1
|
Deng S, Liao J, Li H, Xu J, Fan J, Xia J, Wang J, Lei L, Chen M, Han Y, Zhai R, Zhou C, Zhou R, Cheng C, Song H. Streptococcus suis subtilisin-like serine proteases SspA-1 and SspA-2 interplay with complement C3a and C5a to facilitate bacterial immune evasion and infection. Virulence 2024; 15:2301246. [PMID: 38170683 PMCID: PMC10795781 DOI: 10.1080/21505594.2023.2301246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Streptococcus suis (S. suis), a significant zoonotic bacterial pathogen impacting swine and human, is associated with severe systemic diseases such as streptococcal toxic shock-like syndrome, meningitis, septicaemia, and abrupt fatality. The multifaceted roles of complement components C5a and C3a extend to orchestrating inflammatory cells recruitment, oxidative burst induction, and cytokines release. Despite the pivotal role of subtilisin-like serine proteases in S. suis pathogenicity, their involvement in immune evasion remains underexplored. In the present study, we identify two cell wall-anchored subtilisin-like serine proteases in S. suis, SspA-1 and SspA-2, as binding partners for C3a and C5a. Through Co-Immunoprecipitation, Enzyme-Linked Immunosorbent and Far-Western Blotting Assays, we validate their interactions with the aforementioned components. However, SspA-1 and SspA-2 have no cleavage activity against complement C3a and C5a performed by Cleavage assay. Chemotaxis assays reveal that recombinant SspA-1 and SspA-2 effectively attenuate monocyte chemotaxis towards C3a and C5a. Notably, the ΔsspA-1, ΔsspA-1, and ΔsspA-1/2 mutant strains exhibit compromised survival in blood, and resistance of opsonophagocytosis, alongside impaired survival in blood and in vivo colonization compared to the parental strain SC-19. Critical insights from the murine and Galleria mellonella larva infection models further underscore the significance of sspA-1 in altering mortality rates. Collectively, our findings indicate that SspA-1 and SspA-2 are novel binding proteins for C3a and C5a, thereby shedding light on their pivotal roles in S. suis immune evasion and the pathogenesis.
Collapse
Affiliation(s)
- Simin Deng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Junhui Liao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Haojie Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jingyan Fan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jing Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Lei Lei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Mianmian Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Yue Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Ruidong Zhai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Chang Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Rui Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
2
|
Kumari K, Dey J, Mahapatra SR, Ma Y, Sharma PK, Misra N, Singh RP. Protein profiling and immunoinformatic analysis of the secretome of a metal-resistant environmental isolate Pseudomonas aeruginosa S-8. Folia Microbiol (Praha) 2024; 69:1095-1122. [PMID: 38457114 DOI: 10.1007/s12223-024-01152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
The bacterial secretome represents a comprehensive catalog of proteins released extracellularly that have multiple important roles in virulence and intercellular communication. This study aimed to characterize the secretome of an environmental isolate Pseudomonas aeruginosa S-8 by analyzing trypsin-digested culture supernatant proteins using nano-LC-MS/MS tool. Using a combined approach of bioinformatics and mass spectrometry, 1088 proteins in the secretome were analyzed by PREDLIPO, SecretomeP 2.0, SignalP 4.1, and PSORTb tool for their subcellular localization and further categorization of secretome proteins according to signal peptides. Using the gene ontology tool, secretome proteins were categorized into different functional categories. KEGG pathway analysis identified the secreted proteins into different metabolic functional pathways. Moreover, our LC-MS/MS data revealed the secretion of various CAZymes into the extracellular milieu, which suggests its strong biotechnological applications to breakdown complex carbohydrate polymers. The identified immunodominant epitopes from the secretome of P. aeruginosa showed the characteristic of being non-allergenic, highly antigenic, nontoxic, and having a low risk of triggering autoimmune responses, which highlights their potential as successful vaccine targets. Overall, the identification of secreted proteins of P. aeruginosa could be important for both diagnostic purposes and the development of an effective candidate vaccine.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, 835215, India
| | - Jyotirmayee Dey
- School of Biotechnology, Deemed to Be University, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Deemed to Be University, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Namrata Misra
- School of Biotechnology, Deemed to Be University, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, India.
| |
Collapse
|
3
|
Xu J, Zhu J, Han W, Pang S, Deng S, Chen L, Chen X, Huang Q, Zhou R, Li L. A bifunctional amylopullulanase of Streptococcus suis ApuA contributes to immune evasion by interaction with host complement C3b. Vet Microbiol 2024; 297:110212. [PMID: 39111202 DOI: 10.1016/j.vetmic.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024]
Abstract
The complement system is the first defense line of the immune system. However, pathogens have evolved numerous strategies to evade complement attacks. Streptococcus suis is an important zoonotic bacterium, harmful to both the pig industry and human health. ApuA has been reported as a bifunctional amylopullulanase and also contributed to virulence of S. suis. Herein, we found that ApuA could activate both classical and alternative pathways of the complement system. Furthermore, by using bacterial two-hybrid, far-western blot and ELISA assays, it was confirmed that ApuA could interact with complement C3b. The interaction domain of ApuA with C3b was found to be its α-Amylase domain (ApuA_N). After construction of an apuA mutant (ΔapuA) and its complementary strain, it was found that compared to the wild-type strain (WT), ΔapuA had significantly increased C3b deposition and membrane attack complex formation. Additionally, ΔapuA showed significantly lower survival rates in human serum and blood and was more susceptible to engulfment by neutrophils and macrophages. Mice infected with ΔapuA had significantly higher survival rates and lower bacterial loads in their blood, lung and brains, compared to those infected with WT. In summary, this study identified ApuA as a novel factor involved in the complement evasion of S. suis and suggested its multifunctional role in the pathogenesis of S. suis.
Collapse
Affiliation(s)
- Jiajia Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Jiaqi Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Weiyao Han
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Siqi Pang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Simin Deng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Long Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Qi Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei 430070, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei 430070, China.
| | - Lu Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Liu D, Bhunia AK. Anchorless Bacterial Moonlighting Metabolic Enzymes Modulate the Immune System and Contribute to Pathogenesis. ACS Infect Dis 2024; 10:2551-2566. [PMID: 39066728 DOI: 10.1021/acsinfecdis.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Moonlighting proteins (MPs), characterized by their ability to perform multiple physiologically unrelated functions without alterations to their primary structures, represent a fascinating class of biomolecules with significant implications for host-pathogen interactions. This Review highlights the emerging importance of metabolic moonlighting proteins (MetMPs) in bacterial pathogenesis, focusing on their non-canonical secretion and unconventional surface anchoring mechanisms. Despite lacking typical signal peptides and anchoring motifs, MetMPs such as acetaldehyde alcohol dehydrogenase (AdhE) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are secreted and localized to the bacterial surface under stress conditions, facilitating host colonization and immune evasion. The secretion of MetMPs, often observed during conditions such as resource scarcity or infection, suggests a complex regulation akin to the overexpression of heat shock proteins in response to environmental stresses. This Review proposes two potential pathways for MetMP secretion: membrane damage-induced permeability and co-transportation with traditionally secreted proteins, highlighting a remarkable bacterial adaptability. Biophysically, surface anchoring of MetMPs is driven by electrostatic interactions, bypassing the need for conventional anchoring sequences. This mechanism is exemplified by the interaction between the bifunctional enzyme AdhE (known as Listeria adhesion protein, LAP) and the internalin B (InlB) in Listeria monocytogenes, which is mediated by charged residues facilitating adhesion to host tissues. Furthermore, MetMPs play critical roles in iron homeostasis, immune modulation, and evasion, underscoring their multifaceted roles in bacterial pathogenicity. The intricate dynamics of MetMP secretion and anchoring underline the need for further research to unravel the molecular mechanisms underpinning these processes, offering potential new targets for therapeutic intervention against bacterial infections.
Collapse
Affiliation(s)
- Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Yamaguchi M, Uchihashi T, Kawabata S. Hybrid sequence-based analysis reveals the distribution of bacterial species and genes in the oral microbiome at a high resolution. Biochem Biophys Rep 2024; 38:101717. [PMID: 38708423 PMCID: PMC11066573 DOI: 10.1016/j.bbrep.2024.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Bacteria in the oral microbiome are poorly identified owing to the lack of established culture methods for them. Thus, this study aimed to use culture-free analysis techniques, including bacterial single-cell genome sequencing, to identify bacterial species and investigate gene distribution in saliva. Saliva samples from the same individual were classified as inactivated or viable and then analyzed using 16S rRNA sequencing, metagenomic shotgun sequencing, and bacterial single-cell sequencing. The results of 16S rRNA sequencing revealed similar microbiota structures in both samples, with Streptococcus being the predominant genus. Metagenomic shotgun sequencing showed that approximately 80 % of the DNA in the samples was of non-bacterial origin, whereas single-cell sequencing showed an average contamination rate of 10.4 % per genome. Single-cell sequencing also yielded genome sequences for 43 out of 48 wells for the inactivated samples and 45 out of 48 wells for the viable samples. With respect to resistance genes, four out of 88 isolates carried cfxA, which encodes a β-lactamase, and four isolates carried erythromycin resistance genes. Tetracycline resistance genes were found in nine bacteria. Metagenomic shotgun sequencing provided complete sequences of cfxA, ermF, and ermX, whereas other resistance genes, such as tetQ and tetM, were detected as fragments. In addition, virulence factors from Streptococcus pneumoniae were the most common, with 13 genes detected. Our average nucleotide identity analysis also suggested five single-cell-isolated bacteria as potential novel species. These data would contribute to expanding the oral microbiome data resource.
