1
|
Keller MP, Hawes EM, Schueler KL, Stapleton DS, Mitok KA, Simonett SP, Oeser JK, Sampson LL, Attie AD, Magnuson MA, O’Brien RM. An Enhancer Within Abcb11 Regulates G6pc2 in C57BL/6 Mouse Pancreatic Islets. Diabetes 2023; 72:1621-1628. [PMID: 37552875 PMCID: PMC10588275 DOI: 10.2337/db23-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
G6PC2 is predominantly expressed in pancreatic islet β-cells where it encodes a glucose-6-phosphatase catalytic subunit that modulates the sensitivity of insulin secretion to glucose by opposing the action of glucokinase, thereby regulating fasting blood glucose (FBG). Prior studies have shown that the G6pc2 promoter alone is unable to confer sustained islet-specific gene expression in mice, suggesting the existence of distal enhancers that regulate G6pc2 expression. Using information from both mice and humans and knowledge that single nucleotide polymorphisms (SNPs) both within and near G6PC2 are associated with variations in FBG in humans, we identified several putative enhancers 3' of G6pc2. One region, herein referred to as enhancer I, resides in the 25th intron of Abcb11 and binds multiple islet-enriched transcription factors. CRISPR-mediated deletion of enhancer I in C57BL/6 mice had selective effects on the expression of genes near the G6pc2 locus. In isolated islets, G6pc2 and Spc25 expression were reduced ∼50%, and Gm13613 expression was abolished, whereas Cers6 and nostrin expression were unaffected. This partial reduction in G6pc2 expression enhanced islet insulin secretion at basal glucose concentrations but did not affect FBG or glucose tolerance in vivo, consistent with the absence of a phenotype in G6pc2 heterozygous C57BL/6 mice. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Mark P. Keller
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI
| | - Emily M. Hawes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | | | | | - Kelly A. Mitok
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI
| | - Shane P. Simonett
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Leesa L. Sampson
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI
- Department of Medicine, University of Wisconsin–Madison, Madison, WI
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
2
|
Goenka V, Borkar T, Desai A, Das RK. Therapeutic potential of mesenchymal stem cells in treating both types of diabetes mellitus and associated diseases. J Diabetes Metab Disord 2020; 19:1979-1993. [PMID: 33520872 PMCID: PMC7843693 DOI: 10.1007/s40200-020-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus is a common lifestyle disease which can be classified into type 1 diabetes mellitus and type 2 diabetes mellitus. While both result in hyperglycemia due to lack of insulin action and further associated chronic ailments, there is a marked distinction in the cause for each type due to which both require a different prophylaxis. As observed, type 1 diabetes is caused due to the autoimmune action of the body resulting in the destruction of pancreatic islet cells. On the other hand, type 2 diabetes is caused either due to insulin resistance of target cells or lack of insulin production as per physiological requirements. Attempts to cure the disease have been made by bringing drastic changes in the patients' lifestyle; parenteral administration of insulin; prescription of drugs such as biguanides, meglitinides, and amylin; pancreatic transplantation; and immunotherapy. While these attempts cause a certain degree of relief to the patient, none of these can cure diabetes mellitus. However, a new treatment strategy led by the discovery of mesenchymal stem cells and their unique immunomodulatory and multipotent properties has inspired therapies to treat diabetes by essentially reversing the conditions causing the disease. The current review aims to enumerate the role of various mesenchymal stem cells and the different approaches to treat both types of diabetes and its associated diseases as well.
