1
|
Cui S, Ye J. A protein-lipid complex that detoxifies free fatty acids. Bioessays 2023; 45:e2200210. [PMID: 36585363 PMCID: PMC9974861 DOI: 10.1002/bies.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
Fatty acids (FAs) are well known to serve as substrates for reactions that provide cells with membranes and energy. In contrast to these metabolic reactions, the physiological importance of FAs themselves known as free FAs (FFAs) in cells remains obscure. Since accumulation of FFAs in cells is toxic, cells must develop mechanisms to detoxify FFAs. One such mechanism is to sequester free polyunsaturated FAs (PUFAs) into a droplet-like structure assembled by Fas-Associated Factor 1 (FAF1), a cytosolic protein. This sequestration limits access of PUFAs to Fe2+ , thereby preventing Fe2+ -catalyzed PUFA peroxidation. Consequently, assembly of the FAF1-FFA complex is critical to protect cells from ferroptosis, a cell death pathway triggered by PUFA peroxidation. The observations that free PUFAs in cytosol are not randomly diffused but rather sequestered into a membraneless complex should open new directions to explore signaling pathways by which FFAs regulate cellular physiology.
Collapse
Affiliation(s)
- Shaojie Cui
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Cui W, Sathyanarayan A, Lopresti M, Aghajan M, Chen C, Mashek DG. Lipophagy-derived fatty acids undergo extracellular efflux via lysosomal exocytosis. Autophagy 2021; 17:690-705. [PMID: 32070194 PMCID: PMC8032247 DOI: 10.1080/15548627.2020.1728097] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
The autophagic degradation of lipid droplets (LDs), termed lipophagy, is a major mechanism that contributes to lipid turnover in numerous cell types. While numerous factors, including nutrient deprivation or overexpression of PNPLA2/ATGL (patatin-like phospholipase domain containing 2) drive lipophagy, the trafficking of fatty acids (FAs) produced from this pathway is largely unknown. Herein, we show that PNPLA2 and nutrient deprivation promoted the extracellular efflux of FAs. Inhibition of autophagy or lysosomal lipid degradation attenuated FA efflux highlighting a critical role for lipophagy in this process. Rather than direct transport of FAs across the lysosomal membrane, lipophagy-derived FA efflux requires lysosomal fusion to the plasma membrane. The lysosomal Ca2+ channel protein MCOLN1/TRPML1 (mucolipin 1) regulates lysosomal-plasma membrane fusion and its overexpression increased, while inhibition blocked FA efflux. In addition, inhibition of autophagy/lipophagy or MCOLN1, or sequestration of extracellular FAs with BSA attenuated the oxidation and re-esterification of lipophagy-derived FAs. Overall, these studies show that the well-established pathway of lysosomal fusion to the plasma membrane is the primary route for the disposal of FAs derived from lipophagy. Moreover, the efflux of FAs and their reuptake or subsequent extracellular trafficking to adjacent cells may play an important role in cell-to-cell lipid exchange and signaling.Abbreviations: ACTB: beta actin; ADRA1A: adrenergic receptor alpha, 1a; ALB: albumin; ATG5: autophagy related 5; ATG7: autophagy related 7; BafA1: bafilomycin A1; BECN1: beclin 1; BHBA: beta-hydroxybutyrate; BSA: bovine serum albumin; CDH1: e-cadherin; CQ: chloroquine; CTSB: cathepsin B; DGAT: diacylglycerol O-acyltransferase; FA: fatty acid; HFD: high-fat diet; LAMP1: lysosomal-associated membrane protein 1; LD: lipid droplet; LIPA/LAL: lysosomal acid lipase A; LLME: Leu-Leu methyl ester hydrobromide; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MCOLN1/TRPML1: mucolipin 1; MEF: mouse embryo fibroblast; PBS: phosphate-buffered saline; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PLIN: perilipin; PNPLA2/ATGL patatin-like phospholipase domain containing 2; RUBCN (rubicon autophagy regulator); SM: sphingomyelin; TAG: triacylglycerol; TMEM192: transmembrane protein 192; VLDL: very low density lipoprotein.
Collapse
Affiliation(s)
- Wenqi Cui
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Aishwarya Sathyanarayan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Michael Lopresti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | | | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, MN, USA
| | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Hasbargen KB, Shen WJ, Zhang Y, Hou X, Wang W, Shuo Q, Bernlohr DA, Azhar S, Kraemer FB. Slc43a3 is a regulator of free fatty acid flux. J Lipid Res 2020; 61:734-745. [PMID: 32217606 DOI: 10.1194/jlr.ra119000294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/03/2020] [Indexed: 01/21/2023] Open
Abstract
Adipocytes take up long chain FAs through diffusion and protein-mediated transport, whereas FA efflux is considered to occur by diffusion. To identify potential membrane proteins that are involved in regulating FA flux in adipocytes, the expression levels of 55 membrane transporters without known function were screened in subcutaneous adipose samples from obese patients before and after bariatric surgery using branched DNA methodology. Among the 33 solute carrier (SLC) transporter family members screened, the expression of 14 members showed significant changes before and after bariatric surgery. One of them, Slc43a3, increased about 2.5-fold after bariatric surgery. Further investigation demonstrated that Slc43a3 is highly expressed in murine adipose tissue and induced during adipocyte differentiation in primary preadipocytes and in OP9 cells. Knockdown of Slc43a3 with siRNA in differentiated OP9 adipocytes reduced both basal and forskolin-stimulated FA efflux, while also increasing FA uptake and lipid droplet accumulation. In contrast, overexpression of Slc43a3 decreased FA uptake in differentiated OP9 cells and resulted in decreased lipid droplet accumulation. Therefore, Slc43a3 seems to regulate FA flux in adipocytes, functioning as a positive regulator of FA efflux and as a negative regulator of FA uptake.
Collapse
Affiliation(s)
- Kathrin B Hasbargen
- Division of Endocrinology, Gerontology, and Metabolism,Stanford University, Stanford, CA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA; Department of Biochemistry,Changzhi Medical College, ShanXi, China
| | - Wen-Jun Shen
- Division of Endocrinology, Gerontology, and Metabolism,Stanford University, Stanford, CA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Yiqiang Zhang
- Division of Endocrinology, Gerontology, and Metabolism,Stanford University, Stanford, CA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA; Department of Biochemistry,Changzhi Medical College, ShanXi, China
| | - Xiaoming Hou
- Division of Endocrinology, Gerontology, and Metabolism,Stanford University, Stanford, CA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Wei Wang
- Division of Endocrinology, Gerontology, and Metabolism,Stanford University, Stanford, CA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA; Department of Endocrinology,Peking University First Hospital, Beijing, China
| | - Qui Shuo
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics,University of Minnesota, Minneapolis, MN
| | - Salman Azhar
- Division of Endocrinology, Gerontology, and Metabolism,Stanford University, Stanford, CA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology, and Metabolism,Stanford University, Stanford, CA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA; Stanford Diabetes Research Center, Stanford, CA. mailto:
| |
Collapse
|
4
|
Bowers RR, Temkin AM, Guillette LJ, Baatz JE, Spyropoulos DD. The commonly used nonionic surfactant Span 80 has RXRα transactivation activity, which likely increases the obesogenic potential of oil dispersants and food emulsifiers. Gen Comp Endocrinol 2016; 238:61-68. [PMID: 27131391 DOI: 10.1016/j.ygcen.2016.04.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 01/22/2023]
Abstract
Obesity has reached pandemic proportions, and there is mounting evidence that environmental exposures to endocrine disrupting chemicals known as "obesogens" may contribute to obesity and associated medical conditions. The Deepwater Horizon (DWH) oil spill resulted in a massive environmental release of crude oil and remediation efforts applied large quantities of Corexit dispersants to the oil spill. The Corexit-enhanced Water Accommodated Fraction (CWAF) of DWH crude oil contains PPARγ transactivation activity, which is attributed to dioctyl sodium sulfosuccinate (DOSS), a probable obesogen. In addition to its use in oil dispersants, DOSS is commonly used as a stool softener and food additive. Because PPARγ functions as a heterodimer with RXRα to transcriptionally regulate adipogenesis we investigated the potential of CWAF to transactivate RXRα and herein demonstrated that the Corexit component Span 80 has RXRα transactivation activity. Span 80 bound to RXRα in the low micromolar range and promoted adipocyte differentiation of 3T3-L1 preadipocytes. Further, the combination of DOSS and Span 80 increased 3T3-L1 adipocyte differentiation substantially more than treatment with either chemical individually, likely increasing the obesogenic potential of Corexit dispersants. From a public health standpoint, the use of DOSS and Span 80 as food additives heightens concerns regarding their use and mandates further investigations.