Collapse
Affiliation(s)
- Masaya Yamaguchi
- Bioinformatics Research Unit, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Japan
| | - Toshihiro Uchihashi
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shigetada Kawabata
- Department of Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Japan
| |
Collapse
|
6
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Bhardwaj RG, Khalaf ME, Karched M. Secretome analysis and virulence assessment in Abiotrophia defectiva. J Oral Microbiol 2024; 16:2307067. [PMID: 38352067 PMCID: PMC10863525 DOI: 10.1080/20002297.2024.2307067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Background Abiotrophia defectiva, although infrequently occurring, is a notable cause of culture-negative infective endocarditis with limited research on its virulence. Associated with oral infections such as dental caries, exploring its secretome may provide insights into virulence mechanisms. Our study aimed to analyze and characterize the secretome of A. defectiva strain CCUG 27639. Methods Secretome of A. defectiva was prepared from broth cultures and subjected to mass spectrometry and proteomics for protein identification. Inflammatory potential of the secretome was assessed by ELISA. Results Eighty-four proteins were identified, with diverse subcellular localizations predicted by PSORTb. Notably, 20 were cytoplasmic, 12 cytoplasmic membrane, 5 extracellular, and 9 cell wall-anchored proteins. Bioinformatics tools revealed 54 proteins secreted via the 'Sec' pathway and 8 via a non-classical pathway. Moonlighting functions were found in 23 proteins, with over 20 exhibiting potential virulence properties, including peroxiredoxin and oligopeptide ABC transporter substrate-binding protein. Gene Ontology and KEGG analyses categorized protein sequences in various pathways. STRING analysis revealed functional protein association networks. Cytokine profiling demonstrated significant proinflammatory cytokine release (IL-8, IL-1β, and CCL5) from human PBMCs. Conclusions Our study provides a comprehensive understanding of A. defectiva's secretome, laying the foundation for insights into its pathogenicity.
Collapse
Affiliation(s)
- Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences College of Dentistry, Kuwait University, Safat, Kuwait
| | - Mai E Khalaf
- Department of General Dental Practice, College of Dentistry, Kuwait University, Safat, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences College of Dentistry, Kuwait University, Safat, Kuwait
| |
Collapse
|
8
|
Kobierecka P, Wyszyńska A, Aleksandrzak-Piekarczyk T, Sałańska A, Gawor J, Bardowski J, Jagusztyn Krynicka KE. Genomic and transcriptomic analysis of Ligilactobacillus salivarius IBB3154-in search of new promoters for vaccine construction. Microbiol Spectr 2023; 11:e0284423. [PMID: 37982628 PMCID: PMC10715006 DOI: 10.1128/spectrum.02844-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE The genome of the strain Ligilactobacillus salivarius IBB3154 was sequenced, and transcriptome analysis was carried out at two different temperatures, allowing the determination of gene expression levels in response to environmental changes (temperature). Genes with higher expression at 42°C were identified. The use of a reporter gene (β- glucuronidase) did not confirm the transcriptomic results; it was found that the promoters of the genes sasA1 and sasA2 were active in the presence of bile salts. This opens up new opportunities for the overexpression of genes of other bacterial species in Ligilactobacillus cells in the intestinal environment.
Collapse
Affiliation(s)
- Patrycja Kobierecka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Wyszyńska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Agnieszka Sałańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Bardowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
9
|
Nishida T, Ohnishi T, Kakutani T, Yamaguchi N, Kanemaru T, Takenoue T, Fukai R, Inoue K. A case of severe bilateral empyema due to Streptococcus pyogenes. IDCases 2023; 33:e01848. [PMID: 37484828 PMCID: PMC10362129 DOI: 10.1016/j.idcr.2023.e01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
Bilateral empyema is a rare and severe condition and deciding on a treatment is quite difficult. Additionally, infections caused by group A Streptococcus (GAS [Streptococcus pyogenes]) are known to be invasive. We successfully treated without surgery a previously healthy 59-year-old woman with bilateral empyema due to GAS, with repeated drainages, antibiotics, and fibrinolytic therapy. To our knowledge, there have not been any published reports on cases of bilateral empyema due to GAS infection. In rare, severe cases of bilateral empyema caused by organisms such as GAS, physicians managing the condition should consider the overall condition of the patient.
Collapse
Affiliation(s)
- Tomoki Nishida
- Department of General Thoracic Surgery, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa Prefecture, Japan
| | - Takahisa Ohnishi
- Department of General Surgery, Yamato Tokushukai Hospital, 4-4-12 Chuo, Yamato, Kanagawa Prefecture, Japan
| | - Takuya Kakutani
- Department of Respiratory Medicine, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa Prefecture, Japan
| | - Nobuo Yamaguchi
- Department of General Thoracic Surgery, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa Prefecture, Japan
| | - Takayuki Kanemaru
- Department of General Surgery, Yamato Tokushukai Hospital, 4-4-12 Chuo, Yamato, Kanagawa Prefecture, Japan
| | - Tomohiro Takenoue
- Department of General Surgery, Yamato Tokushukai Hospital, 4-4-12 Chuo, Yamato, Kanagawa Prefecture, Japan
| | - Ryuta Fukai
- Department of General Thoracic Surgery, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa Prefecture, Japan
| | - Kazuto Inoue
- Department of General Surgery, Yamato Tokushukai Hospital, 4-4-12 Chuo, Yamato, Kanagawa Prefecture, Japan
| |
Collapse
|
10
|
Navas-Yuste S, de la Paz K, Querol-García J, Gómez-Quevedo S, Rodríguez de Córdoba S, Fernández FJ, Vega MC. The structure of Leptospira interrogans GAPDH sheds light into an immunoevasion factor that can target the anaphylatoxin C5a of innate immunity. Front Immunol 2023; 14:1190943. [PMID: 37409124 PMCID: PMC10318897 DOI: 10.3389/fimmu.2023.1190943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Leptospirosis is a neglected worldwide zoonosis involving farm animals and domestic pets caused by the Gram-negative spirochete Leptospira interrogans. This bacterium deploys a variety of immune evasive mechanisms, some of them targeted at the complement system of the host's innate immunity. In this work, we have solved the X-ray crystallographic structure of L. interrogans glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to 2.37-Å resolution, a glycolytic enzyme that has been shown to exhibit moonlighting functions that potentiate infectivity and immune evasion in various pathogenic organisms. Besides, we have characterized the enzyme's kinetic parameters toward the cognate substrates and have proven that the two natural products anacardic acid and curcumin are able to inhibit L. interrogans GAPDH at micromolar concentration through a noncompetitive inhibition modality. Furthermore, we have established that L. interrogans GAPDH can interact with the anaphylatoxin C5a of human innate immunity in vitro using bio-layer interferometry and a short-range cross-linking reagent that tethers free thiol groups in protein complexes. To shed light into the interaction between L. interrogans GAPDH and C5a, we have also carried out cross-link guided protein-protein docking. These results suggest that L. interrogans could be placed in the growing list of bacterial pathogens that exploit glycolytic enzymes as extracellular immune evasive factors. Analysis of the docking results indicates a low affinity interaction that is consistent with previous evidence, including known binding modes of other α-helical proteins with GAPDH. These findings allow us to propose L. interrogans GAPDH as a potential immune evasive factor targeting the complement system.
Collapse
Affiliation(s)
- Sergio Navas-Yuste
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Karla de la Paz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Abvance Biotech Srl, Madrid, Spain
| | - Javier Querol-García
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Abvance Biotech Srl, Madrid, Spain
| | - Sara Gómez-Quevedo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Universidad Europea, Madrid, Spain
| | - Santiago Rodríguez de Córdoba
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomedica en Red sobre Enfermedades Raras (CIBERER), Madrid, Spain
| | - Francisco J. Fernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Abvance Biotech Srl, Madrid, Spain
| | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
11
|
Wada Y, Kamata M, Miyasaka R, Abe T, Kawamura S, Takeuchi K, Aoyama T, Oda T, Takeuchi Y. Clinico-Pathogenic Similarities and Differences between Infection-Related Glomerulonephritis and C3 Glomerulopathy. Int J Mol Sci 2023; 24:ijms24098432. [PMID: 37176142 PMCID: PMC10179079 DOI: 10.3390/ijms24098432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Recently, the comprehensive concept of "infection-related glomerulonephritis (IRGN)" has replaced that of postinfectious glomerulonephritis (PIGN) because of the diverse infection patterns, epidemiology, clinical features, and pathogenesis. In addition to evidence of infection, hypocomplementemia particularly depresses serum complement 3 (C3), with endocapillary proliferative and exudative GN developing into membranoproliferative glomerulonephritis (MPGN); also, C3-dominant or co-dominant glomerular immunofluorescence staining is central for diagnosing IRGN. Moreover, nephritis-associated plasmin receptor (NAPlr), originally isolated from the cytoplasmic fraction of group A Streptococci, is vital as an essential inducer of C3-dominant glomerular injury and is a key diagnostic biomarker for IRGN. Meanwhile, "C3 glomerulopathy (C3G)", also showing a histological pattern of MPGN due to acquired or genetic dysregulation of the complement alternative pathway (AP), mimics C3-dominant IRGN. Initially, C3G was characterized by intensive "isolated C3" deposition on glomeruli. However, updated definitions allow for glomerular deposition of other complement factors or immunoglobulins if C3 positivity is dominant and at least two orders of magnitude greater than any other immunoreactant, which makes it challenging to quickly distinguish pathomorphological findings between IRGN and C3G. As for NAPlr, it was demonstrated to induce complement AP activation directly in vitro, and it aggravates glomerular injury in the development of IRGN. A recent report identified anti-factor B autoantibodies as a contributing factor for complement AP activation in pediatric patients with PIGN. Moreover, C3G with glomerular NAPlr deposition without evidence of infection was reported. Taken together, the clinico-pathogenic features of IRGN overlap considerably with those of C3G. In this review, similarities and differences between the two diseases are highlighted.
Collapse
Affiliation(s)
- Yukihiro Wada
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| | - Mariko Kamata
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| | - Ryoma Miyasaka
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| | - Tetsuya Abe
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| | - Sayumi Kawamura
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| | - Kazuhiro Takeuchi
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| | - Togo Aoyama
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| | - Takashi Oda
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji 193-0998, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| |
Collapse
|
12
|
Hirayama S, Hiyoshi T, Yasui Y, Domon H, Terao Y. C-Terminal Lysine Residue of Pneumococcal Triosephosphate Isomerase Contributes to Its Binding to Host Plasminogen. Microorganisms 2023; 11:1198. [PMID: 37317172 DOI: 10.3390/microorganisms11051198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
The main causative agent of pneumonia, Streptococcus pneumoniae, is also responsible for invasive diseases. S. pneumoniae recruits human plasminogen for the invasion and colonization of host tissues. We previously discovered that S. pneumoniae triosephosphate isomerase (TpiA), an enzyme involved in intracellular metabolism that is essential for survival, is released extracellularly to bind human plasminogen and facilitate its activation. Epsilon-aminocaproic acid, a lysine analogue, inhibits this binding, suggesting that the lysine residues in TpiA are involved in plasminogen binding. In this study, we generated site-directed mutant recombinants in which the lysine residue in TpiA was replaced with alanine and analyzed their binding activities to human plasminogen. Results from blot analysis, enzyme-linked immunosorbent assay, and surface plasmon resonance assay revealed that the lysine residue at the C-terminus of TpiA is primarily involved in binding to human plasminogen. Furthermore, we found that TpiA binding to plasminogen through its C-terminal lysine residue was required for the promotion of plasmin activation by activating factors.
