1
|
Donu D, Boyle E, Curry A, Cen Y. Biochemical characterization and discovery of inhibitors for PfSir2A: new tricks for an old enzyme. RSC Chem Biol 2025:d4cb00206g. [PMID: 39897407 PMCID: PMC11784564 DOI: 10.1039/d4cb00206g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
The Sir2 enzyme from Plasmodium falciparum (PfSir2A) is essential for the antigenic variation of this parasite, and its inhibition is expected to have therapeutic effects for malaria. Selective PfSir2A inhibitors are not available yet, partially due to the fact that this enzyme demonstrates extremely weak in vitro deacetylase activity, making the characterization of its inhibitors rather challenging. In the current study, we report the biochemical characterization and inhibitor discovery for this enzyme. PfSir2A exhibits greater enzymatic activity in the presence of DNA for both the peptide and histone protein substrates, suggesting that nucleosomes may be the real substrates of this enzyme. Indeed, it demonstrates robust deacetylase activity against nucleosome substrates, stemming primarily from the tight binding interactions with the nucleosome. In addition to DNA/nucleosome, free fatty acids (FFAs) are also identified as endogenous PfSir2A regulators. Myristic acid, a biologically relevant FFA, shows differential regulation of the two distinct activities of PfSir2A: activates deacetylation, but inhibits defatty-acylation. The structural basis of this differential regulation was further explored. Moreover, synthetic small molecule inhibitors of PfSir2A were discovered through the screening of a library of human sirtuin regulators. The mechanism of inhibition of the lead compounds were investigated. Collectively, the mechanistic insights and inhibitors described in this study will facilitate the future development of small molecule PfSir2A inhibitors as antimalarial agents.
Collapse
Affiliation(s)
- Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1 804-828-7405
| | - Emily Boyle
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1 804-828-7405
| | - Alyson Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1 804-828-7405
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1 804-828-7405
- Center for Drug Discovery, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
2
|
Donu D, Boyle E, Curry A, Cen Y. Biochemical Characterization and Inhibitor Discovery for Pf Sir2A - New Tricks for An Old Enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614941. [PMID: 39386451 PMCID: PMC11463419 DOI: 10.1101/2024.09.25.614941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The Sir2 enzyme from Plasmodium falciparum ( Pf Sir2A) is essential for the antigenic variation of this parasite, and its inhibition is expected to have therapeutic effects for malaria. Selective Pf Sir2A inhibitors are not available yet, partially due to the fact that this enzyme demonstrates extremely weak in vitro deacetylase activity, making the characterization of its inhibitors rather challenging. In the current study, we report the biochemical characterization and inhibitor discovery for this enzyme. Pf Sir2A exhibits greater enzymatic activity in the presence of DNA for both the peptide and histone protein substrates, suggesting that nucleosomes may be the real substrates of this enzyme. Indeed, it demonstrates robust deacetylase activity against nucleosome substrates, stemming primarily from the tight binding interactions with the nucleosome. In addition to DNA/nucleosome, free fatty acids (FFAs) are also identified as endogenous Pf Sir2A regulators. Myristic acid, a biologically relevant FFA, shows differential regulation of the two distinct activities of Pf Sir2A: activates deacetylation, but inhibits defatty-acylation. The structural basis of this differential regulation was further explored. Moreover, synthetic small molecule inhibitors of Pf Sir2A were discovered through the screening of a library of human sirtuin regulators. The mechanism of inhibition of the lead compounds were investigated. Collectively, the mechanistic insights and inhibitors described in this study will facilitate the future development of small molecule Pf Sir2A inhibitors as antimalarial agents.
Collapse
|
3
|
Gupta M, Rumman M, Singh B, Mahdi AA, Pandey S. Berberine ameliorates glucocorticoid-induced hyperglycemia: an in vitro and in vivo study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1647-1658. [PMID: 37704773 DOI: 10.1007/s00210-023-02703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Berberine (BBR), a bioactive compound isolated from Coptidis Rhizoma, possesses diverse pharmacological activities including anti-bacterial, anti-inflammatory, antitumor, hypolipidemic, and anti-diabetic. However, its role as an anti-diabetic agent in animal models of dexamethasone (Dex)-induced diabetes remains unknown. Studies have shown that natural compounds including aloe, caper, cinnamon, cocoa, green and black tea, and turmeric can be used for treating Type 2 diabetes mellitus (DM). Compared to conventional drugs, natural compounds have less side effects and are easily available. Herein, we studied the anti-diabetic effects of BBR in a mice model of Dex-induced diabetes. HepG2 cell line was used for glucose release and glycogen synthesis studies. Cell proliferation was measured by methylthiotetrazole (MTT) assay. For animal studies, mice were treated with Dex (2 mg/kg, i.m.) for 30 days and effect of BBR at the doses 100, 200, and 500 mg/kg (p.o.) was analyzed. Glucose, insulin, and pyruvate tests were performed for evaluating the development of the diabetic model. Echo MRI was performed to assess the fat mass. Further, to elucidate the mechanism of action of BBR, mRNA expression of genes regulating gluconeogenesis, glucose uptake, and glycolysis was analyzed. In vitro BBR had no impact on cell viability up to a concentration of 50 μM. Moreover, BBR suppressed the hepatic glucose release and improved glucose tolerance in HepG2 cells. In vivo, BBR improved glucose homeostasis in diabetic mice as evidenced by enhanced glucose clearance, increased glycolysis, elevated glucose uptake, and decreased gluconeogenesis. Further, Dex treatment increased the total fat mass in mice, which was ameliorated by BBR treatment. BBR improves glucose tolerance by increasing glucose clearance, inhibiting hepatic glucose release, and decreasing obesity. Thus, BBR may become a potential therapeutic agent for treating glucocorticoid-induced diabetes and obesity in the future.
Collapse
Affiliation(s)
- Mrinal Gupta
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Mohammad Rumman
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Babita Singh
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shivani Pandey
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
4
|
Gong Y, Geng N, Zhang H, Luo Y, Giesy JP, Sun S, Wu P, Yu Z, Chen J. Exposure to short-chain chlorinated paraffins inhibited PPARα-mediated fatty acid oxidation and stimulated aerobic glycolysis in vitro in human cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144957. [PMID: 33578161 DOI: 10.1016/j.scitotenv.2021.144957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) could disrupt fatty acid metabolism in male rat liver through activating rat PPARα signaling. However, whether this mode of action can translate to humans remained largely unclear. In this study, based on luciferase assays, C10-13-CPs (56.5% Cl) at concentrations greater than 1 μM (i.e., 362 μg/L) showed weak agonistic activity toward human PPARα (hPPARα) signaling. But in HepG2 cells, exposure to C10-13-CPs (56.5% Cl) at the human internal exposure level (100 μg/L) down-regulated expressions of most of the tested hPPARα target genes, which encode for enzymes that oxidize fatty acids. In line with the gene expression data, metabolomics further confirmed that exposure to four SCCP standards with varying chlorine contents at 100 μg/L significantly suppressed oxidation of fatty acids in HepG2 cells, mainly evidenced by elevations in both total fatty acids and long-chain acylcarnitines. In addition, exposure to these SCCPs also caused a shift in carbohydrate metabolism from the tricarboxylic acid cycle (TCA cycle) to aerobic glycolysis. Overall, the results revealed that SCCPs could inhibit hPPARα-mediated fatty acid oxidation, and stimulated aerobic glycolysis in HepG2 cells.
Collapse
Affiliation(s)
- Yufeng Gong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
| | - Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China; University of Chinese Academy of Sciences, Beijing, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shuai Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ping Wu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Zhengkun Yu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| |
Collapse
|
5
|
Sia KC, Fu ZY, Calne RY, Nathwani AC, Lee KO, Gan SU. Modification of a Constitutive to Glucose-Responsive Liver-Specific Promoter Resulted in Increased Efficacy of Adeno-Associated Virus Serotype 8-Insulin Gene Therapy of Diabetic Mice. Cells 2020; 9:cells9112474. [PMID: 33202992 PMCID: PMC7696068 DOI: 10.3390/cells9112474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/02/2023] Open
Abstract
We have previously used a hepatotropic adeno-associated viral (AAV) vector with a modified human insulin gene to treat diabetic mice. The HLP (hybrid liver-specific promoter) used was constitutively active and non-responsive to glucose. In this study, we examined the effects of addition of glucose responsive elements (R3G) and incorporation of a 3' albumin enhancer (3'iALB) on insulin expression. In comparison with the original promoter, glucose responsiveness was only observed in the modified promoters in vitro with a 36 h lag time before the peak expression. A 50% decrease in the number of viral particles at 5 × 109 vector genome (vg)/mouse was required by AAV8-R3GHLP-hINSco to reduce the blood sugar level to near normoglycemia when compared to the original AAV8-HLP-hINSco that needed 1 × 1010 vg/mouse. The further inclusion of an 860 base-pairs 3'iALB enhancer component in the 3' untranslated region increased the in vitro gene expression significantly but this increase was not observed when the packaged virus was systemically injected in vivo. The addition of R3G to the HLP promoter in the AAV8-human insulin vector increased the insulin expression and secretion, thereby lowering the required dosage for basal insulin treatment. This in turn reduces the risk of liver toxicity and cost of vector production.
