1
|
Banerjee D, Datta Chaudhuri R, Niyogi S, Roy Chowdhuri S, Poddar Sarkar M, Chatterjee R, Chakrabarti P, Sarkar S. Metabolic impairment in response to early induction of C/EBPβ leads to compromised cardiac function during pathological hypertrophy. J Mol Cell Cardiol 2020; 139:148-163. [PMID: 31958467 DOI: 10.1016/j.yjmcc.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 11/16/2022]
Abstract
Chronic pressure overload-induced left ventricular hypertrophy in heart is preceded by a metabolic perturbation that prefers glucose over lipid as substrate for energy requirement. Here, we establish C/EBPβ (CCAAT/enhancer-binding protein β) as an early marker of the metabolic derangement that triggers the imbalance in fatty acid (FA) oxidation and glucose uptake with increased lipid accumulation in cardiomyocytes during pathological hypertrophy, leading to contractile dysfunction and endoplasmic reticulum (ER) stress. This is the first study that shows that myocardium-targeted C/EBPβ knockdown prevents the impaired cardiac function during cardiac hypertrophy led by maladaptive metabolic response with persistent hypertrophic stimuli, whereas its targeted overexpression in control increases lipid accumulation significantly compared to control hearts. A new observation from this study was the dual and opposite transcriptional regulation of the alpha and gamma isoforms of Peroxisomal proliferator activated receptors (PPARα and PPARγ) by C/EBPβ in hypertrophied cardiomyocytes. Before the functional and structural remodeling sets in the diseased myocardium, C/EBPβ aggravates lipid accumulation with the aid of the increased FA uptake involving induced PPARγ expression and decreased fatty acid oxidation (FAO) by suppressing PPARα expression. Glucose uptake into cardiomyocytes was greatly increased by C/EBPβ via PPARα suppression. The activation of mammalian target of rapamycin complex-1 (mTORC1) during increased workload in presence of glucose as the only substrate was prevented by C/EBPβ knockdown, thereby abating contractile dysfunction in cardiomyocytes. Our study thus suggests that C/EBPβ may be considered as a novel cellular marker for deranged metabolic milieu before the heart pathologically remodels itself during hypertrophy.
Collapse
Affiliation(s)
- Durba Banerjee
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Ratul Datta Chaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sougata Niyogi
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sumedha Roy Chowdhuri
- Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Mousumi Poddar Sarkar
- Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata 700108, India
| | - Partha Chakrabarti
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sagartirtha Sarkar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
2
|
Dasgupta N, Thakur BK, Ta A, Das S, Banik G, Das S. Polo-like kinase 1 expression is suppressed by CCAAT/enhancer-binding protein α to mediate colon carcinoma cell differentiation and apoptosis. Biochim Biophys Acta Gen Subj 2017; 1861:1777-1787. [PMID: 28341486 DOI: 10.1016/j.bbagen.2017.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/12/2017] [Accepted: 03/18/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Human polo-like kinase 1 (PLK1), a highly conserved serine/threonine kinase is a key player in several essential cell-cycle events. PLK1 is considered an oncogene and its overexpression often correlates with poor prognosis of cancers, including colorectal cancer (CRC). However, regulation of PLK1 expression in colorectal cells was never studied earlier and it is currently unknown if PLK1 regulates differentiation and apoptosis of CRC. METHODS PLK1 expression was analyzed by real-time PCR and western blotting. Transcriptional regulation was studied by reporter assay, gene knock-down, EMSA and ChIP. RESULTS PLK1 expression was down-regulated during butyrate-induced differentiation of HT-29 and other CRC cells. Also, PLK1 down-regulation mediated the role of butyrate in CRC differentiation and apoptosis. We report here a novel transcriptional regulation of PLK1 by butyrate. Transcription factors CCAAT/enhancer-binding protein α (C/EBPα) and Oct-1 share an overlapping binding site over the PLK1 promoter. Elevated levels of C/EBPα by butyrate treatment of CRC cells competed out the activator protein Oct-1 from binding to the PLK1 promoter and sequestered it. Binding of C/EBPα was associated with increased deacetylation near the transcription start site (TSS) of the PLK1 promoter, which abrogated transcription through reduced recruitment of RNA polymerase II. We also found a synergistic role between the synthetic PLK1-inhibitor SBE13 and butyrate on the apoptosis of CRC cells. CONCLUSION This study offered a novel p53-independent regulation of PLK1 during CRC differentiation and apoptosis. GENERAL SIGNIFICANCE Down-regulation of PLK1 is one of the mechanisms underlying the anti-cancer role of dietary fibre-derived butyrate in CRC.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India; Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, United States
| | - Bhupesh Kumar Thakur
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Atri Ta
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Sayan Das
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - George Banik
- BD Biosciences, Salt Lake, Kolkata 700102, India
| | - Santasabuj Das
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India.
| |
Collapse
|
3
|
Redondo-Angulo I, Mas-Stachurska A, Sitges M, Giralt M, Villarroya F, Planavila A. C/EBPβ is required in pregnancy-induced cardiac hypertrophy. Int J Cardiol 2016; 202:819-28. [DOI: 10.1016/j.ijcard.2015.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 09/01/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
|
4
|
Holla S, Balaji KN. Epigenetics and miRNA during bacteria-induced host immune responses. Epigenomics 2015; 7:1197-212. [PMID: 26585338 DOI: 10.2217/epi.15.75] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Various cellular processes including the pathogen-specific immune responses, host-pathogen interactions and the related evasion mechanisms rely on the ability of the immune cells to be reprogrammed accurately and in many cases instantaneously. In this context, the exact functions of epigenetic and miRNA-mediated regulation of genes, coupled with recent advent in techniques that aid such studies, make it an attractive field for research. Here, we review examples that involve the epigenetic and miRNA control of the host immune system during infection with bacteria. Interestingly, many pathogens utilize the epigenetic and miRNA machinery to modify and evade the host immune responses. Thus, we believe that global epigenetic and miRNA mapping of such host-pathogen interactions would provide key insights into their cellular functions and help to identify various determinants for therapeutic value.