Collapse
Affiliation(s)
- Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yoshihito Yasui
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| |
Collapse
|
13
|
Nishiyama K, Yong CC, Moritoki N, Kitazawa H, Odamaki T, Xiao JZ, Mukai T. Sharing of Moonlighting Proteins Mediates the Symbiotic Relationship among Intestinal Commensals. Appl Environ Microbiol 2023; 89:e0219022. [PMID: 36847513 PMCID: PMC10053696 DOI: 10.1128/aem.02190-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 03/01/2023] Open
Abstract
The human gastrointestinal tract is inhabited by trillions of symbiotic bacteria that form a complex ecological community and influence human physiology. Symbiotic nutrient sharing and nutrient competition are the most studied relationships in gut commensals, whereas the interactions underlying homeostasis and community maintenance are not fully understood. Here, we provide insights into a new symbiotic relationship wherein the sharing of secreted cytoplasmic proteins, called "moonlighting proteins," between two heterologous bacterial strains (Bifidobacterium longum and Bacteroides thetaiotaomicron) was observed to affect the adhesion of bacteria to mucins. B. longum and B. thetaiotaomicron were cocultured using a membrane-filter system, and in this system the cocultured B. thetaiotaomicron cells showed greater adhesion to mucins compared to that shown by monoculture cells. Proteomic analysis showed the presence of 13 B. longum-derived cytoplasmic proteins on the surface of B. thetaiotaomicron. Moreover, incubation of B. thetaiotaomicron with the recombinant proteins GroEL and elongation factor Tu (EF-Tu)-two well-known mucin-adhesive moonlighting proteins of B. longum-led to an increase in the adhesion of B. thetaiotaomicron to mucins, a result attributed to the localization of these proteins on the B. thetaiotaomicron cell surface. Furthermore, the recombinant EF-Tu and GroEL proteins were observed to bind to the cell surface of several other bacterial species; however, the binding was species dependent. The present findings indicate a symbiotic relationship mediated by the sharing of moonlighting proteins among specific strains of B. longum and B. thetaiotaomicron. IMPORTANCE The adhesion of intestinal bacteria to the mucus layer is an important colonization strategy in the gut environment. Generally, the bacterial adhesion process is a characteristic feature of the individual cell surface-associated adhesion factors secreted by a particular bacterium. In this study, coculture experiments between Bifidobacterium and Bacteroides show that the secreted moonlighting proteins adhere to the cell surface of coexisting bacteria and alter the adhesiveness of the bacteria to mucins. This finding indicates that the moonlighting proteins act as adhesion factors for not only homologous strains but also for coexisting heterologous strains. The presence of a coexisting bacterium in the environment can significantly alter the mucin-adhesive properties of another bacterium. The findings from this study contribute to a better understanding of the colonization properties of gut bacteria through the discovery of a new symbiotic relationship between them.
Collapse
Affiliation(s)
- Keita Nishiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai, Japan
| | - Cheng-Chung Yong
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Nobuko Moritoki
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Takao Mukai
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
14
|
Sheng X, Zhang H, Liu M, Tang X, Xing J, Chi H, Zhan W. Development and Evaluation of Recombinant B-Cell Multi-Epitopes of PDHA1 and GAPDH as Subunit Vaccines against Streptococcus iniae Infection in Flounder (Paralichthys olivaceus). Vaccines (Basel) 2023; 11:vaccines11030624. [PMID: 36992208 DOI: 10.3390/vaccines11030624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Streptococcus iniae is a severe Gram-positive pathogen that can infect a wide range of freshwater and marine fish species. In continuation of our earlier studies on the development of S. iniae vaccine candidates, pyruvate dehydrogenase E1 subunit alpha (PDHA1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were highly efficacious in protecting flounder (Paralichthys olivaceus) against S. iniae. In the present study, to investigate the potential of multi-epitope vaccination strategy to prevent flounder against S. iniae infection, the liner B-cell epitopes of PDHA1 and GAPDH proteins were predicted using a bioinformatics approach and were identified by immunoassay, and recombinant B-cell multi-epitopes of PDHA1 and GAPDH (rMEPIP and rMEPIG) containing immunodominant epitope-concentrated domains were expressed in Escherichia coli BL21 (DE3) and were used as a subunit vaccine to immunize healthy flounder, while recombinant PDHA1 (rPDHA1), GAPDH (rGAPDH) and formalin-inactivated S. iniae (FKC) served as controls. Then, the immunoprotection efficacy of rMEPIP and rMEPIG was evaluated by determining the percentages of CD4-1+, CD4-2+, CD8β+ T lymphocytes and surface-IgM-positive (sIgM+) lymphocytes in peripheral blood leucocytes (PBLs), spleen leucocytes (SPLs) and head kidney leucocytes (HKLs), as well as total IgM, specific IgM, and relative percentage survival (RPS) post immunization, respectively. It was found that fish immunized with rPDHA1, rGAPDH, rMEPIP, rMEPIG and FKC showed significant increases in sIgM+, CD4-1+, CD4-2+, and CD8β+ lymphocytes and production of total IgM and specific IgM against S. iniae or recombinant proteins rPDHA1 and rGAPDH, which indicated the activation of humoral and cellular immune responses after vaccination. Moreover, RPS rate of the multi-epitope vaccine rMEPIP and rMEPIG groups reached 74.07% and 77.78%, higher than that of rPDHA1 and rGAPDH (62.96% and 66.67%) and KFC (48.15%). These results demonstrated that B-cell multi-epitope protein vaccination, rMEPIP and rMEPIG, could give a better protective effect against S. iniae infection, which provided a promising strategy to design the efficient vaccine in teleost fish.
Collapse
Affiliation(s)
- Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Honghua Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Min Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
15
|
Pavkova I, Kopeckova M, Link M, Vlcak E, Filimonenko V, Lecova L, Zakova J, Laskova P, Sheshko V, Machacek M, Stulik J. Francisella tularensis Glyceraldehyde-3-Phosphate Dehydrogenase Is Relocalized during Intracellular Infection and Reveals Effect on Cytokine Gene Expression and Signaling. Cells 2023; 12:cells12040607. [PMID: 36831274 PMCID: PMC9954481 DOI: 10.3390/cells12040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known for its multifunctionality in several pathogenic bacteria. Our previously reported data suggest that the GAPDH homologue of Francisella tularensis, GapA, might also be involved in other processes beyond metabolism. In the present study, we explored GapA's potential implication in pathogenic processes at the host cell level. Using immunoelectron microscopy, we demonstrated the localization of this bacterial protein inside infected macrophages and its peripheral distribution in bacterial cells increasing with infection time. A quantitative proteomic approach based on stable isotope labeling of amino acids in cell culture (SILAC) combined with pull-down assay enabled the identification of several of GapA's potential interacting partners within the host cell proteome. Two of these partners were further confirmed by alternative methods. We also investigated the impact of gapA deletion on the transcription of selected cytokine genes and the activation of the main signaling pathways. Our results show that ∆gapA-induced transcription of genes encoding several cytokines whose expressions were not affected in cells infected with a fully virulent wild-type strain. That might be caused, at least in part, by the detected differences in ERK/MAPK signaling activation. The experimental observations together demonstrate that the F. tularensis GAPDH homologue is directly implicated in multiple host cellular processes and, thereby, that it participates in several molecular mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Ivona Pavkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Correspondence: ; Tel.: +420-973-255-201
| | - Monika Kopeckova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Erik Vlcak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Electron Microscopy Core Facility, Videnska 1083, 142 20 Prague, Czech Republic
| | - Vlada Filimonenko
- Institute of Molecular Genetics of the Czech Academy of Sciences, Electron Microscopy Core Facility, Videnska 1083, 142 20 Prague, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Department of Biology of the Cell Nucleus, Videnska 1083, 142 20 Prague, Czech Republic
| | - Lenka Lecova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jitka Zakova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Pavlina Laskova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Valeria Sheshko
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Miloslav Machacek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
16
|
Hirayama S, Yasui Y, Sasagawa K, Domon H, Terao Y. Pneumococcal proteins ClpC and UvrC as novel host plasminogen binding factors. Microbiol Immunol 2023; 67:99-104. [PMID: 36461153 DOI: 10.1111/1348-0421.13040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Two plasminogen binding proteins were identified from a mouse infected with Streptococcus pneumoniae. The pneumococcal proteins were annotated as ATP-dependent Clp protease ATP-binding subunit (ClpC) and excinuclease ABC subunit C (UvrC) using the isobaric tags for relative and absolute quantification (iTRAQ) method. Recombinants of both proteins showed significant binding to plasminogen and were found to promote plasminogen activation by tissue-type plasminogen activator. In addition, ClpC and UvrC were LytA-dependently released into the culture supernatant and bound to the bacterial surface. These results suggest that S. pneumoniae releases ClpC and UvrC by autolysis and recruits them to the bacterial surface, where they bind to plasminogen and promote its activation, contributing to extracellular matrix degradation and tissue invasion.
