1
|
Shabalina IG, Jiménez B, Sousa-Filho CPB, Cannon B, Nedergaard J. In isolated brown adipose tissue mitochondria, UCP1 is not essential for - nor involved in - the uncoupling effects of the classical uncouplers FCCP and DNP. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149516. [PMID: 39357779 DOI: 10.1016/j.bbabio.2024.149516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Recent patch-clamp studies of mitoplasts have challenged the traditional view that classical chemical uncoupling (by e.g. FCCP or DNP) is due to the protonophoric property of these substances themselves. These studies instead suggest that in brown-fat mitochondria, FCCP- and DNP-induced uncoupling is mediated through activation of UCP1 (and in other tissues by activation of the adenine nucleotide transporter). These studies thus advocate an entirely new paradigm for the interpretation of standard bioenergetic experiments. To examine whether these patch-clamp results obtained in brown-fat mitoplasts are directly transferable to classical isolated brown-fat mitochondria studies, we investigated the effects of FCCP and DNP in brown-fat mitochondria from wildtype and UCP1 KO mice, comparing the FCCP and DNP effects with those of a fatty acid (oleate), a bona fide activator of UCP1. Whereas the sensitivity of brown-fat mitochondria to oleate was much higher in UCP1-containing than in UCP1 KO mitochondria, there was no difference in sensitivity to FCCP and DNP between these mitochondria, neither in oxygen consumption rate nor in membrane potential studies. Correspondingly, the UCP1-dependent ability of GDP to competitively inhibit activation by oleate was not seen with FCCP and DNP. It would thus be premature to abandon the established bioenergetic interpretation of chemical uncoupler effects in classical isolated brown-fat mitochondria-and probably also generally in this type of mitochondrial study. Understanding the molecular and structural reasons for the different outcomes of mitoplast and mitochondrial studies is a challenging task.
Collapse
Affiliation(s)
- Irina G Shabalina
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Sweden
| | - Beatriz Jiménez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Sweden
| | | | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Sweden.
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Sweden
| |
Collapse
|
2
|
Blaszkiewicz M, Johnson CP, Willows JW, Gardner ML, Taplin DR, Freitas MA, Townsend KL. The early transition to cold-induced browning in mouse subcutaneous white adipose tissue (scWAT) involves proteins related to nerve remodeling, cytoskeleton, mitochondria, and immune cells. Adipocyte 2024; 13:2428938. [PMID: 39641403 PMCID: PMC11633174 DOI: 10.1080/21623945.2024.2428938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
White adipose tissue (WAT) is a dynamic organ capable of remodelling in response to metabolic state. For example, in response to stimuli such as cold exposure, WAT can develop inducible brown adipocytes ('browning') capable of non-shivering thermogenesis, through concurrent changes to mitochondrial content and function. This is aided by increased neurite outgrowth and angiogenesis across the tissue, providing the needed neurovascular supply for uncoupling protein 1 activation. While several RNA-sequencing studies have been performed in WAT, including newer single cell and single nuclei studies, little work has been done to investigate changes to the adipose proteome, particularly during dynamic periods of tissue remodelling such as cold stimulation. Here, we conducted a comprehensive proteomic analysis of inguinal subcutaneous (sc) WAT during the initial 'browning' period of 24 or 72hrs of cold exposure in mice. We identified four significant pathways impacted by cold stimulation that are involved in tissue remodelling, which included mitochondrial function and metabolism, cytoskeletal remodelling, the immune response, and the nervous system. Taken together, we found that early changes in the proteome of WAT with cold stimulation predicted later structural and functional changes in the tissue that are important for tissue and whole-body remodelling to meet energetic and metabolic needs.
Collapse
Affiliation(s)
| | - Cory P. Johnson
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Jake W. Willows
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Miranda L. Gardner
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Dylan R. Taplin
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Michael A. Freitas
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Kristy L. Townsend
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- School of Biology and Ecology, University of Maine, Orono, ME, USA
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
3
|
Musiol E, Fromme T, Hau J, Di Pizio A, Klingenspor M. Comparative functional analysis reveals differential nucleotide sensitivity between human and mouse UCP1. Acta Physiol (Oxf) 2024; 240:e14209. [PMID: 39072954 DOI: 10.1111/apha.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
AIM Mitochondrial uncoupling protein 1 (UCP1) is a unique protein of brown adipose tissue. Upon activation by free fatty acids, UCP1 facilitates a thermogenic net proton flux across the mitochondrial inner membrane. Non-complexed purine nucleotides inhibit this fatty acid-induced activity of UCP1. The most available data have been generated from rodent model systems. In light of its role as a putative pharmacological target for treating metabolic disease, in-depth analyses of human UCP1 activity, regulation, and structural features are essential. METHODS In the present study, we established a doxycycline-regulated cell model with inducible human or murine UCP1 expression and conducted functional studies using respirometry comparing wild-type and mutant variants of human UCP1. RESULTS We demonstrate that human and mouse UCP1 exhibit similar specific fatty acid-induced activity but a different inhibitory potential of purine nucleotides. Mutagenesis of non-conserved residues in human UCP1 revealed structural components in α-helix 56 and α-helix 6 crucial for uncoupling function. CONCLUSION Comparative studies of human UCP1 with other orthologs can provide new insights into the structure-function relationship for this mitochondrial carrier and will be instrumental in searching for new activators.
Collapse
Affiliation(s)
- Eva Musiol
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Research Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Research Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich, Germany
| | - Julia Hau
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Research Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Antonella Di Pizio
- Molecular Modeling Group, Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship of Chemoinformatics and Protein Modelling, TUM School of Life Sciences, Research Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Research Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Jones SA, Ruprecht JJ, Crichton PG, Kunji ERS. Structural mechanisms of mitochondrial uncoupling protein 1 regulation in thermogenesis. Trends Biochem Sci 2024; 49:506-519. [PMID: 38565497 DOI: 10.1016/j.tibs.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
In mitochondria, the oxidation of nutrients is coupled to ATP synthesis by the generation of a protonmotive force across the mitochondrial inner membrane. In mammalian brown adipose tissue (BAT), uncoupling protein 1 (UCP1, SLC25A7), a member of the SLC25 mitochondrial carrier family, dissipates the protonmotive force by facilitating the return of protons to the mitochondrial matrix. This process short-circuits the mitochondrion, generating heat for non-shivering thermogenesis. Recent cryo-electron microscopy (cryo-EM) structures of human UCP1 have provided new molecular insights into the inhibition and activation of thermogenesis. Here, we discuss these structures, describing how purine nucleotides lock UCP1 in a proton-impermeable conformation and rationalizing potential conformational changes of this carrier in response to fatty acid activators that enable proton leak for thermogenesis.
Collapse
Affiliation(s)
- Scott A Jones
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Jonathan J Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Paul G Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Edmund R S Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK.
| |
Collapse
|
5
|
Dakic T, Velickovic K, Lakic I, Ruzicic A, Milicevic A, Plackic N, Vujovic P, Jevdjovic T. Rat brown adipose tissue thermogenic markers are modulated by estrous cycle phases and short-term fasting. Biofactors 2024; 50:101-113. [PMID: 37482913 DOI: 10.1002/biof.1993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Brown adipose tissue (BAT) converts chemical energy into heat to maintain body temperature. Although fatty acids (FAs) represent a primary substrate for uncoupling protein 1 (UCP1)-dependent thermogenesis, BAT also utilizes glucose for the same purpose. Considering that estrous cycle effects on BAT are not greatly explored, we examined those of 6-h fasting on interscapular BAT (iBAT) thermogenic markers in proestrus and diestrus. We found that the percentage of multilocular adipocytes was lower in proestrus than in diestrus, although it was increased after fasting in both analyzed estrous cycle stages. Furthermore, the percentage of paucilocular adipocytes was increased by fasting, unlike the percentage of unilocular cells, which decreased in both analyzed stages of the estrous cycle. The UCP1 amount was lower in proestrus irrespectively of the examined dietary regimens. Regarding FA transporters, it was shown that iBAT CD36 content was increased in fasted rats in diestrus. In contrast to GLUT1, the level of GLUT4 was interactively modulated by selected estrous cycle phases and fasting. There was no change in insulin receptor and ERK1/2 activation, while AKT activation was interactively modulated by fasting and estrous cycle stages. Our study showed that iBAT exhibits morphological and functional changes in proestrus and diestrus. Moreover, iBAT undergoes additional dynamic functional and morphological changes during short-term fasting to modulate nutrient utilization and adjust energy expenditure.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Ksenija Velickovic
- Department of Cell and Tissue Biology, Institute for Zoology, University of Belgrade-Faculty of Biology, Belgrade, Serbia
| | - Iva Lakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Aleksandra Ruzicic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Andjela Milicevic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Nikola Plackic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| |
Collapse
|
6
|
Jones SA, Gogoi P, Ruprecht JJ, King MS, Lee Y, Zögg T, Pardon E, Chand D, Steimle S, Copeman DM, Cotrim CA, Steyaert J, Crichton PG, Moiseenkova-Bell V, Kunji ER. Structural basis of purine nucleotide inhibition of human uncoupling protein 1. SCIENCE ADVANCES 2023; 9:eadh4251. [PMID: 37256948 PMCID: PMC10413660 DOI: 10.1126/sciadv.adh4251] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to generate heat, bypassing ATP synthesis. In contrast, purine nucleotides bind and inhibit UCP1, regulating proton leak by a molecular mechanism that is unclear. We present the cryo-electron microscopy structure of the GTP-inhibited state of UCP1, which is consistent with its nonconducting state. The purine nucleotide cross-links the transmembrane helices of UCP1 with an extensive interaction network. Our results provide a structural basis for understanding the specificity and pH dependency of the regulatory mechanism. UCP1 has retained all of the key functional and structural features required for a mitochondrial carrier-like transport mechanism. The analysis shows that inhibitor binding prevents the conformational changes that UCP1 uses to facilitate proton leak.