Collapse
Affiliation(s)
- Vidul Goenka
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Tanhai Borkar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Aska Desai
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Raunak Kumar Das
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
3
|
Baerenwald DA, Bonnefond A, Bouatia-Naji N, Flemming BP, Umunakwe OC, Oeser JK, Pound LD, Conley NL, Cauchi S, Lobbens S, Eury E, Balkau B, Lantieri O, Dadi PK, Jacobson DA, Froguel P, O’Brien RM. Multiple functional polymorphisms in the G6PC2 gene contribute to the association with higher fasting plasma glucose levels. Diabetologia 2013; 56:1306-16. [PMID: 23508304 PMCID: PMC4106008 DOI: 10.1007/s00125-013-2875-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/28/2013] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS We previously identified the G6PC2 locus as a strong determinant of fasting plasma glucose (FPG) and showed that a common G6PC2 intronic single nucleotide polymorphism (SNP) (rs560887) and two common G6PC2 promoter SNPs (rs573225 and rs13431652) are highly associated with FPG. However, these promoter SNPs have complex effects on G6PC2 fusion gene expression, and our data suggested that only rs13431652 is a potentially causative SNP. Here we examine the effect of rs560887 on G6PC2 pre-mRNA splicing and the contribution of an additional common G6PC2 promoter SNP, rs2232316, to the association signal. METHODS Minigene analyses were used to characterise the effect of rs560887 on G6PC2 pre-mRNA splicing. Fusion gene and gel retardation analyses characterised the effect of rs2232316 on G6PC2 promoter activity and transcription factor binding. The genetic association of rs2232316 with FPG variation was assessed using regression adjusted for age, sex and BMI in 4,220 Europeans with normal FPG. RESULTS The rs560887-G allele was shown to enhance G6PC2 pre-mRNA splicing, whereas the rs2232316-A allele enhanced G6PC2 transcription by promoting Foxa2 binding. Genetic analyses provide evidence for association of the rs2232316-A allele with increased FPG (β = 0.04 mmol/l; p = 4.3 × 10(-3)) as part of the same signal as rs560887, rs573225 and rs13431652. CONCLUSIONS/INTERPRETATION As with rs13431652, the in situ functional data with rs560887 and rs2232316 are in accord with the putative function of G6PC2 in pancreatic islets, and suggest that all three are potentially causative SNPs that contribute to the association between G6PC2 and FPG.
Collapse
Affiliation(s)
- D. A. Baerenwald
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - A. Bonnefond
- CNRS-UMR-8199, Institut Pasteur de Lille, F-59019, Lille, France
- University Lille Nord de France, F-59019 Lille, France
| | - N. Bouatia-Naji
- CNRS-UMR-8199, Institut Pasteur de Lille, F-59019, Lille, France
- University Lille Nord de France, F-59019 Lille, France
- INSERM U970, Paris Cardiovascular Research Center PARCC, 56 rue Leblanc, F-75015 Paris, France
| | - B. P. Flemming
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - O. C. Umunakwe
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - J. K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - L. D. Pound
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - N. L. Conley
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - S. Cauchi
- CNRS-UMR-8199, Institut Pasteur de Lille, F-59019, Lille, France
- University Lille Nord de France, F-59019 Lille, France
| | - S. Lobbens
- CNRS-UMR-8199, Institut Pasteur de Lille, F-59019, Lille, France
- University Lille Nord de France, F-59019 Lille, France
| | - E. Eury
- CNRS-UMR-8199, Institut Pasteur de Lille, F-59019, Lille, France
- University Lille Nord de France, F-59019 Lille, France
| | - B. Balkau
- INSERM, Centre for research in Epidemiology and Population Health (CESP), U1018, Epidemiology of diabetes, obesity and chronic renal disease over the lifecourse, F-94807, Villejuif, France
- Université Paris-Sud 11, UMRS 1018, F-94807 Villejuif, France
| | - O. Lantieri
- Institut inter-régional pour la santé (IRSA), F-37521 La Riche, France
| | - MAGIC Investigators
- Meta-Analysis of Glucose and Insulin related traits Consortium Investigators (http://www.magicinvestigators.org/)
| | - P. K. Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - D. A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| | - P. Froguel
- CNRS-UMR-8199, Institut Pasteur de Lille, F-59019, Lille, France