Collapse
Affiliation(s)
- Kian Chuan Sia
- Department of Surgery, National University of Singapore, Singapore 117597, Singapore; (K.C.S.); (Z.Y.F.); (R.Y.C.)
| | - Zhen Ying Fu
- Department of Surgery, National University of Singapore, Singapore 117597, Singapore; (K.C.S.); (Z.Y.F.); (R.Y.C.)
| | - Roy Y. Calne
- Department of Surgery, National University of Singapore, Singapore 117597, Singapore; (K.C.S.); (Z.Y.F.); (R.Y.C.)
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Amit C. Nathwani
- Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK;
| | - Kok Onn Lee
- Department of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Shu Uin Gan
- Department of Surgery, National University of Singapore, Singapore 117597, Singapore; (K.C.S.); (Z.Y.F.); (R.Y.C.)
- Correspondence: ; Tel.: +65-6601-2465
| |
Collapse
|
6
|
Mirzahosseini-pourranjbar A, Karimabad MN, Hajizadeh MR, Khoshdel A, Fahmidehkar MA, Mohammad-Sadeghipour M, Afshari-Nesab M, Mahmoodi M. The effect of Prosopis farcta extract on the expression of some key genes of the glycolysis pathway and the genes involved in insulin signaling in HepG2 cells. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Ide T, Origuchi I. Physiological effects of an oil rich in γ-linolenic acid on hepatic fatty acid oxidation and serum lipid levels in genetically hyperlipidemic mice. J Clin Biochem Nutr 2018; 64:148-157. [PMID: 30936627 PMCID: PMC6436035 DOI: 10.3164/jcbn.18-64] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/29/2018] [Indexed: 02/05/2023] Open
Abstract
We investigated the physiological activity of an oil rich in γ-linolenic acid of evening primrose origin (containing 42.6% γ-linolenic acid) affecting hepatic fatty acid metabolism, and serum lipid levels in genetically hyperlipidemic mice deficient in apolipoprotein E expression. Male apolipoprotein E-deficient mice (BALB/c.KOR/StmSlc-Apoeshl) were fed experimental diets containing 100 g/kg of palm oil (saturated fat), safflower oil (rich in linoleic acid), γ-linolenic acid oil (rich in γ-linolenic acid), or fat mixtures composed of safflower and γ-linolenic acid oils (65:35 and 30:70, w/w) for 20 days. γ-Linolenic acid oil, compared with palm and safflower oils, strongly and dose-dependently increased the activity and mRNA levels of hepatic fatty acid oxidation enzymes. In general, safflower and γ-linolenic acid oils, compared with palm oil, reduced the activity and mRNA levels of lipogenic enzymes. However, these oils were equivalent in reducing the parameters of lipogenesis, excluding malic enzyme and pyruvate kinase. The diets containing safflower and γ-linolenic acid oils, compared with the palm oil diet, significantly decreased serum triacylglycerol and cholesterol levels. The decreases were greater with γ-linolenic acid oil than with safflower oil. γ-Linolenic acid oil exerted strong serum lipid-lowering effects in apolipoprotein E-deficient mice apparently through the changes in hepatic fatty acid metabolism.
Collapse
Affiliation(s)
- Takashi Ide
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan
| | - Izumi Origuchi
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan
| |
Collapse
|
8
|
Scorletti E, Byrne CD. Omega-3 fatty acids and non-alcoholic fatty liver disease: Evidence of efficacy and mechanism of action. Mol Aspects Med 2018; 64:135-146. [PMID: 29544992 DOI: 10.1016/j.mam.2018.03.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
For many years it has been known that high doses of long chain omega-3 fatty acids are beneficial in the treatment of hypertriglyceridaemia. Over the last three decades, there has also been a wealth of in vitro and in vivo data that has accumulated to suggest that long chain omega-3 fatty acid treatment might be beneficial to decrease liver triacylglycerol. Several biological mechanisms have been identified that support this hypothesis; notably, it has been shown that long chain omega-3 fatty acids have a beneficial effect: a) on bioactive metabolites involved in inflammatory pathways, and b) on alteration of nuclear transcription factor activities such as peroxisome proliferator-activated receptors (PPARs), sterol regulatory element-binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP), involved in inflammatory pathways and liver lipid metabolism. Since the pathogenesis of non alcoholic fatty liver disease (NAFLD) begins with the accumulation of liver lipid and progresses with inflammation and then several years later with development of fibrosis; it has been thought in patients with NAFLD omega-3 fatty acid treatment would be beneficial in treating liver lipid and possibly also in ameliorating inflammation. Meta-analyses (of predominantly dietary studies and small trials) have tended to support the assertion that omega-3 fatty acids are beneficial in decreasing liver lipid, but recent randomised controlled trials have produced conflicting data. These trials have suggested that omega-3 fatty acid might be beneficial in decreasing liver triglyceride (docosahexanoic acid also possibly being more effective than eicosapentanoic acid) but not in decreasing other features of steatohepatitis (or liver fibrosis). The purpose of this review is to discuss recent evidence regarding biological mechanisms by which long chain omega-3 fatty acids might act to ameliorate liver disease in NAFLD; to consider the recent evidence from randomised trials in both adults and children with NAFLD; and finally to discuss key 'known unknowns' that need to be considered, before planning future studies that are focussed on testing the effects of omega-3 fatty acid treatment in patients with NAFLD.
Collapse
Affiliation(s)
- Eleonora Scorletti
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Christopher D Byrne
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
9
|
Jois T, Sleeman MW. The regulation and role of carbohydrate response element-binding protein in metabolic homeostasis and disease. J Neuroendocrinol 2017; 29. [PMID: 28370553 DOI: 10.1111/jne.12473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
The transcription factor carbohydrate response element-binding protein (ChREBP) is a member of the basic helix-loop-helix leucine zipper transcription factor family. Under high-glucose conditions, it has a role in regulating the expression of key genes involved in various pathways, including glycolysis, gluconeogenesis and lipogenesis. It does this by forming a tetrameric complex made up of two ChREBP/Mlx heterodimers, which enables it to bind to the carbohydrate response element (ChoRE) in the promoter region of its target genes to regulate transcription. Because ChREBP plays a key role in glucose signalling and metabolism, and aberrations in glucose homeostasis are often present in metabolic diseases, this transcription factor presents itself as an enticing target with respect to further understanding metabolic disease mechanisms and potentially uncovering new therapeutic targets.
Collapse
Affiliation(s)
- T Jois
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - M W Sleeman
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Jump DB, Lytle KA, Depner CM, Tripathy S. Omega-3 polyunsaturated fatty acids as a treatment strategy for nonalcoholic fatty liver disease. Pharmacol Ther 2017; 181:108-125. [PMID: 28723414 DOI: 10.1016/j.pharmthera.2017.07.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obese and type 2 diabetic (T2DM) patients have a high prevalence of nonalcoholic fatty liver disease (NAFLD). NAFLD is a continuum of chronic liver diseases ranging from benign hepatosteatosis to nonalcoholic steatohepatitis (NASH), cirrhosis and primary hepatocellular cancer (HCC). Because of its strong association with the obesity epidemic, NAFLD is rapidly becoming a major public health concern worldwide. Surprisingly, there are no FDA approved NAFLD therapies; and current therapies focus on the co-morbidities associated with NAFLD, namely, obesity, hyperglycemia, dyslipidemia, and hypertension. The goal of this review is to provide background on the disease process, discuss human studies and preclinical models that have examined treatment options. We also provide an in-depth rationale for the use of dietary ω3 polyunsaturated fatty acid (ω3 PUFA) supplements as a treatment option for NAFLD. This focus is based on recent studies indicating that NASH patients and preclinical mouse models of NASH have low levels of hepatic C20-22 ω3 PUFA. This decline in hepatic PUFA may account for the major phenotypic features associated with NASH, including steatosis, inflammation and fibrosis. Finally, our discussion will address the strengths and limitations of ω3 PUFA supplements use in NAFLD therapy.