Collapse
Affiliation(s)
- Scott A. Jones
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Prerana Gogoi
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, 10-124 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5158, USA
| | - Jonathan J. Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Martin S. King
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Yang Lee
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Thomas Zögg
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Deepak Chand
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Stefan Steimle
- Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Danielle M. Copeman
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Camila A. Cotrim
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Paul G. Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, 10-124 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5158, USA
| | - Edmund R. S. Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| |
Collapse
|
7
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
8
|
Cavalieri R, Hazebroek MK, Cotrim CA, Lee Y, Kunji ERS, Jastroch M, Keipert S, Crichton PG. Activating ligands of Uncoupling protein 1 identified by rapid membrane protein thermostability shift analysis. Mol Metab 2022; 62:101526. [PMID: 35691529 PMCID: PMC9243162 DOI: 10.1016/j.molmet.2022.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Uncoupling protein 1 (UCP1) catalyses mitochondrial proton leak in brown adipose tissue to facilitate nutrient oxidation for heat production, and may combat metabolic disease if activated in humans. During the adrenergic stimulation of brown adipocytes, free fatty acids generated from lipolysis activate UCP1 via an unclear interaction. Here, we set out to characterise activator binding to purified UCP1 to clarify the activation process, discern novel activators and the potential to target UCP1. METHODS We assessed ligand binding to purified UCP1 by protein thermostability shift analysis, which unlike many conventional approaches can inform on the binding of hydrophobic ligands to membrane proteins. A detailed activator interaction analysis and screening approach was carried out, supported by investigations of UCP1 activity in liposomes, isolated brown fat mitochondria and UCP1 expression-controlled cell lines. RESULTS We reveal that fatty acids and other activators influence UCP1 through a specific destabilising interaction, behaving as transport substrates that shift the protein to a less stable conformation of a transport cycle. Through the detection of specific stability shifts in screens, we identify novel activators, including the over-the-counter drug ibuprofen, where ligand analysis indicates that UCP1 has a relatively wide structural specificity for interacting molecules. Ibuprofen successfully induced UCP1 activity in liposomes, isolated brown fat mitochondria and UCP1-expressing HEK293 cells but not in cultured brown adipocytes, suggesting drug delivery differs in each cell type. CONCLUSIONS These findings clarify the nature of the activator-UCP1 interaction and demonstrate that the targeting of UCP1 in cells by approved drugs is in principle achievable as a therapeutic avenue, but requires variants with more effective delivery in brown adipocytes.
Collapse
Affiliation(s)
- Riccardo Cavalieri
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Marlou Klein Hazebroek
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Camila A Cotrim
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Yang Lee
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Keith Peters Building, CB2 0XY, United Kingdom
| | - Edmund R S Kunji
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Keith Peters Building, CB2 0XY, United Kingdom
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Paul G Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
9
|
De Bock K, Wolfrum C. A 'replace me' signal from dying brown fat fires up weight loss. Nature 2022; 609:252-253. [PMID: 35821410 DOI: 10.1038/d41586-022-01826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Gao Y, Shabalina IG, Braz GRF, Cannon B, Yang G, Nedergaard J. Establishing the potency of N-acyl amino acids versus conventional fatty acids as thermogenic uncouplers in cells and mitochondria from different tissues. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148542. [PMID: 35192808 DOI: 10.1016/j.bbabio.2022.148542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The possibility that N-acyl amino acids could function as brown or brite/beige adipose tissue-derived lipokines that could induce UCP1-independent thermogenesis by uncoupling mitochondrial respiration in several peripheral tissues is of significant physiological interest. To quantify the potency of N-acyl amino acids versus conventional fatty acids as thermogenic inducers, we have examined the affinity and efficacy of two pairs of such compounds: oleate versus N-oleoyl-leucine and arachidonate versus N-arachidonoyl-glycine in cells and mitochondria from different tissues. We found that in cultures of the muscle-derived L6 cell line, as well as in primary cultures of murine white, brite/beige and brown adipocytes, the N-acyl amino acids were proficient uncouplers but that they did not systematically display higher affinity or potency than the conventional fatty acids, and they were not as efficient uncouplers as classical protonophores (FCCP). Higher concentrations of the N-acyl amino acids (as well as of conventional fatty acids) were associated with signs of deleterious effects on the cells. In liver mitochondria, we found that the N-acyl amino acids uncoupled similarly to conventional fatty acids, thus apparently via activation of the adenine nucleotide transporter-2. In brown adipose tissue mitochondria, the N-acyl amino acids were able to activate UCP1, again similarly to conventional fatty acids. We thus conclude that the formation of the acyl-amino acid derivatives does not confer upon the corresponding fatty acids an enhanced ability to induce thermogenesis in peripheral tissues, and it is therefore unlikely that the N-acyl amino acids are of specific physiological relevance as UCP1-independent thermogenic compounds.
Collapse
Affiliation(s)
- Yun Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Irina G Shabalina
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - G Ruda F Braz
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Jan Nedergaard
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
11
|
Abstract
Mitochondria of all tissues convert various metabolic substrates into two forms of energy: ATP and heat. Historically, the primary focus of research in mitochondrial bioenergetics was on the mechanisms of ATP production, while mitochondrial thermogenesis received significantly less attention. Nevertheless, mitochondrial heat production is crucial for the maintenance of body temperature, regulation of the pace of metabolism, and prevention of oxidative damage to mitochondria and the cell. In addition, mitochondrial thermogenesis has gained significance as a pharmacological target for treating metabolic disorders. Mitochondria produce heat as the result of H+ leak across their inner membrane. This review provides a critical assessment of the current field of mitochondrial H+ leak and thermogenesis, with a focus on the molecular mechanisms involved in the function and regulation of uncoupling protein 1 and the ADP/ATP carrier, the two proteins that mediate mitochondrial H+ leak.
Collapse
Affiliation(s)
- Ambre M. Bertholet
- Department of Physiology, University of California San Francisco, 600 16 Street, San Francisco, CA 94158, USA,Department of Physiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA,Corresponding authors: ,
| | - Yuriy Kirichok
- Department of Physiology, University of California, San Francisco, California, USA;
| |
Collapse
|
12
|
Elovl2-Ablation Leads to Mitochondrial Membrane Fatty Acid Remodeling and Reduced Efficiency in Mouse Liver Mitochondria. Nutrients 2022; 14:nu14030559. [PMID: 35276915 PMCID: PMC8838343 DOI: 10.3390/nu14030559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/02/2023] Open
Abstract
The fatty acid elongase elongation of very long-chain fatty acids protein 2 (ELOVL2) controls the elongation of polyunsaturated fatty acids (PUFA) producing precursors for omega-3, docosahexaenoic acid (DHA), and omega-6, docosapentaenoic acid (DPAn-6) in vivo. Expectedly, Elovl2-ablation drastically reduced the DHA and DPAn-6 in liver mitochondrial membranes. Unexpectedly, however, total PUFAs levels decreased further than could be explained by Elovl2 ablation. The lipid peroxidation process was not involved in PUFAs reduction since malondialdehyde-lysine (MDAL) and other oxidative stress biomarkers were not enhanced. The content of mitochondrial respiratory chain proteins remained unchanged. Still, membrane remodeling was associated with the high voltage-dependent anion channel (VDAC) and adenine nucleotide translocase 2 (ANT2), a possible reflection of the increased demand on phospholipid transport to the mitochondria. Mitochondrial function was impaired despite preserved content of the respiratory chain proteins and the absence of oxidative damage. Oligomycin-insensitive oxygen consumption increased, and coefficients of respiratory control were reduced by 50%. The mitochondria became very sensitive to fatty acid-induced uncoupling and permeabilization, where ANT2 is involved. Mitochondrial volume and number of peroxisomes increased as revealed by transmission electron microscopy. In conclusion, the results imply that endogenous DHA production is vital for the normal function of mouse liver mitochondria and could be relevant not only for mice but also for human metabolism.
Collapse
|
13
|
Mancini C, Gohlke S, Garcia-Carrizo F, Zagoriy V, Stephanowitz H, Schulz TJ. Identification of biomarkers of brown adipose tissue aging highlights the role of dysfunctional energy and nucleotide metabolism pathways. Sci Rep 2021; 11:19928. [PMID: 34620947 PMCID: PMC8497523 DOI: 10.1038/s41598-021-99362-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Brown adipose tissue function declines during aging and may contribute to the onset of metabolic disorders such as diabetes and obesity. Only limited understanding of the mechanisms leading to the metabolic impairment of brown adipocytes during aging exists. To this end, interscapular brown adipose tissue samples were collected from young and aged mice for quantification of differential gene expression and metabolite levels. To identify potential processes involved in brown adipocyte dysfunction, metabolite concentrations were correlated to aging and significantly changed candidates were subsequently integrated with a non-targeted proteomic dataset and gene expression analyses. Our results include novel age-dependent correlations of polar intermediates in brown adipose tissue. Identified metabolites clustered around three biochemical processes, specifically energy metabolism, nucleotide metabolism and vitamin metabolism. One mechanism of brown adipose tissue dysfunction may be linked to mast cell activity, and we identify increased histamine levels in aged brown fat as a potential biomarker. In addition, alterations of genes involved in synthesis and degradation of many metabolites were mainly observed in the mature brown adipocyte fraction as opposed to the stromal vascular fraction. These findings may provide novel insights on the molecular mechanisms contributing to the impaired thermogenesis of brown adipocytes during aging.