Collapse
Affiliation(s)
- Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshihito Yasui
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
17
|
Kumari K, Sharma PK, Aggarwal Y, Singh RP. Secretome analysis of an environmental isolate Enterobacter sp. S-33 identifies proteins related to pathogenicity. Arch Microbiol 2022; 204:662. [PMID: 36198868 DOI: 10.1007/s00203-022-03277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
Abstract
Enterobacter species are responsible for causing infections of the lower respiratory tract, urinary tract, meninges, etc. Proteins secreted by these species may act as determinants of host-pathogen interaction and play a role in virulence. Among the secreted proteins, the Type VI secretion system (T6SS) acts as a molecular nanomachine to deliver many effector proteins directly into prey cells in a contact-dependent manner. The secreted proteins may provide an idea for the interaction of bacteria to their environment and an understanding of the role of these proteins for their role in bacterial physiology and behaviour. Therefore, aim of this study was to characterize the secreted proteins in the culture supernatant by a T6SS bacterium Enterobacter sp. S-33 using nano-LC-MS/MS tool. Using a combined mass spectrometry and bioinformatics approach, we identified a total of 736 proteins in the secretome. Bioinformatics analysis predicting subcellular localization identified 110 of the secreted proteins possessed signal sequences. By gene ontology analysis, more than 80 proteins of the secretome were classified into biological or molecular functions. More than 20 percent of secretome proteins were virulence proteins including T6SS proteins, proteins involved in adherence and fimbriae formation, molecular chaperones, outer membrane proteins, serine proteases, antimicrobial, biofilm, exotoxins, etc. In summary, the results of the present study of the S-33 secretome provide a basis for understanding the possible pathogenic mechanisms and future investigation by detailed experimental approach will provide a confirmation of secreted virulence proteins in the exact role of virulence using the in vivo model.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, BIT Mesra, Ranchi, Jharkhand, 835215, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD-20742, USA
| | - Yogender Aggarwal
- Department of Bioengineering and Biotechnology, BIT Mesra, Ranchi, Jharkhand, 835215, India
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, BIT Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
18
|
Skelly PJ, Da'dara AA. Schistosome secretomes. Acta Trop 2022; 236:106676. [PMID: 36113567 DOI: 10.1016/j.actatropica.2022.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Schistosomes are intravascular parasitic platyhelminths (blood flukes) that infect over 200 million people globally. Biomolecules secreted by the worms likely contribute to their ability to survive in the bloodstreams of immunocompetent hosts for many years. Here we review what is known about the protein composition of material released by the worms. Prominent among cercarial excretions/secretions (ES) is a ∼ 30 kDa serine protease called cercarial elastase (SmCE in Schistosoma mansoni), likely important in host invasion. Also prominent is a 117 amino acid non-glycosylated polypeptide (Sm16) that can impact several host cell-types to impinge on immunological outcomes. Similarly, components of the egg secretome (notably the 134 amino acid homodimeric glycoprotein "IL-4 inducing principle of schistosome eggs", IPSE, and the 225-amino acid monomeric T2 ribonuclease - omega-1) are capable of driving Th2-biased immune responses. A ∼36kDa chemokine binding glycoprotein SmCKBP, secreted by eggs, can negate the impact of several cytokines and can impede neutrophil migration. Of special interest is a disparate collection of classically cytosolic proteins that are surprisingly often identified in schistosome ES across life stages. These proteins, perhaps released as components of extracellular vesicles (EVs), include glycolytic enzymes, redox proteins, proteases and protease inhibitors, heat shock proteins, proteins involved in translation/turnover, histones, and others. Some such proteins may display "moonlighting" functions and, for example, impede blood clot formation around the worms. More prosaically, since several are particularly abundant soluble proteins, their appearance in the ES fraction may be indicative of worm damage ex vivo leading to protein leakage. Some bioactive schistosome ES proteins are in development as novel therapeutics against autoimmune, inflammatory, and other, non-parasitic, diseases.
Collapse
Affiliation(s)
- Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
19
|
Hirayama S, Domon H, Hiyoshi T, Isono T, Tamura H, Sasagawa K, Takizawa F, Terao Y. Triosephosphate isomerase of Streptococcus pneumoniae is released extracellularly by autolysis and binds to host plasminogen to promote its activation. FEBS Open Bio 2022; 12:1206-1219. [PMID: 35298875 PMCID: PMC9157410 DOI: 10.1002/2211-5463.13396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Recruitment of plasminogen is an important infection strategy of the human pathogen Streptococcus pneumoniae to invade host tissues. In Streptococcus aureus, triosephosphate isomerase (TPI) has been reported to bind plasminogen. In this study, the TPI of S. pneumoniae (TpiA) was identified through proteomic analysis of bronchoalveolar lavage fluid from a murine pneumococcal pneumonia model. The binding kinetics of recombinant pneumococcal TpiA with plasminogen were characterized using surface plasmon resonance (SPR, Biacore), ligand blot analyses, and enzyme‐linked immunosorbent assay. Enhanced plasminogen activation and subsequent degradation by plasmin were also shown. Release of TpiA into the culture medium was observed to be dependent on autolysin. These findings suggest that S. pneumoniae releases TpiA via autolysis, which then binds to plasminogen and promotes its activation, thereby contributing to tissue invasion via degradation of the extracellular matrix.
Collapse
Affiliation(s)
- Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumio Takizawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
20
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
21
|
Teçza M, Kagawa TF, Jain M, Cooney JC. Enzyme kinetic and binding studies identify determinants of specificity for the immunomodulatory enzyme ScpA, a C5a inactivating bacterial protease. Comput Struct Biotechnol J 2021; 19:2356-2365. [PMID: 33897974 PMCID: PMC8052502 DOI: 10.1016/j.csbj.2021.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022] Open
Abstract
The human complement protein C5a is implicated in immunomodulatory diseases. ScpA, a C5a inactivating protease, represents a novel enzymatic approach to therapy. High-affinity ScpA specificity for C5a is driven by C5a core-exosite interactions. 3 Arginines in the C5a core, and electrostatic interactions contribute to binding. These studies are first steps in the development of novel immunomodulatory therapies.
The Streptococcal C5a peptidase (ScpA) specifically inactivates the human complement factor hC5a, a potent anaphylatoxin recently identified as a therapeutic target for treatment of COVID-19 infections. Biologics used to modulate hC5a are predominantly monoclonal antibodies. Here we present data to support an alternative therapeutic approach based on the specific inactivation of hC5a by ScpA in studies using recombinant hC5a (rhC5a). Initial characterization of ScpA confirmed activity in human serum and against rhC5a desArg (rhC5adR), the predominant hC5a form in blood. A new FRET based enzyme assay showed that ScpA cleaved rhC5a at near physiological concentrations (Km 185 nM). Surface Plasmon Resonance (SPR) and Isothermal Titration Calorimetry (ITC) studies established a high affinity ScpA-rhC5a interaction (KD 34 nM, KDITC 30.8 nM). SPR analyses also showed that substrate binding is dominated (88% of ΔG°bind) by interactions with the bulky N-ter cleavage product (PN, ’core’ residues 1–67) with interactions involving the C-ter R74 contributing most of the remaining ΔG°bind. Furthermore, reduced binding affinity following mutation of a subset of positively charged Arginine residues of PN and in the presence of higher salt concentrations, highlighted the importance of electrostatic interactions. These data provide the first in-depth study of the ScpA-C5a interaction and indicate that ScpA’s ability to efficiently cleave physiological concentrations of C5a is driven by electrostatic interactions between an exosite on the enzyme and the ‘core’ of C5a. The results and methods described herein will facilitate engineering of ScpA to enhance its potential as a therapeutic for excessive immune response to infectious disease.
Collapse
Affiliation(s)
- Malgorzata Teçza
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Todd F Kagawa
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,SSPC, University of Limerick, Ireland
| | - Monica Jain
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Jakki C Cooney
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,SSPC, University of Limerick, Ireland
| |
Collapse
|
22
|
Komatsu K, Shiba T, Takeuchi Y, Watanabe T, Koyanagi T, Nemoto T, Shimogishi M, Shibasaki M, Katagiri S, Kasugai S, Iwata T. Discriminating Microbial Community Structure Between Peri-Implantitis and Periodontitis With Integrated Metagenomic, Metatranscriptomic, and Network Analysis. Front Cell Infect Microbiol 2020; 10:596490. [PMID: 33425781 PMCID: PMC7793907 DOI: 10.3389/fcimb.2020.596490] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Peri-implantitis and periodontitis are both polymicrobial diseases induced by subgingival plaque accumulation, with some differing clinical features. Studies on the microbial and gene transcription activity of peri-implantitis microbiota are limited. This study aimed to verify the hypothesis that disease-specific microbial and gene transcription activity lead to disease-specific clinical features, using an integrated metagenomic, metatranscriptomic, and network analysis. Metagenomic data in peri-implantitis and periodontitis were obtained from the same 21 subjects and metatranscriptomic data from 12 subjects were obtained from a database. The microbial co-occurrence network based on metagenomic analysis had more diverse species taxa and correlations than the network based on the metatranscriptomic analysis. Solobacterium moorei and Prevotella denticola had high activity and were core species taxa specific to peri-implantitis in the co-occurrence network. Moreover, the activity of plasmin receptor/glyceraldehyde-3-phosphate dehydrogenase genes was higher in peri-implantitis. These activity differences may increase complexity in the peri-implantitis microbiome and distinguish clinical symptoms of the two diseases. These findings should help in exploring a novel biomarker that assist in the diagnosis and preventive treatment design of peri-implantitis.
Collapse
Affiliation(s)
- Keiji Komatsu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayasu Watanabe
- Department of Chemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Tatsuro Koyanagi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Nemoto
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Shimogishi
- Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Shibasaki
- Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shohei Kasugai
- Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
23
|
Schormann N, Campos J, Motamed R, Hayden KL, Gould JR, Green TJ, Senkovich O, Banerjee S, Ulett GC, Chattopadhyay D. Chlamydia trachomatis glyceraldehyde 3-phosphate dehydrogenase: Enzyme kinetics, high-resolution crystal structure, and plasminogen binding. Protein Sci 2020; 29:2446-2458. [PMID: 33058314 DOI: 10.1002/pro.3975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is an evolutionarily conserved essential enzyme in the glycolytic pathway. GAPDH is also involved in a wide spectrum of non-catalytic cellular 'moonlighting' functions. Bacterial surface-associated GAPDHs engage in many host interactions that aid in colonization, pathogenesis, and virulence. We have structurally and functionally characterized the recombinant GAPDH of the obligate intracellular bacteria Chlamydia trachomatis, the leading cause of sexually transmitted bacterial and ocular infections. Contrary to earlier speculations, recent data confirm the presence of glucose-catabolizing enzymes including GAPDH in both stages of the biphasic life cycle of the bacterium. The high-resolution crystal structure described here provides a close-up view of the enzyme's active site and surface topology and reveals two chemically modified cysteine residues. Moreover, we show for the first time that purified C. trachomatis GAPDH binds to human plasminogen and plasmin. Based on the versatility of GAPDH's functions, data presented here emphasize the need for investigating the Chlamydiae GAPDH's involvement in biological functions beyond energy metabolism.