Collapse
Affiliation(s)
- Sahana Holla
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | |
Collapse
|
5
|
Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015; 132:1-33. [PMID: 26143335 DOI: 10.1016/j.pneurobio.2015.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023]
Abstract
CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain.
| |
Collapse
|
6
|
Hyter S, Indra AK. Nuclear hormone receptor functions in keratinocyte and melanocyte homeostasis, epidermal carcinogenesis and melanomagenesis. FEBS Lett 2013; 587:529-41. [PMID: 23395795 PMCID: PMC3670764 DOI: 10.1016/j.febslet.2013.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/12/2012] [Accepted: 01/18/2013] [Indexed: 12/19/2022]
Abstract
Skin homeostasis is maintained, in part, through regulation of gene expression orchestrated by type II nuclear hormone receptors in a cell and context specific manner. This group of transcriptional regulators is implicated in various cellular processes including epidermal proliferation, differentiation, permeability barrier formation, follicular cycling and inflammatory responses. Endogenous ligands for the receptors regulate actions during skin development and maintenance of tissue homeostasis. Type II nuclear receptor signaling is also important for cellular crosstalk between multiple cell types in the skin. Overall, these nuclear receptors are critical players in keratinocyte and melanocyte biology and present targets for cutaneous disease management.
Collapse
Affiliation(s)
- Stephen Hyter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
- Environmental Health Science Center, Oregon State University, Corvallis, Oregon, USA
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Meldi KM, Gaconnet GA, Mayo KE. DNA methylation and histone modifications are associated with repression of the inhibin α promoter in the rat corpus luteum. Endocrinology 2012; 153:4905-17. [PMID: 22865368 PMCID: PMC3512026 DOI: 10.1210/en.2012-1292] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transition from follicle to corpus luteum after ovulation is associated with profound morphological and functional changes and is accompanied by corresponding changes in gene expression. The gene encoding the α subunit of the dimeric reproductive hormone inhibin is maximally expressed in the granulosa cells of the preovulatory follicle, is rapidly repressed by the ovulatory LH surge, and is expressed at only very low levels in the corpus luteum. Although previous studies have identified transient repressors of inhibin α gene transcription, little is known about how this repression is maintained in the corpus luteum. This study examines the role of epigenetic changes, including DNA methylation and histone modification, in silencing of inhibin α gene expression. Bisulfite sequencing reveals that methylation of the inhibin α proximal promoter is low in preovulatory and ovulatory follicles but is elevated in the corpus luteum. Increased methylation during luteinization is observed within the cAMP response element in the promoter, and EMSA demonstrate that methylation of this site inhibits cAMP response element binding protein binding in vitro. Chromatin immunoprecipitation reveals that repressive histone marks H3K9 and H3K27 trimethylation are increased on the inhibin α promoter in primary luteal cells, whereas the activation mark H3K4 trimethylation is decreased. The changes in histone modification precede the alterations in DNA methylation, suggesting that they facilitate the recruitment of DNA methyltransferases. We show that the DNA methyltransferase DNMT3a is present in the ovary and in luteal cells when the inhibin α promoter becomes methylated and observe recruitment of DNMT3a to the inhibin promoter during luteinization.
Collapse
Affiliation(s)
- Kristen M Meldi
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
8
|
Dentesano G, Straccia M, Ejarque-Ortiz A, Tusell JM, Serratosa J, Saura J, Solà C. Inhibition of CD200R1 expression by C/EBP β in reactive microglial cells. J Neuroinflammation 2012; 9:165. [PMID: 22776069 PMCID: PMC3414764 DOI: 10.1186/1742-2094-9-165] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/09/2012] [Indexed: 11/12/2022] Open
Abstract
Background In physiological conditions, it is postulated that neurons control microglial reactivity through a series of inhibitory mechanisms, involving either cell contact-dependent, soluble-factor-dependent or neurotransmitter-associated pathways. In the current study, we focus on CD200R1, a microglial receptor involved in one of these cell contact-dependent mechanisms. CD200R1 activation by its ligand, CD200 (mainly expressed by neurons in the central nervous system),is postulated to inhibit the pro-inflammatory phenotype of microglial cells, while alterations in CD200-CD200R1 signalling potentiate this phenotype. Little is known about the regulation of CD200R1 expression in microglia or possible alterations in the presence of pro-inflammatory stimuli. Methods Murine primary microglial cultures, mixed glial cultures from wild-type and CCAAT/enhancer binding protein β (C/EBPβ)-deficient mice, and the BV2 murine cell line overexpressing C/EBPβ were used to study the involvement of C/EBPβ transcription factor in the regulation of CD200R1 expression in response to a proinflammatory stimulus (lipopolysaccharide (LPS)). Binding of C/EBPβ to the CD200R1 promoter was determined by quantitative chromatin immunoprecipitation (qChIP). The involvement of histone deacetylase 1 in the control of CD200R1 expression by C/EBPβ was also determined by co-immunoprecipitation and qChIP. Results LPS treatment induced a decrease in CD200R1 mRNA and protein expression in microglial cells, an effect that was not observed in the absence of C/EBPβ. C/EBPβ overexpression in BV2 cells resulted in a decrease in basal CD200R1 mRNA and protein expression. In addition, C/EBPβ binding to the CD200R1 promoter was observed in LPS-treated but not in control glial cells, and also in control BV2 cells overexpressing C/EBPβ. Finally, we observed that histone deacetylase 1 co-immunoprecipitated with C/EBPβ and showed binding to a C/EBPβ consensus sequence of the CD200R1 promoter in LPS-treated glial cells. Moreover, histone deacetylase 1 inhibitors reversed the decrease in CD200R1 expression induced by LPS treatment. Conclusions CD200R1 expression decreases in microglial cells in the presence of a pro-inflammatory stimulus, an effect that is regulated, at least in part, by C/EBPβ. Histone deacetylase 1 may mediate C/EBPβ inhibition of CD200R1 expression, through a direct effect on C/EBPβ transcriptional activity and/or on chromatin structure.
Collapse
Affiliation(s)
- Guido Dentesano
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Sachdeva M, Liu Q, Cao J, Lu Z, Mo YY. Negative regulation of miR-145 by C/EBP-β through the Akt pathway in cancer cells. Nucleic Acids Res 2012; 40:6683-92. [PMID: 22495929 PMCID: PMC3413133 DOI: 10.1093/nar/gks324] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs are master gene regulators that can also be under the control of transcriptional regulation. We have previously shown that miR-145 is a tumor suppressor capable of silencing c-Myc and the tumor suppressor p53 induces miR-145 by directly binding to the miR-145 promoter, demonstrating the role of miR-145 in p53-mediated c-Myc repression. However, little is known as to why miR-145 is often downregulated in tumors. In this study, we identify CCAAT/enhancer binding protein beta (C/EBP-β) as a negative regulator for miR-145 expression by direct interaction with the putative C/EBP-β binding site in the miR-145 promoter. In the wild-type p53 background, C/EBP-β counteracts the ability of p53 to induce miR-145. Moreover, C/EBP-β is able to suppress miR-145 in the mutant p53 background, suggesting the p53 independent regulation of miR-145. Of interest, both the large isoform (LAP-2) and the small isoform (LIP) of C/EBP-β can exert suppressive function for miR-145. Finally, we further show that, like serum starvation and PI3K inhibitor LY29, the antioxidant resveratrol suppresses pAkt and phosphorylation of C/EBP-β and at the same time, it induces miR-145. Together, these results suggest a miR-145 regulatory system involving the Akt and C/EBP-β, which may contribute to the downregulation of miR-145 in cancer cells.