- University Lille Nord de France, F-59019 Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, W12 0NN London, UK
| | - R. M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 37232 Nashville, Tennessee, USA
| |
Collapse
|
4
|
Kiselev Y, Eriksen TE, Forsdahl S, Nguyen LHT, Mikkola I. 3T3 cell lines stably expressing Pax6 or Pax6(5a)--a new tool used for identification of common and isoform specific target genes. PLoS One 2012; 7:e31915. [PMID: 22384097 PMCID: PMC3285655 DOI: 10.1371/journal.pone.0031915] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/19/2012] [Indexed: 12/03/2022] Open
Abstract
Pax6 and Pax6(5a) are two isoforms of the evolutionary conserved Pax6 gene often co-expressed in specific stochiometric relationship in the brain and the eye during development. The Pax6(5a) protein differs from Pax6 by having a 14 amino acid insert in the paired domain, causing the two proteins to have different DNA binding specificities. Difference in functions during development is proven by the fact that mutations in the 14 amino acid insertion for Pax6(5a) give a slightly different eye phenotype than the one described for Pax6. Whereas quite many Pax6 target genes have been published during the last years, few Pax6(5a) specific target genes have been reported on. However, target genes identified by Pax6 knockout studies can probably be Pax6(5a) targets as well, since this isoform also will be affected by the knockout. In order to identify new Pax6 target genes, and to try to distinguish between genes regulated by Pax6 and Pax6(5a), we generated FlpIn-3T3 cell lines stably expressing Pax6 or Pax6(5a). RNA was harvested from these cell lines and used in gene expression microarrays where we identified a number of genes differentially regulated by Pax6 and Pax6(5a). A majority of these were associated with the extracellular region. By qPCR we verified that Ncam1, Ngef, Sphk1, Dkk3 and Crtap are Pax6(5a) specific target genes, while Tgfbi, Vegfa, EphB2, Klk8 and Edn1 were confirmed as Pax6 specific target genes. Nbl1, Ngfb and seven genes encoding different glycosyl transferases appeared to be regulated by both. Direct binding to the promoters of Crtap, Ctgf, Edn1, Dkk3, Pdgfb and Ngef was verified by ChIP. Furthermore, a change in morphology of the stably transfected Pax6 and Pax6(5a) cells was observed, and the Pax6 expressing cells were shown to have increased proliferation and migration capacities.
Collapse
Affiliation(s)
| | | | | | | | - Ingvild Mikkola
- Research Group of Pharmacology, Department of Pharmacy, University of Tromsø, Tromsø, Norway
- * E-mail:
| |
Collapse
|
5
|
Wolf G, Hessabi B, Karkour A, Henrion U, Dahlhaus M, Ostmann A, Giese B, Fraunholz M, Grabarczyk P, Jack R, Walther R. The activation of the rat insulin gene II by BETA2 and PDX-1 in rat insulinoma cells is repressed by Pax6. Mol Endocrinol 2010; 24:2331-42. [PMID: 20943817 DOI: 10.1210/me.2009-0220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The transcriptional transactivator Pax6 binds the pancreatic islet cell-specific enhancer sequence (PISCES) of the rat insulin I gene. However the human, mouse, and rat insulin gene II promoters do not contain a PISCES element. To analyze the role of Pax6 in those PISCES-less promoters, we investigated its influence on rat insulin gene II expression and included in our studies the main activators: pancreatic and duodenal homeobox protein-1 (PDX-1) and BETA2/E47. Luciferase assays, Northern blots, and RIA were used to study effects of Pax6 overexpression, gel shift and chromatin precipitation assays to study its binding to the DNA, and yeast two-hybrid assays and glutathione S transferase capture assays to investigate its interactions with PDX-1 and BETA2. Finally, glucose-dependent intracellular transport of Pax6 was demonstrated by fluorescence microscopy. Overexpression of Pax6 prevents activation of the rat insulin II gene by BETA2 and PDX-1 and hence suppresses insulin synthesis and secretion. In vitro, Pax6 binds to the A-boxes, thereby blocking binding of PDX-1, and at the same time, its paired domain interacts with BETA2. Fluorescence microscopy demonstrated that the nuclear-cytoplasmic localization of Pax6 and PDX-1 are oppositely regulated by glucose. From the results, it is suggested that at low concentrations of glucose, Pax6 is localized in the nucleus and prevents the activation of the insulin gene by occupying the PDX-1 binding site and by interacting with BETA2.