Collapse
Affiliation(s)
- Norbert Schormann
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan Campos
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama, USA
| | - Rachael Motamed
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama, USA
| | - Katherine L Hayden
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama, USA
| | - Joseph R Gould
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olga Senkovich
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, Arizona, USA
| | - Surajit Banerjee
- Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne, Illinois, USA
| | - Glen C Ulett
- School of Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands, Australia
| | | |
Collapse
|
24
|
Kandil A, Hanora A, Azab M, Enany S. Proteomic analysis of bacterial communities associated with atopic dermatitis. J Proteomics 2020; 229:103944. [DOI: 10.1016/j.jprot.2020.103944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
|
25
|
Sasaki M, Kodama Y, Shimoyama Y, Ishikawa T, Tajika S, Kimura S. Abiotrophia defectiva adhere to saliva-coated hydroxyapatite beads via interactions between salivary proline-rich-proteins and bacterial glyceraldehyde-3-phosphate dehydrogenase. Microbiol Immunol 2020; 64:719-729. [PMID: 32918493 DOI: 10.1111/1348-0421.12848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 11/27/2022]
Abstract
Abiotrophia defectiva is a species of nutritionally variant streptococci that is found in human saliva and dental plaques and that has been associated with infective endocarditis. In our previous study, it was found that A. defectiva could bind specifically to saliva-coated hydroxyapatite beads (SHA). This study identified a cell surface component of A. defectiva that promotes adherence to SHA beads. The binding of A. defectiva to SHA was reduced in the presence of antibodies against human proline-rich protein (PRP); these results suggested that PRP may be a critical component mediating interactions between A. defectiva and the salivary pellicle. Two-dimensional gel electrophoresis of whole A. defectiva cells followed by Far-Western blotting was conducted by probing with synthetic peptides analogous to the binding region of PRP known as PRP-C. The results indicate that an A. defectiva protein of 37 kDa interacts with PRP-C. The results of amino-terminal sequencing of the adhesive A. defectiva protein revealed significant similarity to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Recombinant GAPDH bound to immobilized PRP-C in a dose-dependent manner and binding of A. defectiva to SHA or to PRP was reduced in the presence of anti-GAPDH antiserum. Western blotting or electron immunomicroscopic observations with anti-GAPDH antiserum revealed that this protein was expressed in both cytosolic and cell wall fractions. These results suggest that A. defectiva could specifically bind to PRP via interactions with cell surface GAPDH; the findings suggest a mechanism underlying A. defectiva-mediated adherence to saliva-coated tooth surfaces.
Collapse
Affiliation(s)
- Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Yoshitoyo Kodama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Shihoko Tajika
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Shigenobu Kimura
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| |
Collapse
|
26
|
Kopeckova M, Pavkova I, Link M, Rehulka P, Stulik J. Identification of Bacterial Protein Interaction Partners Points to New Intracellular Functions of Francisella tularensis Glyceraldehyde-3-Phosphate Dehydrogenase. Front Microbiol 2020; 11:576618. [PMID: 33013814 PMCID: PMC7513575 DOI: 10.3389/fmicb.2020.576618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2020] [Indexed: 11/13/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is well known for its involvement in numerous non-metabolic processes inside mammalian cells. Alternative functions of prokaryotic GAPDH are mainly deduced from its extracellular localization ability to bind to selected host proteins. Data on its participation in intracellular bacterial processes are scarce as there has been to date only one study dealing with this issue. We previously have reported several points of evidence that the GAPDH homolog of Francisella tularensis GapA might also exert additional non-enzymatic functions. Following on from our earlier observations we decided to identify GapA's interacting partners within the bacterial proteome to explore its new roles at intracellular level. The quantitative proteomics approach based on stable isotope labeling of amino acids in cell culture (SILAC) in combination with affinity purification mass spectrometry enabled us to identify 18 proteins potentially interacting with GapA. Six of those interactions were further confirmed by alternative methods. Half of the identified proteins were involved in non-metabolic processes. Further analysis together with quantitative label-free comparative analysis of proteomes isolated from the wild-type strain strain with deleted gapA gene suggests that GapA is implicated in DNA repair processes. Absence of GapA promotes secretion of its most potent interaction partner the hypothetical protein with peptidase propeptide domain (PepSY) thereby indicating that it impacts on subcellular distribution of some proteins.
Collapse
Affiliation(s)
- Monika Kopeckova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Ivona Pavkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Pavel Rehulka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
27
|
Abstract
The single gene, single protein, single function hypothesis is increasingly becoming obsolete. Numerous studies have demonstrated that individual proteins can moonlight, meaning they can have multiple functions based on their cellular or developmental context. In this review, we discuss moonlighting proteins, highlighting the biological pathways where this phenomenon may be particularly relevant. In addition, we combine genetic, cell biological, and evolutionary perspectives so that we can better understand how, when, and why moonlighting proteins may take on multiple roles.
Collapse
Affiliation(s)
- Nadia Singh
- Department of Biology, University of Oregon, Eugene, Oregon 97403, USA;
| | - Needhi Bhalla
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA;
| |
Collapse
|
28
|
Sharma S, Bhatnagar R, Gaur D. Complement Evasion Strategies of Human Pathogenic Bacteria. Indian J Microbiol 2020; 60:283-296. [PMID: 32655196 PMCID: PMC7329968 DOI: 10.1007/s12088-020-00872-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Human pathogens need to overcome an elaborate network of host defense mechanisms in order to establish their infection, colonization, proliferation and eventual dissemination. The interaction of pathogens with different effector molecules of the immune system results in their neutralization and elimination from the host. The complement system is one such integral component of innate immunity that is critically involved in the early recognition and elimination of the pathogen. Hence, under this immune pressure, all virulent pathogens capable of inducing active infections have evolved immune evasive strategies that primarily target the complement system, which plays an essential and central role for host defense. Recent reports on several bacterial pathogens have elucidated the molecular mechanisms underlying complement evasion, inhibition of opsonic phagocytosis and cell lysis. This review aims to comprehensively summarize the recent findings on the various strategies adopted by pathogenic bacteria to escape complement-mediated clearance.
Collapse
Affiliation(s)
- Shikhar Sharma
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| |
Collapse
|
29
|
Liu H, Jeffery CJ. Moonlighting Proteins in the Fuzzy Logic of Cellular Metabolism. Molecules 2020; 25:molecules25153440. [PMID: 32751110 PMCID: PMC7435893 DOI: 10.3390/molecules25153440] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
The numerous interconnected biochemical pathways that make up the metabolism of a living cell comprise a fuzzy logic system because of its high level of complexity and our inability to fully understand, predict, and model the many activities, how they interact, and their regulation. Each cell contains thousands of proteins with changing levels of expression, levels of activity, and patterns of interactions. Adding more layers of complexity is the number of proteins that have multiple functions. Moonlighting proteins include a wide variety of proteins where two or more functions are performed by one polypeptide chain. In this article, we discuss examples of proteins with variable functions that contribute to the fuzziness of cellular metabolism.
Collapse
Affiliation(s)
- Haipeng Liu
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA;
| | - Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
- Correspondence: ; Tel.: +1-312-996-3168
| |
Collapse
|
30
|
Warraich AA, Mohammed AR, Perrie Y, Hussain M, Gibson H, Rahman A. Evaluation of anti-biofilm activity of acidic amino acids and synergy with ciprofloxacin on Staphylococcus aureus biofilms. Sci Rep 2020; 10:9021. [PMID: 32488138 PMCID: PMC7265346 DOI: 10.1038/s41598-020-66082-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Acidic amino acids, aspartic acid (Asp) and glutamic acid (Glu) can enhance the solubility of many poorly soluble drugs including ciprofloxacin (Cip). One of the mechanisms of resistance within a biofilm is retardation of drug diffusion due to poor penetration across the matrix. To overcome this challenge, this work set to investigate novel counter ion approach with acidic amino acids, which we hypothesised will disrupt the biofilm matrix as well as simultaneously improve drug effectiveness. The anti-biofilm activity of D-Asp and D-Glu was studied on Staphylococcus aureus biofilms. Synergistic effect of combining D-amino acids with Cip was also investigated as a strategy to overcome anti-microbial resistance in these biofilms. Interestingly at equimolar combinations, D-Asp and D-Glu were able to significantly disperse (at 20 mM and 40 mM) established biofilms and inhibit (at 10 mM, 20 mM and 40 mM) new biofilm formation in the absence of an antibiotic. Moreover, our study confirmed L-amino acids also exhibit anti-biofilm activity. The synergistic effect of acidic amino acids with Cip was observed at lower concentration ranges (<40 mM amino acids and <90.54 µM, respectively), which resulted in 96.89% (inhibition) and 97.60% (dispersal) reduction in CFU with exposure to 40 mM amino acids. Confocal imaging indicated that the amino acids disrupt the honeycomb-like extracellular DNA (eDNA) meshwork whilst also preventing its formation.
Collapse
Affiliation(s)
- Annsar A Warraich
- Aston Pharmacy School, Aston University, Birmingham, B4 7ET, UK
- University of Wolverhampton, WV1 1LY, Wolverhampton, UK
| | | | - Yvonne Perrie
- University of Strathclyde, Glasgow, G1 1XQ, Scotland
| | | | - Hazel Gibson
- University of Wolverhampton, WV1 1LY, Wolverhampton, UK
| | - Ayesha Rahman
- University of Wolverhampton, WV1 1LY, Wolverhampton, UK.
| |
Collapse
|
31
|
Glomerular Deposition of Nephritis-Associated Plasmin Receptor (NAPlr) and Related Plasmin Activity: Key Diagnostic Biomarkers of Bacterial Infection-related Glomerulonephritis. Int J Mol Sci 2020; 21:ijms21072595. [PMID: 32276523 PMCID: PMC7178002 DOI: 10.3390/ijms21072595] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
It is widely known that glomerulonephritis (GN) often develops after the curing of an infection, a typical example of which is GN in children following streptococcal infections (poststreptococcal acute glomerulonephritis; PSAGN). On the other hand, the term “infection-related glomerulonephritis (IRGN)” has recently been proposed, because infections are usually ongoing at the time of GN onset in adult patients, particularly in older patients with comorbidities. However, there has been no specific diagnostic biomarker for IRGN, and diagnosis is based on the collection of several clinical and pathological findings and the exclusion of differential diagnoses. Nephritis-associated plasmin receptor (NAPlr) was originally isolated from the cytoplasmic fraction of group A streptococcus as a candidate nephritogenic protein for PSAGN and was found to be the same molecule as streptococcal glyceraldehyde-3-phosphate dehydrogenase and plasmin receptor. NAPlr deposition and related plasmin activity were observed with a similar distribution pattern in the glomeruli of patients with PSAGN. However, glomerular NAPlr deposition and plasmin activity could be observed not only in patients with PSAGN but also in patients with other glomerular diseases, in whom a preceding streptococcal infection was suggested. Furthermore, such glomerular staining patterns have been demonstrated in patients with IRGN induced by bacteria other than streptococci. This review discusses the recent advances in our understanding of the pathogenesis of bacterial IRGN, which is characterized by NAPlr and plasmin as key biomarkers.
