stimuli. Direct bacterial challenge of the T cells resulted in increased activation of approximately 1.5- to 7-fold over controls. Challenge of macrophages (BF24) indicated different kinetics for individual bacteria and resulted in consistent increases in promoter activation of five fold to six fold over basal levels for all bacteria except Streptococcus mutans. Dendritic cells showed increases in HIV reactivation of 7- to 34-fold specific for individual species of bacteria. CONCLUSION These results suggested that oral bacteria have the capability to reactivate HIV from latently infected cells, showing a relationship of mature dendritic cells > immature dendritic cells > macrophages > or = T cells. Expression of various pattern recognition receptors on these various cell types may provide insight into the primary receptors/signaling pathways used for reactivation by the bacteria.
Collapse
Affiliation(s)
- C B Huang
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
42
|
Connelly MA. SR-BI-mediated HDL cholesteryl ester delivery in the adrenal gland. Mol Cell Endocrinol 2009; 300:83-8. [PMID: 18840501 DOI: 10.1016/j.mce.2008.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
Abstract
In adrenocortical cells, scavenger receptor class B, type I (SR-BI) is localized in specialized plasma membrane compartments, called microvillar channels, that retain high density lipoprotein particles (HDL) and are sites for the selective uptake of cholesteryl esters (CE). Formation of microvillar channels is regulated by adrenocorticotropic hormone (ACTH) and requires SR-BI expression. Subsequent to SR-BI-mediated delivery to the plasma membrane, HDL-CE is metabolized to free cholesterol by hormone sensitive lipase and transported to the mitochondria for steroid synthesis via START domain proteins. The relevance of SR-BI to adrenal steroidogenesis is evident by the impairment of glucocorticoid-mediated stress response in the absence of SR-BI-mediated HDL-CE uptake in mice. On the molecular level, SR-BI mediates HDL-CE selective uptake by forming a hydrophobic channel. In addition, SR-BI facilitates bi-directional flux of cholesterol by modifying the phospholipid content of the plasma membrane. SR-BI most likely accomplishes these functions by forming homo-oligomers in the plasma membrane. Examination of SR-BI oligomerization using fluorescence resonance energy transfer spectroscopy revealed that SR-BI multimerizes via its C-terminal region. Overall, SR-BI is the cell surface receptor responsible for selective uptake of lipoprotein cholesterol and its ultimate delivery to sites of hormone synthesis in steroidogenic tissues.
Collapse
Affiliation(s)
- Margery A Connelly
- Metabolic Diseases, Johnson & Johnson Pharmaceutical Research and Development, LLC, Welsh & McKean Roads, Spring House, PA 19477-0776, United States.
| |
Collapse
|
43
|
Baranova IN, Kurlander R, Bocharov AV, Vishnyakova TG, Chen Z, Remaley AT, Csako G, Patterson AP, Eggerman TL. Role of human CD36 in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signaling. THE JOURNAL OF IMMUNOLOGY 2008; 181:7147-56. [PMID: 18981136 DOI: 10.4049/jimmunol.181.10.7147] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Scavenger receptor CD36 mediates Staphylococcus aureus phagocytosis and initiates TLR2/6 signaling. We analyzed the role of CD36 in the uptake and TLR-independent signaling of various bacterium, including Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, S. aureus, and Enterococcus faecalis. Expression of human CD36 in HeLa cells increased the uptake of both gram-positive and gram-negative bacteria compared with the control mock-transfected cells. Bacterial adhesion was associated with pathogen phagocytosis. Upon CD36 transfection, HEK293 cells, which demonstrate no TLR2/4 expression, acquired LPS responsiveness as assessed by IL-8 production. The cells demonstrated a marked 5- to 15-fold increase in cytokine release upon exposure to gram-negative bacteria, while the increase was much smaller (1.5- to 3-fold) with gram-positive bacteria and lipoteichoic acid. CD36 down-regulation utilizing CD36 small interfering RNA reduced cytokine release by 40-50% in human fibroblasts induced by both gram-negative and gram-positive bacteria as well as LPS. Of all MAPK signaling cascade inhibitors tested, only the inhibitor of JNK, a stress-activated protein kinase, potently blocked E. coli/LPS-stimulated cytokine production. NF-kappaB inhibitors were ineffective, indicating direct TLR-independent signaling. JNK activation was confirmed by Western blot analyses of phosphorylated JKN1/2 products. Synthetic amphipathic peptides with an alpha-helical motif were shown to be efficient inhibitors of E. coli- and LPS-induced IL-8 secretion as well as JNK1/2 activation/phosphorylation in CD36-overexpressing cells. These results indicate that CD36 functions as a phagocytic receptor for a variety of bacteria and mediates signaling induced by gram-negative bacteria and LPS via a JNK-mediated signaling pathway in a TLR2/4-independent manner.