Collapse
Affiliation(s)
- Mohit Sachdeva
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. PPARalpha is mainly expressed in the liver, where it activates fatty acid catabolism. PPARalpha activators have been used to treat dyslipidemia, causing a reduction in plasma triglyceride and elevation of high-density lipoprotein cholesterol. PPARdelta is expressed ubiquitously and is implicated in fatty acid oxidation and keratinocyte differentiation. PPARdelta activators have been proposed for the treatment of metabolic disease. PPARgamma2 is expressed exclusively in adipose tissue and plays a pivotal role in adipocyte differentiation. PPARgamma is involved in glucose metabolism through the improvement of insulin sensitivity and represents a potential therapeutic target of type 2 diabetes. Thus PPARs are molecular targets for the development of drugs treating metabolic syndrome. However, PPARs also play a role in the regulation of cancer cell growth. Here, we review the function of PPARs in tumor growth.
Collapse
|
11
|
Tan CK, Leuenberger N, Tan MJ, Yan YW, Chen Y, Kambadur R, Wahli W, Tan NS. Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet. Diabetes 2011; 60:464-76. [PMID: 21270259 PMCID: PMC3028346 DOI: 10.2337/db10-0801] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity and associated pathologies are major global health problems. Transforming growth factor-β/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic β-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance. RESULTS Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein β-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor β/δ and proliferator-activated receptor γ expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid β-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet. CONCLUSIONS Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders.
Collapse
Affiliation(s)
- Chek Kun Tan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Nicolas Leuenberger
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | - Ming Jie Tan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yew Wai Yan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yinghui Chen
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ravi Kambadur
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Walter Wahli
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore
- Corresponding author: Nguan Soon Tan,
| |
Collapse
|
12
|
Epidermal growth factor down-regulates the expression of human hepatic stimulator substance via CCAAT/enhancer-binding protein β in HepG2 cells. Biochem J 2010; 431:277-87. [DOI: 10.1042/bj20100671] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
hHSS (human hepatic stimulator substance), acting as a hepatotrophic growth factor, promotes liver regeneration. However, the regulatory mechanisms for hHSS transcription are still poorly understood. In the present study, we investigated transcription of hHSS triggered by EGF (epidermal growth factor) and the role of C/EBPβ (CCAAT/enhancer-binding protein β) as a potential core factor responsible for hHSS transcription in HepG2 cells. The results show that EGF suppresses hHSS mRNA expression at early time points. Using a promoter deletion assay, we identified a proximal region (−358/−212) that is required for EGF suppression. Overexpression of C/EBPβ enhances EGF suppression of hHSS, and mutation of the C/EBPβ-binding site at −292/−279 or siRNA (short interfering RNA) interference abolishes EGF suppression. Furthermore, using an electrophoretic mobility-shift assay and chromatin immunoprecipitation analysis, we found that C/EBPβ specifically binds to the −292/−279 site that is responsible for EGF inhibition. Moreover, using a knockin (overexpression) and knockdown strategy (siRNA), we confirmed that C/EBPβ is a key factor responsible for inhibition of hHSS mRNA expression. Pre-treatment with an inhibitor of JNK (c-Jun N-terminal kinase) or down-regulation of JNK1 with specific siRNA reverses EGF-inhibited hHSS expression. Our results provide a crucial regulatory mechanism for EGF in hHSS transcription within the promoter proximal region.
Collapse
|
13
|
Csepeggi C, Jiang M, Frolov A. Somatic cell plasticity and Niemann-pick type C2 protein: adipocyte differentiation and function. J Biol Chem 2010; 285:30347-54. [PMID: 20650896 DOI: 10.1074/jbc.m110.135939] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The phenotypic stability of somatic cells is essential for the maintenance of both structural and functional organ integrity of the adult human body. Deregulated cell plasticity could result in the development of debilitating diseases such as cancer, fibrosis, atherosclerosis, obesity, and type 2 diabetes. We have previously demonstrated that a nonsense mutation in the NPC2 gene, which encodes ubiquitous, highly conserved, secretory protein with unknown function, leads to activation of human skin fibroblasts. The activated fibroblasts, also known as myofibroblasts, have the properties of mesenchymal stem cells and are able to differentiate along the mesodermal and endodermal lineages. Here we show that NPC2-null, but not the normal skin fibroblasts, possess characteristics of adipogenic progenitors as demonstrated by their specific gene expression pattern as well as the ability for efficient differentiation into white adipocytes. The presence of NPC2 in mature white adipocytes was also necessary for their maintenance because silencing NPC2 in differentiated cells by siRNA stimulated PPARG expression, which was followed by a shift toward a more favorable, brown adipocyte-like metabolic state characterized by up-regulated lipolysis and increased insulin sensitivity. It appears that NPC2 controls both the adipogenesis and the metabolic state of mature white adipocytes through a common mechanism that is linked to activation of FGFR2 that could be followed by induction of PPARG expression. Altogether, the current study highlights NPC2 as a novel intracrine/autocrine factor that controls adipocyte differentiation and function as well as potential therapeutic target for the treatment of type 2 diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Chad Csepeggi
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | |
Collapse
|
14
|
Leuenberger N, Pradervand S, Wahli W. Sumoylated PPARalpha mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice. J Clin Invest 2010; 119:3138-48. [PMID: 19729835 DOI: 10.1172/jci39019] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 07/01/2009] [Indexed: 12/28/2022] Open
Abstract
As most metabolic studies are conducted in male animals, understanding the sex specificity of the underlying molecular pathways has been broadly neglected; for example, whether PPARs elicit sex-dependent responses has not been determined. Here we show that in mice, PPARalpha has broad female-dependent repressive actions on hepatic genes involved in steroid metabolism and immunity. In male mice, this effect was reproduced by the administration of a synthetic PPARalpha ligand. Using the steroid oxysterol 7alpha-hydroxylase cytochrome P4507b1 (Cyp7b1) gene as a model, we elucidated the molecular mechanism of this sex-specific PPARalpha-dependent repression. Initial sumoylation of the ligand-binding domain of PPARalpha triggered the interaction of PPARalpha with GA-binding protein alpha (GABPalpha) bound to the target Cyp7b1 promoter. Histone deacetylase and DNA and histone methylases were then recruited, and the adjacent Sp1-binding site and histones were methylated. These events resulted in loss of Sp1-stimulated expression and thus downregulation of Cyp7b1. Physiologically, this repression conferred on female mice protection against estrogen-induced intrahepatic cholestasis, the most common hepatic disease during pregnancy, suggesting a therapeutic target for prevention of this disease.