Collapse
|
32
|
Pirovich DB, Da'dara AA, Skelly PJ. Schistosoma mansoni glyceraldehyde-3-phosphate dehydrogenase enhances formation of the blood-clot lysis protein plasmin. Biol Open 2020; 9:bio050385. [PMID: 32098782 PMCID: PMC7104858 DOI: 10.1242/bio.050385] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
Schistosomes are intravascular blood flukes that cause the parasitic disease schistosomiasis. In agreement with Schistosoma mansoni (Sm) proteomic analysis, we show here that the normally intracellular glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is also found at the parasite surface; live worms from all intravascular life stages display GAPDH activity. Suppressing GAPDH gene expression using RNA interference significantly lowers this live worm surface activity. Medium in which the worms are cultured overnight displays essentially no activity, showing that the enzyme is not shed or excreted but remains associated with the worm surface. Immunolocalization experiments confirm that the enzyme is highly expressed in the parasite tegument (skin). Surface activity in schistosomula amounts to ∼8% of that displayed by equivalent parasite lysates. To address the functional role of SmGAPDH, we purified the protein following its expression in Escherichiacoli strain DS113. The recombinant protein displays optimal enzymatic activity at pH 9.2, shows robust activity at the temperature of the parasite's hosts, and has a Michaelis-Menten constant for glyceraldehyde-3-phosphate (GAP) of 1.4 mM±0.24. We show that recombinant SmGAPDH binds plasminogen (PLMG) and promotes PLMG conversion to its active form (plasmin) in a dose response in the presence of tissue plasminogen activator. Since plasmin is a key mediator of thrombolysis, our results support the hypothesis that SmGAPDH, a host-interactive tegumental protein that can enhance PLMG activation, could help degrade blood clots around the worms in the vascular microenvironment and thus promote parasite survival in vivoThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- David B Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
33
|
Kopeckova M, Pavkova I, Stulik J. Diverse Localization and Protein Binding Abilities of Glyceraldehyde-3-Phosphate Dehydrogenase in Pathogenic Bacteria: The Key to its Multifunctionality? Front Cell Infect Microbiol 2020; 10:89. [PMID: 32195198 PMCID: PMC7062713 DOI: 10.3389/fcimb.2020.00089] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial proteins exhibiting two or more unrelated functions, referred to as moonlighting proteins, are suggested to contribute to full virulence manifestation in pathogens. An expanding number of published studies have revealed the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to be a multitasking protein with virulence impact in a number of pathogenic bacteria. This protein can be detected on the bacterial surface or outside the bacterial cell, where it interacts with host proteins. In this way, GAPDH is able to modulate various pathogenic processes. Moreover, it has been shown to be involved in non-enzymatic processes inside the bacterial cell. In this mini review, we summarize main findings concerning the multiple localization and protein interactions of GAPDH derived from bacterial pathogens of humans. We also briefly discuss problems associated with using GAPDH as a vaccine antigen and endeavor to inspire further research to fill gaps in the existing knowledge.
Collapse
Affiliation(s)
- Monika Kopeckova
- Department of Molecular Pathology and Biology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Ivona Pavkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
34
|
Pirovich D, Da'dara AA, Skelly PJ. Why Do Intravascular Schistosomes Coat Themselves in Glycolytic Enzymes? Bioessays 2019; 41:e1900103. [PMID: 31661165 DOI: 10.1002/bies.201900103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/16/2019] [Indexed: 11/11/2022]
Abstract
Schistosomes are intravascular parasitic helminths (blood flukes) that infect more than 200 million people globally. Proteomic analysis of the tegument (skin) of these worms has revealed the surprising presence of glycolytic enzymes on the parasite's external surface. Immunolocalization data as well as enzyme activity displayed by live worms confirm that functional glycolytic enzymes are indeed expressed at the host-parasite interface. Since these enzymes are traditionally considered to function intracellularly to drive glycolysis, in an extracellular location they are hypothesized to engage in novel "moonlighting" functions such as immune modulation and blood clot dissolution that promote parasite survival. For instance, several glycolytic enzymes can interact with plasminogen and promote its activation to the thrombolytic plasmin; some can inhibit complement function; some induce B cell proliferation or macrophage apoptosis. Several pathogenic bacteria and protists also express glycolytic enzymes externally, suggesting that moonlighting functions of extracellular glycolytic enzymes can contribute broadly to pathogen virulence. Also see the video abstract here https://youtu.be/njtWZ2y3k_I.
Collapse
Affiliation(s)
- David Pirovich
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - Akram A Da'dara
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - Patrick J Skelly
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| |
Collapse
|
35
|
Evolutionary Perspectives on the Moonlighting Functions of Bacterial Factors That Support Actin-Based Motility. mBio 2019; 10:mBio.01520-19. [PMID: 31455648 PMCID: PMC6712393 DOI: 10.1128/mbio.01520-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Various bacterial pathogens display an intracellular lifestyle and spread from cell to cell through actin-based motility (ABM). ABM requires actin polymerization at the bacterial pole and is mediated by the expression of bacterial factors that hijack the host cell actin nucleation machinery or exhibit intrinsic actin nucleation properties. Various bacterial pathogens display an intracellular lifestyle and spread from cell to cell through actin-based motility (ABM). ABM requires actin polymerization at the bacterial pole and is mediated by the expression of bacterial factors that hijack the host cell actin nucleation machinery or exhibit intrinsic actin nucleation properties. It is increasingly recognized that bacterial ABM factors, in addition to having a crucial task during the intracellular phase of infection, display “moonlighting” adhesin functions, such as bacterial aggregation, biofilm formation, and host cell adhesion/invasion. Here, we review our current knowledge of ABM factors and their additional functions, and we propose that intracellular ABM functions have evolved from ancestral, extracellular adhesin functions.
Collapse
|
36
|
Ermert D, Ram S, Laabei M. The hijackers guide to escaping complement: Lessons learned from pathogens. Mol Immunol 2019; 114:49-61. [PMID: 31336249 DOI: 10.1016/j.molimm.2019.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Pathogens that invade the human host are confronted by a multitude of defence mechanisms aimed at preventing colonization, dissemination and proliferation. The most frequent outcome of this interaction is microbial elimination, in which the complement system plays a major role. Complement, an essential feature of the innate immune machinery, rapidly identifies and marks pathogens for efficient removal. Consequently, this creates a selective pressure for microbes to evolve strategies to combat complement, permitting host colonization and access to resources. All successful pathogens have developed mechanisms to resist complement activity which are intimately aligned with their capacity to cause disease. In this review, we describe the successful methods various pathogens use to evade complement activation, shut down inflammatory signalling through complement, circumvent opsonisation and override terminal pathway lysis. This review summarizes how pathogens undermine innate immunity: 'The Hijackers Guide to Complement'.
Collapse
Affiliation(s)
- David Ermert
- Department of Preclinical Research, BioInvent International AB, Lund, Sweden; Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| |
Collapse
|
37
|
Zhu L, Shahid MA, Markham J, Browning GF, Noormohammadi AH, Marenda MS. Comparative genomic analyses of Mycoplasma synoviae vaccine strain MS-H and its wild-type parent strain 86079/7NS: implications for the identification of virulence factors and applications in diagnosis of M. synoviae. Avian Pathol 2019; 48:537-548. [PMID: 31244324 DOI: 10.1080/03079457.2019.1637514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mycoplasma synoviae is an economically important avian pathogen worldwide, causing respiratory disease, infectious synovitis, airsacculitis and eggshell apex abnormalities in commercial chickens. Despite the widespread use of MS-H as a live attenuated vaccine over the past two decades, the precise molecular basis for loss of virulence in this vaccine is not yet fully understood. To address this, the whole genome sequence of the vaccine parent strain, 86079/7NS, was obtained and compared to that of the MS-H vaccine. Except for the vlhA expressed region, both genomes were nearly identical. Thirty-two single nucleotide polymorphisms (SNPs) were identified in MS-H, including 11 non-synonymous mutations that were predicted, by bioinformatics analysis, to have changed the secondary structure of the deduced proteins. One of these mutations caused truncation of the oppF-1 gene, which encodes the ATP-binding protein of an oligopeptide permease transporter. Overall, the attenuation of MS-H strain may be caused by the cumulative and complex effects of several mutations. The SNPs identified in MS-H were further analyzed by comparing the MS-H and 86079/7NS sequences with the strains WVU-1853 and MS53. In the genomic regions conserved between all strains, 30 SNPs were found to be unique to MS-H lineage. These results have provided a foundation for developing novel biomarkers for the detection of virulence in M. synoviae and also for designing new genotyping assays for discrimination of MS-H from field strains.
Collapse
Affiliation(s)
- Ling Zhu
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, the University of Melbourne , Werribee , Australia
| | - Muhammad A Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University , Multan , Pakistan
| | - John Markham
- Department of Electrical and Electronic Engineering, the University of Melbourne , Parkville , Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, the University of Melbourne , Parkville , Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, the University of Melbourne , Werribee , Australia
| | - Marc S Marenda
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, the University of Melbourne , Werribee , Australia
| |
Collapse
|
38
|
Karched M, Bhardwaj RG, Tiss A, Asikainen S. Proteomic Analysis and Virulence Assessment of Granulicatella adiacens Secretome. Front Cell Infect Microbiol 2019; 9:104. [PMID: 31069174 PMCID: PMC6491454 DOI: 10.3389/fcimb.2019.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Despite reports on the occurrence of Granulicatella adiacens in infective endocarditis, few mechanistic studies on its virulence characteristics or pathogenicity are available. Proteins secreted by this species may act as determinants of host-microbe interaction and play a role in virulence. Our aim in this study was to investigate and functionally characterize the secretome of G. adiacens. Proteins in the secretome preparation were digested by trypsin and applied to nanoLC-ESI-MS/MS. By using a combined mass spectrometry and bioinformatics approach, we identified 101 proteins. Bioinformatics tools predicting subcellular localization revealed that 18 of the secreted proteins possessed signal sequence. More than 20% of the secretome proteins were putative virulence proteins including serine protease, superoxide dismutase, aminopeptidase, molecular chaperone DnaK, and thioredoxin. Ribosomal proteins, molecular chaperones, and glycolytic enzymes, together known as "moonlighting proteins," comprised fifth of the secretome proteins. By Gene Ontology analysis, more than 60 proteins of the secretome were grouped in biological processes or molecular functions. KEGG pathway analysis disclosed that the secretome consisted of enzymes involved in biosynthesis of antibiotics. Cytokine profiling revealed that secreted proteins stimulated key cytokines, such as IL-1β, MCP-1, TNF-α, and RANTES from human PBMCs. In summary, the results from the current investigation of the G. adiacens secretome provide a basis for understanding possible pathogenic mechanisms of G. adiacens.