Collapse
Affiliation(s)
- Gabriele Wolf
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Klinikum, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bouatia-Naji N, Bonnefond A, Baerenwald DA, Marchand M, Bugliani M, Marchetti P, Pattou F, Printz RL, Flemming BP, Umunakwe OC, Conley NL, Vaxillaire M, Lantieri O, Balkau B, Marre M, Lévy-Marchal C, Elliott P, Jarvelin MR, Meyre D, Dina C, Oeser JK, Froguel P, O'Brien RM. Genetic and functional assessment of the role of the rs13431652-A and rs573225-A alleles in the G6PC2 promoter that are strongly associated with elevated fasting glucose levels. Diabetes 2010; 59:2662-71. [PMID: 20622168 PMCID: PMC3279535 DOI: 10.2337/db10-0389] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Genome-wide association studies have identified a single nucleotide polymorphism (SNP), rs560887, located in a G6PC2 intron that is highly correlated with variations in fasting plasma glucose (FPG). G6PC2 encodes an islet-specific glucose-6-phosphatase catalytic subunit. This study examines the contribution of two G6PC2 promoter SNPs, rs13431652 and rs573225, to the association signal. RESEARCH DESIGN AND METHODS We genotyped 9,532 normal FPG participants (FPG <6.1 mmol/l) for three G6PC2 SNPs, rs13431652 (distal promoter), rs573225 (proximal promoter), rs560887 (3rd intron). We used regression analyses adjusted for age, sex, and BMI to assess the association with FPG and haplotype analyses to assess comparative SNP contributions. Fusion gene and gel retardation analyses characterized the effect of rs13431652 and rs573225 on G6PC2 promoter activity and transcription factor binding. RESULTS Genetic analyses provide evidence for a strong contribution of the promoter SNPs to FPG variability at the G6PC2 locus (rs13431652: β = 0.075, P = 3.6 × 10(-35); rs573225 β = 0.073 P = 3.6 × 10(-34)), in addition to rs560887 (β = 0.071, P = 1.2 × 10(-31)). The rs13431652-A and rs573225-A alleles promote increased NF-Y and Foxa2 binding, respectively. The rs13431652-A allele is associated with increased FPG and elevated promoter activity, consistent with the function of G6PC2 in pancreatic islets. In contrast, the rs573225-A allele is associated with elevated FPG but reduced promoter activity. CONCLUSIONS Genetic and in situ functional data support a potential role for rs13431652, but not rs573225, as a causative SNP linking G6PC2 to variations in FPG, though a causative role for rs573225 in vivo cannot be ruled out.
Collapse
Affiliation(s)
- Nabila Bouatia-Naji
- CNRS-UMR-8199, Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Amélie Bonnefond
- CNRS-UMR-8199, Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Devin A. Baerenwald
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marion Marchand
- CNRS-UMR-8199, Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Marco Bugliani
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - François Pattou
- INSERM U859, Université de Lille-Nord de France, Centre Hospitalier Regional et Universitaire de Lille, Lille, France
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Brian P. Flemming
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Obi C. Umunakwe
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nicholas L. Conley
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Martine Vaxillaire
- CNRS-UMR-8199, Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | | | | | - Michel Marre
- Department of Endocrinology, Diabetology and Nutrition, Bichat-Claude Bernard University Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France; INSERM U695, Université Paris 7, Paris, France
| | - Claire Lévy-Marchal
- INSERM U690, Robert Debré Hospital, Paris; Paris Diderot University, Paris, France
| | - Paul Elliott
- Department of Epidemiology and Public Health, Imperial College London, London, U.K
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Public Health, Imperial College London, London, U.K
- Institute of Health Sciences, University of Oulu, Department of Child and Adolescent Health, National Public Health Institute, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - David Meyre
- CNRS-UMR-8199, Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Christian Dina
- CNRS-UMR-8199, Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Philippe Froguel
- CNRS-UMR-8199, Institut Pasteur de Lille, Lille, France
- University Lille Nord de France, Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, U.K
| | - Richard M. O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Corresponding author: Richard M. O'Brien,
| |
Collapse
|
7
|
Abstract
Diabetes is characterized by decreased function of insulin-producing beta cells and insufficient insulin output resulting from an absolute (Type 1) or relative (Type 2) inadequate functional beta cell mass. Both forms of the disease would greatly benefit from treatment strategies that could enhance beta cell regeneration and/or function. Successful and reliable methods of generating beta cells or whole islets from progenitor cells in vivo or in vitro could lead to restoration of beta cell mass in individuals with Type 1 diabetes and enhanced beta cell compensation in Type 2 patients. A thorough understanding of the normal developmental processes that occur during pancreatic organogenesis, for example, transcription factors, cell signaling molecules, and cell-cell interactions that regulate endocrine differentiation from the embryonic pancreatic epithelium, is required in order to successfully reach these goals. This review summarizes our current understanding of pancreas development, with particular emphasis on factors intrinsic or extrinsic to the pancreatic epithelium that are involved in regulating the development and differentiation of the various pancreatic cell types. We also discuss the recent progress in generating insulin-producing cells from progenitor sources.