Collapse
Affiliation(s)
- Donald B Jump
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States.
| | - Kelli A Lytle
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Christopher M Depner
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Sasmita Tripathy
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|
11
|
Rodríguez-Cruz M, Serna DS. Nutrigenomics of ω-3 fatty acids: Regulators of the master transcription factors. Nutrition 2017; 41:90-96. [PMID: 28760435 DOI: 10.1016/j.nut.2017.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/27/2017] [Accepted: 04/24/2017] [Indexed: 11/19/2022]
Abstract
It is well known that ω-3 long-chain polyunsaturated fatty acids (LC-PUFAs) control some key molecular cell mechanisms, resulting in a beneficial role in inflammatory diseases. Such mechanisms are complex and reflect the diversity of their functions, mainly as modulators of the dynamic properties of membranes, regulators of gene expression, and precursors of active mediators. The aim of this review is to summarize the state of the art of the effects and mechanisms by which ω-3 LC-PUFAs such as eicosapentaenoic acid (EPA, C22:5 ω-3) and docosahexaenoic acid (DHA, C22:6 ω-3) regulate different metabolic processes to maintain homeostasis. Thus, we describe some aspects of these fatty acids-from their structural function in cell membranes to their role as regulators of gene expression, mainly in lipid metabolism. However, further studies are required to elucidate these actions and to have a better understanding in regard to the beneficial effects of ω-3 LC-PUFAs in the pathogenesis of several diseases as well as their functions as nutrients with protective action to avoid or delay development of these diseases. Furthermore, it is necessary to highlight the lack of comprehensive studies including nutritional, biochemical, genetic, and immune aspects to identify specific molecular mechanisms involved in the beneficial effects of consumption of DHA (C22:6 ω-3) and EPA (C22:5 ω-3) and their metabolic derivatives on health promotion.
Collapse
Affiliation(s)
- Maricela Rodríguez-Cruz
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, México City, México.
| | - Donovan Solís Serna
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, México City, México
| |
Collapse
|
12
|
Garay-Lugo N, Domínguez-Lopez A, Miliar García A, Aguilar Barrera E, Gómez López M, Gómez Alcalá A, Martínez Godinez MDLA, Lara-Padilla E. n-3 Fatty acids modulate the mRNA expression of the Nlrp3 inflammasome and Mtor in the liver of rats fed with high-fat or high-fat/fructose diets. Immunopharmacol Immunotoxicol 2017; 38:353-63. [PMID: 27367537 DOI: 10.1080/08923973.2016.1208221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT There is evidence that n-3 polyunsaturated fatty acids (n-3-PUFAs) can inhibit mTORC1, which should potentiate autophagy and eliminate NLRP3 inflammasome activity. OBJECTIVE Evaluate the effect of a high-fat or high-fat/fructose diet with and without n-3-PUFAs on hepatic gene expression. MATERIALS AND METHODS We examined the mRNA expression by RT-PCR of Mtor, Nlrp3, and other 22 genes associated with inflammation in rats livers after a 9-week diet. The dietary regimens were low-fat (control, CD), high-fat (HF), high-fat/fructose (HF-Fr), and also each of these supplemented with n-3-PUFAs (CD-n-3-PUFAs, HF-n-3-PUFAs, and HF-Fr-n-3-PUFAs). These data were processed by GeneMania and STRING databases. RESULTS Compared to the control, the HF group showed a significant increase (between p < 0.05 and p < 0.0001) in 20 of these genes (Il1b, Il18, Rxra, Nlrp3, Casp1, Il33, Tnf, Acaca, Mtor, Eif2s1, Eif2ak4, Nfkb1, Srebf1, Hif1a, Ppara, Ppard, Pparg, Mlxipl, Fasn y Scd1), and a decrease in Sirt1 (p < 0.05). With the HF-Fr diet, a significant increase (between p < 0.05 and p < 0.005) was also found in the expression of 16 evaluated genes (Srebf1, Mlxipl, Rxra, Abca1, Il33, Nfkb1, Hif1a, Pparg, Casp1, Il1b, Il-18, Tnf, Ppard, Acaca, Fasn, Scd1), along with a decrease in the transcription of Mtor and Elovl6 (p < 0.05). Contrarily, many of the genes whose expression increased with the HF and HF-Fr diets did not significantly increase with the HF-n-3-PUFAs or HF-Fr-n-3-PUFAs diet. DISCUSSION AND CONCLUSION We found the interrelation of the genes for the mTORC1 complex, the NLRP3 inflammasome, and other metabolically important proteins, and that these genes respond to n-3-PUFAs.
Collapse
Affiliation(s)
- Natalia Garay-Lugo
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Aarón Domínguez-Lopez
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Angel Miliar García
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Eliud Aguilar Barrera
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Modesto Gómez López
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Alejandro Gómez Alcalá
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Maria de Los Angeles Martínez Godinez
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Eleazar Lara-Padilla
- b Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Díaz Mirón , México , D.F , México
| |
Collapse
|
13
|
Taranu I, Habeanu M, Gras MA, Pistol GC, Lefter N, Palade M, Ropota M, Sanda Chedea V, Marin DE. Assessment of the effect of grape seed cake inclusion in the diet of healthy fattening-finishing pigs. J Anim Physiol Anim Nutr (Berl) 2017; 102:e30-e42. [PMID: 28247575 DOI: 10.1111/jpn.12697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/14/2017] [Indexed: 01/06/2023]
Abstract
Modulatory capacity of bioactive compounds from different wastes has been scarcely investigated in pigs. This study aimed to evaluate the effects of dietary inclusion of grape seed cakes (GS diet) on performance and plasma biochemistry parameters as health indicators, as well as on several markers related to inflammation and antioxidant defence in the liver of fattening-finishing pigs. Twelve cross-bred pigs (TOPIG) were randomly assigned to one of two experimental diets: control and 5% grape seed cake diet during finishing period (24 days). No effect of GS diet on pig performance and blood biochemistry was observed. However, GS diet decreased significantly (-9.05%, p < .05) the cholesterol concentration (85.71 ± 0.94 mg/dl vs 94.24 ± 2.16 mg/dl) and increased IgA level (+49.90%, p < .05) in plasma (5.04 ± 0.5 mg/ml vs 3.36 ± 0.7 mg/ml). GS cakes decreased the inflammatory response in the liver of pigs fed with GS diet by lowering the Gene expression and protein concentration of pro-inflammatory cytokines (IL-1β, IL-8, TNF-α and IFN-γ) as well as the mRNA abundances of NF-κB signalling molecules. The antioxidant status was not increased by GS diet. The gene expression and activity of catalase decreased significantly. The gene expression of Nrf2, superoxide dismutase, glutathione peroxidase and heat-shock protein decreased, and no effect on their activity was observed with the exception of catalase activity which decreased. However, TBARS was reduced significantly. GS diet showed a modulatory effect on antioxidative status as well as anti-inflammatory and hypocholesterolic properties without effect on pig performance.
Collapse
Affiliation(s)
- I Taranu
- INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - M Habeanu
- INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - M A Gras
- INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - G C Pistol
- INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - N Lefter
- INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - M Palade
- INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - M Ropota
- INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - V Sanda Chedea
- INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - D E Marin
- INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| |
Collapse
|
14
|
Jump DB, Botolin D, Wang Y, Xu J, Christian B. Fatty acids and gene transcription. SCANDINAVIAN JOURNAL OF FOOD & NUTRITION 2016. [DOI: 10.1080/17482970601069318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Donald B. Jump
- Departments of Physiology, Biochemistry and Molecular BiologyMichigan State UniversityMichiganUSA
| | - Daniela Botolin
- Departments of Physiology, Biochemistry and Molecular BiologyMichigan State UniversityMichiganUSA
| | - Yun Wang
- Departments of Physiology, Biochemistry and Molecular BiologyMichigan State UniversityMichiganUSA
| | - Jinghua Xu
- Departments of Physiology, Biochemistry and Molecular BiologyMichigan State UniversityMichiganUSA
| | - Barbara Christian
- Departments of Physiology, Biochemistry and Molecular BiologyMichigan State UniversityMichiganUSA
| |
Collapse
|
15
|
The transcription factor carbohydrate-response element-binding protein (ChREBP): A possible link between metabolic disease and cancer. Biochim Biophys Acta Mol Basis Dis 2016; 1863:474-485. [PMID: 27919710 DOI: 10.1016/j.bbadis.2016.11.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022]
Abstract
Carbohydrate-response element-binding protein (ChREBP) has been identified as a transcription factor that binds to carbohydrate response element in the promoter of pyruvate kinase, liver and red blood cells. ChREBP is activated by metabolites derived from glucose and suppressed by adenosine monophosphate (AMP), ketone bodies and cyclic cAMP. ChREBP regulates gene transcription related to glucose and lipid metabolism. Findings from knockout mice and human subjects suggest that ChREBP helps to induce hepatic steatosis, dyslipidemia, and glucose intolerance. Moreover, in tumor cells, ChREBP promotes aerobic glycolysis through p53 inhibition, resulting in tumor cell proliferation. Anti-diabetic and anti-lipidemic drugs such as atorvastatin, metformin, bile acid sequestrants, docosahexaenoic acid and eicosapentaenoic acid may affect ChREBP transactivity. Secretory proteins such as fibroblast growth factor 21 and ANGPTL8 (Betatrophin) may be promising candidates for biologic markers reflecting ChREBP transactivity. Thus, ChREBP is associated with metabolic diseases and cancers, and may be a link between them.