Collapse
Affiliation(s)
- Nicolas Leuenberger
- Center for Integrative Genomics, National Research Center "Frontiers in Genetics," Switzerland
| | | | | |
Collapse
|
15
|
Multiple chromatin-bound protein kinases assemble factors that regulate insulin gene transcription. Proc Natl Acad Sci U S A 2009; 106:22181-6. [PMID: 20018749 DOI: 10.1073/pnas.0912596106] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During the onset of diabetes, pancreatic beta cells become unable to produce sufficient insulin to maintain blood glucose within the normal range. Proinflammatory cytokines have been implicated in impaired beta cell function. To understand more about the molecular events that reduce insulin gene transcription, we examined the effects of hyperglycemia alone and together with the proinflammatory cytokine interleukin-1beta (IL-1beta) on signal transduction pathways that regulate insulin gene transcription. Exposure to IL-1beta in fasting glucose activated multiple protein kinases that associate with the insulin gene promoter and transiently increased insulin gene transcription in beta cells. In contrast, cells exposed to hyperglycemic conditions were sensitized to the inhibitory actions of IL-1beta. Under these conditions, IL-1beta caused the association of the same protein kinases, but a different combination of transcription factors with the insulin gene promoter and began to reduce transcription within 2 h; stimulatory factors were lost, RNA polymerase II was lost, and inhibitory factors were bound to the promoter in a kinase-dependent manner.
Collapse
|
16
|
C/EBPα and β couple interfollicular keratinocyte proliferation arrest to commitment and terminal differentiation. Nat Cell Biol 2009; 11:1181-90. [DOI: 10.1038/ncb1960] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/10/2009] [Indexed: 01/21/2023]
|
17
|
Miller M. The importance of being flexible: the case of basic region leucine zipper transcriptional regulators. Curr Protein Pept Sci 2009; 10:244-69. [PMID: 19519454 DOI: 10.2174/138920309788452164] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Large volumes of protein sequence and structure data acquired by proteomic studies led to the development of computational bioinformatic techniques that made possible the functional annotation and structural characterization of proteins based on their primary structure. It has become evident from genome-wide analyses that many proteins in eukaryotic cells are either completely disordered or contain long unstructured regions that are crucial for their biological functions. The content of disorder increases with evolution indicating a possibly important role of disorder in the regulation of cellular systems. Transcription factors are no exception and several proteins of this class have recently been characterized as premolten/molten globules. Yet, mammalian cells rely on these proteins to control expression of their 30,000 or so genes. Basic region:leucine zipper (bZIP) DNA-binding proteins constitute a major class of eukaryotic transcriptional regulators. This review discusses how conformational flexibility "built" into the amino acid sequence allows bZIP proteins to interact with a large number of diverse molecular partners and to accomplish their manifold cellular tasks in a strictly regulated and coordinated manner.
Collapse
Affiliation(s)
- Maria Miller
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| |
Collapse
|
18
|
Sun X, Ritzenthaler JD, Zhong X, Zheng Y, Roman J, Han S. Nicotine stimulates PPARbeta/delta expression in human lung carcinoma cells through activation of PI3K/mTOR and suppression of AP-2alpha. Cancer Res 2009; 69:6445-53. [PMID: 19654299 DOI: 10.1158/0008-5472.can-09-1001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We previously showed that nicotine stimulates non-small cell lung carcinoma (NSCLC) cell proliferation through nicotinic acetylcholine receptor (nAChR)-mediated signals. Activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) has also been shown to induce NSCLC cell growth. Here, we explore the potential link between nicotine and PPARbeta/delta and report that nicotine increases the expression of PPARbeta/delta protein; this effect was blocked by an alpha7 nAChR antagonist (alpha-bungarotoxin), by alpha7 nAChR short interfering RNA, and by inhibitors of phosphatidylinositol 3-kinase (PI3K; wortmannin and LY294002) and mammalian target of rapamycin (mTOR; rapamycin). In contrast, this effect was enhanced by PUN282987, an alpha7 nAChR agonist. Silencing of PPARbeta/delta attenuated the stimulatory effect of nicotine on cell growth, which was overcome by transfection of an exogenous PPARbeta/delta expression vector. Of note, nicotine induced complex formation between alpha7 nAChR and PPARbeta/delta protein and increased PPARbeta/delta gene promoter activity through inhibition of AP-2alpha as shown by reduced AP-2alpha binding using electrophoretic gel mobility shift and chromatin immunoprecipitation assays. In addition, silencing of Sp1 attenuated the effect of nicotine on PPARbeta/delta. Collectively, our results show that nicotine increases PPARbeta/delta gene expression through alpha7 nAChR-mediated activation of PI3K/mTOR signals that inhibit AP-2alpha protein expression and DNA binding activity to the PPARbeta/delta gene promoter. Sp1 seems to modulate this process. This study unveils a novel mechanism by which nicotine promotes human lung carcinoma cell growth.