Collapse
Affiliation(s)
- Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cormode DP, Briley-Saebo KC, Mulder WJM, Aguinaldo JGS, Barazza A, Ma Y, Fisher EA, Fayad ZA. An ApoA-I mimetic peptide high-density-lipoprotein-based MRI contrast agent for atherosclerotic plaque composition detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:1437-44. [PMID: 18712752 DOI: 10.1002/smll.200701285] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cardiovascular disease is one of the prime causes of mortality throughout the world and there is a need for targeted and effective contrast agents to allow noninvasive imaging of the cholesterol-rich atherosclerotic plaques in arteries. A new, fully synthetic, high-density lipoprotein (HDL)-mimicking MRI contrast agent is developed, which enhances macrophage-rich areas of plaque in a mouse model of atherosclerosis by 94%. Confirmation of the targeting of this nanoparticulate agent is achieved using confocal microscopy by tracking a fluorescent lipid incorporated into the nanoparticle.
Collapse
Affiliation(s)
- David P Cormode
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place Box 1234, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Fessler MB. Liver X Receptor: Crosstalk Node for the Signaling of Lipid Metabolism, Carbohydrate Metabolism, and Innate Immunity. ACTA ACUST UNITED AC 2008; 3:75-81. [PMID: 24563635 DOI: 10.2174/157436208784223170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Liver X Receptor-α (LXRα, also known as NR1H3) and LXRβ (NR1H2) are members of the nuclear receptor superfamily of ligand-activated transcription factors, a superfamily which includes the more widely known glucocorticoid receptor, estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptors. The LXRs are activated by physiologic sterol ligands (e.g., oxysterols) and by synthetic agonists. In recent years, our understanding of the importance of LXRs has expanded across several fields of (patho-)physiology. Perhaps best known from a sizeable literature as homeostatic 'cholesterol sensors' that drive transcriptional programs promoting cellular cholesterol efflux, 'reverse cholesterol transport,' and bile acid synthesis, more recent roles for LXRs in glucose homeostasis, atherosclerosis, and innate immunity have also been identified. These discoveries complement an emerging literature that continues to draw surprisingly intimate connections between host metabolism and host defense. The present review will discuss the roles of LXR in the signaling of metabolism and innate immunity, and the potential for synthetic LXR agonists as novel therapeutics in dyslipidemia, atherosclerosis, disordered glucose metabolism, and inflammation.
Collapse
Affiliation(s)
- Michael B Fessler
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| |
Collapse
|
46
|
Cai L, Ji A, de Beer FC, Tannock LR, van der Westhuyzen DR. SR-BI protects against endotoxemia in mice through its roles in glucocorticoid production and hepatic clearance. J Clin Invest 2008; 118:364-75. [PMID: 18064300 DOI: 10.1172/jci31539] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 10/08/2007] [Indexed: 01/11/2023] Open
Abstract
Septic shock results from an uncontrolled inflammatory response, mediated primarily by LPS. Cholesterol transport plays an important role in the host response to LPS, as LPS is neutralized by lipoproteins and adrenal cholesterol uptake is required for antiinflammatory glucocorticoid synthesis. In this study, we show that scavenger receptor B-I (SR-BI), an HDL receptor that mediates HDL cholesterol ester uptake into cells, is required for the normal antiinflammatory response to LPS-induced endotoxic shock. Despite elevated plasma HDL levels, SR-BI-null mice displayed an uncontrollable inflammatory cytokine response and a markedly higher lethality rate than control mice in response to LPS. In addition, SR-BI-null mice showed a lack of inducible glucocorticoid synthesis in response to LPS, bacterial infection, stress, or ACTH. Glucocorticoid insufficiency in SR-BI-null mice was due to primary adrenal malfunction resulting from deficient cholesterol delivery from HDL. Furthermore, corticosterone supplementation decreased the sensitivity of SR-BI-null mice to LPS. Plasma from control and SR-BI-null mice exhibited a similar ability to neutralize LPS, whereas SR-BI-null mice showed decreased plasma clearance of LPS into the liver and hepatocytes compared with normal mice. We conclude that SR-BI in mice is required for the antiinflammatory response to LPS-induced endotoxic shock, likely through its essential role in facilitating glucocorticoid production and LPS hepatic clearance.