Collapse
|
16
|
Wooten JS, Nick TN, Seija A, Poole KE, Stout KB. High-Fructose Intake Impairs the Hepatic Hypolipidemic Effects of a High-Fat Fish-Oil Diet in C57BL/6 Mice. J Clin Exp Hepatol 2016; 6:265-274. [PMID: 28003715 PMCID: PMC5157917 DOI: 10.1016/j.jceh.2016.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Overnutrition of saturated fats and fructose is one of the major factors for the development of nonalcoholic fatty liver disease. Because omega-3 polyunsaturated fatty acids (n-3fa) have established lipid lowering properties, we tested the hypothesis that n-3fa prevents high-fat and fructose-induced fatty liver disease in mice. METHODS Male C57BL/6J mice were randomly assigned to one of the following diet groups for 14 weeks: normal diet (ND), high-fat lard-based diet (HFD), HFD with fructose (HFD + Fru), high-fat fish-oil diet (FOD), or FOD + Fru. RESULTS Despite for the development of obesity and insulin resistance, FOD had 65.3% lower (P < 0.001) hepatic triglyceride levels than HFD + Fru, which was blunted to a 38.5% difference (P = 0.173) in FOD + Fru. The lower hepatic triglyceride levels were associated with a lower expression of lipogenic genes LXRα and FASN, as well as the expression of genes associated with fatty acid uptake and triglyceride synthesis, CD36 and SCD1, respectively. Conversely, the blunted hypotriglyceride effect of FOD + Fru was associated with a higher expression of CD36 and SCD1. CONCLUSIONS During overnutrition, a diet rich in n-3fa may prevent the severity of hepatic steatosis; however, when juxtaposed with a diet high in fructose, the deleterious effects of overnutrition blunted the hypolipidemic effects of n-3fa.
Collapse
Key Words
- ACC1, acetyl-CoA carboxylase-1
- CPT1a, carnitine palmitoyltransferase 1a
- ChREBP, carbohydrate response element binding protein
- FASN, fatty acid synthase
- FFA, free fatty acid
- LPL, lipoprotein lipase
- LXRα, liver-X-receptor
- MTTP, microsomal triglyceride transfer protein
- NAFLD, nonalcoholic fatty liver disease
- PPARα, peroxisome proliferator activated receptor α
- PPARγ, peroxisome proliferator activated receptor γ
- SCD1, stearoyl-CoA desaturase 1
- SREBP1c, sterol response element binding protein
- T2DM, type 2 diabetes mellitus
- TRL, triglyceride-rich lipoproteins
- VLDL, very low-density lipoprotein
- fructose
- lipid metabolism
- lipotoxicity
- n-3fa, omega-3 polyunsaturated fatty acids
- omega-3 polyunsaturated fatty acids
- overnutrition
Collapse
Affiliation(s)
- Joshua S. Wooten
- Address for correspondence: Joshua S. Wooten, Department of Applied Health, Southern Illinois University Edwardsville, Campus Box 1126, Edwardsville, IL 62026-1126, United States. Fax: +1 618 650 3719.Department of Applied Health, Southern Illinois University EdwardsvilleCampus Box 1126EdwardsvilleIL62026-1126United States
| | | | | | | | | |
Collapse
|
17
|
Naowaboot J, Piyabhan P, Munkong N, Parklak W, Pannangpetch P. Ferulic acid improves lipid and glucose homeostasis in high-fat diet-induced obese mice. Clin Exp Pharmacol Physiol 2016; 43:242-50. [DOI: 10.1111/1440-1681.12514] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Jarinyaporn Naowaboot
- Division of Pharmacology; Thammasat University (Rangsit Campus); Pathum Thani Thailand
| | - Pritsana Piyabhan
- Division of Physiology; Department of Preclinical Science; Thammasat University (Rangsit Campus); Pathum Thani Thailand
| | - Narongsuk Munkong
- Graduate Academy; Faculty of Medicine; Thammasat University (Rangsit Campus); Pathum Thani Thailand
| | - Wason Parklak
- Graduate Academy; Faculty of Medicine; Thammasat University (Rangsit Campus); Pathum Thani Thailand
| | | |
Collapse
|
18
|
Tarantino G, Finelli C. Lipids, Low-Grade Chronic Inflammation and NAFLD. HANDBOOK OF LIPIDS IN HUMAN FUNCTION 2016:731-759. [DOI: 10.1016/b978-1-63067-036-8.00028-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
De Rosa MC, Caputo M, Zirpoli H, Rescigno T, Tarallo R, Giurato G, Weisz A, Torino G, Tecce MF. Identification of Genes Selectively Regulated in Human Hepatoma Cells by Treatment With Dyslipidemic Sera and PUFAs. J Cell Physiol 2015; 230:2059-66. [DOI: 10.1002/jcp.24932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/16/2015] [Indexed: 12/30/2022]
Affiliation(s)
| | - Mariella Caputo
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Hylde Zirpoli
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Tania Rescigno
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Italy
| | - Gaetano Torino
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Mario Felice Tecce
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| |
Collapse
|
20
|
Fan J, Krautkramer KA, Feldman JL, Denu JM. Metabolic regulation of histone post-translational modifications. ACS Chem Biol 2015; 10:95-108. [PMID: 25562692 DOI: 10.1021/cb500846u] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone post-translational modifications regulate transcription and other DNA-templated functions. This process is dynamically regulated by specific modifying enzymes whose activities require metabolites that either serve as cosubstrates or act as activators/inhibitors. Therefore, metabolism can influence histone modification by changing local concentrations of key metabolites. Physiologically, the epigenetic response to metabolism is important for nutrient sensing and environment adaption. In pathologic states, the connection between metabolism and histone modification mediates epigenetic abnormality in complex disease. In this review, we summarize recent studies of the molecular mechanisms involved in metabolic regulation of histone modifications and discuss their biological significance.
Collapse
Affiliation(s)
- Jing Fan
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - Kimberly A. Krautkramer
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - Jessica L. Feldman
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - John M. Denu
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| |
Collapse
|
21
|
Ali HA, Almaghrabi OA, Afifi ME. Molecular mechanisms of anti-hyperglycemic effects of Costus speciosus extract in streptozotocin-induced diabetic rats. Saudi Med J 2014; 35:1501-6. [PMID: 25491216 PMCID: PMC4362175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/06/2014] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To investigate the mechanisms of the anti-hyperglycemic effect of Costus speciosus (C. speciosus) root ethanolic extracts (CSREt) by assessing its action on insulin synthesis and glucose catabolic enzyme gene expression and activities in streptozotocin (STZ) diabetic rats. METHODS This study was carried out at the Biochemical Laboratory, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt between July and August 2013. Sixty male albino rats (120 +/- 20 g weight, and 6 months old) were used and divided into 6 groups (n=10). Two groups served as diabetic and nondiabetic controls. Four groups of STZ diabetic animals were given oral C. speciosus (CSREt) in doses of 200, 400, and 600 mg/kg body weight, and 600 µg/kg body weight of the standard drug glibenclamide for 4 weeks. RESULTS The CSREt 400 and 600 mg/kg body weight induced a decrease in blood glucose and an increase in serum insulin level, glucokinase (GK), aldolase, pyruvate kinase (PK), succinate dehydrogenase (SDH), and glycogen synthase activities in addition to a higher expression level of insulin, insulin receptor A (IRA), GK, PK, SDH, and glucose transporting protein. CONCLUSION The C. speciosus has anti-hyperglycemic activity. It induces insulin secretion and release from cells, as well as stimulates the tissue's insulin sensitivity leading to an increase of the tissues' glucose uptake, storage, and oxidation.