Collapse
Affiliation(s)
- Robert R Bowers
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Alexis M Temkin
- Marine Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA
| | - Louis J Guillette
- Marine Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - John E Baatz
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics and Neonatology, Medical University of South Carolina, Charleston, SC, USA
| | - Demetri D Spyropoulos
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Marine Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics and Neonatology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
5
|
Abstract
Obesity and its major comorbidities, including type 2 diabetes mellitus, nonalcoholic fatty liver disease (NAFLD), obesity cardiomyopathy, and certain cancers, have caused life expectancy in the United States to decline in recent years. Obesity is the increased accumulation of triglycerides (TG), which are synthesized from glycerol and long-chain fatty acids (LCFA) throughout the body. LCFA enter adipocytes, hepatocytes, and cardiomyocytes via specific, facilitated transport processes. Metabolism of increased cellular TG content in obesity may lead to comorbidities such as NAFLD and cardiomyopathy. Better understanding of LCFA transport processes may lead to successful treatment of obesity and NAFLD.
Collapse
Affiliation(s)
- Paul D Berk
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia College of Physicians and Surgeons, Columbia University Medical Center, 650 West 168 Street, New York, NY 10032, USA; Division of Preventive Medicine, Department of Medicine, Columbia College of Physicians and Surgeons, Columbia University Medical Center, William Black Building, 650 West 168 Street, Room 1006, Box 57A, New York, NY 10032, USA.
| | - Elizabeth C Verna
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia College of Physicians and Surgeons, Columbia University Medical Center, 650 West 168 Street, New York, NY 10032, USA
| |
Collapse
|
6
|
Rohm B, Riedel A, Ley JP, Widder S, Krammer GE, Somoza V. Capsaicin, nonivamide and trans-pellitorine decrease free fatty acid uptake without TRPV1 activation and increase acetyl-coenzyme A synthetase activity in Caco-2 cells. Food Funct 2014; 6:173-85. [PMID: 25422952 DOI: 10.1039/c4fo00435c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Red pepper and its major pungent component, capsaicin, have been associated with hypolipidemic effects in rats, although mechanistic studies on the effects of capsaicin and/or structurally related compounds on lipid metabolism are scarce. In this work, the effects of capsaicin and its structural analog nonivamide, the aliphatic alkamide trans-pellitorine and vanillin as the basic structural element of all vanilloids on the mechanisms of intestinal fatty acid uptake in differentiated intestinal Caco-2 cells were studied. Capsaicin and nonivamide were found to reduce fatty acid uptake, with IC₅₀ values of 0.49 μM and 1.08 μM, respectively. trans-Pellitorine was shown to reduce fatty acid uptake by 14.0±2.14% at 100 μM, whereas vanillin was not effective, indicating a pivotal role of the alkyl chain with the acid amide group in fatty acid uptake by Caco-2 cells. This effect was associated neither with the activation of the transient receptor potential cation channel subfamily V member 1 (TRPV1) or the epithelial sodium channel (ENaC) nor with effects on paracellular transport or glucose uptake. However, acetyl-coenzyme A synthetase activity increased (p<0.05) in the presence of 10 μM capsaicin, nonivamide or trans-pellitorine, pointing to an increased fatty acid biosynthesis that might counteract the decreased fatty acid uptake.
Collapse
Affiliation(s)
- Barbara Rohm
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The ability of white and brown adipose tissue to efficiently take up long-chain fatty acids is key to their physiological functions in energy storage and thermogenesis, respectively. Several approaches have been taken to determine uptake rates by cultured cells and primary adipocytes including radio- and fluorescently labeled fatty acids. In addition, the recent description of activatable bioluminescent fatty acids has opened the possibility for expanding these in vitro approaches to real-time monitoring of fatty acid uptake kinetics by adipose depots in vivo. Here, we will describe some of the most useful experimental paradigms to quantitatively determine long-chain fatty acid uptake by adipocytes in vitro and provide the reader with detailed instruction on how bioluminescent probes for in vivo imaging can be synthesized and used in living mice.
Collapse
|
8
|
Li Y, Fromme T, Schweizer S, Schöttl T, Klingenspor M. Taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured primary brown and brite/beige adipocytes. EMBO Rep 2014; 15:1069-76. [PMID: 25135951 DOI: 10.15252/embr.201438775] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Thermogenesis in brown adipocytes, conferred by mitochondrial uncoupling protein 1 (UCP1), is receiving great attention because metabolically active brown adipose tissue may protect humans from metabolic diseases. In particular, the thermogenic function of brown-like adipocytes in white adipose tissue, known as brite (or beige) adipocytes, is currently of prime interest. A valid procedure to quantify the specific contribution of UCP1 to thermogenesis is thus of vital importance. Adrenergic stimulation of lipolysis is a common way to activate UCP1. We here report, however, that in this frequently applied setup, taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured brown and brite adipocytes. By the application of these findings, we demonstrate that UCP1 is functionally thermogenic in intact brite adipocytes and adrenergic UCP1 activation is largely dependent on adipose triglyceride lipase (ATGL) rather than hormone sensitive lipase (HSL).
Collapse
Affiliation(s)
- Yongguo Li
- Molecular Nutritional Medicine, Else Kröner Fresenius Center for Nutritional Medicine, Technische Universität München, Freising, Germany
| | - Tobias Fromme
- Molecular Nutritional Medicine, Else Kröner Fresenius Center for Nutritional Medicine, Technische Universität München, Freising, Germany
| | - Sabine Schweizer
- Molecular Nutritional Medicine, Else Kröner Fresenius Center for Nutritional Medicine, Technische Universität München, Freising, Germany
| | - Theresa Schöttl
- Molecular Nutritional Medicine, Else Kröner Fresenius Center for Nutritional Medicine, Technische Universität München, Freising, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner Fresenius Center for Nutritional Medicine, Technische Universität München, Freising, Germany
| |
Collapse
|
9
|
Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 2013; 53:124-44. [PMID: 24362249 DOI: 10.1016/j.plipres.2013.12.001] [Citation(s) in RCA: 500] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022]
Abstract
In mammals, excess energy is stored primarily as triglycerides, which are mobilized when energy demands arise. This review mainly focuses on the role of long chain fatty acids (LCFAs) in regulating energy metabolism as ligands of peroxisome proliferator-activated receptors (PPARs). PPAR-alpha expressed primarily in liver is essential for metabolic adaptation to starvation by inducing genes for beta-oxidation and ketogenesis and by downregulating energy expenditure through fibroblast growth factor 21. PPAR-delta is highly expressed in skeletal muscle and induces genes for LCFA oxidation during fasting and endurance exercise. PPAR-delta also regulates glucose metabolism and mitochondrial biogenesis by inducing FOXO1 and PGC1-alpha. Genes targeted by PPAR-gamma in adipocytes suggest that PPAR-gamma senses incoming non-esterified LCFAs and induces the pathways to store LCFAs as triglycerides. Adiponectin, another important target of PPAR-gamma may act as a spacer between adipocytes to maintain their metabolic activity and insulin sensitivity. Another topic of this review is effects of skin LCFAs on energy metabolism. Specific LCFAs are required for the synthesis of skin lipids, which are essential for water barrier and thermal insulation functions of the skin. Disturbance of skin lipid metabolism often causes apparent resistance to developing obesity at the expense of normal skin function.