Collapse
Affiliation(s)
- Maribasappa Karched
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Ali Tiss
- Functional Proteomics and Metabolomics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sirkka Asikainen
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
39
|
Abstract
In the past decade, the field of the cellular microbiology of group A Streptococcus (S. pyogenes) infection has made tremendous advances and touched upon several important aspects of pathogenesis, including receptor biology, invasive and evasive phenomena, inflammasome activation, strain-specific autophagic bacterial killing, and virulence factor-mediated programmed cell death. The noteworthy aspect of S. pyogenes-mediated cell signaling is the recognition of the role of M protein in a variety of signaling events, starting with the targeting of specific receptors on the cell surface and on through the induction and evasion of NETosis, inflammasome, and autophagy/xenophagy to pyroptosis and apoptosis. Variations in reports on S. pyogenes-mediated signaling events highlight the complex mechanism of pathogenesis and underscore the importance of the host cell and S. pyogenes strain specificity, as well as in vitro/in vivo experimental parameters. The severity of S. pyogenes infection is, therefore, dependent on the virulence gene expression repertoire in the host environment and on host-specific dynamic signaling events in response to infection. Commonly known as an extracellular pathogen, S. pyogenes finds host macrophages as safe havens wherein it survives and even multiplies. The fact that endothelial cells are inherently deficient in autophagic machinery compared to epithelial cells and macrophages underscores the invasive nature of S. pyogenes and its ability to cause severe systemic diseases. S. pyogenes is still one of the top 10 causes of infectious mortality. Understanding the orchestration of dynamic host signaling networks will provide a better understanding of the increasingly complex mechanism of S. pyogenes diseases and novel ways of therapeutically intervening to thwart severe and often fatal infections.
Collapse
|
40
|
Gómez S, Querol-García J, Sánchez-Barrón G, Subias M, González-Alsina À, Franco-Hidalgo V, Albertí S, Rodríguez de Córdoba S, Fernández FJ, Vega MC. The Antimicrobials Anacardic Acid and Curcumin Are Not-Competitive Inhibitors of Gram-Positive Bacterial Pathogenic Glyceraldehyde-3-Phosphate Dehydrogenase by a Mechanism Unrelated to Human C5a Anaphylatoxin Binding. Front Microbiol 2019; 10:326. [PMID: 30863383 PMCID: PMC6400076 DOI: 10.3389/fmicb.2019.00326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
The ubiquitous and highly abundant glycolytic enzyme D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pivotal for the energy and carbon metabolism of most organisms, including human pathogenic bacteria. For bacteria that depend mostly on glycolysis for survival, GAPDH is an attractive target for inhibitor discovery. The availability of high-resolution structures of GAPDH from various pathogenic bacteria is central to the discovery of new antibacterial compounds. We have determined the X-ray crystal structures of two new GAPDH enzymes from Gram-positive bacterial pathogens, Streptococcus pyogenes and Clostridium perfringens. These two structures, and the recent structure of Atopobium vaginae GAPDH, reveal details in the active site that can be exploited for the design of novel inhibitors based on naturally occurring molecules. Two such molecules, anacardic acid and curcumin, have been found to counter bacterial infection in clinical settings, although the cellular targets responsible for their antimicrobial properties remain unknown. We show that both anacardic acid and curcumin inhibit GAPDH from two bacterial pathogens through uncompetitive and non-competitive mechanisms, suggesting GAPDH as a relevant pharmaceutical target for antibacterial development. Inhibition of GAPDH by anacardic acid and curcumin seems to be unrelated to the immune evasion function of pathogenic bacterial GAPDH, since neither natural compound interfere with binding to the human C5a anaphylatoxin.
Collapse
Affiliation(s)
- Sara Gómez
- Center for Biological Research, Spanish National Research Council, Madrid, Spain
| | - Javier Querol-García
- Center for Biological Research, Spanish National Research Council, Madrid, Spain
| | - Gara Sánchez-Barrón
- Center for Biological Research, Spanish National Research Council, Madrid, Spain
| | - Marta Subias
- Center for Biological Research, Spanish National Research Council, Madrid, Spain.,CIBER de Enfermedades Raras, Madrid, Spain
| | - Àlex González-Alsina
- Institut Universitari d'Investigació en Ciències de la Salut, University of the Balearic Islands, Mallorca, Spain
| | | | - Sebastián Albertí
- Institut Universitari d'Investigació en Ciències de la Salut, University of the Balearic Islands, Mallorca, Spain
| | - Santiago Rodríguez de Córdoba
- Center for Biological Research, Spanish National Research Council, Madrid, Spain.,CIBER de Enfermedades Raras, Madrid, Spain
| | | | - M Cristina Vega
- Center for Biological Research, Spanish National Research Council, Madrid, Spain
| |
Collapse
|
41
|
Schmalhausen EV, Shumkov MS, Muronetz VI, Švedas VK. Expression of glyceraldehyde-3-phosphate dehydrogenase from M. tuberculosis in E. coli. Purification and characteristics of the untagged recombinant enzyme. Protein Expr Purif 2019; 157:28-35. [PMID: 30710621 DOI: 10.1016/j.pep.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/18/2019] [Accepted: 01/27/2019] [Indexed: 02/01/2023]
Abstract
The goal of the present work was to produce glyceraldehyde-3-phospate dehydrogenase from M. tuberculosis in E. coli cells in soluble and catalytically active form and to elaborate a method for the purification of the recombinant enzyme. The His-tagged recombinant enzyme (Mtb-GAPDH_His) was shown to be inactive and insoluble. The untagged enzyme (Mtb-GAPDH) was catalytically active and exhibited higher solubility. Mtb-GAPDH was purified from the cell extract using ammonium sulfate fractionation and ion-exchange chromatography. The presence of glycerol was necessary for isolation of Mtb-GAPDH, presumably, to facilitate folding of the recombinant enzyme. The yield of Mtb-GAPDH constituted 1.3 mg per 10 g of the cell biomass. The specific activity of the purified Mtb-GAPDH was 55 ± 5 μmol NADH/min per mg protein (pH 9.0, 22 °C) that exceeded the activity of the previously described preparation of His-tagged recombinant GAPDH from M. tuberculosis that was co-expressed with GroEL/ES chaperone by approximately 5-fold. The results suggest that the folding of the recombinant GAPDH is hindered by the His-tag, which may result in the production of insoluble protein or in isolation of the preparation with decreased specific activity.
Collapse
Affiliation(s)
- E V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Lenin's Hills 1 Bldg.40, Moscow, 119234, Russian Federation.
| | - M S Shumkov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow, 119071, Russian Federation
| | - V I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Lenin's Hills 1 Bldg.40, Moscow, 119234, Russian Federation
| | - V K Švedas
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Lenin's Hills 1 Bldg.40, Moscow, 119234, Russian Federation
| |
Collapse
|
42
|
Kurosawa M, Oda M, Domon H, Isono T, Nakamura Y, Saitoh I, Hayasaki H, Yamaguchi M, Kawabata S, Terao Y. Streptococcus pyogenes CAMP factor promotes calcium ion uptake in RAW264.7 cells. Microbiol Immunol 2018; 62:617-623. [PMID: 30211957 DOI: 10.1111/1348-0421.12647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022]
Abstract
Streptococcus pyogenes is a bacterium that causes systemic diseases such as pharyngitis and toxic shock syndrome. S. pyogenes produces molecules that inhibit the function of the human immune system, thus allowing growth and spread of the pathogen in tissues. It is known that S. pyogenes CAMP factor induces vacuolation in macrophages; however, the mechanism remains unclear. In the current study, the mechanism by which CAMP factor induces vacuolation in macrophages was investigated. CAMP factor was found to induce calcium ion uptake in murine macrophage RAW264.7 cells. In addition, EDTA inhibited calcium ion uptake and vacuolation in the cells. The L-type voltage-dependent calcium ion channel blockers nifedipine and verapamil reduced vacuolation. Furthermore, the phosphoinositide 3-kinase inhibitors LY294002 and wortmannin also inhibited the vacuolation induced by CAMP factor. Fluorescent microscopy revealed that clathrin localized to the vacuoles. These results suggest that the vacuolation is related to calcium ion uptake by RAW264.7 cells via L-type voltage-dependent calcium ion channels. Therefore, it was concluded that the vacuoles induced by S. pyogenes CAMP factor in macrophages are clathrin-dependent endosomes induced by activation of the phosphoinositide 3-kinase signaling pathway through calcium ion uptake.
Collapse
Affiliation(s)
- Mie Kurosawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.,Division of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Masataka Oda
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.,Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, 5 Misasagi, nakauchimachi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Yuki Nakamura
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| |
Collapse
|
43
|
Laabei M, Ermert D. Catch Me if You Can: Streptococcus pyogenes Complement Evasion Strategies. J Innate Immun 2018; 11:3-12. [PMID: 30269134 DOI: 10.1159/000492944] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
The human host has evolved elaborate protection mechanisms to prevent infection from the billions of microorganisms to which it host is exposed and is home. One of these systems, complement, is an evolutionary ancient arm of innate immunity essential for combatting bacterial infection. Complement permits the efficient labelling of bacteria with opsonins, supports phagocytosis, and facilitates phagocyte recruitment to the site of infection through the production of chemoattractants. However, it is by no means perfect, and certain organisms engage in an evolutionary arms race with the host where complement has become a major target to promote immune evasion. Streptococcus pyogenes is a major human pathogen that causes significant morbidity and mortality globally. S. pyogenes is also a member of an elite group of bacterial pathogens possessing a sophisticated arsenal of virulence determinants capable of interfering with complement. In this review, we focus on these complement evasins, their mechanism of action, and their importance in disease progression. Finally, we highlight new therapeutic options for fighting S. pyogenes, by interfering with one of its main mechanisms of complement evasion.