Collapse
Affiliation(s)
- Haytham A Ali
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt. E-mail.
| | | | | |
Collapse
|
22
|
Taranu I, Gras M, Pistol GC, Motiu M, Marin DE, Lefter N, Ropota M, Habeanu M. ω-3 PUFA rich camelina oil by-products improve the systemic metabolism and spleen cell functions in fattening pigs. PLoS One 2014; 9:e110186. [PMID: 25303320 PMCID: PMC4193896 DOI: 10.1371/journal.pone.0110186] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/08/2014] [Indexed: 12/31/2022] Open
Abstract
Camelina oil-cakes results after the extraction of oil from Camelina sativa plant. In this study, camelina oil-cakes were fed to fattening pigs for 33 days and its effect on performance, plasma biochemical analytes, pro-/anti-inflammatory mediators and antioxidant detoxifying defence in spleen was investigated in comparison with sunflower meal. 24 crossbred TOPIG pigs were randomly assigned to one of two experimental dietary treatments containing either 12% sunflower meal (treatment 1-T1), or 12.0% camelina oil-cakes, rich in polyunsaturated fatty acids ω-3 (ω-3 PUFA) (treatment 2-T2). The results showed no effect of T2 diet (camelina cakes) on feed intake, average weight gain or feed efficiency. Consumption of camelina diet resulted in a significant decrease in plasma glucose concentration (18.47%) with a trend towards also a decrease of plasma cholesterol. In spleen, T2 diet modulated cellular immune response by decreasing the protein and gene expression of pro-inflammatory markers, interleukin 1-beta (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin (IL-8) and cyclooxigenase 2 (COX-2) in comparison with T1 diet. By contrast, T2 diet increased (P<0.05) in spleen the mRNA expression of antioxidant enzymes, catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase 1 (GPx1) by 3.43, 2.47 and 1.83 fold change respectively, inducible nitric oxide synthase (iNOS) (4.60 fold), endothelial nitric oxide synthase (eNOS) (3.23 fold) and the total antioxidant level (9.02%) in plasma. Camelina diet increased also peroxisome-proliferator activated receptor gamma (PPAR-γ) mRNA and decreased that of mitogen-activated protein kinase 14 (p38α MAPK) and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB). At this level of inclusion (12%) camelina oil-cakes appears to be a potentially alternative feed source for pig which preserves a high content of ω-3 PUFA indicating antioxidant properties by the stimulation of detoxifying enzymes expression and the suppression of spleen pro-inflammatory markers.
Collapse
Affiliation(s)
- Ionelia Taranu
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Mihail Gras
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Gina Cecilia Pistol
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Monica Motiu
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Daniela E. Marin
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Nicoleta Lefter
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Mariana Ropota
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Mihaela Habeanu
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| |
Collapse
|
23
|
Harvatine KJ, Boisclair YR, Bauman DE. Liver x receptors stimulate lipogenesis in bovine mammary epithelial cell culture but do not appear to be involved in diet-induced milk fat depression in cows. Physiol Rep 2014; 2:e00266. [PMID: 24760520 PMCID: PMC4002246 DOI: 10.1002/phy2.266] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract Milk fat synthesis of ruminants can be inhibited by intermediates of ruminal fatty acid biohydrogenation including trans-10, cis-12 conjugated linoleic acid (CLA). These biohydrogenation intermediates signal a coordinated downregulation of genes involved in mammary FA synthesis, transport, and esterification. We have previously reported decreased mammary expression of sterol response element-binding protein 1 (SREBP1), SREBP1-activating proteins, and thyroid hormone-responsive spot 14 (S14) in the cow during diet-induced milk fat depression (MFD), and treatment with trans-10, cis-12 CLA. Liver x receptors (LXR) and retinoid x receptors (RXR) regulate lipogenesis and are known to bind polyunsaturated FA and LXR agonist increases lipid synthesis in mammary epithelial cell culture. The current studies investigated if biohydrogenation products of rumen origin inhibit mammary lipogenesis through LXR and/or RXR. Expression of LXRs was not different in lactating compared to nonlactating bovine mammary tissue, and expression of LXRs, RXRα, and selected LXR and RXR target genes was not changed in mammary tissue during diet-induced or CLA-induced MFD in the cow. In bovine mammary epithelial cell culture, LXR agonist stimulated lipogenesis and expression of LXRß, ATP-binding cassette 1 (ABCA1), SREBP1c, and S14, but LXR activation did not overcome CLA inhibition of lipogenesis and downregulation of LXRß, SREBP1c, and S14 expression. Lastly, expression of the LXR-regulated carbohydrate-responsive element-binding protein (ChREBP) was higher in lactating than nonlactating tissue and was decreased during CLA-induced MFD. We conclude that changes in mammary LXR expression in dairy cows are not involved in MFD and that trans-10, cis-12 CLA inhibition of lipogenesis and diet-induced MFD appears independent of direct LXR signaling.
Collapse
Affiliation(s)
- Kevin J Harvatine
- Department of Animal Science, Penn State University, University Park, Pennsylvania
| | | | | |
Collapse
|
24
|
Scorletti E, Byrne CD. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu Rev Nutr 2014; 33:231-48. [PMID: 23862644 DOI: 10.1146/annurev-nutr-071812-161230] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Long-chain omega-3 fatty acids belong to a family of polyunsaturated fatty acids that are known to have important beneficial effects on metabolism and inflammation. Such effects may confer a benefit in specific chronic noncommunicable diseases that are becoming very prevalent in Westernized societies [e.g., nonalcoholic fatty liver disease (NAFLD)]. Typically, with a Westernized diet, long-chain omega-6 fatty acid consumption is markedly greater than omega-3 fatty acid consumption. The potential consequences of an alteration in the ratio of omega-6 to omega-3 fatty acid consumption are increased production of proinflammatory arachidonic acid-derived eicosanoids and impaired regulation of hepatic and adipose function, predisposing to NAFLD. NAFLD represents a spectrum of liver fat-related conditions that originates with ectopic fat accumulation in liver (hepatic steatosis) and progresses, with the development of hepatic inflammation and fibrosis, to nonalcoholic steatohepatitis (NASH). If the adipose tissue is inflamed with widespread macrophage infiltration, the production of adipokines may act to exacerbate liver inflammation and NASH. Omega-3 fatty acid treatment may have beneficial effects in regulating hepatic lipid metabolism, adipose tissue function, and inflammation. Recent studies testing the effects of omega-3 fatty acids in NAFLD are showing promise and suggesting that these fatty acids may be useful in the treatment of NAFLD. To date, further research is needed in NAFLD to (a) establish the dose of long-chain omega-3 fatty acids as a treatment, (b) determine the duration of therapy, and (c) test whether there is benefit on the different component features of NAFLD (hepatic fat, inflammation, and fibrosis).
Collapse
Affiliation(s)
- E Scorletti
- Nutrition and Metabolism, Human Development and Health Academic Unit, University of Southampton and National Institute for Health Research Southampton Biomedical Research Center, Southampton University Hospitals National Health Service Trust, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | | |
Collapse
|
25
|
Pinel A, Morio-Liondore B, Capel F. n−3 polyunsaturated fatty acids modulate metabolism of insulin-sensitive tissues: implication for the prevention of type 2 diabetes. J Physiol Biochem 2013; 70:647-58. [DOI: 10.1007/s13105-013-0303-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/02/2013] [Indexed: 12/21/2022]
|
26
|
Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 2013; 53:124-44. [PMID: 24362249 DOI: 10.1016/j.plipres.2013.12.001] [Citation(s) in RCA: 517] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022]
Abstract
In mammals, excess energy is stored primarily as triglycerides, which are mobilized when energy demands arise. This review mainly focuses on the role of long chain fatty acids (LCFAs) in regulating energy metabolism as ligands of peroxisome proliferator-activated receptors (PPARs). PPAR-alpha expressed primarily in liver is essential for metabolic adaptation to starvation by inducing genes for beta-oxidation and ketogenesis and by downregulating energy expenditure through fibroblast growth factor 21. PPAR-delta is highly expressed in skeletal muscle and induces genes for LCFA oxidation during fasting and endurance exercise. PPAR-delta also regulates glucose metabolism and mitochondrial biogenesis by inducing FOXO1 and PGC1-alpha. Genes targeted by PPAR-gamma in adipocytes suggest that PPAR-gamma senses incoming non-esterified LCFAs and induces the pathways to store LCFAs as triglycerides. Adiponectin, another important target of PPAR-gamma may act as a spacer between adipocytes to maintain their metabolic activity and insulin sensitivity. Another topic of this review is effects of skin LCFAs on energy metabolism. Specific LCFAs are required for the synthesis of skin lipids, which are essential for water barrier and thermal insulation functions of the skin. Disturbance of skin lipid metabolism often causes apparent resistance to developing obesity at the expense of normal skin function.
Collapse
Affiliation(s)
- Manabu T Nakamura
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA.
| | - Barbara E Yudell
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Juan J Loor
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Feldman JL, Baeza J, Denu JM. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 2013; 288:31350-6. [PMID: 24052263 DOI: 10.1074/jbc.c113.511261] [Citation(s) in RCA: 503] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mammalian sirtuins (SIRT1 through SIRT7) are members of a highly conserved family of NAD(+)-dependent protein deacetylases that function in metabolism, genome maintenance, and stress responses. Emerging evidence suggests that some sirtuins display substrate specificity toward other acyl groups attached to the lysine ε-amine. SIRT6 was recently reported to preferentially hydrolyze long-chain fatty acyl groups over acetyl groups. Here we investigated the catalytic ability of all sirtuins to hydrolyze 13 different acyl groups from histone H3 peptides, ranging in carbon length, saturation, and chemical diversity. We find that long-chain deacylation is a general feature of mammalian sirtuins, that SIRT1 and SIRT2 act as efficient decrotonylases, and that SIRT1, SIRT2, SIRT3, and SIRT4 can remove lipoic acid. These results provide new insight into sirtuin function and a means for cellular removal of an expanding list of endogenous lysine modifications. Given that SIRT6 is a poor deacetylase in vitro, but binds and prefers to hydrolyze long-chain acylated peptides, we hypothesize that binding of certain free fatty acids (FFAs) could stimulate deacetylation activity. Indeed, we demonstrate that several biologically relevant FFAs (including myristic, oleic, and linoleic acids) at physiological concentrations induce up to a 35-fold increase in catalytic efficiency of SIRT6 but not SIRT1. The activation mechanism is consistent with fatty acid inducing a conformation that binds acetylated H3 with greater affinity. Binding of long-chain FFA and myristoylated H3 peptide is mutually exclusive. We discuss the implications of discovering endogenous, small-molecule activators of SIRT6.