Collapse
Affiliation(s)
- XiaoJuan Sun
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
19
|
Bristol JA, Morrison TE, Kenney SC. CCAAT/enhancer binding proteins alpha and beta regulate the tumor necrosis factor receptor 1 gene promoter. Mol Immunol 2009; 46:2706-13. [PMID: 19523687 DOI: 10.1016/j.molimm.2009.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 05/18/2009] [Indexed: 12/21/2022]
Abstract
CCAAT/enhancer binding protein (C/EBP) transcription factors play essential roles in regulating an array of cellular processes, including differentiation, energy metabolism, and inflammation. In this report we demonstrate that both C/EBPalpha and C/EBPbeta activate the promoter driving transcription of the tumor necrosis factor receptor 1 (TNFR1). TNFR1 is the major receptor for tumor necrosis factor (TNF), a critical cytokine mediator of the inflammatory response. Although the TNFR1 protein has been shown to be regulated through post-translational modifications, very little is known about the transcriptional regulation of the TNFR1 gene. Here we have identified a specific C/EBP binding site within the TNFR1 promoter, and shown that this site is required for both C/EBPalpha and C/EBPbeta activation of the promoter in reporter gene assays. Furthermore, we show that both C/EBPalpha and C/EBPbeta are bound to the TNFR1 promoter in cells using chromatin immunoprecipitation assays. Finally, we demonstrate that reducing the level of C/EBPalpha and C/EBPbeta expression in cells using siRNA technology leads to decreased expression of the TNFR1 protein. These results suggest that the C/EBPalpha and C/EBPbeta transcription factors enhance expression of the TNFR1 protein in cells. Given that TNF and C/EBPbeta are known to activate each other's expression, C/EBPbeta may greatly amplify the initial TNF signal through a positive auto-regulatory mechanism.
Collapse
Affiliation(s)
- Jillian A Bristol
- Departments of Oncology and Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, 53706, United States
| | | | | |
Collapse
|
20
|
Liu Y, Nonnemacher MR, Wigdahl B. CCAAT/enhancer-binding proteins and the pathogenesis of retrovirus infection. Future Microbiol 2009; 4:299-321. [PMID: 19327116 DOI: 10.2217/fmb.09.4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies indicate that two upstream CCAAT/enhancer-binding protein (C/EBP) sites and C/EBPbeta are required for subtype B HIV-1 gene expression in cells of the monocyte-macrophage lineage. The mechanisms of C/EBP regulation of HIV-1 transcription and replication remain unclear. This review focuses on studies concerning the role of C/EBP factors in HIV-1, human T-cell leukemia virus type 1, and SIV transcription in various cell types and tissues cultured in vitro, animal models and during human infection. The structure and function of the C/EBPbeta gene and the related protein isoforms are discussed along with the transcription factors, coactivators, viral proteins, cytokines and chemokines that affect C/EBP function.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Microbiology & Immunology, Center for Molecular Virology & Neuroimmunology, Center for Cancer Biology, Philadelphia, PA 19129, USA
| | | | | |
Collapse
|
21
|
Zhong Y, Armbrecht HJ, Christakos S. Calcitonin, a regulator of the 25-hydroxyvitamin D3 1alpha-hydroxylase gene. J Biol Chem 2009; 284:11059-69. [PMID: 19261615 DOI: 10.1074/jbc.m806561200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although parathyroid hormone (PTH) induces 25-hydroxyvitamin D(3) (25(OH)D(3)) 1alpha-hydroxylase (1alpha(OH)ase) under hypocalcemic conditions, previous studies showed that calcitonin, not PTH, has an important role in the maintenance of serum 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) under normocalcemic conditions. In this study we report that 1alpha(OH)ase transcription is strongly induced by calcitonin in kidney cells and indicate mechanisms that underlie this regulation. The transcription factor C/EBPbeta is up-regulated by calcitonin in kidney cells and results in a significant enhancement of calcitonin induction of 1alpha(OH)ase transcription and protein expression. Mutation constructs of the 1alpha(OH)ase promoter demonstrate the importance of the C/EBPbeta binding site at -79/-73 for activation of the 1alpha(OH)ase promoter by calcitonin. The SWI/SNF chromatin remodeling complex was found to cooperate with calcitonin in the regulation of 1alpha(OH)ase. Chromatin immunoprecipitation analysis showed that calcitonin recruits C/EBPbeta to the 1alpha(OH)ase promoter, and Re-chromatin immunoprecipitation analysis (sequential chromatin immunoprecipitations using different antibodies) showed that C/EBPbeta and BRG1, an ATPase that is a component of the SWI/SNF complex, bind simultaneously to the 1alpha(OH)ase promoter. These findings are the first to address the dynamics between calcitonin, C/EBPbeta, and SWI/SNF in the regulation of 1alpha(OH)ase and provide a mechanism, for the first time, for calcitonin induction of 1alpha(OH)ase. Because plasma calcitonin as well as 1,25(OH)(2)D(3) have been reported to be increased during pregnancy and lactation and in early development, these findings suggest a mechanism that may account, at least in part, for the increase in plasma 1,25(OH)(2)D(3) during these times of increased calcium requirement.
Collapse
Affiliation(s)
- Yan Zhong
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
22
|
Hamon MA, Cossart P. Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe 2008; 4:100-9. [PMID: 18692770 DOI: 10.1016/j.chom.2008.07.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/08/2008] [Accepted: 07/21/2008] [Indexed: 11/16/2022]
Abstract
The link between bacteria and host chromatin remodeling is an emerging topic. The exciting recent discoveries on bacterial impact on host epigenetics, as discussed in this Review, highlight yet another strategy used by bacterial pathogens to interfere with key cellular processes. The study of how pathogens provoke host chromatin changes will also provide new insights into host epigenetic regulation mechanisms.
Collapse
Affiliation(s)
- Mélanie Anne Hamon
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015 France
| | | |
Collapse
|
23
|
Wang WL, Lee YC, Yang WM, Chang WC, Wang JM. Sumoylation of LAP1 is involved in the HDAC4-mediated repression of COX-2 transcription. Nucleic Acids Res 2008; 36:6066-79. [PMID: 18820298 PMCID: PMC2577330 DOI: 10.1093/nar/gkn607] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CEBPB, one of the CEBP family members, is a crucial regulator of gene expression during innate immunity, inflammatory responses and adipogenesis. In this study, the EGF-induced increase of CEBPB mRNA is shown to be coincident with the decrease of COX-2 mRNA. We identified that all of the individual CEBPB isoforms, LAP1, LAP2 and LIP, attenuate EGF-induced COX-2 promoter activity. Although increased sumoylation of both LAP1 and LAP2 is observed during the lagging stage of EGF treatment, only the sumoylated LAP1, but not the sumoylated LAP2, is responsible for COX-2 gene repression. In addition, EGF treatment can regulate the nucleocytoplasmic redistribution of HDAC4 and SUMO1. We further demonstrated by loss-of- and gain-of-function approaches that HDAC4 can be a negative regulator while inactivating COX-2 transcription. The sumoylation mutant LAP1, LAP1K174A, exhibits an attenuated ability to interact with HDAC4, and increased COX-2 promoter activity. Furthermore, the in vivo DNA binding assay demonstrated that LAP1K174A and CEBPDK120A, sumoylation-defective CEBPD mutants, attenuate the binding of HDAC4 on the COX-2 promoter. In light of the above, our data suggest that the suCEBPD and suLAP1 are involved in the repression of COX-2 transcription through the recruitment of HDAC4.