Collapse
Affiliation(s)
- Michelle A Guney
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
8
|
Abstract
Glucose-6-phosphatase catalyzes the hydrolysis of glucose 6-phosphate (G6P) to glucose and inorganic phosphate. It is a multicomponent system located in the endoplasmic reticulum that comprises several integral membrane proteins, namely a catalytic subunit (G6PC) and transporters for G6P, inorganic phosphate, and glucose. The G6PC gene family contains three members, designated G6PC, G6PC2, and G6PC3. The tissue-specific expression patterns of these genes differ, and mutations in all three genes have been linked to distinct diseases in humans. This minireview discusses the disease association and transcriptional regulation of the G6PC genes as well as the biological functions of the encoded proteins.
Collapse
Affiliation(s)
- John C Hutton
- Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver, Aurora, Colorado 80045, USA
| | | |
Collapse
|
9
|
Nitta Y, Shigeyoshi Y, Nakagata N, Kaneko T, Nitta K, Harada T, Ishizaki F, Townsend J. Kinetics of blood glucose in mice carrying hemizygous Pax6. Exp Anim 2009; 58:105-12. [PMID: 19448333 DOI: 10.1538/expanim.58.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The genotype-phenotype relationship was examined experimentally for the Pax6(Sey-4H) mutant, which carries deletion of its chromosome 2 middle region hemizygously. The genotyping has indicated that this deleted segment is between 102.6 and 109.2 Mb from the centromere. The glucose-6-phosphatase gene followed by the glucagon and carboxyl ester lipase genes were mapped adjacent to the deleted region. Phenotyping indicates that the Pax6(Sey-4H) mutant is more susceptible to diabetes. The glucose tolerance test showed that the mutants were less capable of reducing their level of blood glucose to the standard level than the normal sibs. The insulin-loading test revealed their inability to elevate their blood glucose levels up to normal levels. The time it took for the onset of diabetes induced by streptozotocin was shorter in the mutants than in normal sibs. Both the haploinsufficiency of the genes in the hemizygous segment of chromosome 2 and the quantitative imbalance of the whole genome could contribute the development of this phenotype in the mutant.
Collapse
Affiliation(s)
- Yumiko Nitta
- Department of Anatomy and Neuroscience, Faculty of Medicine, Kinki University, Osaka-Sayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Dos Santos C, Bougnères P, Fradin D. A single-nucleotide polymorphism in a methylatable Foxa2 binding site of the G6PC2 promoter is associated with insulin secretion in vivo and increased promoter activity in vitro. Diabetes 2009; 58:489-92. [PMID: 18984742 PMCID: PMC2628624 DOI: 10.2337/db08-0587] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The G6PC2 gene encoding islet-specific glucose-6-phosphatase related protein (IGRP) has a common promoter variant, rs573225 (-231G/A), located within a Foxa binding site. We tested the cis-regulatory effects of rs573225 on promoter activity and its association with insulin response to oral glucose. RESEARCH DESIGN AND METHODS Functional effects of rs573225 were explored in transfected INS-1 and HIT-T beta-cell lines. A total of 734 young obese subjects of European ancestry were genotyped for rs573225. Insulin and glucose levels were measured in response to oral glucose, and the insulinogenic index (IGI) of insulin secretion was calculated. RESULTS In vitro, the G allele showed a higher affinity for binding Foxa2 transcription factor and increased G6PC2 promoter activity. Foxa2 binding is modified if the C adjacent to the G allele is methylated. IGI was associated with rs573225 by linear regression analysis and was 30% greater in AA or AG than in GG obese children. rs573225 was also associated with fasting glucose. CONCLUSIONS rs573225 is a functional cis-regulatory (epi)-single-nucleotide polymorphism (SNP) of G6PC2 associated with glucose-insulin homeostasis in obese children, likely to explain the results of recent genome-wide association studies in nondiabetic adults.