Collapse
|
28
|
Ducheix S, Montagner A, Polizzi A, Lasserre F, Marmugi A, Bertrand-Michel J, Podechard N, Al Saati T, Chétiveaux M, Baron S, Boué J, Dietrich G, Mselli-Lakhal L, Costet P, Lobaccaro JMA, Pineau T, Theodorou V, Postic C, Martin PGP, Guillou H. Essential fatty acids deficiency promotes lipogenic gene expression and hepatic steatosis through the liver X receptor. J Hepatol 2013; 58:984-92. [PMID: 23333450 DOI: 10.1016/j.jhep.2013.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Nutrients influence non-alcoholic fatty liver disease. Essential fatty acids deficiency promotes various syndromes, including hepatic steatosis, through increased de novo lipogenesis. The mechanisms underlying such increased lipogenic response remain unidentified. METHODS We used wild type mice and mice lacking Liver X Receptors to perform a nutrigenomic study that aimed at examining the role of these transcription factors. RESULTS We showed that, in the absence of Liver X Receptors, essential fatty acids deficiency does not promote steatosis. Consistent with this, Liver X Receptors are required for the elevated expression of genes involved in lipogenesis in response to essential fatty acids deficiency. CONCLUSIONS This work identifies, for the first time, the central role of Liver X Receptors in steatosis induced by essential fatty acids deficiency.
Collapse
Affiliation(s)
- Simon Ducheix
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population.
Collapse
Affiliation(s)
- Donald B Jump
- Nutrition Program, School of Biological and Population Health Science, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | | | | |
Collapse
|
30
|
Inhibitors of Fatty Acid Synthesis Induce PPAR α -Regulated Fatty Acid β -Oxidative Genes: Synergistic Roles of L-FABP and Glucose. PPAR Res 2013; 2013:865604. [PMID: 23533380 PMCID: PMC3600304 DOI: 10.1155/2013/865604] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022] Open
Abstract
While TOFA (acetyl CoA carboxylase inhibitor) and C75 (fatty acid synthase inhibitor) prevent lipid accumulation by inhibiting fatty acid synthesis, the mechanism of action is not simply accounted for by inhibition of the enzymes alone.
Liver fatty acid binding protein (L-FABP), a mediator of long chain fatty acid signaling to peroxisome
proliferator-activated receptor-α (PPARα) in the nucleus, was found to bind
TOFA and its activated CoA thioester, TOFyl-CoA, with high affinity while binding C75 and C75-CoA
with lower affinity. Binding of TOFA and C75-CoA significantly altered L-FABP secondary structure. High (20 mM) but not physiological
(6 mM) glucose conferred on both TOFA and C75 the ability to induce PPARα transcription of the fatty
acid β-oxidative enzymes CPT1A, CPT2, and ACOX1 in cultured primary hepatocytes from wild-type (WT) mice.
However, L-FABP gene ablation abolished the effects of TOFA and C75 in the context of high glucose. These effects were not associated
with an increased cellular level of unesterified fatty acids but rather by increased intracellular glucose. These findings suggested that L-FABP may function as an intracellular fatty acid synthesis inhibitor binding protein
facilitating TOFA and C75-mediated induction of PPARα in the context of high glucose at levels similar to those in uncontrolled diabetes.
Collapse
|
31
|
Finelli C, Tarantino G. Have guidelines addressing physical activity been established in nonalcoholic fatty liver disease? World J Gastroenterol 2012; 18:6790-800. [PMID: 23239917 PMCID: PMC3520168 DOI: 10.3748/wjg.v18.i46.6790] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/29/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023] Open
Abstract
The purpose of this review was to highlight, in relation to the currently accepted pathophysiology of non-alcoholic fatty liver disease (NAFLD), the known exercise habits of patients with NAFLD and to detail the benefits of lifestyle modification with exercise (and/or physical activity) on parameters of metabolic syndrome. More rigorous, controlled studies of longer duration and defined histopathological end-points comparing exercise alone and other treatment are needed before better, evidence-based physical activity modification guidelines can be established, since several questions remain unanswered.
Collapse
|
32
|
The Warburg effect: insights from the past decade. Pharmacol Ther 2012; 137:318-30. [PMID: 23159371 DOI: 10.1016/j.pharmthera.2012.11.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 02/07/2023]
Abstract
Several decades ago, Otto Warburg discovered that cancer cells produce energy predominantly by glycolysis; a phenomenon now termed "Warburg effect". Warburg linked mitochondrial respiratory defects in cancer cells to aerobic glycolysis; this theory of his gradually lost its importance with the lack of conclusive evidence confirming the presence of mitochondrial defects in cancer cells. Scientists began to believe that this altered mechanism of energy production in cancer cells was more of an effect than the cause. More than 50 years later, the clinical use of FDG-PET imaging in the diagnosis and monitoring of cancers rekindled the interest of the scientific community in Warburg's hypothesis. In the last ten years considerable progress in the field has advanced our understanding of the Warburg effect. However, it still remains unclear if the Warburg effect plays a causal role in cancers or it is an epiphenomenon in tumorigenesis. In this review we aim to discuss the molecular mechanisms associated with the Warburg effect with emphasis on recent advances in the field including the role of epigenetic changes, miRNAs and post-translational modification of proteins. In addition, we also discuss emerging therapeutic strategies that target the dependence of cancer cells on altered energy processing through aerobic glycolysis.
Collapse
|
33
|
McFerrin LG, Atchley WR. A novel N-terminal domain may dictate the glucose response of Mondo proteins. PLoS One 2012; 7:e34803. [PMID: 22506051 PMCID: PMC3323566 DOI: 10.1371/journal.pone.0034803] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 03/08/2012] [Indexed: 01/13/2023] Open
Abstract
Glucose is a fundamental energy source for both prokaryotes and eukaryotes. The balance between glucose utilization and storage is integral for proper energy homeostasis, and defects are associated with several diseases, e.g. type II diabetes. In vertebrates, the transcription factor ChREBP is a major component in glucose metabolism, while its ortholog MondoA is involved in glucose uptake. Both MondoA and ChREBP contain five Mondo conserved regions (MCRI-V) that affect their cellular localization and transactivation ability. While phosphorylation has been shown to affect ChREBP function, the mechanisms controlling glucose response of both ChREBP and MondoA remain elusive. By incorporating sequence analysis techniques, structure predictions, and functional annotations, we synthesized data surrounding Mondo family proteins into a cohesive, accurate, and general model involving the MCRs and two additional domains that determine ChREBP and MondoA glucose response. Paramount, we identified a conserved motif within the transactivation region of Mondo family proteins and propose that this motif interacts with the phosphorylated form of glucose. In addition, we discovered a putative nuclear receptor box in non-vertebrate Mondo and vertebrate ChREBP sequences that reveals a potentially novel interaction with nuclear receptors. These interactions are likely involved in altering ChREBP and MondoA conformation to form an active complex and induce transcription of genes involved in glucose metabolism and lipogenesis.
Collapse
Affiliation(s)
- Lisa G McFerrin
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America.
| | | |
Collapse
|
34
|
Havula E, Hietakangas V. Glucose sensing by ChREBP/MondoA-Mlx transcription factors. Semin Cell Dev Biol 2012; 23:640-7. [PMID: 22406740 DOI: 10.1016/j.semcdb.2012.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 01/02/2023]
Abstract
The paralogous transcription factors ChREBP and MondoA, together with their common binding partner Mlx, have emerged as key mediators of intracellular glucose sensing. By regulating target genes involved in glycolysis and lipogenesis, they mediate metabolic adaptation to changing glucose levels. As disturbed glucose homeostasis plays a central role in human metabolic diseases and as cancer cells often display altered glucose metabolism, better understanding of cellular glucose sensing will likely uncover new therapeutic opportunities. Here we review the regulation, function and evolutionary conservation of the ChREBP/MondoA-Mlx glucose sensing system and discuss possible directions for future research.