Collapse
Affiliation(s)
- Wen-Ling Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
24
|
Hong M, Li W, Wang L, Jiang L, Liu L, Zhao H, Li Q. Identification of a novel transcriptional repressor (HEPIS) that interacts with nsp-10 of SARS coronavirus. Viral Immunol 2008; 21:153-62. [PMID: 18433331 DOI: 10.1089/vim.2007.0108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel gene was previously isolated from a cDNA library of human embryo lung tissue by its encoded protein, which interacts with non-structural protein 10 (nsp-10) of the severe acute respiratory syndrome coronavirus (SARS-CoV). The protein was named human embryo lung cellular protein interacting with SARS-CoV nsp-10 (HEPIS), and it is composed of 147 amino acids with several CK II phosphorylation sites. In the present study, we demonstrated that HEPIS was capable of suppressing chloramphenicol acetyltransferase (CAT) gene expression controlled by different enhancerelements in a transcription assay. HEPIS interacted specifically with the HSP70 TATA sequence, and not with various other enhancer elements in a binding test. Furthermore, we co-immunoprecipitated HEPIS with BTF3, a component of the RNA pol II initiation complex, and observed reduced proliferation of HeLa cells transfected with the HEPIS gene. Taken together, our results suggest that HEPIS may function as a potential transcriptional repressor.
Collapse
Affiliation(s)
- Min Hong
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical College, Kunming, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Ewing SJ, Zhu S, Zhu F, House JS, Smart RC. C/EBPbeta represses p53 to promote cell survival downstream of DNA damage independent of oncogenic Ras and p19(Arf). Cell Death Differ 2008; 15:1734-44. [PMID: 18636078 DOI: 10.1038/cdd.2008.105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
CCAAT/enhancer-binding protein-beta (C/EBPbeta) is a mediator of cell survival and tumorigenesis. When C/EBPbeta(-/-) mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19(Arf) and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19(Arf) is dramatically elevated in C/EBPbeta(-/-) epidermis and that C/EBPbeta represses a p19(Arf) promoter reporter. To determine whether p19(Arf) is responsible for the proapoptotic phenotype in C/EBPbeta(-/-) mice, C/EBPbeta(-/-);p19(Arf-/-) mice were generated. C/EBPbeta(-/-);p19(Arf-/-) mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19(Arf) is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPbeta(-/-) epidermis, we generated K14-ER:Ras;C/EBPbeta(-/-) mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPbeta(-/-) mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPbeta represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPbeta may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents.
Collapse
Affiliation(s)
- S J Ewing
- Cell Signaling and Cancer Group, Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633, USA
| | | | | | | | | |
Collapse
|
26
|
Turgeon N, Valiquette C, Blais M, Routhier S, Seidman EG, Asselin C. Regulation of C/EBPdelta-dependent transactivation by histone deacetylases in intestinal epithelial cells. J Cell Biochem 2008; 103:1573-83. [PMID: 17910034 DOI: 10.1002/jcb.21544] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The C/EBPdelta transcription factor is involved in the positive regulation of the intestinal epithelial cell acute phase response. C/EBPdelta regulation by histone deacetylases (HDACs) during the course of inflammation remains to be determined. Our aim was to examine the effect of HDACs on C/EBPdelta-dependent regulation of haptoglobin, an acute phase protein induced in intestinal epithelial cells in response to pro-inflammatory cytokines. HDAC1, HDAC3, and HDAC4 were expressed in intestinal epithelial cells, as determined by Western blot. GST pull-down assays showed specific HDAC1 interactions with the transcriptional activation and the b-ZIP C/EBPdelta domains, while the co-repressor mSin3A interacts with the C-terminal domain. Immunoprecipitation assays confirmed the interaction between HDAC1 and the N-terminal C/EBPdelta amino acid 36-164 domain. HDAC1 overexpression decreased C/EBPdelta transcriptional activity of the haptoglobin promoter, as assessed by transient transfection and luciferase assays. Chromatin immunoprecipitation analysis showed a displacement of HDAC1 from the haptoglobin promoter in response to inflammatory stimuli and an increased acetylation of histone H3 and H4. HDAC1 silencing by shRNA expression increased both basal and IL-1beta-induced haptoglobin mRNA levels in epithelial intestinal cells. Our results suggest that interactions between C/EBPs and HDAC1 negatively regulate C/EBPdelta-dependent haptoglobin expression in intestinal epithelial cells.
Collapse
Affiliation(s)
- Naomie Turgeon
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | |
Collapse
|
27
|
Liang P, Jiang B, Yang X, Xiao X, Huang X, Long J, Zhang P, Zhang M, Xiao M, Xie T, Huang X. The role of peroxisome proliferator-activated receptor-beta/delta in epidermal growth factor-induced HaCaT cell proliferation. Exp Cell Res 2008; 314:3142-51. [PMID: 18625220 DOI: 10.1016/j.yexcr.2008.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 06/11/2008] [Accepted: 06/13/2008] [Indexed: 11/30/2022]
Abstract
Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) expression and activation is involved in the cell proliferation. However, little is known about the role of PPARbeta/delta in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPARbeta/delta mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, an EGF receptor (EGFR) special inhibitor, caused attenuation of PPARbeta/delta protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPARbeta/delta binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPARbeta/delta caused selectively inhibition of PPARbeta/delta protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPARbeta/delta, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPARbeta/delta up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPARbeta/delta promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPARbeta/delta expression in a c-Jun-dependent manner and PPARbeta/delta plays a vital role in EGF-stimulated proliferation of HaCaT cells.