Collapse
|
44
|
Razim A, Pacyga K, Aptekorz M, Martirosian G, Szuba A, Pawlak-Adamska E, Brzychczy-Włoch M, Myc A, Gamian A, Górska S. Epitopes identified in GAPDH from Clostridium difficile recognized as common antigens with potential autoimmunizing properties. Sci Rep 2018; 8:13946. [PMID: 30224677 PMCID: PMC6141484 DOI: 10.1038/s41598-018-32193-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/19/2018] [Indexed: 01/09/2023] Open
Abstract
Clostridium difficile (CD) infections are a growing threat due to the strain resistance to antibiotic treatment and the emergence of hypervirulent strains. One solution to this problem is the search for new vaccine antigens, preferably surface-localized that will be recognized by antibodies at an early stage of colonization. The purpose of the study was to assess the usefulness of novel immunoreactive surface proteins (epitopes) as potential vaccine antigens. Such approach might be tough to pursue since pathogens have acquired strategies to subvert adaptive immune response to produce humoral response against non-essential proteins for their survival. In this study CD surface proteins were isolated, immunoreactive proteins identified and mapped to select potential epitopes. The results of the study exclude the use of CD glyceraldehyde 3-phosphate dehydrogenase as a vaccine antigen, especially as a whole protein. Sequences P9 (201AAGNIVPNTTGAAKAI218) and P10 (224KGKLDGAAQRVPVVTG241) recognized by patients sera are conserved and widespread among CD strains. They show cross-reactivity with sera of people suffering from other bacterial infections and are recognized by sera of autoimmune disease patients. Our study documents that special care in analyzing the sequence of new epitope should be taken to avoid side effects prior to consider it as a vaccine antigen.
Collapse
Affiliation(s)
- Agnieszka Razim
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Immunology of Infectious Diseases, Laboratory of Medical Microbiology, Wroclaw, Poland.
| | - Katarzyna Pacyga
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Immunology of Infectious Diseases, Laboratory of Medical Microbiology, Wroclaw, Poland
| | - Małgorzata Aptekorz
- Department of Medical Microbiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Gayane Martirosian
- Department of Medical Microbiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Andrzej Szuba
- Division of Angiology, Wroclaw Medical University, Wroclaw, Poland
- Department of Internal Medicine, 4th Military Hospital in Wroclaw, Wroclaw, Poland
| | - Edyta Pawlak-Adamska
- Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Department of Experimental Therapy, Laboratory of Immunopathology, Wroclaw, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - Andrzej Myc
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Immunology of Infectious Diseases, Laboratory of Medical Microbiology, Wroclaw, Poland
- Research Associate Scientist Emeritus, University of Michigan, Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, MI, 48109, USA
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Immunology of Infectious Diseases, Laboratory of Medical Microbiology, Wroclaw, Poland
| | - Sabina Górska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Immunology of Infectious Diseases, Laboratory of Medical Microbiology, Wroclaw, Poland
| |
Collapse
|
45
|
Synergistic findings from microbiological and evolutional analyses of virulence factors among pathogenic streptococcal species. J Oral Biosci 2018. [DOI: 10.1016/j.job.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Matsunaga N, Shimizu H, Fujimoto K, Watanabe K, Yamasaki T, Hatano N, Tamai E, Katayama S, Hitsumoto Y. Expression of glyceraldehyde-3-phosphate dehydrogenase on the surface of Clostridium perfringens cells. Anaerobe 2018; 51:124-130. [PMID: 29753109 DOI: 10.1016/j.anaerobe.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 10/16/2022]
Abstract
During research to identify fibronectin (Fn)-binding proteins (Fbps) on the surface of Clostridium perfringens cells, we identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a candidate Fbp. GAPDH is a glycolytic enzyme found in a wide range of prokaryotes and eukaryotes. The Fn-binding activity of recombinant C. perfringens GAPDH (rGAPDH) was investigated using both ligand blotting analysis and enzyme-linked immunosorbent assay (ELISA). rGAPDH strongly bound plasminogen but not laminin or gelatin. Although GAPDH has no signal sequence, it is expressed on the cell surface of many microorganisms. The presence of GAPDH on the surface of C. perfringens cells was analyzed using ELISA and flow cytometry analyses; purified rGAPDH bound to the surface of C. perfringens cells. As autolysin is reportedly involved in the binding of GAPDH to the cell surface, we evaluated the interaction between rGAPDH and the C. perfringens autolysin Acp by both ELISA and ligand blotting assay. These assays revealed that rGAPDH binds to the catalytic domain of Acp but not the cell wall binding domains. These results suggest that autolysin mediates expression of GAPDH on the surface of C. perfringens cells and indicate a possible moonlighting function for GAPDH in binding both Fn and plasminogen.
Collapse
Affiliation(s)
- Nozomu Matsunaga
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama 700-0005, Japan
| | - Haruka Shimizu
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama 700-0005, Japan
| | - Kanako Fujimoto
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama 700-0005, Japan
| | - Kanako Watanabe
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama 700-0005, Japan
| | - Tsutomu Yamasaki
- Pharmaceutical Department, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayaka-shi, Okayama 703-8516, Japan
| | - Naoya Hatano
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe-shi, Hyogo 650-0017, Japan
| | - Eiji Tamai
- Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama-shi, Ehime 790-8578, Japan
| | - Seiichi Katayama
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama 700-0005, Japan
| | - Yasuo Hitsumoto
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama 700-0005, Japan.
| |
Collapse
|
47
|
Kato S, Yanazaki M, Hayashi K, Satoh F, Isobe I, Tsutsumi Y. Fulminant group A streptococcal infection without gangrene in the extremities: Analysis of five autopsy cases. Pathol Int 2018; 68:419-424. [PMID: 29722472 DOI: 10.1111/pin.12678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
Abstract
Five autopsy cases of fulminant group A streptococcal infection without gangrene in the extremities are presented. Clinical course of the fulminant illness was short (2-4 days). One pathological autopsy case was aged (86-years-old), and hemorrhagic cystitis was observed. The other four forensic autopsy cases were young (24-38 years-old) with the mean age of 32, and the primary infective lesions were located in the postpartum endometrium, tonsil and bronchus (2 cases). Systemic coccal dissemination with poor neutrophilic reaction was seen in two of five cases. Bilateral renal cortical necrosis was noted in three cases (including two with bacterial embolism). Hemophagocytosis, probably resulting from hypercytokinemia, was characteristic in three cases without bacterial embolism. Gram-positive cocci colonizing the hemorrhagic and necrotizing lesions were consistently immunoreactive for streptococcal antigens and Strep A (a carbohydrate antigen on group A streptococci). Neutrophilic reaction was mild in the primary infected foci. Clinicians should note that fulminant streptococcal infection (streptococcal toxic shock syndrome) in young and immunocompetent patients may not be associated with gangrene in the extremities. Autopsy prosecutors (diagnostic and forensic pathologists) must recognize the difficulty in making an appropriate autopsy diagnosis, particularly when bacterial embolism is not associated.
Collapse
Affiliation(s)
- Shu Kato
- Medical Student, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.,Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Motoi Yanazaki
- Medical Student, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.,Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kino Hayashi
- Tokyo Medical Examiner's Office, Otsuka, Tokyo, Japan
| | - Fumiko Satoh
- Department of Legal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ichiro Isobe
- Department of Legal Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yutaka Tsutsumi
- Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
48
|
Wang M, Wei Y, Yu W, Wang L, Zhai L, Li X, Wang X, Zhang H, Feng Z, Yu L, Yu Y, Ma J, Cui Y. Identification of a conserved linear B-cell epitope in the Staphylococcus aureus GapC protein. Microb Pathog 2018. [PMID: 29522802 DOI: 10.1016/j.micpath.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The GapC protein of Staphylococcus aureus (S. aureus) is a surface protein that is highly conserved among Staphylococcus strains, and it can induce protective humoral immune responses. However, B-cell epitopes in S. aureus GapC have not been reported. In this study, we generated a monoclonal antibody (mAb2A9) targeting S. aureus GapC. Through a passive immunity test, mAb2A9 was shown to partially protect mice against S. aureus infection. We screened the motif 236PVATGSLTE243 that is recognized by mAb2A9 using a phage-display system. The motif sequence exactly matched amino acids 236-243 of the S. aureus GapC protein. Then, we identified the key amino acids in the motif using site-directed mutagenesis. Site-directed mutagenesis revealed that residues P236, G240, L242, and T243 formed the core of the 236PVATGSLT243 motif. In addition, this epitope was proven to be located on the surface of S. aureus, and it induced a protective humoral immune response against S. aureus infection in immunized mice. Overall, our results characterized a conserved B-cell epitope, which will be an attractive target for designing effective epitope-based vaccines against S. aureus infection.
Collapse
Affiliation(s)
- Mengyao Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuhua Wei
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wei Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lizi Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lu Zhai
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoting Li
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xintong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hua Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhenyue Feng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Liquan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yongzhong Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
49
|
Raynes JM, Young PG, Proft T, Williamson DA, Baker EN, Moreland NJ. Protein adhesins as vaccine antigens for Group A Streptococcus. Pathog Dis 2018; 76:4919728. [DOI: 10.1093/femspd/fty016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- J M Raynes
- School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - P G Young
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, 5 Symonds Street, Auckland 1010, New Zealand
| | - T Proft
- School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - D A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - E N Baker
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, 5 Symonds Street, Auckland 1010, New Zealand
| | - N J Moreland
- School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
50
|
Fernández FJ, Gómez S, Vega MC. Pathogens' toolbox to manipulate human complement. Semin Cell Dev Biol 2017; 85:98-109. [PMID: 29221973 DOI: 10.1016/j.semcdb.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/15/2022]
Abstract
The surveillance and pathogen fighting functions of the complement system have evolved to protect mammals from life-threatening infections. In turn, pathogens have developed complex molecular mechanisms to subvert, divert and evade the effector functions of the complement. The study of complement immunoevasion by pathogens sheds light on their infection drivers, knowledge that is essential to implement therapies. At the same time, complement evasion also acts as a discovery ground that reveals important aspects of how complement works under physiological conditions. In recent years, complex interrelationships between infection insults and the onset of autoimmune and complement dysregulation diseases have led to propose that encounters with pathogens can act as triggering factors for disease. The correct management of these diseases involves the recognition of their triggering factors and the development and administration of complement-associated molecular therapies. Even more recently, unsuspected proteins from pathogens have been shown to possess moonlighting functions as virulence factors, raising the possibility that behind the first line of virulence factors there be many more pathogen proteins playing secondary, helping and supporting roles for the pathogen to successfully establish infections. In an era where antibiotics have a progressively reduced effect on the management and control of infectious diseases worldwide, knowledge on the mechanisms of pathogenic invasion and evasion look more necessary and pressing than ever.
Collapse
Affiliation(s)
| | - Sara Gómez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - M Cristina Vega
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|