Collapse
Affiliation(s)
- Lei Cai
- Department of Internal Medicine, Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
47
|
Pei Z, Pang H, Qian L, Yang S, Wang T, Zhang W, Wu X, Dallas S, Wilson B, Reece JM, Miller DS, Hong JS, Block ML. MAC1 mediates LPS-induced production of superoxide by microglia: the role of pattern recognition receptors in dopaminergic neurotoxicity. Glia 2007; 55:1362-73. [PMID: 17654704 DOI: 10.1002/glia.20545] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Microglia-derived superoxide is critical for the inflammation-induced selective loss of dopaminergic (DA) neurons, but the underlying mechanisms of microglial activation remain poorly defined. Using neuron-glia and microglia-enriched cultures from mice deficient in the MAC1 receptor (MAC1-/-), we demonstrate that lipopolysaccharide (LPS) treatment results in lower TNFalpha response, attenuated loss of DA neurons, and absence of extracellular superoxide production in MAC1-/- cultures. Microglia accumulated fluorescently labeled LPS in punctate compartments associated with the plasma membrane, intracellular vesicles, and the Golgi apparatus. Cytochalasin D (CD), an inhibitor of phagocytosis, blocked LPS internalization. However, microglia derived from Toll-like receptor 4 deficient mice and MAC1-/- mice failed to show a significant decrease in intracellular accumulation of labeled LPS, when compared with controls. Pretreatment with the scavenger receptor inhibitor, fucoidan, inhibited 79% of LPS accumulation in microglia without affecting superoxide, indicating that LPS internalization and superoxide production are mediated by separate phagocytosis receptors. Together, these data demonstrate that MAC1 is essential for LPS-induced superoxide from microglia, implicating MAC1 as a critical trigger of microglial-derived oxidative stress during inflammation-mediated neurodegeneration.
Collapse
Affiliation(s)
- Zhong Pei
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vishnyakova TG, Kurlander R, Bocharov AV, Baranova IN, Chen Z, Abu-Asab MS, Tsokos M, Malide D, Basso F, Remaley A, Csako G, Eggerman TL, Patterson AP. CLA-1 and its splicing variant CLA-2 mediate bacterial adhesion and cytosolic bacterial invasion in mammalian cells. Proc Natl Acad Sci U S A 2006; 103:16888-93. [PMID: 17071747 PMCID: PMC1636549 DOI: 10.1073/pnas.0602126103] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Indexed: 11/18/2022] Open
Abstract
CD36 and LIMPII analog 1, CLA-1, and its splicing variant, CLA-2 (SR-BI and SR-BII in rodents), are human high density lipoprotein receptors with an identical extracellular domain which binds a spectrum of ligands including bacterial cell wall components. In this study, CLA-1- and CLA-2-stably transfected HeLa and HEK293 cells demonstrated several-fold increases in the uptake of various bacteria over mock-transfected cells. All bacteria tested, including both Gram-negatives (Escherichia coli K12, K1 and Salmonella typhimurium) and Gram-positives (Staphylococcus aureus and Listeria monocytogenes), demonstrated various degrees of lower uptake in control cells. This result is consistent with the presence of high-density lipoprotein-receptor-independent bacterial uptake that is enhanced by CLA-1/CLA-2 overexpression. Bacterial lipopolysaccharides, lipoteichoic acid, and synthetic amphipathic helical peptides (L-37pA and D-37pA) competed with E. coli K12 for CLA-1 and CLA-2 binding. Transmission electron microscopy and confocal microscopy revealed cytosolic accumulation of bacteria in CLA-1/CLA-2-overexpressing HeLa cells. The antibiotic protection assay confirmed that E. coli K12 was able to survive and replicate intracellularly in CLA-1- and CLA-2-overexpressing HeLa, but both L-37pA and D-37pA prevented E. coli K12 invasion. Peritoneal macrophages isolated from SR-BI/BII-knockout mice demonstrated a 30% decrease in bacterial uptake when compared with macrophages from normal mice. Knockout macrophages were also characterized by decreased bacterial cytosolic invasion, ubiquitination, and proteasome mobilization while retaining bacterial lysosomal accumulation. These results indicate that, by facilitating bacterial adhesion and cytosolic invasion, CLA-1 and CLA-2 may play an important role in infection and sepsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniela Malide
- Light Microscopy Core Facility, National Heart, Lung, and Blood Institute