Collapse
Affiliation(s)
- Manabu T Nakamura
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA.
| | - Barbara E Yudell
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Juan J Loor
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Suzuki M, Otsuka T, Ohsaki Y, Cheng J, Taniguchi T, Hashimoto H, Taniguchi H, Fujimoto T. Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. Mol Biol Cell 2012; 23:800-10. [PMID: 22238364 PMCID: PMC3290640 DOI: 10.1091/mbc.e11-11-0950] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein B-100 after lipidation is dislocated from the ER lumen to the cytoplasmic surface of lipid droplets for proteasomal degradation. UBXD8 in lipid droplets and Derlin-1 in the ER membrane interact with each other and with ApoB and are engaged in the pre- and postdislocation steps, respectively. Apolipoprotein B-100 (ApoB) is the principal component of very low density lipoprotein. Poorly lipidated nascent ApoB is extracted from the Sec61 translocon and degraded by proteasomes. ApoB lipidated in the endoplasmic reticulum (ER) lumen is also subjected to proteasomal degradation, but where and how it dislocates to the cytoplasm remain unknown. In the present study, we demonstrate that ApoB after lipidation is dislocated to the cytoplasmic surface of lipid droplets (LDs) and accumulates as ubiquitinated ApoB in Huh7 cells. Depletion of UBXD8, which is almost confined to LDs in this cell type, decreases recruitment of p97 to LDs and causes an increase of both ubiquitinated ApoB on the LD surface and lipidated ApoB in the ER lumen. In contrast, abrogation of Derlin-1 function induces an accumulation of lipidated ApoB in the ER lumen but does not increase ubiquitinated ApoB on the LD surface. UBXD8 and Derlin-1 bind with each other and with lipidated ApoB and show colocalization around LDs. These results indicate that ApoB after lipidation is dislocated from the ER lumen to the LD surface for proteasomal degradation and that Derlin-1 and UBXD8 are engaged in the predislocation and postdislocation steps, respectively.
Collapse
Affiliation(s)
- Michitaka Suzuki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chiariello CS, LaComb JF, Bahou WF, Schmidt VA. Ablation of Iqgap2 protects from diet-induced hepatic steatosis due to impaired fatty acid uptake. ACTA ACUST UNITED AC 2011; 173:36-46. [PMID: 21968151 DOI: 10.1016/j.regpep.2011.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 08/07/2011] [Accepted: 09/16/2011] [Indexed: 01/28/2023]
Abstract
UNLABELLED Long-chain fatty acids (LCFA) serve as structural components for membrane biogenesis and as primary energy sources during mitochondrial β-oxidation reactions. Hepatic LCFA uptake is complex, with characteristics suggestive of a dual-kinetic model manifested by rapid (carrier-assisted/facilitated) and delayed (passive diffusional) phases. Our previous work using mice deficient of the Iqgap2 gene established a highly novel link between IQGAP2, a putative GTPase-activating protein, and hepatocarcinogenesis. Now we report that Iqgap2 deficiency also results in selective loss of the facilitated phase of hepatocyte LCFA uptake with preservation of the diffusional component. This molecular defect was seen in Iqgap2(-/-) hepatocytes of all ages studied (1-, 4-, 8-months). The loss of facilitated LCFA uptake protected against development of hepatic triglyceride accumulation in Iqgap2-deficient mice fed high-fat diet, consistent with a fundamental role in physiological fat partitioning. These phenotypic changes could not be explained by genetic loss of fatty acid processing proteins known to regulate lipid uptake or metabolic processing pathways. Iqgap2-deficient livers also displayed enhanced insulin sensitivity. CONCLUSION These observations identify a novel property of the putative GTPase-activating protein IQGAP2 in LCFA uptake in vitro and in vivo, and implicate IQGAP2 in an intracellular signaling pathway necessary for functional fatty acid uptake, lipid processing, and, possibly, glucose homeostasis.
Collapse
|
12
|
Carley AN, Kleinfeld AM. Fatty acid (FFA) transport in cardiomyocytes revealed by imaging unbound FFA is mediated by an FFA pump modulated by the CD36 protein. J Biol Chem 2010; 286:4589-97. [PMID: 21147770 DOI: 10.1074/jbc.m110.182162] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Free fatty acid (FFA) transport across the cardiomyocyte plasma membrane is essential to proper cardiac function, but the role of membrane proteins and FFA metabolism in FFA transport remains unclear. Metabolism is thought to maintain intracellular FFA at low levels, providing the driving force for FFA transport, but intracellular FFA levels have not been measured directly. We report the first measurements of the intracellular unbound FFA concentrations (FFA(i)) in cardiomyocytes. The fluorescent indicator of FFA, ADIFAB (acrylodan-labeled rat intestinal fatty acid-binding protein), was microinjected into isolated cardiomyocytes from wild type (WT) and FAT/CD36 null C57B1/6 mice. Quantitative imaging of ADIFAB fluorescence revealed the time courses of FFA influx and efflux. For WT mice, rate constants for efflux (∼0.02 s(-1)) were twice influx, and steady state FFA(i) were more than 3-fold larger than extracellular unbound FFA (FFA(o)). The concentration gradient and the initial rate of FFA influx saturated with increasing FFA(o). Similar characteristics were observed for oleate, palmitate, and arachidonate. FAT/CD36 null cells revealed similar characteristics, except that efflux was 2-3-fold slower than WT cells. Rate constants determined with intracellular ADIFAB were confirmed by measurements of intracellular pH. FFA uptake by suspensions of cardiomyocytes determined by monitoring FFA(o) using extracellular ADIFAB confirmed the influx rate constants determined from FFA(i) measurements and demonstrated that rates of FFA transport and etomoxir-sensitive metabolism are regulated independently. We conclude that FFA influx in cardiac myocytes is mediated by a membrane pump whose transport rate constants may be modulated by FAT/CD36.
Collapse
Affiliation(s)
- Andrew N Carley
- Torrey Pines Institute for Molecular Studies, San Diego, California 92121, USA
| | | |
Collapse
|
13
|
Trans-Membrane Uptake and Intracellular Metabolism of Fatty Acids in Atlantic Salmon (Salmo salar L.) Hepatocytes. Lipids 2010; 45:301-11. [DOI: 10.1007/s11745-010-3396-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
|
14
|
Glatz JFC, Luiken JJFP, Bonen A. Membrane Fatty Acid Transporters as Regulators of Lipid Metabolism: Implications for Metabolic Disease. Physiol Rev 2010; 90:367-417. [DOI: 10.1152/physrev.00003.2009] [Citation(s) in RCA: 515] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long-chain fatty acids and lipids serve a wide variety of functions in mammalian homeostasis, particularly in the formation and dynamic properties of biological membranes and as fuels for energy production in tissues such as heart and skeletal muscle. On the other hand, long-chain fatty acid metabolites may exert toxic effects on cellular functions and cause cell injury. Therefore, fatty acid uptake into the cell and intracellular handling need to be carefully controlled. In the last few years, our knowledge of the regulation of cellular fatty acid uptake has dramatically increased. Notably, fatty acid uptake was found to occur by a mechanism that resembles that of cellular glucose uptake. Thus, following an acute stimulus, particularly insulin or muscle contraction, specific fatty acid transporters translocate from intracellular stores to the plasma membrane to facilitate fatty acid uptake, just as these same stimuli recruit glucose transporters to increase glucose uptake. This regulatory mechanism is important to clear lipids from the circulation postprandially and to rapidly facilitate substrate provision when the metabolic demands of heart and muscle are increased by contractile activity. Studies in both humans and animal models have implicated fatty acid transporters in the pathogenesis of diseases such as the progression of obesity to insulin resistance and type 2 diabetes. As a result, membrane fatty acid transporters are now being regarded as a promising therapeutic target to redirect lipid fluxes in the body in an organ-specific fashion.