Collapse
Affiliation(s)
- Essi Havula
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, 00014 Helsinki, Finland
| | | |
Collapse
|
35
|
Abstract
Consumption of specific dietary fatty acids has been shown to influence risk and progression of several chronic diseases, such as cardiovascular disease, obesity, cancer, and arthritis. In recent years, insights into the mechanisms underlying the biological effects of fatty acids have improved considerably and have provided the foundation for the emerging concept of fatty acid sensing, which can be interpreted as the property of fatty acids to influence biological processes by serving as signaling molecules. An important mechanism of fatty acid sensing is via stimulation or inhibition of DNA transcription. Here, we focus on fatty acid sensing via regulation of gene transcription and address the role of peroxisome proliferator-activated receptors, sterol regulatory element binding protein 1, Toll-like receptor 4, G protein-coupled receptors, and other putative mediators.
Collapse
Affiliation(s)
- Anastasia Georgiadi
- Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
36
|
Vahtola E, Storvik M, Louhelainen M, Merasto S, Lakkisto P, Lakkisto J, Tikkanen I, Kaheinen P, Levijoki J, Mervaala E. Effects of Levosimendan on Cardiac Gene Expression Profile and Post-Infarct Cardiac Remodelling in Diabetic Goto-Kakizaki Rats. Basic Clin Pharmacol Toxicol 2011; 109:387-97. [DOI: 10.1111/j.1742-7843.2011.00743.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Burri L, Berge K, Wibrand K, Berge RK, Barger JL. Differential effects of krill oil and fish oil on the hepatic transcriptome in mice. Front Genet 2011; 2:45. [PMID: 22303341 PMCID: PMC3268598 DOI: 10.3389/fgene.2011.00045] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/25/2011] [Indexed: 12/14/2022] Open
Abstract
Dietary supplementation with ω-3 polyunsaturated fatty acids (ω-3 PUFAs), specifically the fatty acids docosahexaenoic acid (DHA; 22:6 ω-3) and eicosapentaenoic acid (EPA; 20:5 ω-3), is known to have beneficial health effects including improvements in glucose and lipid homeostasis and modulation of inflammation. To evaluate the efficacy of two different sources of ω-3 PUFAs, we performed gene expression profiling in the liver of mice fed diets supplemented with either fish oil (FO) or krill oil (KO). We found that ω-3 PUFA supplements derived from a phospholipid krill fraction (KO) downregulated the activity of pathways involved in hepatic glucose production as well as lipid and cholesterol synthesis. The data also suggested that KO-supplementation increases the activity of the mitochondrial respiratory chain. Surprisingly, an equimolar dose of EPA and DHA derived from FO modulated fewer pathways than a KO-supplemented diet and did not modulate key metabolic pathways regulated by KO, including glucose metabolism, lipid metabolism and the mitochondrial respiratory chain. Moreover, FO upregulated the cholesterol synthesis pathway, which was the opposite effect of krill-supplementation. Neither diet elicited changes in plasma levels of lipids, glucose, or insulin, probably because the mice used in this study were young and were fed a low-fat diet. Further studies of KO-supplementation using animal models of metabolic disorders and/or diets with a higher level of fat may be required to observe these effects.
Collapse
|
38
|
Poupeau A, Postic C. Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors. Biochim Biophys Acta Mol Basis Dis 2011; 1812:995-1006. [PMID: 21453770 DOI: 10.1016/j.bbadis.2011.03.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 01/17/2023]
Abstract
There is a worldwide epidemic of obesity and type 2 diabetes, two major public health concerns associated with alterations in both insulin and glucose signaling pathways. Glucose is not only an energy source but also controls the expression of key genes involved in energetic metabolism, through the glucose-signaling transcription factor, Carbohydrate Responsive Element Binding Protein (ChREBP). ChREBP has emerged as a central regulator of de novo fatty acid synthesis (lipogenesis) in response to glucose under both physiological and physiopathological conditions. Glucose activates ChREBP by regulating its entry from the cytosol to the nucleus, thereby promoting its binding to carbohydrate responsive element (ChoRE) in the promoter regions of glycolytic (L-PK) and lipogenic genes (ACC and FAS). We have previously reported that the inhibition of ChREBP in liver of obese ob/ob mice improves the metabolic alterations linked to obesity, fatty liver and insulin-resistance. Therefore, regulating ChREBP activity could be an attractive target for lipid-lowering therapies in obesity and diabetes. However, before this is possible, a better understanding of the mechanism(s) regulating its activity is needed. In this review, we summarize recent findings on the role and regulation of ChREBP and particularly emphasize on the cross-regulations that may exist between key nuclear receptors (LXR, TR, HNF4α) and ChREBP for the control of hepatic glucose metabolism. These novel molecular cross-talks may open the way to new pharmacological opportunities. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
|
39
|
Ruaño G, Thompson PD, Kane JP, Pullinger CR, Windemuth A, Seip RL, Kocherla M, Holford TR, Wu AHB. Physiogenomic analysis of statin-treated patients: domain-specific counter effects within the ACACB gene on low-density lipoprotein cholesterol? Pharmacogenomics 2011; 11:959-71. [PMID: 20602615 DOI: 10.2217/pgs.10.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM Administered at maximal dosages, the most common statins--atorvastatin, simvastatin and rosuvastatin--lower low-density lipoprotein cholesterol (LDLC) by an average of 37-57% in patients with primary hypercholesterolemia. We hypothesized novel genetic underpinnings for variation in LDLC levels in the context of statin therapy. MATERIALS & METHODS Genotyping of 384 SNPs in 202 volunteers from a lipid outpatient clinic was accomplished and LDLC levels obtained from chart records. The SNPs were distributed across 222 genes representing physiological pathways such as general metabolism, cholesterol biochemistry, cardiovascular function, inflammation, neurobiology and cell proliferation. We discovered significant associations with LDLC levels for the rs34274 SNP (p < 0.0002) and for rs2241220 (p < 0.008) in the acetyl-coenzyme A carboxylase beta (ACACB) gene. When corrected for multiple testing, the false-discovery rate associated with rs34274 was 0.076 (significance threshold: 0.10) and for rs2241220 the false-discovery rate was 0.93 (not significant). The acetyl coenzyme A carboxylase beta enzyme synthesizes malonyl coenzyme A, an essential substrate for hepatic fatty acid synthesis and an inhibitor of fatty acid oxidation. RESULTS The SNPs were in weak linkage disequilibrium (D = 0.302). Minor alleles at these sites demonstrate opposing influences on LDLC; the C>T substitution at rs34724 is a risk marker and the C>T substitution at rs2241220 a protective marker for LDLC levels. These SNPs hypothetically influence enzymatic activity through different mechanisms, rs34274 through the PII promoter and rs2241220 via alteration of the protein's responsiveness to allosteric influence. CONCLUSION Physiogenomic evidence suggests a novel link between LDLC levels and the regulation of fatty acid metabolism. The findings complement previously discovered novel SNP relationships to myalgia (pain) and myositis (serum creatine kinase activity). By genotyping for myositis, myalgia and LDLC levels, a physiogenomic model may be developed to help clinicians maximize effectiveness and minimize side effects in prescribing statins.
Collapse
|
40
|
Hanke N, Scheibe RJ, Manukjan G, Ewers D, Umeda PK, Chang KC, Kubis HP, Gros G, Meissner JD. Gene regulation mediating fiber-type transformation in skeletal muscle cells is partly glucose- and ChREBP-dependent. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:377-89. [PMID: 21215280 DOI: 10.1016/j.bbamcr.2010.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/21/2010] [Accepted: 12/23/2010] [Indexed: 12/24/2022]
Abstract
Adaptations in the oxidative capacity of skeletal muscle cells can occur under several physiological or pathological conditions. We investigated the effect of increasing extracellular glucose concentration on the expression of markers of energy metabolism in primary skeletal muscle cells and the C2C12 muscle cell line. Growth of myotubes in 25mM glucose (high glucose, HG) compared with 5.55mM led to increases in the expression and activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a marker of glycolytic energy metabolism, while oxidative markers peroxisome proliferator-activated receptor γ coactivator 1α and citrate synthase decreased. HG induced metabolic adaptations as are seen during a slow-to-fast fiber transformation. Furthermore, HG increased fast myosin heavy chain (MHC) IId/x but did not change slow MHCI/β expression. Protein phosphatase 2A (PP2A) was shown to mediate the effects of HG on GAPDH and MHCIId/x. Carbohydrate response element-binding protein (ChREBP), a glucose-dependent transcription factor downstream of PP2A, partially mediated the effects of glucose on metabolic markers. The glucose-induced increase in PP2A activity was associated with an increase in p38 mitogen-activated protein kinase activity, which presumably mediates the increase in MHCIId/x promoter activity. Liver X receptor, another possible mediator of glucose effects, induced only an incomplete metabolic shift, mainly increasing the expression of the glycolytic marker. Taken together, HG induces a partial slow-to-fast transformation comprising metabolic enzymes together with an increased expression of MHCIId/x. This work demonstrates a functional role for ChREBP in determining the metabolic type of muscle fibers and highlights the importance of glucose as a signaling molecule in muscle.