Collapse
Affiliation(s)
- Carola Mancini
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 114-116 Arthur-Scheunert-Allee, 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sabrina Gohlke
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 114-116 Arthur-Scheunert-Allee, 14558, Nuthetal, Germany
| | - Francisco Garcia-Carrizo
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 114-116 Arthur-Scheunert-Allee, 14558, Nuthetal, Germany
| | | | - Heike Stephanowitz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 114-116 Arthur-Scheunert-Allee, 14558, Nuthetal, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany. .,Institute of Nutritional Science, University of Potsdam, Potsdam-Rehbrücke, Nuthetal, Germany.
| |
Collapse
|
14
|
Coulson SZ, Robertson CE, Mahalingam S, McClelland GB. Plasticity of non-shivering thermogenesis and brown adipose tissue in high-altitude deer mice. J Exp Biol 2021; 224:268387. [PMID: 34060604 DOI: 10.1242/jeb.242279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
High altitude environments challenge small mammals with persistent low ambient temperatures that require high rates of aerobic heat production in face of low O2 availability. An important component of thermogenic capacity in rodents is non-shivering thermogenesis (NST) mediated by uncoupled mitochondrial respiration in brown adipose tissue (BAT). NST is plastic, and capacity for heat production increases with cold acclimation. However, in lowland native rodents, hypoxia inhibits NST in BAT. We hypothesize that highland deer mice (Peromyscus maniculatus) overcome the hypoxic inhibition of NST through changes in BAT mitochondrial function. We tested this hypothesis using lab born and raised highland and lowland deer mice, and a lowland congeneric (Peromyscus leucopus), acclimated to either warm normoxia (25°C, 760 mmHg) or cold hypoxia (5°C, 430 mmHg). We determined the effects of acclimation and ancestry on whole-animal rates of NST, the mass of interscapular BAT (iBAT), and uncoupling protein (UCP)-1 protein expression. To identify changes in mitochondrial function, we conducted high-resolution respirometry on isolated iBAT mitochondria using substrates and inhibitors targeted to UCP-1. We found that rates of NST increased with cold hypoxia acclimation but only in highland deer mice. There was no effect of cold hypoxia acclimation on iBAT mass in any group, but highland deer mice showed increases in UCP-1 expression and UCP-1-stimulated mitochondrial respiration in response to these stressors. Our results suggest that highland deer mice have evolved to increase the capacity for NST in response to chronic cold hypoxia, driven in part by changes in iBAT mitochondrial function.
Collapse
Affiliation(s)
- Soren Z Coulson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Cayleih E Robertson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Sajeni Mahalingam
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Grant B McClelland
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
15
|
Nicholls DG. Mitochondrial proton leaks and uncoupling proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148428. [PMID: 33798544 DOI: 10.1016/j.bbabio.2021.148428] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023]
Abstract
Non-shivering thermogenesis in brown adipose tissue is mediated by uncoupling protein 1 (UCP1), which provides a carefully regulated proton re-entry pathway across the mitochondrial inner membrane operating in parallel to the ATP synthase and allowing respiration, and hence thermogenesis, to be released from the constraints of respiratory control. In the 40 years since UCP1 was first described, an extensive, and frequently contradictory, literature has accumulated, focused on the acute physiological regulation of the protein by fatty acids, purine nucleotides and possible additional factors. The purpose of this review is to examine, in detail, the experimental evidence underlying these proposed mechanisms. Emphasis will be placed on the methodologies employed and their relation to the physiological constraints under which the protein functions in the intact cell. The nature of the endogenous, UCP1-independent, proton leak will also be discussed. Finally, the troubled history of the putative novel uncoupling proteins, UCP2 and UCP3, will be evaluated.
Collapse
|
16
|
Yang X, Liu Q, Li Y, Ding Y, Zhao Y, Tang Q, Wu T, Chen L, Pu S, Cheng S, Zhang J, Zhang Z, Huang Y, Li R, Zhao Y, Zou M, Shi X, Jiang W, Wang R, He J. Inhibition of the sodium-glucose co-transporter SGLT2 by canagliflozin ameliorates diet-induced obesity by increasing intra-adipose sympathetic innervation. Br J Pharmacol 2021; 178:1756-1771. [PMID: 33480065 DOI: 10.1111/bph.15381] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Inhibition of the sodium-glucose cotransporter 2 (SGLT2) induces hypoglycaemia by increasing urinary glucose excretion and increasing the use of fat. However, the underlying mechanism is poorly understood. This study was aimed to determine the effects of canagliflozin, a selective SGLT2 inhibitor, on diet-induced obesity and the underlying mechanism(s). EXPERIMENTAL APPROACH Adult C57BL/6J male mice were fed with a standard chow diet or high-fat diet supplemented with vehicle or canagliflozin. Whole body energy expenditure was monitored by metabolic cages, noradrenaline levels were measured by HPLC, glucose uptake was measured by PET/CT, and mRNA and protein expression were measured by RT-PCR and western blotting analysis. KEY RESULTS Mice treated with canagliflozin were resistant to high-fat diet-induced obesity and its metabolic consequences. Canagliflozin treatment decreased fat mass and increased energy expenditure via increasing thermogenesis and lipolysis in adipose tissue. Mechanistically, SGLT2 inhibition by canagliflozin elevated adipose sympathetic innervation and fat mobilization via a β3 -adrenoceptor-cAMP-PKA signalling pathway. Finally, we showed that canagliflozin improved insulin resistance and hepatic steatosis in mice fed with a high-fat diet. CONCLUSIONS AND IMPLICATIONS Chronic inhibition of SGLT2 increased energy consumption by increasing intra-adipose sympathetic innervation to counteract diet-induced obesity. The present study reveals a new therapeutic function for SGLT2 inhibitors in regulating energy homeostasis.
Collapse
Affiliation(s)
- Xuping Yang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Ding
- College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Yan Zhao
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qin Tang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Chen
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyun Pu
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shihai Cheng
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zijing Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ya Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Li
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yingnan Zhao
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zou
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiongjie Shi
- College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Wei Jiang
- Molecular Medicine Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Rui Wang
- Department of Cardiology, Yangpu Hospital, Tongji University, Shanghai, China
| | - Jinhan He
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Wang Z, Yu X, Chen Y. Recruitment of Thermogenic Fat: Trigger of Fat Burning. Front Endocrinol (Lausanne) 2021; 12:696505. [PMID: 34367068 PMCID: PMC8341719 DOI: 10.3389/fendo.2021.696505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
Brown and beige adipose tissues possess the remarkable capacity to convert energy into heat, which potentially opens novel therapeutic perspectives targeting the epidemic of metabolic syndromes such as obesity and type 2 diabetes. These thermogenic fats implement mitochondrial oxidative phosphorylation and uncouple respiration to catabolize fatty acids and glucose, which leads to an increase in energy expenditure. In particular, beige adipocytes that arise in white adipose tissue display their thermogenic capacity through various noncanonical mechanisms. This review aims to summarize the general overview of thermogenic fat, especially including the UCP1-independent adaptive thermogenesis and the emerging mechanisms of "beiging", which may provide more evidence of targeting thermogenic fat to counteract obesity and other metabolic disorders in humans.
Collapse
Affiliation(s)
- Zhihan Wang
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Laboratory of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
| | - Xuefeng Yu
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yong Chen
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Laboratory of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
- *Correspondence: Yong Chen,
| |
Collapse
|
18
|
Functional characterization of human brown adipose tissue metabolism. Biochem J 2020; 477:1261-1286. [PMID: 32271883 DOI: 10.1042/bcj20190464] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.
Collapse
|
19
|
Barreto P, Couñago RM, Arruda P. Mitochondrial uncoupling protein-dependent signaling in plant bioenergetics and stress response. Mitochondrion 2020; 53:109-120. [DOI: 10.1016/j.mito.2020.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/06/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
|
20
|
Bertholet AM, Kirichok Y. Patch-Clamp Analysis of the Mitochondrial H + Leak in Brown and Beige Fat. Front Physiol 2020; 11:326. [PMID: 32351404 PMCID: PMC7174661 DOI: 10.3389/fphys.2020.00326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/20/2020] [Indexed: 01/27/2023] Open
Abstract
Mitochondria convert the chemical energy of metabolic substrates into adenosine triphosphate (ATP) and heat. Although ATP production has become a focal point of research in bioenergetics, mitochondrial thermogenesis is also crucial for energy metabolism. Mitochondria generate heat due to H+ leak across the inner mitochondrial membrane (IMM) which is mediated by mitochondrial uncoupling proteins. The mitochondrial H+ leak was first identified, and studied for many decades, using mitochondrial respiration technique. Unfortunately, this method measures H+ leak indirectly, and its precision is insufficient for the rigorous insight into the mitochondrial function at the molecular level. Direct patch-clamp recording of H+ leak would have a significantly higher amplitude and time resolution, but application of the patch-clamp technique to a small subcellular organelle such as mitochondria has been challenging. We developed a method that facilitates patch-clamp recording from the whole IMM, enabling the direct measurement of small H+ leak currents via uncoupling proteins and thus, providing a rigorous understanding of the molecular mechanisms involved. In this paper we cover the methodology of measuring the H+ leak in mitochondria of specialized thermogenic tissues brown and beige fat.
Collapse
Affiliation(s)
- Ambre M. Bertholet
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Yuriy Kirichok
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
21
|
Christian M. Elucidation of the roles of brown and brite fat genes: GPR120 is a modulator of brown adipose tissue function. Exp Physiol 2020; 105:1201-1205. [PMID: 32144819 PMCID: PMC8650997 DOI: 10.1113/ep087877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
New Findings What is the topic of this review? Activation of brown adipose tissue with G protein‐coupled receptors as key druggable targets as a strategy to increase energy consumption and reduce fat mass. What advances does it highlight? GPR120 is a fatty acid receptor highly expressed in brown adipose tissue. Its activation by selective ligands increases brown adipose tissue activity. This is mediated by changes in mitochondrial dynamics resulting in increased O2 consumption leading to enhanced nutrient uptake and a reduction in fat mass.
Abstract The identification of druggable targets to stimulate brown adipose tissue (BAT) is a strategy to combat obesity due to this highly metabolically active tissue utilising thermogenesis to burn fat. Upon cold exposure BAT is activated by the sympathetic nervous system via β3‐adrenergic receptors. Determination of additional receptors expressed by brown, white and brite (brown‐in‐white) fat can lead to new pharmacological treatments to activate BAT. GPR120 is a G protein‐coupled fatty acid receptor that is highly expressed in BAT and further increases in response to cold. Activation of this receptor with the selective agonist TUG‐891 acutely increases fat oxidation and reduces fat mass in mice. The effects are coincident with increased BAT activity and enhanced nutrient uptake. TUG‐891 stimulation of brown adipocytes induces intracellular Ca2+ release which results in elevated O2 consumption as well as mitochondrial depolarisation and fission. Thus, activation of GPR120 in BAT with ligands such as TUG‐891 is a promising strategy to increase fat consumption.