Collapse
Affiliation(s)
- Jan F. C. Glatz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Joost J. F. P. Luiken
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Arend Bonen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
15
|
Walewski JL, Ge F, Gagner M, Inabnet WB, Pomp A, Branch AD, Berk PD. Adipocyte accumulation of long-chain fatty acids in obesity is multifactorial, resulting from increased fatty acid uptake and decreased activity of genes involved in fat utilization. Obes Surg 2009; 20:93-107. [PMID: 19866242 DOI: 10.1007/s11695-009-0002-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 10/06/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND The obesity epidemic causes significant morbidity and mortality. Knowledge of cellular function and gene expression in obese adipose tissue will yield insights into obesity pathogenesis and suggest therapeutic targets. The aim of this work is to study the processes determining fat accumulation in adipose tissue from obese patients. METHODS Omental fat was collected from two cohorts of obese bariatric surgery patients and sex-matched normal-weight donors. Isolated adipocytes were compared for cell size, volume, and long-chain fatty acid (LCFA) uptake. Omental fat RNAs were screened by 10K microarray (cohort 1: three obese, three normal) or Whole Genome microarray (cohort 2: seven obese, four normal). Statistical differences in gene and pathway expression were identified in cohort 1 using the GeneSifter Software (Geospiza) with key results confirmed in cohort 2 samples by microarray, quantitative real-time polymerase chain reaction, and pathway analysis. RESULTS Obese omental adipocytes had increased surface area, volume, and V (max) for saturable LCFA uptake. Dodecenoyl-coenzyme A delta isomerase, central to LCFA metabolism, was approximately 1.6-fold underexpressed in obese fat in cohorts 1 and 2. Additionally, the Kyoto Encyclopedia of Genes and Genomics pathway analysis identified oxidative phosphorylation and fatty acid metabolism pathways as having coordinate, nonrandom downregulation of gene expression in both cohorts. CONCLUSIONS In obese omental fat, saturable adipocyte LCFA uptake was greater than in controls, and expression of key genes involved in lipolysis, beta-oxidation, and metabolism of fatty acids was reduced. Thus, both increased uptake and reduced metabolism of LCFAs contribute to the accumulation of LCFAs in obese adipocytes.
Collapse
Affiliation(s)
- José L Walewski
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Carley AN, Kleinfeld AM. Flip-Flop Is the Rate-Limiting Step for Transport of Free Fatty Acids across Lipid Vesicle Membranes. Biochemistry 2009; 48:10437-45. [DOI: 10.1021/bi901318a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew N. Carley
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, California 92121
| | - Alan M. Kleinfeld
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, California 92121
| |
Collapse
|
17
|
Wiczer BM, Lobo S, Machen GL, Graves LM, Bernlohr DA. FATP1 mediates fatty acid-induced activation of AMPK in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2009; 387:234-8. [DOI: 10.1016/j.bbrc.2009.06.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
|
18
|
Wiczer BM, Bernlohr DA. A novel role for fatty acid transport protein 1 in the regulation of tricarboxylic acid cycle and mitochondrial function in 3T3-L1 adipocytes. J Lipid Res 2009; 50:2502-13. [PMID: 19535819 DOI: 10.1194/jlr.m900218-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fatty acid transport proteins (FATPs) are integral membrane acyl-CoA synthetases implicated in adipocyte fatty acid influx and esterification. Whereas some FATP1 translocates to the plasma membrane in response to insulin, the majority of FATP1 remains within intracellular structures and bioinformatic and immunofluorescence analysis of FATP1 suggests the protein primarily resides in the mitochondrion. To evaluate potential roles for FATP1 in mitochondrial metabolism, we used a proteomic approach following immunoprecipitation of endogenous FATP1 from 3T3-L1 adipocytes and identified mitochondrial 2-oxoglutarate dehydrogenase. To assess the functional consequence of the interaction, purified FATP1 was reconstituted into phospholipid-containing vesicles and its effect on 2-oxoglutarate dehydrogenase activity evaluated. FATP1 enhanced the activity of 2-oxoglutarate dehydrogenase independently of its acyl-CoA synthetase activity whereas silencing of FATP1 in 3T3-L1 adipocytes resulted in decreased activity of 2-oxoglutarate dehydrogenase. FATP1 silenced 3T3-L1 adipocytes exhibited decreased tricarboxylic acid cycle activity, increased cellular NAD(+)/NADH, increased fatty acid oxidation, and increased lactate production indicative of altered mitochondrial energy metabolism. These results reveal a novel role for FATP1 as a regulator of tricarboxylic acid cycle activity and mitochondrial function.
Collapse
Affiliation(s)
- Brian M Wiczer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
19
|
Arcisio-Miranda M, Abdulkader F, Brunaldi K, Curi R, Procopio J. Proton flux induced by free fatty acids across phospholipid bilayers: New evidences based on short-circuit measurements in planar lipid membranes. Arch Biochem Biophys 2009; 484:63-9. [DOI: 10.1016/j.abb.2009.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/29/2008] [Accepted: 01/20/2009] [Indexed: 01/27/2023]
|
20
|
Holloway GP, Luiken JJFP, Glatz JFC, Spriet LL, Bonen A. Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation: an overview. Acta Physiol (Oxf) 2008; 194:293-309. [PMID: 18510711 DOI: 10.1111/j.1748-1716.2008.01878.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long chain fatty acids (LCFAs) are an important substrate for ATP production within the skeletal muscle. The process of LCFA delivery from adipose tissue to muscle mitochondria involves many regulatory steps. Recently, it has been recognized that LCFA oxidation is not only dependent on LCFA delivery to the muscle, but also on regulatory steps within the muscle. Increasing selected fatty acid binding proteins/transporters on the plasma membrane facilitates a very rapid LCFA increase into the muscle, independent of any changes in LCFA delivery to the muscle. Such a mechanism of LCFA transporter translocation is activated by muscle contraction. Intramuscular triacylglycerols may also be hydrolysed to provide fatty acids for mitochondrial oxidation, particularly during exercise, when hormone-sensitive lipase and other enzymes are activated. Mitochondrial LCFA entry is also highly regulated. This however does not involve only the malonyl CoA carnitine palmitoyltransferase-I (CPTI) axis. Exercise-induced fatty acid entry into mitochondria is also regulated by at least one of the proteins (FAT/CD36) that also regulates plasma membrane fatty acid transport. Among individuals, differences in mitochondrial fatty acid oxidation appear to be correlated with the content of mitochondrial CPTI and FAT/CD36. This paper provides a brief overview of mechanisms that regulate LCFA uptake and oxidation in skeletal muscle during exercise and in obesity. We focus largely on our own work on FAT/CD36, which contributes to regulating, in a coordinated fashion, LCFA uptake across the plasma membrane and the mitochondrial membrane. Very little is known about the roles of FATP1-6 on fatty acid transport in skeletal muscle.
Collapse
Affiliation(s)
- G P Holloway
- Department of Human Health and Nutritional Sciences University of Guelph, Guelph, ON, Canada
| | | | | | | | | |
Collapse
|
21
|
Berk PD. Regulatable fatty acid transport mechanisms are central to the pathophysiology of obesity, fatty liver, and metabolic syndrome. Hepatology 2008; 48:1362-76. [PMID: 18972439 PMCID: PMC2956590 DOI: 10.1002/hep.22632] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Paul D Berk
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
22
|
Acyl-CoA-binding protein (ACBP) localizes to the endoplasmic reticulum and Golgi in a ligand-dependent manner in mammalian cells. Biochem J 2008; 410:463-72. [PMID: 17953517 DOI: 10.1042/bj20070559] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, we microinjected fluorescently labelled liver bovine ACBP (acyl-CoA-binding protein) [FACI-50 (fluorescent acyl-CoA indicator-50)] into HeLa and BMGE (bovine mammary gland epithelial) cell lines to characterize the localization and dynamics of ACBP in living cells. Results showed that ACBP targeted to the ER (endoplasmic reticulum) and Golgi in a ligand-binding-dependent manner. A variant Y28F/K32A-FACI-50, which is unable to bind acyl-CoA, did no longer show association with the ER and became segregated from the Golgi, as analysed by intensity correlation calculations. Depletion of fatty acids from cells by addition of FAFBSA (fatty-acid-free BSA) significantly decreased FACI-50 association with the Golgi, whereas fatty acid overloading increased Golgi association, strongly supporting that ACBP associates with the Golgi in a ligand-dependent manner. FRAP (fluorescence recovery after photobleaching) showed that the fatty-acid-induced targeting of FACI-50 to the Golgi resulted in a 5-fold reduction in FACI-50 mobility. We suggest that ACBP is targeted to the ER and Golgi in a ligand-binding-dependent manner in living cells and propose that ACBP may be involved in vesicular trafficking.