Collapse
Affiliation(s)
- Nina Hanke
- Department of Physiology, Vegetative Physiology 4220, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Souza LL, Nunes MO, Paula GS, Cordeiro A, Penha-Pinto V, Neto JFN, Oliveira KJ, das Graças Tavares do Carmo M, Pazos-Moura CC. Effects of dietary fish oil on thyroid hormone signaling in the liver. J Nutr Biochem 2010; 21:935-40. [DOI: 10.1016/j.jnutbio.2009.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 07/06/2009] [Accepted: 07/08/2009] [Indexed: 11/29/2022]
|
42
|
Abstract
Tight control of storage and synthesis of glucose during nutritional transitions is essential to maintain blood glucose levels, a process in which the liver has a central role. PPARα is the master regulator of lipid metabolism during fasting, but evidence is emerging for a role of PPARα in balancing glucose homeostasis as well. By using PPARα ligands and PPARα(-/-) mice, several crucial genes were shown to be regulated by PPARα in a direct or indirect way. We here review recent evidence that PPARα contributes to the adaptation of hepatic carbohydrate metabolism during the fed-to-fasted or fasted-to-fed transition in rodents.
Collapse
|
43
|
Caputo M, Zirpoli H, Torino G, Tecce MF. Selective regulation of UGT1A1 and SREBP-1c mRNA expression by docosahexaenoic, eicosapentaenoic, and arachidonic acids. J Cell Physiol 2010; 226:187-93. [DOI: 10.1002/jcp.22323] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Masterton GS, Plevris JN, Hayes PC. Review article: omega-3 fatty acids - a promising novel therapy for non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2010. [PMID: 20415840 DOI: 10.1111/j.1365-2036.2009.04230.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease affects 10-35% of the adult population worldwide; there is no consensus on its treatment. Omega-3 fatty acids have proven benefits for hyperlipidaemia and cardiovascular disease, and have recently been suggested as a treatment for non-alcoholic fatty liver disease. AIMS To review the evidence base for omega-3 fatty acids in non-alcoholic fatty liver disease and critically appraise the literature relating to human trials. METHODS A Medline and PubMed search was performed to identify relevant literature using search terms 'omega-3', 'N-3 PUFA', 'eicosapentaenoic acid', 'docosahexaenoic acid', 'non-alcoholic fatty liver disease' and 'NAFLD'. RESULTS Omega-3 fatty acids are important regulators of hepatic gene transcription. Animal studies demonstrate that they reduce hepatic steatosis, improve insulin sensitivity and reduce markers of inflammation. Clinical trials in human subjects generally confirm these findings, but have significant design inadequacies. CONCLUSIONS Omega-3 fatty acids are a promising treatment for non-alcoholic fatty liver disease which require to be tested in randomized placebo-controlled trials.
Collapse
Affiliation(s)
- G S Masterton
- Department of Hepatology, Royal Infirmary of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
45
|
Rapid quantification of DNA methylation by measuring relative peak heights in direct bisulfite-PCR sequencing traces. J Transl Med 2010; 90:282-90. [PMID: 20010852 DOI: 10.1038/labinvest.2009.132] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Various technologies are currently available to quantify DNA methylation. However, rapid and simple methods for determining the DNA methylation status of CpG sites in genes still remain elusive. In this report, we describe a novel method for the rapid quantification of CpG methylation on the basis of direct bisulfite-PCR sequencing method. According to the principles of bisulfite-PCR, converting unmethylated cytosines to thymine while leaving methylated cytosines unchanged, we regard the CpG site as a SNP and estimate the methylation status of cytosines in the given CG dinucleotides by measuring the ratio of the cytosine peak height to the sum of cytosine and thymine peak heights in automated DNA sequencing traces. Furthermore, we take several effective measures to break through the 'bottleneck' problems that render the routine bisulfite sequencing method unsuitable for quantitative methylation. In comparison with pyrosequencing and bisulfite-cloning sequencing, our method is confirmed to be a simple, high-throughput and cost-effective technology for determining the methylation status of specific genes. Accordingly, this novel method is anticipated to be an efficient and economical alternative tool for rapid quantification of methylation patterns in screening large numbers of clinical samples across multiple genes.
Collapse
|
46
|
|
47
|
Rescue of pyruvate kinase deficiency in mice by gene therapy using the human isoenzyme. Mol Ther 2009; 17:2000-9. [PMID: 19755962 DOI: 10.1038/mt.2009.200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human erythrocyte R-type pyruvate kinase deficiency (PKD) is a disorder caused by mutations in the PKLR gene that produces chronic nonspherocytic hemolytic anemia. Besides periodic blood transfusion and splenectomy, severe cases require bone marrow (BM) transplant, which makes this disease a good candidate for gene therapy. Here, the normal human R-type pyruvate kinase (hRPK) complementary (cDNA) was expressed in hematopoietic stem cells (HSCs) derived from pklr deficient mice, using a retroviral vector system. These mice show a similar red blood cell phenotype to that observed in human PKD. Transduced HSCs were transplanted into myeloablated adult PKD mice or in utero injected into nonconditioned PKD fetuses. In the myeloablated recipients, the hematological manifestations of PKD were completely resolved and normal percentages of late erythroid progenitors, reticulocyte and erythrocyte counts, hemoglobin levels and erythrocyte biochemistry were restored. Corrected cells preserved their rescuing capacity after secondary and tertiary transplant. When corrected cells were in utero transplanted, partial correction of the erythrocyte disease was obtained, although a very low number of corrected cells became engrafted, suggesting a different efficiency of cell therapy applied in utero. Our data suggest that transduction of human RPK cDNA in PKLR mutated HSCs could be an effective strategy in severe cases of PKD.
Collapse
|
48
|
Sirek AS, Liu L, Naples M, Adeli K, Ng DS, Jin T. Insulin stimulates the expression of carbohydrate response element binding protein (ChREBP) by attenuating the repressive effect of Pit-1, Oct-1/Oct-2, and Unc-86 homeodomain protein octamer transcription factor-1. Endocrinology 2009; 150:3483-92. [PMID: 19359385 DOI: 10.1210/en.2008-1702] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The carbohydrate response element binding protein (ChREBP) has been recognized as a key controller of hepatic lipogenesis. Whereas the function of ChREBP has been extensively investigated, mechanisms underlying its transcription remain largely unknown, although ChREBP production is elevated in a hyperinsulinemic mouse model. We located a conserved Pit-1, Oct-1/Oct-2, and Unc-86 (POU) protein binding site (ATGCTAAT) within the proximal promoter region of human ChREBP. This site interacts with the POU homeodomain protein octamer transcription factor-1 (Oct-1), as detected by gel shift and chromatin immunoprecipitation assays. Oct-1 cotransfection in the human HepG2 cell line repressed ChREBP promoter activity approximately 50-75% (P < 0.01 to P < 0.001), and this repression was dependent on the existence of the POU binding site. Furthermore, overexpression of Oct-1 repressed endogenous ChREBP mRNA and protein expression, whereas knockdown of Oct-1 expression, using a lentivirus-based small hairpin RNA approach, led to increased ChREBP mRNA and protein expression. In contrast, HepG2 cells treated with 10 or 100 nM insulin for 4 or 8 h resulted in an approximately 2-fold increase of ChREBP promoter activity (P < 0.05 to P < 0.01). Insulin (10 nM) also stimulated endogenous ChREBP expression in HepG2 and primary hamster hepatocytes. More importantly, we found that the stimulatory effect of insulin on ChREBP promoter activity was dependent on the presence of the POU binding site, and insulin treatment reduced Oct-1 expression levels. Our observations therefore identify Oct-1 as a transcriptional repressor of ChREBP and suggest that insulin stimulates ChREBP expression via attenuating the repressive effect of Oct-1.
Collapse
Affiliation(s)
- Adam S Sirek
- Department of Physiology, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Kohan AB, Talukdar I, Walsh CM, Salati LM. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids. Biochem Biophys Res Commun 2009; 388:117-21. [PMID: 19646964 DOI: 10.1016/j.bbrc.2009.07.130] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 07/25/2009] [Indexed: 11/25/2022]
Abstract
Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as beta-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser(307) phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Alison B Kohan
- Department of Biochemistry, West Virginia University, Morgantown, 26506, USA
| | | | | | | |
Collapse
|
50
|
Goetz AK, Dix DJ. Mode of Action for Reproductive and Hepatic Toxicity Inferred from a Genomic Study of Triazole Antifungals. Toxicol Sci 2009; 110:449-62. [DOI: 10.1093/toxsci/kfp098] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|