Collapse
Affiliation(s)
- Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| |
Collapse
|
22
|
Bast-Habersbrunner A, Fromme T. Purine Nucleotides in the Regulation of Brown Adipose Tissue Activity. Front Endocrinol (Lausanne) 2020; 11:118. [PMID: 32210919 PMCID: PMC7076073 DOI: 10.3389/fendo.2020.00118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/24/2020] [Indexed: 01/06/2023] Open
Abstract
Non-shivering thermogenesis in mammalian brown adipose tissue is a powerful mechanism to defend normothermia in cold climates. To minimize the loss of chemical energy, the central functional component, mitochondrial uncoupling protein 1, UCP1, must be tightly regulated. The canonical pathway of UCP1 activation includes lipolytic release of free fatty acids in response to an adrenergic signal. Activating fatty acids overcome constitutive inhibition of UCP1 by the di- and triphosphate forms of purine nucleotides, i.e., ATP, ADP, GTP, and GDP. Cellular concentrations of inhibitory, free nucleotides are subject to significant, adrenergically induced alterations. The regulatory components involved may constitute novel drug targets to manipulate brown fat thermogenesis and thereby organismic energy balance. We here review evidence for and against a dominant role of nucleotides in thermogenic control, describe conceptual routes to endogenously and pharmacologically alter free nucleotide pool size, speculate on a signaling role of degradation products released from active brown fat, and highlight gaps in our understanding of signaling and metabolic pathways involved.
Collapse
Affiliation(s)
- Andrea Bast-Habersbrunner
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Tobias Fromme
| |
Collapse
|
23
|
di Somma M, Vliora M, Grillo E, Castro B, Dakou E, Schaafsma W, Vanparijs J, Corsini M, Ravelli C, Sakellariou E, Mitola S. Role of VEGFs in metabolic disorders. Angiogenesis 2019; 23:119-130. [PMID: 31853841 DOI: 10.1007/s10456-019-09700-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Obesity and metabolic disorders are important public health problems. In this review, the role of vasculature network and VEGF in the adipose tissue maintenance and supplementation is discussed. Angiogenesis is a key process implicated in regulation of tissues homeostasis. Dysregulation of new blood vessels formation may be crucial and contribute to the onset of several pathological conditions, including metabolic syndrome-associated disorders. Adipose tissue homeostasis is fine regulated by vascular network. Vessels support adipose structure. Vasculature modulates the balance between positive and negative regulator factors. In white adipose tissue, vascular endothelial growth factor (VEGF) controls the metabolic activities of adipocytes promoting the trans-differentiation from white to beige phenotype. Trans-differentiation results in an increase of energy consumption. VEGF exerts an opposite effect on brown adipose tissue, where VEGF increases oxygen supply and improves energy expenditure inducing the whitening of adipocytes.
Collapse
Affiliation(s)
- M di Somma
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - M Vliora
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - E Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - B Castro
- Histocell, S.L.Parque Tecnológico 801A, 2º, 48160, Derio, Bizkaia, Spain
| | - E Dakou
- Laboratory of Cell Genetics, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - W Schaafsma
- Histocell, S.L.Parque Tecnológico 801A, 2º, 48160, Derio, Bizkaia, Spain
| | - J Vanparijs
- Laboratory of Cell Genetics, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - M Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - C Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - E Sakellariou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - S Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
24
|
Pohl EE, Jovanovic O. The Role of Phosphatidylethanolamine Adducts in Modification of the Activity of Membrane Proteins under Oxidative Stress. Molecules 2019; 24:E4545. [PMID: 31842328 PMCID: PMC6943717 DOI: 10.3390/molecules24244545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) and their derivatives, reactive aldehydes (RAs), have been implicated in the pathogenesis of many diseases, including metabolic, cardiovascular, and inflammatory disease. Understanding how RAs can modify the function of membrane proteins is critical for the design of therapeutic approaches in the above-mentioned pathologies. Over the last few decades, direct interactions of RA with proteins have been extensively studied. Yet, few studies have been performed on the modifications of membrane lipids arising from the interaction of RAs with the lipid amino group that leads to the formation of adducts. It is even less well understood how various multiple adducts affect the properties of the lipid membrane and those of embedded membrane proteins. In this short review, we discuss a crucial role of phosphatidylethanolamine (PE) and PE-derived adducts as mediators of RA effects on membrane proteins. We propose potential PE-mediated mechanisms that explain the modulation of membrane properties and the functions of membrane transporters, channels, receptors, and enzymes. We aim to highlight this new area of research and to encourage a more nuanced investigation of the complex nature of the new lipid-mediated mechanism in the modification of membrane protein function under oxidative stress.
Collapse
Affiliation(s)
- Elena E. Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna A-1210, Austria
| | - Olga Jovanovic
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna A-1210, Austria
| |
Collapse
|
25
|
Mottillo EP, Zhang H, Yang A, Zhou L, Granneman JG. Genetically-encoded sensors to detect fatty acid production and trafficking. Mol Metab 2019; 29:55-64. [PMID: 31668392 PMCID: PMC6726923 DOI: 10.1016/j.molmet.2019.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVE Fatty acids are important for biological function; however, in excess, they can cause metabolic dysregulation. Methods to image and detect fatty acids in real time are lacking. Therefore, the current study examined the dynamics of fatty acid trafficking and signaling utilizing novel fluorescent and luminescent approaches. METHODS We generated fluorescent and luminescent-based genetically-encoded sensors based upon the ligand-dependent interaction between PPARα and SRC-1 to image and detect cellular dynamics of fatty acid trafficking. RESULTS The use of a fluorescent sensor demonstrates that fatty acids traffic rapidly from lipid droplets to the nucleus. Both major lipases ATGL and HSL contribute to fatty acid signaling from lipid droplet to nucleus, however, their dynamics differ. Furthermore, direct activation of lipolysis, independent of receptor-mediated signaling is sufficient to promote lipid droplet to nuclear trafficking of fatty acids. A luminescent-based sensor that reports intracellular fatty acid levels is amenable to high-throughput analysis. CONCLUSIONS Fatty acids traffic from lipid droplets to the nucleus within minutes of stimulated lipolysis. Genetically-encoded fluorescent and luminescent based sensors can be used to probe the dynamics of fatty acid trafficking and signaling.
Collapse
Affiliation(s)
- Emilio P Mottillo
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Huamei Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Alexander Yang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Li Zhou
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
26
|
Abstract
Uncoupling protein 1 (UCP1) is an integral protein of the inner mitochondrial membrane (IMM) that is expressed specifically in brown and beige fat depots. UCP1 is responsible for the production of heat to control core body temperature, the regulation of fat metabolism, and the energy balance. As an uncoupling protein, UCP1 transports H+ across the IMM in presence of long-chain fatty acids (FA), which makes brown fat mitochondria produce heat at the expense of ATP. However, the exact mechanism of UCP1 action has remained difficult to elucidate, because direct methods for studying currents generated by UCP1 were unavailable. Recently, the patch-clamp technique was successfully applied to brown and beige fat mitochondria to directly study H+ currents across the IMM and characterize UCP1 function. A new model of the UCP1 mechanism was proposed based on the patch-clamp analysis. In this model, both FA anions (FA-) and H+ are transport substrates of UCP1, and UCP1 operates as a non-canonical FA-/H+ symporter. Here, we summarize recent findings obtained with the patch-clamp technique that describe how UCP1 can transport not only H+ but also FA-.
Collapse
|
27
|
Sebaa R, Johnson J, Pileggi C, Norgren M, Xuan J, Sai Y, Tong Q, Krystkowiak I, Bondy-Chorney E, Davey NE, Krogan N, Downey M, Harper ME. SIRT3 controls brown fat thermogenesis by deacetylation regulation of pathways upstream of UCP1. Mol Metab 2019; 25:35-49. [PMID: 31060926 PMCID: PMC6601363 DOI: 10.1016/j.molmet.2019.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) is important for thermoregulation in many mammals. Uncoupling protein 1 (UCP1) is the critical regulator of thermogenesis in BAT. Here we aimed to investigate the deacetylation control of BAT and to investigate a possible functional connection between UCP1 and sirtuin 3 (SIRT3), the master mitochondrial lysine deacetylase. METHODS We carried out physiological, molecular, and proteomic analyses of BAT from wild-type and Sirt3KO mice when BAT is activated. Mice were either cold exposed for 2 days or were injected with the β3-adrenergic agonist, CL316,243 (1 mg/kg; i.p.). Mutagenesis studies were conducted in a cellular model to assess the impact of acetylation lysine sites on UCP1 function. Cardiac punctures were collected for proteomic analysis of blood acylcarnitines. Isolated mitochondria were used for functional analysis of OXPHOS proteins. RESULTS Our findings showed that SIRT3 absence in mice resulted in impaired BAT lipid use, whole body thermoregulation, and respiration in BAT mitochondria, without affecting UCP1 expression. Acetylome profiling of BAT mitochondria revealed that SIRT3 regulates acetylation status of many BAT mitochondrial proteins including UCP1 and crucial upstream proteins. Mutagenesis work in cells suggested that UCP1 activity was independent of direct SIRT3-regulated lysine acetylation. However, SIRT3 impacted BAT mitochondrial proteins activities of acylcarnitine metabolism and specific electron transport chain complexes, CI and CII. CONCLUSIONS Our data highlight that SIRT3 likely controls BAT thermogenesis indirectly by targeting pathways upstream of UCP1.
Collapse
Affiliation(s)
- Rajaa Sebaa
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Medical Laboratories, College of Applied Medical Sciences, University of Shaqra, Duwadimi, Saudi Arabia
| | - Jeff Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Chantal Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michaela Norgren
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jian Xuan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yuka Sai
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiang Tong
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Izabella Krystkowiak
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Emma Bondy-Chorney
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Norman E Davey
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Downey
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
28
|
Darcy J, Tseng YH. ComBATing aging-does increased brown adipose tissue activity confer longevity? GeroScience 2019; 41:285-296. [PMID: 31230192 DOI: 10.1007/s11357-019-00076-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Brown and its related beige adipose tissue (BAT) play a definitive role in maintaining body temperature by producing heat through uncoupling protein 1 (UCP1), which acts by dissociating oxidative phosphorylation from ATP production, resulting in the release of heat. Therefore, in order to maintain high thermogenic capacity, BAT must act as a metabolic sink by taking up vast amounts of circulating glucose and lipids for oxidation. This, along with the rediscovery of BAT in adult humans, has fueled the study of BAT as a putative therapeutic approach to manage the growing rates of obesity and metabolic syndromes. Notably, many of the beneficial consequences of BAT activity overlap with metabolic biomarkers of extended lifespan and healthspan. In this review, we provide background about BAT including the thermogenic program, BAT's role as a secretory organ, and differences between BAT in mice and humans. We also provide details on BAT during aging, and perspectives on the potential of targeting BAT to promote lifespan and healthspan.