Collapse
Affiliation(s)
- Christine Dos Santos
- Department of Pediatric Endocrinology and U561 Institut National de Santé et de Recherche Médicale, Hôpital Saint-Vincent de Paul, Paris, France
| | | | | |
Collapse
|
11
|
Willardsen MI, Suli A, Pan Y, Marsh-Armstrong N, Chien CB, El-Hodiri H, Brown NL, Moore KB, Vetter ML. Temporal regulation of Ath5 gene expression during eye development. Dev Biol 2008; 326:471-81. [PMID: 19059393 DOI: 10.1016/j.ydbio.2008.10.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 12/11/2022]
Abstract
During central nervous system development the timing of progenitor differentiation must be precisely controlled to generate the proper number and complement of neuronal cell types. Proneural basic helix-loop-helix (bHLH) transcription factors play a central role in regulating neurogenesis, and thus the timing of their expression must be regulated to ensure that they act at the appropriate developmental time. In the developing retina, the expression of the bHLH factor Ath5 is controlled by multiple signals in early retinal progenitors, although less is known about how these signals are coordinated to ensure correct spatial and temporal pattern of gene expression. Here we identify a key distal Xath5 enhancer and show that this enhancer regulates the early phase of Xath5 expression, while the proximal enhancer we previously identified acts later. The distal enhancer responds to Pax6, a key patterning factor in the optic vesicle, while FGF signaling regulates Xath5 expression through sequences outside of this region. In addition, we have identified an inhibitory element adjacent to the conserved distal enhancer region that is required to prevent premature initiation of expression in the retina. This temporal regulation of Xath5 gene expression is comparable to proneural gene regulation in Drosophila, whereby separate enhancers regulate different temporal phases of expression.
Collapse
Affiliation(s)
- Minde I Willardsen
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Martin CC, Flemming BP, Wang Y, Oeser JK, O’Brien RM. Foxa2 and MafA regulate islet-specific glucose-6-phosphatase catalytic subunit-related protein gene expression. J Mol Endocrinol 2008; 41:315-28. [PMID: 18753309 PMCID: PMC2614309 DOI: 10.1677/jme-08-0062] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP/G6PC2) is a major autoantigen in both mouse and human type 1 diabetes. IGRP is selectively expressed in islet beta cells and polymorphisms in the IGRP gene have recently been associated with variations in fasting blood glucose levels and cardiovascular-associated mortality in humans. Chromatin immunoprecipitation (ChIP) assays have shown that the IGRP promoter binds the islet-enriched transcription factors Pax-6 and BETA2. We show here, again using ChIP assays, that the IGRP promoter also binds the islet-enriched transcription factors MafA and Foxa2. Single binding sites for these factors were identified in the proximal IGRP promoter, mutation of which resulted in decreased IGRP fusion gene expression in betaTC-3, Hamster insulinoma tumor (HIT), and Min6 cells. ChiP assays have shown that the islet-enriched transcription factor Pdx-1 also binds the IGRP promoter, but mutational analysis of four Pdx-1 binding sites in the proximal IGRP promoter revealed surprisingly little effect of Pdx-1 binding on IGRP fusion gene expression in betaTC-3 cells. In contrast, in both HIT and Min6 cells mutation of these four Pdx-1 binding sites resulted in a approximately 50% reduction in fusion gene expression. These data suggest that the same group of islet-enriched transcription factors, namely Pdx-1, Pax-6, MafA, BETA2, and Foxa2, directly or indirectly regulate expression of the two major autoantigens in type 1 diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Richard M. O’Brien
- To whom correspondence should be addressed: Department of Molecular Physiology and Biophysics, 8415 MRB IV, 2213 Garland Ave, Vanderbilt University Medical School, Nashville, TN 37232-0615, Telephone (615) 936-1503; Facsimile (615) 322-7236, E-mail:
| |
Collapse
|
13
|