Collapse
|
23
|
Nickerson JG, Momken I, Benton CR, Lally J, Holloway GP, Han XX, Glatz JFC, Chabowski A, Luiken JJFP, Bonen A. Protein-mediated fatty acid uptake: regulation by contraction, AMP-activated protein kinase, and endocrine signals. Appl Physiol Nutr Metab 2008; 32:865-73. [PMID: 18059611 DOI: 10.1139/h07-084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid transport into heart and skeletal muscle occurs largely through a highly regulated protein-mediated mechanism involving a number of fatty acid transporters. Chronically altered muscle activity (chronic muscle stimulation, denervation) alters fatty acid transport by altering the expression of fatty acid transporters and (or) their subcellular location. Chronic exposure to leptin downregulates while insulin upregulates fatty acid transport by altering concomitantly the expression of fatty acid transporters. Fatty acid transport can also be regulated within minutes, by muscle contraction, AMP-activated protein kinase activation, leptin, and insulin, through induction of the translocation of fatty acid translocase (FAT)/CD36 from its intracellular depot to the plasma membrane. In insulin-resistant muscle, a permanent relocation of FAT/CD36 to the sarcolemma appears to account for the excess accretion of intracellular lipids that interfere with insulin signaling. Recent work has also shown that FAT/ CD36, but not plasma membrane associated fatty acid binding protein, is involved, along with carnitine palmitoyltransferase, in regulating mitochondrial fatty acid oxidation. Finally, studies in FAT/CD36 null mice indicate that this transporter has a key role in regulating fatty acid metabolism in muscle.
Collapse
Affiliation(s)
- James G Nickerson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Differences in adipocyte long chain fatty acid uptake in Osborne-Mendel and S5B/Pl rats in response to high-fat diets. Int J Obes (Lond) 2008; 32:853-62. [PMID: 18197182 DOI: 10.1038/sj.ijo.0803792] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To determine whether strain differences in adipocyte uptake of long chain fatty acids (LCFAs) contribute to differences in weight gain by Osborne-Mendel (OM) and S5B/Pl rats (S) fed a high-fat diet (HFD). SUBJECTS Ninety-four adult (12-14-week old) male OM and S rats. MEASUREMENTS Body weight; epididymal fat pad weight; adipocyte size, number, LCFA uptake kinetics; and plasma insulin and leptin during administration of HFD or chow diets (CDs). RESULTS In both strains, rate of weight gain (RWG) was greater on an HFD than a CD; RWG on an HFD was greater, overall, in OM than S. A significant RWG increase occurred on days 1 and 2 in both strains. It was normalized in S by days 6-9 but persisted at least till day 14 in OM. RWGs were significantly correlated (P<0.001) with the V(max) for saturable adipocyte LCFA uptake (V(max)). In S, an increase in V(max) on day 1 returned to baseline by day 7 and was correlated with both plasma insulin and leptin levels throughout. In OM, a greater increase in V(max) was evident by day 2, and persisted for at least 14 days, during which both insulin and leptin levels remained elevated. Growth in epididymal fat pads on the HFD correlated with body weight, reflecting hypertrophy in OM and both hypertrophy and hyperplasia in S. CONCLUSIONS (a) Changes in V(max) contribute significantly to changes in RWG on HFDs. (b) There are important strain differences in circulating insulin and leptin responses to an HFD. (c) Both insulin and leptin responses to an HFD are closely correlated with V(max) of adipocyte fatty acid uptake in S animals, but suggest early onset of insulin resistance in OM. Thus, differences in hormonal regulation of adipocyte LCFA uptake may underlie the different responses of OM and S to HFD.
Collapse
|
25
|
Acrylodan-labeled intestinal fatty acid-binding protein to measure concentrations of unbound fatty acids. Methods Mol Biol 2007; 400:27-43. [PMID: 17951725 DOI: 10.1007/978-1-59745-519-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The concentration of long-chain (14-18 carbons) fatty acids (FA) free in solution (unbound) is difficult to measure directly because of the low aqueous solubility of these common dietary FA. One indirect and convenient way to measure the concentration of unbound FA is a method using the fluorescent-(acrylodan) labeled intestinal FA-binding protein (ADIFAB). Under appropriate conditions, ADIFAB fluorescence measures unbound FA, regardless of any third phase such as albumin, FA-binding proteins, or membranes. With knowledge of the total amount of FA in the system and the assumption that the amount of FA bound to ADIFAB is negligible, equilibrium constants or partition coefficients for FA in equilibrium with the third phase can be calculated. Herein, the use of ADIFAB is described to measure unbound FA concentration using oleic acid as a typical long-chain FA. Attempts were not made to calibrate the accuracy of ADIFAB for FA concentration, but to investigate its reliability and reproducibility under differing buffer conditions. It is shown that ADIFAB fluorescence is sensitive to biologically prevalent ions and that calibration curves must be constructed for conditions that do not closely match those previously published. The results with in vitro systems suggest that there will be caveats with the application of ADIFAB to measure FA concentrations in vivo, where the precise environment of the probe is not known or cannot be tightly controlled.
Collapse
|
26
|
Kampf JP, Parmley D, Kleinfeld AM. Free fatty acid transport across adipocytes is mediated by an unknown membrane protein pump. Am J Physiol Endocrinol Metab 2007; 293:E1207-14. [PMID: 17711989 DOI: 10.1152/ajpendo.00259.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of cell membranes in regulating the flux of long chain free fatty acids (FFA) into and out of adipocytes is intensely debated. Four different membrane proteins including, FABPpm, CD36/FAT, caveolin-1, and FATP have been identified as facilitating FFA transport. Moreover, CD36 and caveolin-1 are also reported to mediate transport in conjunction with lipid rafts. The principal evidence for these findings is a correlation of the level of FFA uptake with the expression level of these proteins and with the integrity of lipid rafts. The 3T3-L1 and 3T3-F442A cell lines in their preadipocyte states reveal little or no expression of these proteins and correspondingly low levels of uptake. Here we have microinjected the adipocyte and preadipocyte cell lines with ADIFAB, the fluorescent indicator of FFA. The ADIFAB fluorescence allowed us to monitor the intracellular unbound FFA concentration during FFA influx and efflux. We show that these measurements of transport, in contrast to FFA uptake measurements, correlate neither with expression of these proteins nor with lipid raft integrity in preadipocytes and adipocytes. Transport characteristics, including the generation of an ATP-dependent FFA concentration gradient, are virtually identical in adipocytes and preadipocytes. We suggest that the origin of the discrepancy between uptake and our measurements is that most of the FFA transported into the cells is lost during the uptake but not in the transport protocols. We conclude that long chain fatty acid transport in adipocytes is very likely mediated by an as-yet-unidentified membrane protein pump.