Collapse
Affiliation(s)
- Justin Darcy
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA, 02215, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA, 02215, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
29
|
Dyar KA, Lutter D, Artati A, Ceglia NJ, Liu Y, Armenta D, Jastroch M, Schneider S, de Mateo S, Cervantes M, Abbondante S, Tognini P, Orozco-Solis R, Kinouchi K, Wang C, Swerdloff R, Nadeef S, Masri S, Magistretti P, Orlando V, Borrelli E, Uhlenhaut NH, Baldi P, Adamski J, Tschöp MH, Eckel-Mahan K, Sassone-Corsi P. Atlas of Circadian Metabolism Reveals System-wide Coordination and Communication between Clocks. Cell 2019; 174:1571-1585.e11. [PMID: 30193114 DOI: 10.1016/j.cell.2018.08.042] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/20/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
Metabolic diseases are often characterized by circadian misalignment in different tissues, yet how altered coordination and communication among tissue clocks relate to specific pathogenic mechanisms remains largely unknown. Applying an integrated systems biology approach, we performed 24-hr metabolomics profiling of eight mouse tissues simultaneously. We present a temporal and spatial atlas of circadian metabolism in the context of systemic energy balance and under chronic nutrient stress (high-fat diet [HFD]). Comparative analysis reveals how the repertoires of tissue metabolism are linked and gated to specific temporal windows and how this highly specialized communication and coherence among tissue clocks is rewired by nutrient challenge. Overall, we illustrate how dynamic metabolic relationships can be reconstructed across time and space and how integration of circadian metabolomics data from multiple tissues can improve our understanding of health and disease.
Collapse
Affiliation(s)
- Kenneth A Dyar
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Dominik Lutter
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Anna Artati
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, 85764 Neuherberg Germany
| | - Nicholas J Ceglia
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Yu Liu
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Danny Armenta
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Martin Jastroch
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Sandra Schneider
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Sara de Mateo
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Marlene Cervantes
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Serena Abbondante
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Paola Tognini
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Ricardo Orozco-Solis
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Kenichiro Kinouchi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christina Wang
- Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA 90509, USA
| | - Ronald Swerdloff
- Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA 90509, USA
| | - Seba Nadeef
- BESE Division, KAUST Environmental Epigenetics Program, King Abdullah University Science and Technology, Thuwal, Saudi Arabia
| | - Selma Masri
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Pierre Magistretti
- BESE Division, KAUST Environmental Epigenetics Program, King Abdullah University Science and Technology, Thuwal, Saudi Arabia
| | - Valerio Orlando
- BESE Division, KAUST Environmental Epigenetics Program, King Abdullah University Science and Technology, Thuwal, Saudi Arabia
| | - Emiliana Borrelli
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Jerzy Adamski
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, 85764 Neuherberg Germany; Chair of Experimental Genetics, Technical University of Munich, 85350 Freising-Weihenstephan, Germany.
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Technical University of Munich, 80333 Munich, Germany.
| | - Kristin Eckel-Mahan
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
30
|
Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 2019; 44:3-15. [PMID: 31115493 PMCID: PMC6559295 DOI: 10.3892/ijmm.2019.4188] [Citation(s) in RCA: 485] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022] Open
Abstract
The mammalian mitochondrial electron transport chain (ETC) includes complexes I-IV, as well as the electron transporters ubiquinone and cytochrome c. There are two electron transport pathways in the ETC: Complex I/III/IV, with NADH as the substrate and complex II/III/IV, with succinic acid as the substrate. The electron flow is coupled with the generation of a proton gradient across the inner membrane and the energy accumulated in the proton gradient is used by complex V (ATP synthase) to produce ATP. The first part of this review briefly introduces the structure and function of complexes I-IV and ATP synthase, including the specific electron transfer process in each complex. Some electrons are directly transferred to O2 to generate reactive oxygen species (ROS) in the ETC. The second part of this review discusses the sites of ROS generation in each ETC complex, including sites IF and IQ in complex I, site IIF in complex II and site IIIQo in complex III, and the physiological and pathological regulation of ROS. As signaling molecules, ROS play an important role in cell proliferation, hypoxia adaptation and cell fate determination, but excessive ROS can cause irreversible cell damage and even cell death. The occurrence and development of a number of diseases are closely related to ROS overproduction. Finally, proton leak and uncoupling proteins (UCPS) are discussed. Proton leak consists of basal proton leak and induced proton leak. Induced proton leak is precisely regulated and induced by UCPs. A total of five UCPs (UCP1-5) have been identified in mammalian cells. UCP1 mainly plays a role in the maintenance of body temperature in a cold environment through non-shivering thermogenesis. The core role of UCP2-5 is to reduce oxidative stress under certain conditions, therefore exerting cytoprotective effects. All diseases involving oxidative stress are associated with UCPs.
Collapse
Affiliation(s)
- Ru-Zhou Zhao
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shuai Jiang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi-Bin Yu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
31
|
Nedergaard J, Cannon B. Brown adipose tissue as a heat-producing thermoeffector. HANDBOOK OF CLINICAL NEUROLOGY 2019; 156:137-152. [PMID: 30454587 DOI: 10.1016/b978-0-444-63912-7.00009-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Extra heat for defense of body temperature can be obtained from shivering or nonshivering thermogenesis. Nonshivering thermogenesis is a facultative (i.e., only occurring when needed) and adaptive (i.e., being augmented when the demand is chronically higher) process that, in mammals, is the result of the activity of uncoupling protein-1 (UCP1) in brown and brownish adipose tissues; no other quantitatively significant mechanism that fulfills the above criteria has been established. Measurement of heat production is generally indirect, based on oxygen consumption. Heat from brown adipose tissue is generated in mammals adapted to cold, in mammalian neonates, and in mammalian hibernators during arousal; brown adipose tissue may also be active in obese mammals and thus partially protect against further obesity. UCP1 is innately inhibited by cytosolic adenosine triphosphate (ATP) and is likely activated by fatty acids released from triglycerides within the cells; this lipolysis is stimulated by norepinephrine released from the sympathetic nerves innervating the tissue. For prolonged thermogenesis, substrate is delivered by the circulation as chylomicrons, lipoproteins, fatty acids, and glucose. The proton gradient over the mitochondrial membrane created by the respiratory chain is dispersed through the activity of UCP1; brown adipose tissue is nearly devoid of ATP synthase (as compared to respiratory chain activity). UCP1 developed likely at the dawn of mammalian evolution; most mammalian species still retain functional UCP1. Other members of the uncoupling protein family cannot uncouple. Both newborn and adult humans possess active brown adipose tissue but the significance of the tissue for adult human metabolism is not established.
Collapse
Affiliation(s)
- Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
32
|
Schilperoort M, van Dam AD, Hoeke G, Shabalina IG, Okolo A, Hanyaloglu AC, Dib LH, Mol IM, Caengprasath N, Chan YW, Damak S, Miller AR, Coskun T, Shimpukade B, Ulven T, Kooijman S, Rensen PC, Christian M. The GPR120 agonist TUG-891 promotes metabolic health by stimulating mitochondrial respiration in brown fat. EMBO Mol Med 2019; 10:emmm.201708047. [PMID: 29343498 PMCID: PMC5840546 DOI: 10.15252/emmm.201708047] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brown adipose tissue (BAT) activation stimulates energy expenditure in human adults, which makes it an attractive target to combat obesity and related disorders. Recent studies demonstrated a role for G protein-coupled receptor 120 (GPR120) in BAT thermogenesis. Here, we investigated the therapeutic potential of GPR120 agonism and addressed GPR120-mediated signaling in BAT We found that activation of GPR120 by the selective agonist TUG-891 acutely increases fat oxidation and reduces body weight and fat mass in C57Bl/6J mice. These effects coincided with decreased brown adipocyte lipid content and increased nutrient uptake by BAT, confirming increased BAT activity. Consistent with these observations, GPR120 deficiency reduced expression of genes involved in nutrient handling in BAT Stimulation of brown adipocytes in vitro with TUG-891 acutely induced O2 consumption, through GPR120-dependent and GPR120-independent mechanisms. TUG-891 not only stimulated GPR120 signaling resulting in intracellular calcium release, mitochondrial depolarization, and mitochondrial fission, but also activated UCP1. Collectively, these data suggest that activation of brown adipocytes with the GPR120 agonist TUG-891 is a promising strategy to increase lipid combustion and reduce obesity.
Collapse
Affiliation(s)
- Maaike Schilperoort
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK .,Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
| | - Andrea D van Dam
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
| | - Geerte Hoeke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
| | - Irina G Shabalina
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Anthony Okolo
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Aylin C Hanyaloglu
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Lea H Dib
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Isabel M Mol
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
| | - Natarin Caengprasath
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Yi-Wah Chan
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus Imperial College London, London, UK
| | - Sami Damak
- Nestlé Research Center, Lausanne, Switzerland
| | - Anne Reifel Miller
- Lilly Research Laboratories, Diabetes/Endocrine Department, Lilly Corporate Center, Indianapolis, IN, USA
| | - Tamer Coskun
- Lilly Research Laboratories, Diabetes/Endocrine Department, Lilly Corporate Center, Indianapolis, IN, USA
| | - Bharat Shimpukade
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
| | - Patrick Cn Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
| | - Mark Christian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
33
|
Darcy J, Bartke A. From White to Brown - Adipose Tissue Is Critical to the Extended Lifespan and Healthspan of Growth Hormone Mutant Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:207-225. [PMID: 31493229 DOI: 10.1007/978-3-030-25650-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Growth hormone (GH) is a metabolic hormone that has major functions in the liver, muscle, and adipose tissue (AT). In the past 20 years, numerous studies have demonstrated that decreased growth hormone (GH) action is clearly linked to alterations in longevity. Therefore, it is not surprising that mechanisms underlying the extended longevity of GH-mutant animals include alterations in AT function. This Review aims to describe the basics of AT biology, GH secretion and action, and the effects of altered GH signaling in mice and humans. Lastly, this Review discusses the intersection of GH and AT, and how the influence of GH on AT may play a critical role in determining lifespan and healthspan.