Wang Y, Flemming BP, Martin CC, Allen SR, Walters J, Oeser JK, Hutton JC, O'Brien RM. Long-range enhancers are required to maintain expression of the autoantigen islet-specific glucose-6-phosphatase catalytic subunit-related protein in adult mouse islets in vivo. Diabetes 2008; 57:133-41. [PMID: 17942825 DOI: 10.2337/db07-0092] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) is selectively expressed in islet beta-cells and is a major autoantigen in both mouse and human type 1 diabetes. This study describes the use of a combination of transgenic and transfection approaches to characterize the gene regions that confer the islet-specific expression of IGRP. RESEARCH DESIGN AND METHODS Transgenic mice were generated containing the IGRP promoter sequence from -306, -911, or -3911 to +3 ligated to a LacZ reporter gene. Transgene expression was monitored by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside staining of pancreatic tissue. RESULTS In all the transgenic mice, robust LacZ expression was detected in newborn mouse islets, but expression became mosaic as animals aged, suggesting that additional elements are required for the maintenance of IGRP gene expression. VISTA analyses identified two conserved regions in the distal IGRP promoter and one in the third intron. Transfection experiments demonstrated that all three regions confer enhanced luciferase reporter gene expression in beta TC-3 cells when ligated to a minimal IGRP promoter. A transgene containing all three conserved regions was generated by using a bacterial recombination strategy to insert a LacZ cassette into exon 5 of the IGRP gene. Transgenic mice containing a 15-kbp fragment of the IGRP gene were then generated. This transgene conferred LacZ expression in newborn mouse islets; however, expression was still suppressed as animals aged. CONCLUSIONS The data suggest that long-range enhancers 5' or 3' of the IGRP gene are required for the maintenance of IGRP gene expression in adult mice.
Collapse
Affiliation(s)
- Yingda Wang
- Department of Molecular Physiology and Biophysics, 761 PRB, Vanderbilt University Medical School, Nashville, TN 37232-0615, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hamasaki A, Yamada Y, Kurose T, Ban N, Nagashima K, Takahashi A, Fujimoto S, Shimono D, Fujiwara M, Toyokuni S, Seino Y, Inagaki N. Adult pancreatic islets require differential pax6 gene dosage. Biochem Biophys Res Commun 2007; 353:40-6. [PMID: 17178107 DOI: 10.1016/j.bbrc.2006.11.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 11/17/2006] [Indexed: 11/20/2022]
Abstract
Pax6, a paired homeodomain transcription factor, plays crucial roles in morphogenesis of eye, central nervous system, and pancreatic islets. Recently, heterozygosity for pax6 mutation has been reported in some individuals with glucose intolerance and aniridia. To investigate the role of pax6 for pancreatic islet function, we examined the pancreatic phenotype of small eye rat strain (rSey(2)) with a point mutation in the pax6 locus resulting in truncated PAX6 proteins. Analyses of the insulin secretory profile of heterozygous rSey(2)/+ revealed that insulin secretion is significantly increased in response to membrane-depolarizing stimuli such as arginine, tolbutamide, and KCl. The processes of insulin granule exocytosis were suggested to be enhanced in rSey(2)/+. On the other hand, pancreatic insulin and glucagon content and islet architecture in rSey(2)/+ showed no significant differences compared to wild-type. These findings indicate differential requirements for pax6 gene dosage in displaying function and maintaining architecture of adult pancreatic islets.
Collapse
Affiliation(s)
- Akihiro Hamasaki
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kuroda A, Kaneto H, Fujitani Y, Watada H, Nakatani Y, Kajimoto Y, Matsuhisa M, Yamasakai Y, Fujiwara M. Mutation of the Pax6 gene causes impaired glucose-stimulated insulin secretion. Diabetologia 2004; 47:2039-41. [PMID: 15565366 DOI: 10.1007/s00125-004-1563-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 09/15/2004] [Indexed: 10/26/2022]
|