Collapse
Affiliation(s)
- Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
al Yacoub N, Romanowska M, Krauss S, Schweiger S, Foerster J. PPARdelta is a type 1 IFN target gene and inhibits apoptosis in T cells. J Invest Dermatol 2008; 128:1940-9. [PMID: 18305567 DOI: 10.1038/jid.2008.32] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator-activated receptor beta/delta (PPARdelta) is a nuclear hormone receptor regulating diverse biological processes, including beta-oxidation of fatty acid and epithelial cell differentiation. To date, the role of PPARdelta in the immune system has not been thoroughly studied. Here, we show that PPARdelta is expressed in activated human T cells purified from peripheral blood as well as in T cells isolated from affected psoriasis skin lesions. PPARdelta is induced in T cells on stimulation with type 1 IFN. Functionally, PPARdelta enhances proliferation of primary T cells and blocks apoptosis induced by type 1 IFN and by serum deprivation. We show that these cellular functions are mediated by the activation of extracellular signal-regulated kinase1/2 signaling. Our results (1) establish a direct molecular link between type 1 IFN signaling and PPARdelta, (2) define a functional role for PPARdelta in human T cells, and (3) suggest that the induction of PPARdelta by type 1 IFN contributes to the persistence of activated T cells in psoriasis skin lesions.
Collapse
Affiliation(s)
- Nadya al Yacoub
- Department of Biology, Free University of Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
29
|
Villacorta L, Garcia-Barrio MT, Chen YE. Transcriptional regulation of peroxisome proliferator-activated receptors and liver X receptors. Curr Atheroscler Rep 2008; 9:230-7. [PMID: 18241618 DOI: 10.1007/s11883-007-0024-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peroxisome proliferator-activated receptors (PPAR) and liver X receptors (LXR) regulate a plethora of biologic processes and key metabolic and physiologic events. Deregulation of their transcription and activity is commonly associated with dyslipidemic disorders, diabetes, cancer, and cardiovascular disease. This review addresses recent advances in our understanding of the molecular mechanisms regulating transcription of these nuclear receptors. The heterogeneity of factors regulating their transcription and activity suggests intricate regulatory networks that determine their tissue expression pattern and their responses to pharmacologic agents. Understanding such mechanisms will facilitate unraveling their protective effects in disease as well as the design of effective targeted therapies.
Collapse
Affiliation(s)
- Luis Villacorta
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
30
|
Pennini ME, Liu Y, Yang J, Croniger CM, Boom WH, Harding CV. CCAAT/enhancer-binding protein beta and delta binding to CIITA promoters is associated with the inhibition of CIITA expression in response to Mycobacterium tuberculosis 19-kDa lipoprotein. THE JOURNAL OF IMMUNOLOGY 2007; 179:6910-8. [PMID: 17982082 DOI: 10.4049/jimmunol.179.10.6910] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
TLR2 signaling by Mycobacterium tuberculosis 19-kDa lipoprotein (LpqH) inhibits IFN-gamma-induced expression of CIITA by macrophages. Microarray analysis, quantitative RT-PCR, and Western blots showed that LpqH induced C/EBPbeta and C/EBPdelta in kinetic correlation with inhibition of CIITA expression. Of the C/EBPbeta isoforms, liver inhibitory protein (LIP) was notably induced and liver-activating protein was increased by LpqH. Putative C/EBP binding sites were identified in CIITA promoters I and IV (pI and pIV). LpqH induced binding of C/EBPbeta (LIP and liver-activating protein) to biotinylated oligodeoxynucleotide containing the pI or pIV binding sites, and chromatin immunoprecipitation showed that LpqH induced binding of C/EBPbeta and C/EBPdelta to endogenous CIITA pI and pIV. Constitutive expression of C/EBPbeta LIP inhibited IFN-gamma-induced CIITA expression in transfected cells. In summary, LpqH induced expression of C/EBPbeta and C/EBPdelta, and their binding to CIITA pI and pIV, in correlation with inhibition of IFN-gamma-induced expression of CIITA in macrophages, suggesting a role for C/EBP as a novel regulator of CIITA expression.
Collapse
Affiliation(s)
- Meghan E Pennini
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
31
|
He CQ, Ding NZ, Fan W. YY1 repressing peroxisome proliferator-activated receptor delta promoter. Mol Cell Biochem 2007; 308:247-52. [PMID: 17973082 DOI: 10.1007/s11010-007-9632-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 10/18/2007] [Indexed: 01/24/2023]
Abstract
Peroxisome proliferator-activated receptors delta (PPARdelta) is a nuclear hormone receptor belonging to the steroid receptor superfamily and is molecular targets for drugs to treat hypertriglyceridemia and type 2 diabetes. Yin Yang 1 (YY1) is a transcription factor that can repress or activate transcription of the genes with which it interacts. In this report, we show that YY1 specifically interacts with the PPARdelta promoter. Overexpression of YY1 in Hela and NIH 3T3 cells repressed the activity of the PPARdelta promoter, while the PPARdelta promoter activity was enhanced when YY1 was knocked down by siRNA YY1. We also show that YY1 in nuclear extracts was able to bind the PPARdelta promoter directly. These results suggest that YY1 might be a negative regulator of PPARdelta gene expression through its direct interaction with the PPARdelta promoter.
Collapse
Affiliation(s)
- Cheng-Qiang He
- College of Life Science, Shandong Normal University, Shandong Province 250014, China
| | | | | |
Collapse
|
32
|
Daikoku T, Tranguch S, Chakrabarty A, Wang D, Khabele D, Orsulic S, Morrow JD, Dubois RN, Dey SK. Extracellular signal-regulated kinase is a target of cyclooxygenase-1-peroxisome proliferator-activated receptor-delta signaling in epithelial ovarian cancer. Cancer Res 2007; 67:5285-92. [PMID: 17545608 DOI: 10.1158/0008-5472.can-07-0828] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The underlying causes of epithelial ovarian cancer (EOC) are unclear, and treatment options for patients with advanced disease are limited. There is evidence that the use of nonsteroidal anti-inflammatory drugs is associated with decreased risk of developing EOC. Nonsteroidal anti-inflammatory drugs inhibit cyclooxygenase (COX)-1 and COX-2, which catalyze prostaglandin biosynthesis. We previously showed that mouse and human EOCs have increased levels of COX-1, but not COX-2, and a COX-1-selective inhibitor, SC-560, attenuates prostaglandin production and tumor growth. However, the downstream targets of COX-1 signaling in EOC are not yet known. To address this question, we evaluated peroxisome proliferator-activated receptor delta (PPARdelta) expression and function in EOC. We found that EOC cells express high levels of PPARdelta, and neutralizing PPARdelta function reduces tumor growth in vivo. More interestingly, aspirin, a nonsteroidal anti-inflammatory drug that preferentially inhibits COX-1, compromises PPARdelta function and cell growth by inhibiting extracellular signal-regulated kinases 1/2, members of the mitogen-activated protein kinase family. Our study, for the first time, shows that whereas PPARdelta can be a target of COX-1, extracellular signal-regulated kinase is a potential target of PPARdelta. The ability of aspirin to inhibit EOC growth in vivo is an exciting finding because of its low cost, lack of cardiovascular side effects, and availability.