Collapse
Affiliation(s)
- Justin Darcy
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
34
|
Echtay KS, Bienengraeber M, Mayinger P, Heimpel S, Winkler E, Druhmann D, Frischmuth K, Kamp F, Huang SG. Uncoupling proteins: Martin Klingenberg's contributions for 40 years. Arch Biochem Biophys 2018; 657:41-55. [PMID: 30217511 DOI: 10.1016/j.abb.2018.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022]
Abstract
The uncoupling protein (UCP1) is a proton (H+) transporter in the mitochondrial inner membrane. By dissipating the electrochemical H+ gradient, UCP1 uncouples respiration from ATP synthesis, which drives an increase in substrate oxidation via the TCA cycle flux that generates more heat. The mitochondrial uncoupling-mediated non-shivering thermogenesis in brown adipose tissue is vital primarily to mammals, such as rodents and new-born humans, but more recently additional functions in adult humans have been described. UCP1 is regulated by β-adrenergic receptors through the sympathetic nervous system and at the molecular activity level by nucleotides and fatty acid to meet thermogenesis needs. The discovery of novel UCP homologs has greatly contributed to the understanding of human diseases, such as obesity and diabetes. In this article, we review the progress made towards the molecular mechanism and function of the UCPs, in particular focusing on the influential contributions from Martin Klingenberg's laboratory. Because all members of the UCP family are potentially promising drug targets, we also present and discuss possible approaches and methods for UCP-related drug discovery.
Collapse
Affiliation(s)
- Karim S Echtay
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, P.O. Box: 100, Tripoli, Lebanon
| | - Martin Bienengraeber
- Departments of Anesthesiology and Pharmacology, Medical College of Wisconsin, Milwaukee, USA
| | - Peter Mayinger
- Division of Nephrology & Hypertension and Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR, 97201, USA
| | - Simone Heimpel
- Campus of Applied Science, University of Applied Sciences Würzburg-Schweinfurt, Münzstraße 12, D-97070, Würzburg, Germany
| | - Edith Winkler
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Doerthe Druhmann
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Karina Frischmuth
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Frits Kamp
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Shu-Gui Huang
- BioAssay Systems, 3191 Corporate Place, Hayward, CA, 94545, USA.
| |
Collapse
|
35
|
Steensels S, Ersoy BA. Fatty acid activation in thermogenic adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:79-90. [PMID: 29793055 DOI: 10.1016/j.bbalip.2018.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/10/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
Abstract
Channeling carbohydrates and fatty acids to thermogenic tissues, including brown and beige adipocytes, have garnered interest as an approach for the management of obesity-related metabolic disorders. Mitochondrial fatty acid oxidation (β-oxidation) is crucial for the maintenance of thermogenesis. Upon cellular fatty acid uptake or following lipolysis from triglycerides (TG), fatty acids are esterified to coenzyme A (CoA) to form active acyl-CoA molecules. This enzymatic reaction is essential for their utilization in β-oxidation and thermogenesis. The activation and deactivation of fatty acids are regulated by two sets of enzymes called acyl-CoA synthetases (ACS) and acyl-CoA thioesterases (ACOT), respectively. The expression levels of ACS and ACOT family members in thermogenic tissues will determine the substrate availability for β-oxidation, and consequently the thermogenic capacity. Although the role of the majority of ACS and ACOT family members in thermogenesis remains unclear, recent proceedings link the enzymatic activities of ACS and ACOT family members to metabolic disorders and thermogenesis. Elucidating the contributions of specific ACS and ACOT family members to trafficking of fatty acids towards thermogenesis may reveal novel targets for modulating thermogenic capacity and treating metabolic disorders.
Collapse
Affiliation(s)
- Sandra Steensels
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA
| | - Baran A Ersoy
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
36
|
Intracellular glycolysis in brown adipose tissue is essential for optogenetically induced nonshivering thermogenesis in mice. Sci Rep 2018; 8:6672. [PMID: 29704006 PMCID: PMC5923201 DOI: 10.1038/s41598-018-25265-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/18/2018] [Indexed: 12/23/2022] Open
Abstract
Release of fatty acids from lipid droplets upon activation of the sympathetic nervous system (SNS) is a key step in nonshivering thermogenesis in brown adipose tissue (BAT). However, intracellular lipolysis appears not to be critical for cold-induced thermogenesis. As activation of the SNS increases glucose uptake, we studied whether intracellular glycolysis plays a role in BAT thermogenesis. To stimulate BAT-innervating sympathetic nerves in vivo, we expressed channelrhodopsin-2 (ChR2) in catecholaminergic fibers by crossbreeding tyrosine hydroxylase-Cre mice with floxed-stop ChR2 mice. Acute optogenetic stimulation of sympathetic efferent fibers of BAT increased body temperature and lowered blood glucose levels that were completely abolished by the β-adrenergic receptor antagonist. Knockdown of the Ucp1 gene in BAT blocked the effects of optogenetic stimulation on body temperature and glucose uptake. Inhibition of glucose uptake in BAT and glycolysis abolished optogenetically induced thermogenesis. Stimulation of sympathetic nerves upregulated expression of the lactate dehydrogenase-A and -B genes in BAT. Optogenetic stimulation failed to induce thermogenesis following treatment with the LDH inhibitor. Pharmacological blockade and genetic deletion of the monocarboxylate transporter 1 completely abolished the effects of sympathetic activation. Our results suggest that intracellular glycolysis and lactate shuttle play an important role in regulating acute thermogenesis in BAT.
Collapse
|
37
|
Nielsen KN, Peics J, Ma T, Karavaeva I, Dall M, Chubanava S, Basse AL, Dmytriyeva O, Treebak JT, Gerhart-Hines Z. NAMPT-mediated NAD + biosynthesis is indispensable for adipose tissue plasticity and development of obesity. Mol Metab 2018; 11:178-188. [PMID: 29551635 PMCID: PMC6001355 DOI: 10.1016/j.molmet.2018.02.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Objective The ability of adipose tissue to expand and contract in response to fluctuations in nutrient availability is essential for the maintenance of whole-body metabolic homeostasis. Given the nutrient scarcity that mammals faced for millions of years, programs involved in this adipose plasticity were likely evolved to be highly efficient in promoting lipid storage. Ironically, this previously advantageous feature may now represent a metabolic liability given the caloric excess of modern society. We speculate that nicotinamide adenine dinucleotide (NAD+) biosynthesis exemplifies this concept. Indeed NAD+/NADH metabolism in fat tissue has been previously linked with obesity, yet whether it plays a causal role in diet-induced adiposity is unknown. Here we investigated how the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) supports adipose plasticity and the pathological progression to obesity. Methods We utilized a newly generated Nampt loss-of-function model to investigate the tissue-specific and systemic metabolic consequences of adipose NAD+ deficiency. Energy expenditure, glycemic control, tissue structure, and gene expression were assessed in the contexts of a high dietary fat burden as well as the transition back to normal chow diet. Results Fat-specific Nampt knockout (FANKO) mice were completely resistant to high fat diet (HFD)-induced obesity. This was driven in part by reduced food intake. Furthermore, HFD-fed FANKO mice were unable to undergo healthy expansion of adipose tissue mass, and adipose depots were rendered fibrotic with markedly reduced mitochondrial respiratory capacity. Yet, surprisingly, HFD-fed FANKO mice exhibited improved glucose tolerance compared to control littermates. Removing the HFD burden largely reversed adipose fibrosis and dysfunction in FANKO animals whereas the improved glucose tolerance persisted. Conclusions These findings indicate that adipose NAMPT plays an essential role in handling dietary lipid to modulate fat tissue plasticity, food intake, and systemic glucose homeostasis. Fat-specific Nampt knockout (FANKO) does not alter body composition on chow diet. NAMPT is essential for adipose expansion and weight gain from high dietary fat. Loss of adipose NAD+ decreases food intake and improves glucose tolerance. High fat diet-induced metabolic dysfunction in FANKO mice is reversible.
Collapse
Affiliation(s)
- Karen Nørgaard Nielsen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julia Peics
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tao Ma
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Iuliia Karavaeva
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten Dall
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sabina Chubanava
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Astrid L Basse
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Laboratory of Neural Plasticity, Institute of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark; Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, 2400 Copenhagen, Denmark
| | - Jonas T Treebak
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
38
|
Macher G, Koehler M, Rupprecht A, Kreiter J, Hinterdorfer P, Pohl EE. Inhibition of mitochondrial UCP1 and UCP3 by purine nucleotides and phosphate. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:664-672. [PMID: 29212043 PMCID: PMC6118327 DOI: 10.1016/j.bbamem.2017.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/04/2017] [Accepted: 12/01/2017] [Indexed: 11/26/2022]
Abstract
Mitochondrial membrane uncoupling protein 3 (UCP3) is not only expressed in skeletal muscle and heart, but also in brown adipose tissue (BAT) alongside UCP1, which facilitates a proton leak to support non-shivering thermogenesis. In contrast to UCP1, the transport function and molecular mechanism of UCP3 regulation are poorly investigated, although it is generally agreed upon that UCP3, analogous to UCP1, transports protons, is activated by free fatty acids (FFAs) and is inhibited by purine nucleotides (PNs). Because the presence of two similar uncoupling proteins in BAT is surprising, we hypothesized that UCP1 and UCP3 are differently regulated, which may lead to differences in their functions. By combining atomic force microscopy and electrophysiological measurements of recombinant proteins reconstituted in planar bilayer membranes, we compared the level of protein activity with the bond lifetimes between UCPs and PNs. Our data revealed that, in contrast to UCP1, UCP3 can be fully inhibited by all PNs and IC50 increases with a decrease in PN-phosphorylation. Experiments with mutant proteins demonstrated that the conserved arginines in the PN-binding pocket are involved in the inhibition of UCP1 and UCP3 to different extents. Fatty acids compete with all PNs bound to UCP1, but only with ATP bound to UCP3. We identified phosphate as a novel inhibitor of UCP3 and UCP1, which acts independently of PNs. The differences in molecular mechanisms of the inhibition between the highly homologous transporters UCP1 and UCP3 indicate that UCP3 has adapted to fulfill a different role and possibly another transport function in BAT.