| | | | | | - Gyorgy Csako
- Department of Laboratory Medicine, Clinical Center
| | - Thomas L. Eggerman
- Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
49
|
Walton KA, Gugiu BG, Thomas M, Basseri RJ, Eliav DR, Salomon RG, Berliner JA. A role for neutral sphingomyelinase activation in the inhibition of LPS action by phospholipid oxidation products. J Lipid Res 2006; 47:1967-74. [PMID: 16775254 DOI: 10.1194/jlr.m600060-jlr200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies from our laboratory and others presented evidence that oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphatidylcholine (OxPAPC) and oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphatidylethanolamine can inhibit lipopolysaccharide (LPS)-mediated induction of interleukin-8 (IL-8) in endothelial cells. Using synthetic derivatives of phosphatidylethanolamine, we now demonstrate that phospholipid oxidation products containing alpha,beta-unsaturated carboxylic acids are the most active inhibitors we examined. 5-Keto-6-octendioic acid ester of 2-phosphatidylcholine (KOdiA-PC) was 500-fold more inhibitory than OxPAPC, being active in the nanomolar range. Our studies in human aortic endothelial cells identify one important mechanism of the inhibitory response as involving the activation of neutral sphingomyelinase. There is evidence that Toll-like receptor-4 and other members of the LPS receptor complex must be colocalized to the caveolar/lipid raft region of the cell, where sphingomyelin is enriched, for effective LPS signaling. Previous work from our laboratory suggested that OxPAPC could disrupt this caveolar fraction. These studies present evidence that OxPAPC activates sphingomyelinase, increasing the levels of 16:0, 22:0, and 24:0 ceramide and that the neutral sphingomyelinase inhibitor GW4869 reduces the inhibitory effect of OxPAPC and KOdiA-PC. We also show that cell-permeant C6 ceramide, like OxPAPC, causes the inhibition of LPS-induced IL-8 synthesis and alters caveolin distribution similar to OxPAPC. Together, these data identify a new pathway by which oxidized phospholipids inhibit LPS action involving the activation of neutral sphingomyelinase, resulting in a change in caveolin distribution. Furthermore, we identify specific oxidized phospholipids responsible for this inhibition.
Collapse
Affiliation(s)
- Kimberly A Walton
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abe-Dohmae S, Kato KH, Kumon Y, Hu W, Ishigami H, Iwamoto N, Okazaki M, Wu CA, Tsujita M, Ueda K, Yokoyama S. Serum amyloid A generates high density lipoprotein with cellular lipid in an ABCA1- or ABCA7-dependent manner. J Lipid Res 2006; 47:1542-50. [PMID: 16607034 DOI: 10.1194/jlr.m600145-jlr200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serum amyloid A (SAA) is an amphiphilic helical protein that is found associated with plasma HDL in various pathological conditions, such as acute or chronic inflammation. Cellular lipid release and generation of HDL by this protein were investigated, in comparison with the reactions by apolipoprotein A-I (apoA-I) and several types of cells that appear with various specific profiles of cholesterol and phospholipid release. SAA mediated cellular lipid release from these cells with the same profile as apoA-I. Upregulation of cellular ABCA1 protein by liver X receptor/retinoid X receptor agonists resulted in an increase of cellular lipid release by apoA-I and SAA. SAA reacted with the HEK293-derived clones that stably express human ABCA1 (293/2c) or ABCA7 (293/6c) to generate cholesterol-containing HDL in a similar manner to apoA-I. Dibutyryl cyclic AMP and phorbol 12-myristate 13-acetate, which differentiate apoA-I-mediated cellular lipid release between 293/2c and 293/6c, also exhibited the same differential effects on the SAA-mediated reactions. No evidence was found for the ABCA1/ABCA7-independent lipid release by SAA. Characterization of physicochemical properties of the HDL revealed that SAA-generated HDL particles had higher density, larger diameter, and slower electrophoretic mobility than those generated by apoA-I. These results demonstrate that SAA generates cholesterol-containing HDL directly with cellular lipid and that the reaction is mediated by ABCA1 and ABCA7.
Collapse
Affiliation(s)
- Sumiko Abe-Dohmae
- Biochemistry, Cell Biology, and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|