Collapse
Affiliation(s)
- Takiko Daikoku
- Department of Pediatrics, Division of Reproductive and Development Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2678, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Genini D, Catapano CV. Block of nuclear receptor ubiquitination. A mechanism of ligand-dependent control of peroxisome proliferator-activated receptor delta activity. J Biol Chem 2007; 282:11776-85. [PMID: 17324937 DOI: 10.1074/jbc.m609149200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptor delta (PPARdelta) is a ligand-activated transcription factor involved in many physiological and pathological processes. PPARdelta is a promising therapeutic target for metabolic, chronic inflammatory, and neurodegenerative disorders. However, limited information is available about the mechanisms that control the activity of this nuclear receptor. Here, we examined the role of the ubiquitinproteasome system in PPARdelta turnover. The receptor was ubiquitinated and subject to rapid degradation by the 26 S proteasome. Unlike most nuclear receptors that are degraded upon ligand binding, PPARdelta ligands inhibited the ubiquitination of the receptor, thereby preventing its degradation. Ligand binding was required for inhibition of the ubiquitination since disruption of the ligand binding domain abolished the effect. Site-directed mutagenesis showed that the DNA binding domain was also required, indicating that ligands preferentially stabilized the DNA-bound receptor. In contrast, the activation function-2 domain and co-repressor binding site were not involved in ligand-induced stabilization. Block of ubiquitination by ligands may be an essential step to avoid rapid degradation of a receptor, like PPARdelta, with a very short half-life and sustain its transcriptional activity once it is engaged in transcriptional activation complexes.
Collapse
Affiliation(s)
- Davide Genini
- Laboratory of Experimental Oncology, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland
| | | |
Collapse
|
34
|
Yoon K, Zhu S, Ewing SJ, Smart RC. Decreased survival of C/EBP beta-deficient keratinocytes is due to aberrant regulation of p53 levels and function. Oncogene 2006; 26:360-7. [PMID: 16832342 DOI: 10.1038/sj.onc.1209797] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies have identified roles for C/EBPbeta in cellular survival and tumorigenesis, however, the mechanisms through which C/EBPbeta regulates these processes are not fully understood. Previously, we demonstrated that C/EBPbeta(-/-) mice are resistant to carcinogen-induced skin tumorigenesis and in response to topical carcinogen treatment display a 17-fold increase in keratinocyte apoptosis compared to wild-type mice. Here, we have investigated the mechanisms through which C/EBPbeta regulates apoptosis in response to carcinogenic stress. Analysis of carcinogen-treated C/EBPbeta(-/-) mouse skin revealed a striking increase in the number of p53 immunopositive keratinocytes in the epidermis of C/EBPbeta(-/-) mice compared to wild-type mice and this increase was temporally associated with a concomitant anomalous increase in apoptosis. The increased levels of p53 were functional as Mdm2, Bcl-2, C/EBPalpha and p21 were differentially regulated in the epidermis of carcinogen-treated C/EBPbeta(-/-) mice. The increase in p53 protein was not associated with an increase in p53 mRNA levels. To determine whether p53 is required for the increased apoptosis in C/EBPbeta(-/-) mice, C/EBPbeta/p53 compound knockout mice were generated. Carcinogen-treated C/EBPbeta/p53 compound knockout mice did not display increased apoptosis demonstrating p53 is required for the proapoptotic phenotype in C/EBPbeta(-/-) mice. Our results demonstrate that altered keratinocyte survival in C/EBPbeta(-/-) mice results from aberrant regulation of p53 protein and function and indicate C/EBPbeta has a role in the negative regulation of p53 protein levels in response to carcinogen-induced stress.
Collapse
Affiliation(s)
- K Yoon
- Cell Signaling and Cancer Group, Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633, USA
| | | | | | | |
Collapse
|
35
|
Michalik L, Wahli W. Involvement of PPAR nuclear receptors in tissue injury and wound repair. J Clin Invest 2006; 116:598-606. [PMID: 16511592 PMCID: PMC1386118 DOI: 10.1172/jci27958] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tissue damage resulting from chemical, mechanical, and biological injury, or from interrupted blood flow and reperfusion, is often life threatening. The subsequent tissue response involves an intricate series of events including inflammation, oxidative stress, immune cell recruitment, and cell survival, proliferation, migration, and differentiation. In addition, fibrotic repair characterized by myofibroblast transdifferentiation and the deposition of ECM proteins is activated. Failure to initiate, maintain, or stop this repair program has dramatic consequences, such as cell death and associated tissue necrosis or carcinogenesis. In this sense, inflammation and oxidative stress, which are beneficial defense processes, can become harmful if they do not resolve in time. This repair program is largely based on rapid and specific changes in gene expression controlled by transcription factors that sense injury. PPARs are such factors and are activated by lipid mediators produced after wounding. Here we highlight advances in our understanding of PPAR action during tissue repair and discuss the potential for these nuclear receptors as therapeutic targets for tissue injury.
Collapse
Affiliation(s)
- Liliane Michalik
- Center for Integrative Genomics, National Research Centre Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
36
|
Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 2006; 45:120-59. [PMID: 16476485 DOI: 10.1016/j.plipres.2005.12.002] [Citation(s) in RCA: 570] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) compose a family of three nuclear receptors which act as lipid sensors to modulate gene expression. As such, PPARs are implicated in major metabolic and inflammatory regulations with far-reaching medical consequences, as well as in important processes controlling cellular fate. Throughout this review, we focus on the cellular functions of these receptors. The molecular mechanisms through which PPARs regulate transcription are thoroughly addressed with particular emphasis on the latest results on corepressor and coactivator action. Their implication in cellular metabolism and in the control of the balance between cell proliferation, differentiation and survival is then reviewed. Finally, we discuss how the integration of various intra-cellular signaling pathways allows PPARs to participate to whole-body homeostasis by mediating regulatory crosstalks between organs.
Collapse
Affiliation(s)
- Jérôme N Feige
- Center for Integrative Genomics, NCCR Frontiers in Genetics, Le Génopode, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
37
|
PPARs in fetal and early postnatal development. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1574-3349(06)16002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|