Collapse
Affiliation(s)
- Gabriel Macher
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Melanie Koehler
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Jürgen Kreiter
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | | | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
39
|
Bryant HJ, Chung DJ, Schulte PM. Subspecies differences in thermal acclimation of mitochondrial function and the role of uncoupling proteins in killifish. J Exp Biol 2018; 221:jeb.186320. [DOI: 10.1242/jeb.186320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023]
Abstract
Thermal effects on mitochondrial efficiency and ATP production can influence whole-animal thermal tolerance and performance. Thus, organisms may have the capacity to alter mitochondrial processes through acclimation or adaptation to mitigate these effects. One possible mechanism is through the action of uncoupling proteins (UCPs) which can decrease the proton motive force independent of the production of ATP. To test this hypothesis, we examined the mRNA expression patterns of UCP isoforms and characterized the effects of thermal acclimation and putative local thermal adaptation on mitochondrial capacity, proton leak, and P/O ratios in two subspecies of Atlantic killifish (Fundulus heteroclitus). Ucp1 was the dominant isoform in liver and was more highly expressed in northern killifish. We found that cold acclimation increased mitochondrial capacity (state III and maximum substrate oxidation capacity), state II membrane potential, proton leak, and P/O ratios in northern, but not southern killifish liver mitochondria. Palmitate-induced mitochondrial uncoupling was detected in northern, but not southern, killifish liver mitochondria, consistent with the differences in mRNA expression between the subspecies. Taken together, our data suggest that mitochondrial function is more plastic in response to thermal acclimation in northern killifish than southern killifish and that UCP1 may play a role in regulating the proton motive force in northern, but not southern killifish in response to thermal acclimation. These data demonstrate the potential for adaptive variation in mitochondrial plasticity in response to cold.
Collapse
Affiliation(s)
- Heather J. Bryant
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia, Canada V6T 1Z4
| | - Dillon J. Chung
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia, Canada V6T 1Z4
| | - Patricia M. Schulte
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
40
|
Abstract
We thought we knew how the heat-producing uncoupling protein 1 in brown adipose tissue was activated: by fatty acids released upon lipid droplet breakdown in the brown adipocytes. However, two studies in this issue (Schreiber et al., 2017; Shin et al., 2017) imply that this classical model may not be valid: heat can be produced in brown fat without intracellular lipolysis.
Collapse
Affiliation(s)
- Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
41
|
Brown adipose tissue and lipid metabolism imaging. Methods 2017; 130:105-113. [DOI: 10.1016/j.ymeth.2017.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/28/2017] [Accepted: 05/05/2017] [Indexed: 01/20/2023] Open
|
42
|
Rebuffet E, Frick A, Järvå M, Törnroth-Horsefield S. Cell-free production and characterisation of human uncoupling protein 1-3. Biochem Biophys Rep 2017; 10:276-281. [PMID: 28955755 PMCID: PMC5614671 DOI: 10.1016/j.bbrep.2017.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 11/22/2022] Open
Abstract
The uncoupling proteins (UCPs) leak protons across the inner mitochondrial membrane, thus uncoupling the proton gradient from ATP synthesis. The main known physiological role for this is heat generation by UCP1 in brown adipose tissue. However, UCPs are also believed to be important for protection against reactive oxygen species, fine-tuning of metabolism and have been suggested to be involved in disease states such as obesity, diabetes and cancer. Structural studies of UCPs have long been hampered by difficulties in sample preparation with neither expression in yeast nor refolding from inclusion bodies in E. coli yielding sufficient amounts of pure and stable protein. In this study, we have developed a protocol for cell-free expression of human UCP1, 2 and 3, resulting in 1 mg pure protein per 20 mL of expression media. Lauric acid, a natural UCP ligand, significantly improved protein thermal stability and was therefore added during purification. Secondary structure characterisation using circular dichroism spectroscopy revealed the proteins to consist of mostly α-helices, as expected. All three UCPs were able to bind GDP, a well-known physiological inhibitor, as shown by the Fluorescence Resonance Energy Transfer (FRET) technique, suggesting that the proteins are in a natively folded state. A protocol for cell-free expression of human uncoupling protein 1–3 is described. Addition of native membrane components increased expression levels. Addition of lauric acid increased protein stability in solution. CD spectroscopy confirms alpha-helical secondary structure as expected. All proteins binds GDP as demonstrated by Fluorescence Resonance Energy Transfer.
Collapse
Affiliation(s)
- Etienne Rebuffet
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Anna Frick
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Michael Järvå
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Susanna Törnroth-Horsefield
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden.,Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
43
|
Abstract
Brown and beige adipocytes arise from distinct developmental origins. Brown adipose tissue (BAT) develops embryonically from precursors that also give to skeletal muscle. Beige fat develops postnatally and is highly inducible. Beige fat recruitment is mediated by multiple mechanisms, including de novo beige adipogenesis and white-to-brown adipocyte transdifferentiaiton. Beige precursors reside around vasculatures, and proliferate and differentiate into beige adipocytes. PDGFRα+Ebf2+ precursors are restricted to beige lineage cells, while another PDGFRα+ subset gives rise to beige adipocytes, white adipocytes, or fibrogenic cells. White adipocytes can be reprogramed and transdifferentiated into beige adipocytes. Brown and beige adipocytes display many similar properties, including multilocular lipid droplets, dense mitochondria, and expression of UCP1. UCP1-mediated thermogenesis is a hallmark of brown/beige adipocytes, albeit UCP1-independent thermogenesis also occurs. Development, maintenance, and activation of BAT/beige fat are guided by genetic and epigenetic programs. Numerous transcriptional factors and coactivators act coordinately to promote BAT/beige fat thermogenesis. Epigenetic reprograming influences expression of brown/beige adipocyte-selective genes. BAT/beige fat is regulated by neuronal, hormonal, and immune mechanisms. Hypothalamic thermal circuits define the temperature setpoint that guides BAT/beige fat activity. Metabolic hormones, paracrine/autocrine factors, and various immune cells also play a critical role in regulating BAT/beige fat functions. BAT and beige fat defend temperature homeostasis, and regulate body weight and glucose and lipid metabolism. Obesity is associated with brown/beige fat deficiency, and reactivation of brown/beige fat provides metabolic health benefits in some patients. Pharmacological activation of BAT/beige fat may hold promise for combating metabolic diseases. © 2017 American Physiological Society. Compr Physiol 7:1281-1306, 2017.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
44
|
Mitochondrial Patch Clamp of Beige Adipocytes Reveals UCP1-Positive and UCP1-Negative Cells Both Exhibiting Futile Creatine Cycling. Cell Metab 2017; 25:811-822.e4. [PMID: 28380374 PMCID: PMC5448977 DOI: 10.1016/j.cmet.2017.03.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/27/2016] [Accepted: 03/04/2017] [Indexed: 11/27/2022]
Abstract
Cold and other environmental factors induce "browning" of white fat depots-development of beige adipocytes with morphological and functional resemblance to brown fat. Similar to brown fat, beige adipocytes are assumed to express mitochondrial uncoupling protein 1 (UCP1) and are thermogenic due to the UCP1-mediated H+ leak across the inner mitochondrial membrane. However, this assumption has never been tested directly. Herein we patch clamped the inner mitochondrial membrane of beige and brown fat to provide a direct comparison of their thermogenic H+ leak (IH). All inguinal beige adipocytes had robust UCP1-dependent IH comparable to brown fat, but it was about three times less sensitive to purine nucleotide inhibition. Strikingly, only ∼15% of epididymal beige adipocytes had IH, while in the rest UCP1-dependent IH was undetectable. Despite the absence of UCP1 in the majority of epididymal beige adipocytes, these cells employ prominent creatine cycling as a UCP1-independent thermogenic mechanism.
Collapse
|
45
|
Chu DT, Tao Y, Taskén K. OPA1 in Lipid Metabolism: Function of OPA1 in Lipolysis and Thermogenesis of Adipocytes. Horm Metab Res 2017; 49:276-285. [PMID: 28427098 DOI: 10.1055/s-0043-100384] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OPA1 (Optic Atrophy 1) is a mitochondrial GTPase known to regulate fission of mitochondria. It was recently also shown to locate on lipid droplets in adipocytes where it functions as an A-kinase anchoring protein (AKAP) that mediates adrenergic control of lipolysis by facilitating PKA phosphorylation of perilipin (Plin1). In brown adipocytes indirect evidence support the notion that OPA1 regulation of fission serves to increase thermogenesis, which thereby contributes to dissipation of energy. In white adipocytes, OPA1 located on lipid droplets serves as a gatekeeper to control lipolysis induced by adrenergic agonists. However, the function of OPA1 in lipolysis and thermogenesis in inducible brown adipocytes (brite/beige cells) remains elusive. Here we discuss the role of OPA1 in lipid metabolism.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kjetil Taskén
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
46
|
Crichton PG, Lee Y, Kunji ERS. The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism. Biochimie 2017; 134:35-50. [PMID: 28057583 PMCID: PMC5395090 DOI: 10.1016/j.biochi.2016.12.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/24/2016] [Indexed: 12/14/2022]
Abstract
Uncoupling protein 1 (UCP1) is an integral membrane protein found in the mitochondrial inner membrane of brown adipose tissue, and facilitates the process of non-shivering thermogenesis in mammals. Its activation by fatty acids, which overcomes its inhibition by purine nucleotides, leads to an increase in the proton conductance of the inner mitochondrial membrane, short-circuiting the mitochondrion to produce heat rather than ATP. Despite 40 years of intense research, the underlying molecular mechanism of UCP1 is still under debate. The protein belongs to the mitochondrial carrier family of transporters, which have recently been shown to utilise a domain-based alternating-access mechanism, cycling between a cytoplasmic and matrix state to transport metabolites across the inner membrane. Here, we review the protein properties of UCP1 and compare them to those of mitochondrial carriers. UCP1 has the same structural fold as other mitochondrial carriers and, in contrast to past claims, is a monomer, binding one purine nucleotide and three cardiolipin molecules tightly. The protein has a single substrate binding site, which is similar to those of the dicarboxylate and oxoglutarate carriers, but also contains a proton binding site and several hydrophobic residues. As found in other mitochondrial carriers, UCP1 has two conserved salt bridge networks on either side of the central cavity, which regulate access to the substrate binding site in an alternating way. The conserved domain structures and mobile inter-domain interfaces are consistent with an alternating access mechanism too. In conclusion, UCP1 has retained all of the key features of mitochondrial carriers, indicating that it operates by a conventional carrier-like mechanism.