Collapse
Affiliation(s)
- J Patrick Kampf
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | | | | |
Collapse
|
27
|
Chabowski A, Górski J, Luiken JJFP, Glatz JFC, Bonen A. Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins Leukot Essent Fatty Acids 2007; 77:345-53. [PMID: 18240411 DOI: 10.1016/j.plefa.2007.10.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is substantial molecular, biochemical and physiologic evidence that long-chain fatty acid transport involves a protein-mediated process. A number of fatty acid transport proteins have been identified, and for unknown reasons, some of these are coexpressed in the same tissues. In muscle and heart FAT/CD36 and FABPpm appear to be key transporters. Both proteins are regulated acutely (within minutes) and chronically (hours to days) by selected physiologic stimuli (insulin, AMP kinase activation). Acute regulation involves the translocation of FAT/CD36 by insulin, muscle contraction and AMP kinase activation, while FABPpm is induced to translocate by muscle contraction and AMP kinase activation, but not by insulin. Protein expression ofFAT/CD36 and FABPpm is regulated by prolonged AMP kinase activation (heart) or increased muscle contraction. Prolonged insulin exposure increases the expression of FAT/CD36 but not FABPpm. Trafficking of fatty acid transporters between an intracellular compartment(s) and the plasma membrane is altered in insulin-resistant skeletal muscle, as some FAT/CD36 is permanently relocated to plasma membrane, thereby contributing to insulin resistance due to the increased influx of fatty acids into muscle cells. Studies in FAT/CD36 null mice have revealed that this transporter is key to regulating the increase in the rate of fatty acid metabolism in heart and skeletal muscle. It appears based on a number of experiments that FAT/CD36 and FABPpm may collaborate to increase the rates of fatty acid transport, as these proteins co-immunoprecipitate.
Collapse
Affiliation(s)
- Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | | | | | | | |
Collapse
|
28
|
Bonen A, Chabowski A, Luiken JJFP, Glatz JFC. Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical, and physiological evidence. Physiology (Bethesda) 2007; 22:15-29. [PMID: 17342856 DOI: 10.1152/physiologyonline.2007.22.1.15] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | |
Collapse
|
29
|
Lechene C, Hillion F, McMahon G, Benson D, Kleinfeld AM, Kampf JP, Distel D, Luyten Y, Bonventre J, Hentschel D, Park KM, Ito S, Schwartz M, Benichou G, Slodzian G. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 2007; 5:20. [PMID: 17010211 PMCID: PMC1781526 DOI: 10.1186/jbiol42] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 04/21/2006] [Accepted: 05/11/2006] [Indexed: 11/28/2022] Open
Abstract
Background Secondary-ion mass spectrometry (SIMS) is an important tool for investigating isotopic composition in the chemical and materials sciences, but its use in biology has been limited by technical considerations. Multi-isotope imaging mass spectrometry (MIMS), which combines a new generation of SIMS instrument with sophisticated ion optics, labeling with stable isotopes, and quantitative image-analysis software, was developed to study biological materials. Results The new instrument allows the production of mass images of high lateral resolution (down to 33 nm), as well as the counting or imaging of several isotopes simultaneously. As MIMS can distinguish between ions of very similar mass, such as 12C15N- and 13C14N-, it enables the precise and reproducible measurement of isotope ratios, and thus of the levels of enrichment in specific isotopic labels, within volumes of less than a cubic micrometer. The sensitivity of MIMS is at least 1,000 times that of 14C autoradiography. The depth resolution can be smaller than 1 nm because only a few atomic layers are needed to create an atomic mass image. We illustrate the use of MIMS to image unlabeled mammalian cultured cells and tissue sections; to analyze fatty-acid transport in adipocyte lipid droplets using 13C-oleic acid; to examine nitrogen fixation in bacteria using 15N gaseous nitrogen; to measure levels of protein renewal in the cochlea and in post-ischemic kidney cells using 15N-leucine; to study DNA and RNA co-distribution and uridine incorporation in the nucleolus using 15N-uridine and 81Br of bromodeoxyuridine or 14C-thymidine; to reveal domains in cultured endothelial cells using the native isotopes 12C, 16O, 14N and 31P; and to track a few 15N-labeled donor spleen cells in the lymph nodes of the host mouse. Conclusion MIMS makes it possible for the first time to both image and quantify molecules labeled with stable or radioactive isotopes within subcellular compartments.
Collapse
Affiliation(s)
- Claude Lechene
- National Resource for Imaging Mass Spectrometry, Harvard Medical School and Department of Medicine, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Francois Hillion
- Cameca, 29 Quai des Gresillons, 92622 Gennevilliers Cedex, France
| | - Greg McMahon
- National Resource for Imaging Mass Spectrometry, Harvard Medical School and Department of Medicine, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | | | - Alan M Kleinfeld
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - J Patrick Kampf
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Daniel Distel
- Ocean Genome Legacy Foundation, Ipswich, MA 01938, USA
| | - Yvette Luyten
- Ocean Genome Legacy Foundation, Ipswich, MA 01938, USA
| | - Joseph Bonventre
- Harvard Medical School and Renal Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Dirk Hentschel
- Harvard Medical School and Renal Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kwon Moo Park
- Harvard Medical School and Renal Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Susumu Ito
- Harvard Medical School, Boston, MA 02115, USA
| | - Martin Schwartz
- Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Gilles Benichou
- Harvard Medical School and Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Georges Slodzian
- Universite Paris-Sud, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, 91406 Orsay, France
| |
Collapse
|
30
|
Kampf JP, Kleinfeld AM. Is Membrane Transport of FFA Mediated by Lipid, Protein, or Both? Physiology (Bethesda) 2007; 22:7-14. [PMID: 17289927 DOI: 10.1152/physiol.00011.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- J Patrick Kampf
- Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | | |
Collapse
|
31
|
Huber AH, Kampf JP, Kwan T, Zhu B, Kleinfeld AM. Fatty acid-specific fluorescent probes and their use in resolving mixtures of unbound free fatty acids in equilibrium with albumin. Biochemistry 2007; 45:14263-74. [PMID: 17128966 PMCID: PMC2519108 DOI: 10.1021/bi060703e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the first measurements for profiling mixtures of unbound free fatty acids. Measurements utilized fluorescent probes with distinctly different response profiles for different free fatty acids (FFA). These probes were constructed by labeling site-specific mutants of the rat intestinal fatty acid binding protein (rI-FABP) with acrylodan. The probes were produced and screened by high-throughput methods, and from more than 30 000 such probes we selected six that together have sufficient specificity and sensitivity for resolving the profile of unbound FFA (FFAu) in mixtures of different FFAu. We developed analytical methods to determine the FFAu profile from the fluorescence (ratio) response of the different probes and used these methods to determine FFAu profiles for mixtures of arachidonate, linoleate, oleate, palmitate, and stearate in equilibrium with bovine serum albumin (BSA). Measurements were performed using mixtures with a range of total FFAu concentrations, including 0.9 nM, which is similar to normal plasma levels. We also measured single FFA binding isotherms for BSA and found that binding was described well by six to seven sites with the same binding constants (Kd). The Kd values for the FFA (4-38 nM) were inversely related to the aqueous solubility of the FFA. We constructed a model with these parameters to predict the FFAu profile in equilibrium with BSA and found excellent agreement between the profiles measured using the FFA probes and those calculated with this model. These results should lead to a better understanding of albumin's role in buffering FFAu and to profiling FFAu in intra- and extracellular biological fluids.
Collapse
Affiliation(s)
| | | | | | | | - Alan M. Kleinfeld
- FFA Sciences LLC
- Torrey Pines Institute for Molecular Studies
- Please send correspondence to Alan M. Kleinfeld, Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121. TEL: 858-455-3724, FAX:858-455-3792,
| |
Collapse
|
32
|
Kampf JP, Cupp D, Kleinfeld AM. Different Mechanisms of Free Fatty Acid Flip-Flop and Dissociation Revealed by Temperature and Molecular Species Dependence of Transport across Lipid Vesicles. J Biol Chem 2006; 281:21566-21574. [PMID: 16737957 DOI: 10.1074/jbc.m602067200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of free fatty acid (FFA) transport across membranes is a subject of intense investigation. We have demonstrated recently that flip-flop is the rate-limiting step for transport of oleic acid across phospholipid vesicles (Cupp, D., Kampf, J. P., and Kleinfeld, A. M. (2004) Biochemistry 43, 4473-4481). To better understand the nature of the flip-flop barrier, we measured the temperature dependence of a series of saturated and monounsaturated FFA. We determined the rate constants for flip-flop and dissociation for small (SUV), large (LUV), and giant (GUV) unilamellar vesicles composed of egg phosphatidylcholine. For all FFA and vesicle types, dissociation was faster than flip-flop, and for all FFA, flip-flop and dissociation were faster in SUV than in LUV or GUV. Rate constants for both flip-flop and dissociation decreased exponentially with increasing FFA size. However, only the flip-flop rate constants increased significantly with temperature; the barrier to flip-flop was virtually entirely due to an enthalpic activation free energy. The barrier to dissociation was primarily entropic. Analysis in terms of a simple free volume (V(f)) model revealed V(f) values for flip-flop that ranged between approximately 12 and 15 Angstroms(3), with larger values for SUV than for LUV or GUV. V(f) values increased with temperature, and this temperature dependence generated the enthalpic barrier to flip-flop. The barrier for dissociation and its size dependence primarily reflect the aqueous solubility of FFA. These are the first results to distinguish the energetics of flipflop and dissociation. This should lead to a better understanding of the mechanisms governing FFA transport across biological membranes.