Collapse
Affiliation(s)
- Paul G Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom.
| | - Yang Lee
- Laboratory of Molecular Biology, Medical Research Council, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Edmund R S Kunji
- Mitochondrial Biology Unit, Medical Research Council, Cambridge Biomedical Campus, Wellcome Trust, MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom.
| |
Collapse
|
47
|
Visavadiya NP, Keasey MP, Razskazovskiy V, Banerjee K, Jia C, Lovins C, Wright GL, Hagg T. Integrin-FAK signaling rapidly and potently promotes mitochondrial function through STAT3. Cell Commun Signal 2016; 14:32. [PMID: 27978828 PMCID: PMC5159999 DOI: 10.1186/s12964-016-0157-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/06/2016] [Indexed: 01/02/2023] Open
Abstract
Background STAT3 is increasingly becoming known for its non-transcriptional regulation of mitochondrial bioenergetic function upon activation of its S727 residue (S727-STAT3). Lengthy mitochondrial dysfunction can lead to cell death. We tested whether an integrin-FAK-STAT3 signaling pathway we recently discovered regulates mitochondrial function and cell survival, and treatments thereof. Methods Cultured mouse brain bEnd5 endothelial cells were treated with integrin, FAK or STAT3 inhibitors, FAK siRNA, as well as integrin and STAT3 activators. STAT3 null cells were transfected with mutant STAT3 plasmids. Outcome measures included oxygen consumption rate for mitochondrial bioenergetics, Western blotting for protein phosphorylation, mitochondrial membrane potential for mitochondrial integrity, ROS production, and cell counts. Results Vitronectin-dependent mitochondrial basal respiration, ATP production, and maximum reserve and respiratory capacities were suppressed within 4 h by RGD and αvβ3 integrin antagonist peptides. Conversely, integrin ligands vitronectin, laminin and fibronectin stimulated mitochondrial function. Pharmacological inhibition of FAK completely abolished mitochondrial function within 4 h while FAK siRNA treatments confirmed the specificity of FAK signaling. WT, but not S727A functionally dead mutant STAT3, rescued bioenergetics in cells made null for STAT3 using CRISPR-Cas9. STAT3 inhibition with stattic in whole cells rapidly reduced mitochondrial function and mitochondrial pS727-STAT3. Stattic treatment of isolated mitochondria did not reduce pS727 whereas more was detected upon phosphatase inhibition. This suggests that S727-STAT3 is activated in the cytoplasm and is short-lived upon translocation to the mitochondria. FAK inhibition reduced pS727-STAT3 within mitochondria and reduced mitochondrial function in a non-transcriptional manner, as shown by co-treatment with actinomycin. Treatment with the small molecule bryostatin-1 or hepatocyte growth factor (HGF), which indirectly activate S727-STAT3, preserved mitochondrial function during FAK inhibition, but failed in the presence of the STAT3 inhibitor. FAK inhibition induced loss of mitochondrial membrane potential, which was counteracted by bryostatin, and increased superoxide and hydrogen peroxide production. Bryostatin and HGF reduced the substantial cell death caused by FAK inhibition over a 24 h period. Conclusion These data suggest that extracellular matrix molecules promote STAT3-dependent mitochondrial function and cell survival through integrin-FAK signaling. We furthermore show a new treatment strategy for cell survival using S727-STAT3 activators.
Collapse
Affiliation(s)
- Nishant P Visavadiya
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Matthew P Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Vladislav Razskazovskiy
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Kalpita Banerjee
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Gary L Wright
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA.
| |
Collapse
|
48
|
Bertholet AM, Kirichok Y. UCP1: A transporter for H + and fatty acid anions. Biochimie 2016; 134:28-34. [PMID: 27984203 DOI: 10.1016/j.biochi.2016.10.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022]
Abstract
Adaptive thermogenesis regulates core body temperature, controls fat deposition, and contributes strongly to the overall energy balance. This process occurs in brown fat and requires uncoupling protein 1 (UCP1), an integral protein of the inner mitochondrial membrane. Classic biochemical studies revealed the general principle of adaptive thermogenesis: in the presence of long-chain fatty acids (FA), UCP1 increases the permeability of the inner mitochondrial membrane for H+, which makes brown fat mitochondria produce heat rather than ATP. However, the exact mechanism by which UCP1 increases the membrane H+ conductance in a FA-dependent manner has remained a fundamental unresolved question. Recently, the patch-clamp technique was successfully applied to the inner mitochondrial membrane of brown fat to directly characterize the H+ currents carried by UCP1. Based on the patch-clamp data, a new model of UCP1 operation was proposed. In brief, FA anions are transport substrates of UCP1, and UCP1 operates as an unusual FA anion/H+ symporter. Interestingly, in contrast to short-chain FA anions, long-chain FA anions cannot easily dissociate from UCP1 due to strong hydrophobic interactions established by their carbon tails, and a single long-chain FA participates in many H+ transport cycles. Therefore, in the presence of long-chain FA, endogenous activators of brown fat thermogenesis, UCP1 effectively operates as an H+ uniport. In addition to their transport function, long-chain FA competitively remove tonic inhibition of UCP1 by cytosolic purine nucleotides, thus enabling activation of the thermogenic H+ leak through UCP1 under physiological conditions.
Collapse
Affiliation(s)
- Ambre M Bertholet
- Department of Physiology, University of California San Francisco, UCSF Mail Code 2140, Genentech Hall Room N272F, 600 16th Street, San Francisco, CA 94158, USA
| | - Yuriy Kirichok
- Department of Physiology, University of California San Francisco, UCSF Mail Code 2140, Genentech Hall Room N272F, 600 16th Street, San Francisco, CA 94158, USA.
| |
Collapse
|
49
|
Abstract
This review focuses on the biochemical work of UCP1 starting from the early observation by Ricquier and Kader in 1976. We entered this field in 1980 with the isolation of native UCP1 and then reported the amino acid sequence structure discovering a strong homology to the ADP/ATP carrier. With the isolated native UCP1 we studied structural and functional features, in particular the complex characteristics of nucleotide binding. A strong pH dependence of binding and herein the differences between diphopho- and triphopho-nucleotides were observed, resulting in the identification of residues which control binding site access by their H+ dissociation. Newly synthesized fluorescent nucleotide derivatives provided tools to determine a two state nucleotide binding in line with loose and tight UCP1 conformations and H+ transport inhibition. The slow transition between these states were a notable feature. The reconstitution of isolated UCP1 in vesicles demonstrated that UCP1 protein is in fact the uncoupling factor and not only a nucleotide controlled regulator. The H+ transport was shown to be electrophoretic with a linear relation to the membrane potential. The dependence of H+ transport on fatty acids (FA) was characterized and is elaborated here with a view of the experimental conditions of other research groups which had different views of the role of FA in H+ transport. Furthermore, to explain the contrast of the FA - nucleotide competition between mitochondria and reconstituted system, indirect paths for FA to relieve the inhibition in mitochondria are here proposed, such as a FA induced upward pH shift and a FA induced increase of cardiolipin level around UCP1 since cardiolipin has been found by us to relieve nucleotide binding on isolated UCP1. Recently reported patch clamp results on mitoplasts led to a reformulation of the H+ transport mechanism of FA in UCP1 in which bound FA shuttles with the carboxyl group between the two membrane sides along the translocation channel outward as FA- and inward as FA-H+. We propose here a modified version, where FA forms an immobile prosthetic group surrounded by the inner and outer gate of the H+ translocation channel. By alternating opening of the gates FA takes up H+ from the cytosol side and releases H+ to the matrix.
Collapse
|
50
|
The conserved regulation of mitochondrial uncoupling proteins: From unicellular eukaryotes to mammals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:21-33. [PMID: 27751905 DOI: 10.1016/j.bbabio.2016.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/29/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022]
Abstract
Uncoupling proteins (UCPs) belong to the mitochondrial anion carrier protein family and mediate regulated proton leak across the inner mitochondrial membrane. Free fatty acids, aldehydes such as hydroxynonenal, and retinoids activate UCPs. However, there are some controversies about the effective action of retinoids and aldehydes alone; thus, only free fatty acids are commonly accepted positive effectors of UCPs. Purine nucleotides such as GTP inhibit UCP-mediated mitochondrial proton leak. In turn, membranous coenzyme Q may play a role as a redox state-dependent metabolic sensor that modulates the complete activation/inhibition of UCPs. Such regulation has been observed for UCPs in microorganisms, plant and animal UCP1 homologues, and UCP1 in mammalian brown adipose tissue. The origin of UCPs is still under debate, but UCP homologues have been identified in all systematic groups of eukaryotes. Despite the differing levels of amino acid/DNA sequence similarities, functional studies in unicellular and multicellular organisms, from amoebae to mammals, suggest that the mechanistic regulation of UCP activity is evolutionarily well conserved. This review focuses on the regulatory feedback loops of UCPs involving free fatty acids, aldehydes, retinoids, purine nucleotides, and coenzyme Q (particularly its reduction level), which may derive from the early stages of evolution as UCP first emerged.
Collapse
|