Collapse
Affiliation(s)
- J Patrick Kampf
- Torrey Pines Institute for Molecular Studies, San Diego, California 92121
| | - David Cupp
- Torrey Pines Institute for Molecular Studies, San Diego, California 92121
| | - Alan M Kleinfeld
- Torrey Pines Institute for Molecular Studies, San Diego, California 92121.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The aim of this review is to highlight the importance of fatty acid metabolism as a major determinant in fatty acid uptake. In particular, we emphasize how the activation, intracellular transport and downstream metabolism of fatty acids influence their uptake into cells. RECENT FINDINGS Studies examining fatty acid entry into cells have focused primarily on the roles of plasma membrane proteins or the question of passive diffusion. Recent studies, however, strongly suggest that a driving force governing fatty acid uptake is the metabolic demand for fatty acids. Both gain and loss-of-function experiments indicate that fatty acid uptake can be modulated by activation at both the plasma membrane and internal sites, by intracellular fatty acid binding proteins, and by enzymes in synthetic or degradative metabolic pathways. Although the mechanism is not known, it appears that converting fatty acids to acyl-CoAs and downstream metabolic intermediates increases cellular fatty acid uptake, probably by limiting efflux. SUMMARY Altered fatty acid metabolism and the accumulation of triacylglycerol and lipid metabolites has been strongly associated with insulin resistance and diabetes, but we do not fully understand how the entry of fatty acids into cells is regulated. Future studies of cellular fatty acid uptake should consider the influence of fatty acid metabolism and the possible interactions between fatty acid metabolism or metabolites and fatty acid transport proteins.
Collapse
Affiliation(s)
- Douglas G Mashek
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
34
|
Meshulam T, Simard JR, Wharton J, Hamilton JA, Pilch PF. Role of caveolin-1 and cholesterol in transmembrane fatty acid movement. Biochemistry 2006; 45:2882-93. [PMID: 16503643 DOI: 10.1021/bi051999b] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have created by transfection a series of HEK 293 cell lines that express varying amounts of caveolin-1 to test the possible effect of this protein on the transport and metabolism of long chain fatty acids (FA) in cells with this gain of function. We used an extracellular fluorescent probe (ADIFAB) to monitor binding of exogenous FA to the plasma membrane and an intracellular pH probe to monitor FA equilibration across the plasma membrane. Real-time fluorescence measurements showed rapid binding of oleic acid to the extracellular side of the plasma membrane and a rapid translocation across the lipid bilayer by the flip-flop mechanism (<5 s). Two cell lines expressing levels of caveolin-1 roughly comparable to that of adipocytes, which have a very high level of endogenous expression of caveolin-1, showed a relatively slow change in intracellular pH (t(1/2) < 100 s) in addition to the fast changes in fluorescence. We interpret this additional second phase to represent translocation of additional FA from the outer to inner leaflet of the plasma membrane. The slower kinetics could represent either slower flip-flop of FA across highly organized, rigid regions of the plasma membrane or binding of FA to caveolin-1 in the intracellular leaflet of the plasma membrane. The kinetics of palmitate and elaidate (a trans FA) transmembrane movement were identical to that for oleate. These results were observed in the absence of the putative FA transport protein, CD36, and in the absence of any changes in expression of fatty acid transport proteins (FATP) 2 and 4, and are in direct correlation with increased cellular free cholesterol content. FA metabolism was slow in all cell lines and was not enhanced by caveolin-1 expression. We conclude that transport of FA across the plasma membrane is modulated by caveolin-1 and cholesterol and is not dependent on the putative FA transport proteins CD36 and FATP.
Collapse
Affiliation(s)
- Tova Meshulam
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
35
|
Hirabara SM, Silveira LR, Abdulkader F, Carvalho CRO, Procopio J, Curi R. Time-dependent effects of fatty acids on skeletal muscle metabolism. J Cell Physiol 2006; 210:7-15. [PMID: 17013887 DOI: 10.1002/jcp.20811] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as type 2 diabetes mellitus, obesity, and metabolic syndrome. These high levels of plasma FFA seem to play an important role for the development of insulin resistance but the mechanisms involved are not known. We demonstrated that acute exposure to FFA (1 h) in rat incubated skeletal muscle leads to an increase in the insulin-stimulated glycogen synthesis and glucose oxidation. In conditions of prolonged exposure to FFA, however, the insulin-stimulated glucose uptake and metabolism is impaired in skeletal muscle. In this review, we discuss the differences between the effects of acute and prolonged exposure to FFA on skeletal muscle glucose metabolism and the possible mechanisms involved in the FFA-induced insulin resistance.
Collapse
Affiliation(s)
- Sandro M Hirabara
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Fatty acid and triacylglycerol metabolism in adipose tissue may be involved in the generation of risk factors for cardiovascular disease and type 2 diabetes. Pharmaceutical companies are targeting adipocyte metabolism in their search for drugs for treating, or reducing the risk of, these conditions. We review new developments in adipose tissue fatty acid metabolism and how that might relate to cardiovascular disease. RECENT FINDINGS Fatty acid release from human adipose tissue is oscillatory, with a period of about 12 min. Remarkably, oscillatory fatty acid release is also seen in isolated adipocytes. Further evidence has emerged that not all adipose depots are equal, and that lower-body adipose tissue may exert protective effects against cardiovascular disease. There have been a number of developments in the area of fatty acid handling by adipocytes. Fatty acid binding proteins are clearly important in regulating fatty acid metabolism, with striking protection against atherosclerosis in mice deficient in both the binding proteins expressed in adipocytes. The demonstration that adipocytes lacking hormone-sensitive lipase still display lipolysis has led to the identification of novel lipases that may play crucial roles in adipose tissue fatty acid metabolism. Further evidence has accrued of the interaction between hormone-sensitive lipase and perilipin, the protein that coats the adipocyte lipid droplet. SUMMARY Recent developments in our understanding of adipose tissue fatty acid metabolism open up the possibility of new pharmaceutical targets. However, interference with adipose tissue fatty acid metabolism is not to be undertaken lightly and needs a clear understanding of the normal role of adipocyte lipolysis.
Collapse
Affiliation(s)
- Keith N Frayn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, UK.
| | | | | |
Collapse
|
37
|
Kleinfeld AM, Okada C. Free fatty acid release from human breast cancer tissue inhibits cytotoxic T-lymphocyte-mediated killing. J Lipid Res 2005; 46:1983-90. [PMID: 15961785 DOI: 10.1194/jlr.m500151-jlr200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Immune-mediated antitumor activities confront a variety of tumor-mediated defense mechanisms. Here, we describe a new mechanism involving FFA that may allow breast cancer to evade immune clearance. We determined the IC50 at which unbound free fatty acids (FFA(u)) inhibit murine cytotoxic T-lymphocyte (CTL)-mediated killing to assess the physiologic relevance of this phenomenon. We found that the IC50 for unbound oleate is 125 +/- 30 nM, approximately 200-fold greater than normal plasma levels. FFA inhibition, however, may play an important role in breast cancer because we found that large quantities of FFAs are released constitutively into the media surrounding samples of human breast cancer but not normal or benign tissue. FFA(u) concentration ([FFA(u)]) increased to at least 25 nM in 20 of 22 cancer tissue samples and exceeded 100 nM in 11 patients. Media from these samples inhibited CTL-mediated killing. Extrapolation from our in vitro conditions suggests that for tumor interstitial fluid, in vivo [FFA(u)] may be 300-fold greater than we observed in vitro. Although breast cancer release of FFA may suppress effector cell antitumor activity, strategies that reduce interstitial [FFA(u)] may significantly improve antitumor immune therapies.
Collapse
Affiliation(s)
- Alan M Kleinfeld
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA.
| | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Disturbed fatty acid metabolism and homeostasis is associated with insulin resistance. The aim of this review, therefore, is to summarize recent developments relating to the relevance and importance of the fatty acid transport proteins (FATPs) in the aetiology of insulin resistance. In particular, the potential differences between the six members of the FATP family will be considered. RECENT FINDINGS FATP1 knockout mice failed to develop insulin resistance associated with lipid infusion or a high-fat diet, as wild-type mice did. FATP1-mediated fatty acid uptake may cause intramuscular lipid accumulation leading to insulin resistance in muscle if the fatty acids are not oxidized. While mouse models demonstrated an absolute requirement for FATP4 for survival, they provided no direct evidence for a role of FATP4 in insulin resistance. However, expression of FATP4 in human adipose tissue was increased in obesity (independent of genetic factors). While other members of the FATP family have important roles in fatty acid metabolism, they have not been clearly linked to insulin resistance. FATP-mediated fatty acid uptake may be driven by intrinsic acyl-CoA synthase activity. SUMMARY Any role in the development of insulin resistance is likely to be different for each member of the FATP family. So far, both FATP1 and FATP4 have been associated with parameters related to insulin resistance. Whether increased FATP-mediated fatty acid uptake is beneficial or detrimental may be dependent on the tissue in question and on the subsequent fate of the fatty acids. These issues remain to be resolved.
Collapse
Affiliation(s)
- Rachel M Fisher
- Atherosclerosis Research Unit, King Gustaf V Research Institute, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
39
|
DiRusso CC, Li H, Darwis D, Watkins PA, Berger J, Black PN. Comparative Biochemical Studies of the Murine Fatty Acid Transport Proteins (FATP) Expressed in Yeast. J Biol Chem 2005; 280:16829-37. [PMID: 15699031 DOI: 10.1074/jbc.m409598200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fatty acid transport protein (FATP) family is a group of proteins that are predicted to be components of specific fatty acid trafficking pathways. In mammalian systems, six different isoforms have been identified, which function in the import of exogenous fatty acids or in the activation of very long-chain fatty acids. This has led to controversy as to whether these proteins function as membrane-bound fatty acid transporters or as acyl-CoA synthetases, which activate long-chain fatty acids concomitant with transport. The yeast FATP orthologue, Fat1p, is a dual functional protein and is required for both the import of long-chain fatty acids and the activation of very long-chain fatty acids; these activities intrinsic to Fat1p are separable functions. To more precisely define the roles of the different mammalian isoforms in fatty acid trafficking, the six murine proteins (mmFATP1-6) were expressed and characterized in a genetically defined yeast strain, which cannot transport long-chain fatty acids and has reduced long-chain acyl-CoA synthetase activity (fat1Delta faa1Delta). Each isoform was evaluated for fatty acid transport, fatty acid activation (using C18:1, C20:4, and C24:0 as substrates), and accumulation of very long-chain fatty acids. Murine FATP1, -2, and -4 complemented the defects in fatty acid transport and very long-chain fatty acid activation associated with a deletion of the yeast FAT1 gene; mmFATP3, -5, and -6 did not complement the transport function even though each was localized to the yeast plasma membrane. Both mmFATP3 and -6 activated C20:4 and C20:4, while the expression of mmFATP5 did not substantially increase acyl-CoA synthetases activities using the substrates tested. These data support the conclusion that the different mmFATP isoforms play unique roles in fatty acid trafficking, including the transport of exogenous long-chain fatty acids.
Collapse
Affiliation(s)
- Concetta C DiRusso
- Ordway Research Institute, Center for Metabolic Disease, Albany, New York 12208, USA
| | | | | | | | | | | |
Collapse
|
40
|
Liao J, Sportsman R, Harris J, Stahl A. Real-time quantification of fatty acid uptake using a novel fluorescence assay. J Lipid Res 2004; 46:597-602. [PMID: 15547301 DOI: 10.1194/jlr.d400023-jlr200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uptake of nonesterified long-chain fatty acids (LCFAs) into many cell types and organs such as liver, heart, intestine, and skeletal muscle occurs primarily through a saturable, protein-mediated mechanism. Membrane proteins that increase the uptake of LCFAs, such as FAT/CD36 and fatty acid transport proteins, represent significant therapeutic targets for the treatment of metabolic disorders, including type 2 diabetes. However, currently available methods for the quantification of LCFA uptake neither allow for real-time measurements of uptake kinetics nor are ideally suited for the development of LCFA uptake inhibitors in high-throughput screens. To address both problems, we developed a LCFA uptake assay using a fluorescently labeled fatty acid and a nontoxic cell-impermeable quenching agent that allows fatty acid transport to be measured in real time using fluorescence plate readers or standard fluorescence microscopy. With this assay, we faithfully reproduced known differentiation- and hormone-induced changes in LCFA uptake by 3T3-L1 cells and determined LCFA uptake kinetics with previously unobtainable temporal resolution. Applications of this novel assay should facilitate new insights into the biology of fatty acid uptake and provide new means for obesity-related drug discovery.
Collapse
Affiliation(s)
- Jinfang Liao
- Molecular Devices Corporation, Sunnyvale, CA 94089, USA
| | | | | | | |
Collapse
|
41
|
Kleinfeld AM, Kampf JP, Lechene C. Transport of 13C-oleate in adipocytes measured using multi imaging mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:1572-80. [PMID: 15519224 DOI: 10.1016/j.jasms.2004.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 07/14/2004] [Accepted: 07/14/2004] [Indexed: 05/23/2023]
Abstract
The mechanism of long chain free fatty acid (FFA) transport across cell membranes is under active investigation. Here we describe the use of multi imaging mass spectrometry (MIMS) to monitor intracellular concentrations of FFA and provide new insight into FFA transport in cultured adipocytes. Cells were incubated with 13C-oleate:BSA and either dried directly or dried after washing with a medium deprived of 13C-oleate:BSA. Cells were analyzed with MIMS using a scanning primary Cs+ ion beam and 12C-, 13C-, 12C14N-, 13C14N-) (or 12C 15N-) were imaged simultaneously. From these quantitative images the values of the 13C/ 12C ratios were determined in the intracellular lipid droplets, in the cytoplasm and outside the 3T3F442A adipocytes. The results indicate that after incubation with 13C-oleate:BSA the droplet 13C/ 12C ratio was 15 +/- 6%. This value is about 14-fold higher than the 13C/ 12C terrestrial ratio (1.12%). After washing the 13C-oleate:BSA, the droplet 13C/ 12C ratios decreased to 1.6 +/- 0.1%, about 40% greater than the natural abundance. Results for washed cells indicate that relatively little FFA was esterified. The unwashed cell results, together with the value of the lipid water partition coefficient, reveal that intracellular unbound FFA (FFAu) concentrations were on average about 4.5-fold greater than the extracellular FFAu concentrations. These results are consistent with the possibility that FFA may be pumped into adipocytes against their electro-chemical potential. This work demonstrates that MIMS can be used to image and quantitate stable isotope labeled fatty acid in intracellular lipid droplets.
Collapse
Affiliation(s)
- Alan M Kleinfeld
- Torrey Pines Institute for Molecular Studies, San Diego, California 92121, USA.
| | | | | |
Collapse
|