1
|
Gollamudi J, Karkoska KA, Gbotosho OT, Zou W, Hyacinth HI, Teitelbaum SL. A bone to pick-cellular and molecular mechanisms of bone pain in sickle cell disease. FRONTIERS IN PAIN RESEARCH 2024; 4:1302014. [PMID: 38239327 PMCID: PMC10794347 DOI: 10.3389/fpain.2023.1302014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
The bone is one of the most commonly affected organs in sickle cell disease (SCD). Repeated ischemia, oxidative stress and inflammation within the bone is largely responsible for promoting bone pain. As more individuals with SCD survive into adulthood, they are likely to experience a synergistic impact of both aging and SCD on their bone health. As bone health deteriorates, bone pain will likely exacerbate. Recent mechanistic and observational studies emphasize an intricate relationship between bone remodeling and the peripheral nervous system. Under pathological conditions, abnormal bone remodeling plays a key role in the propagation of bone pain. In this review, we first summarize mechanisms and burden of select bone complications in SCD. We then discuss processes that contribute to pathological bone pain that have been described in both SCD as well as non-sickle cell animal models. We emphasize the role of bone-nervous system interactions and pitfalls when designing new therapies especially for the sickle cell population. Lastly, we also discuss future basic and translational research in addressing questions about the complex role of stress erythropoiesis and inflammation in the development of SCD bone complications, which may lead to promising therapies and reduce morbidity in this vulnerable population.
Collapse
Affiliation(s)
- Jahnavi Gollamudi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kristine A Karkoska
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Oluwabukola T Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Wei Zou
- Department of Medicine, Division of Bone and Mineral Diseases, and Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO, United States
| | - Hyacinth I Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steven L Teitelbaum
- Department of Medicine, Division of Bone and Mineral Diseases, and Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
2
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
3
|
Xiao Y, Han C, Wang Y, Zhang X, Bao R, Li Y, Chen H, Hu B, Liu S. Interoceptive regulation of skeletal tissue homeostasis and repair. Bone Res 2023; 11:48. [PMID: 37669953 PMCID: PMC10480189 DOI: 10.1038/s41413-023-00285-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 09/07/2023] Open
Abstract
Recent studies have determined that the nervous system can sense and respond to signals from skeletal tissue, a process known as skeletal interoception, which is crucial for maintaining bone homeostasis. The hypothalamus, located in the central nervous system (CNS), plays a key role in processing interoceptive signals and regulating bone homeostasis through the autonomic nervous system, neuropeptide release, and neuroendocrine mechanisms. These mechanisms control the differentiation of mesenchymal stem cells into osteoblasts (OBs), the activation of osteoclasts (OCs), and the functional activities of bone cells. Sensory nerves extensively innervate skeletal tissues, facilitating the transmission of interoceptive signals to the CNS. This review provides a comprehensive overview of current research on the generation and coordination of skeletal interoceptive signals by the CNS to maintain bone homeostasis and their potential role in pathological conditions. The findings expand our understanding of intersystem communication in bone biology and may have implications for developing novel therapeutic strategies for bone diseases.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Changhao Han
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yunhao Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Xinshu Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Rong Bao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yuange Li
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China.
| |
Collapse
|
4
|
Assefa F. The role of sensory and sympathetic nerves in craniofacial bone regeneration. Neuropeptides 2023; 99:102328. [PMID: 36827755 DOI: 10.1016/j.npep.2023.102328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Multiple factors regulate the regeneration of craniofacial bone defects. The nervous system is recognized as one of the critical regulators of bone mass, thereby suggesting a role for neuronal pathways in bone regeneration. However, in the context of craniofacial bone regeneration, little is known about the interplay between the nervous system and craniofacial bone. Sensory and sympathetic nerves interact with the bone through their neuropeptides, neurotransmitters, proteins, peptides, and amino acid derivates. The neuron-derived factors, such as semaphorin 3A (SEMA3A), substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), and vasoactive intestinal peptide (VIP), possess a remarkable role in craniofacial regeneration. This review summarizes the roles of these factors and recently published factors such as secretoneurin (SN) and spexin (SPX) in the osteoblast and osteoclast differentiation, bone metabolism, growth, remodeling and discusses the novel application of nerve-based craniofacial bone regeneration. Moreover, the review will facilitate understanding the mechanism of action and provide potential treatment direction for the craniofacial bone defect.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Biochemistry, Collage of Medicine and Health Sciences, Hawassa University, P.O.Box 1560, Hawassa, Ethiopia.
| |
Collapse
|
5
|
Kang X, Ma X, Li H, Jin X, Gao X, Feng D, Wu S. Neuropeptide Y Promotes mTORC1 to Regulate Chondrocyte Proliferation and Hypertrophy. Endocrinology 2023; 164:6967060. [PMID: 36592126 DOI: 10.1210/endocr/bqac213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Peripheral neuropeptide Y (NPY) has been reported to regulate bone metabolism and homeostasis; however, its potential roles in growth plate chondrogenesis remain unclear. Here, we found that NPY expression decreased during chondrocyte differentiation in vitro and in vivo. NPY was required for chondrocyte proliferation; in contrast, knockdown of NPY facilitated chondrocyte hypertrophic differentiation. Administration of recombinant NPY in rat chondrocytes and metatarsal bones uncoupled normal proliferation and hypertrophic differentiation during chondrogenesis and thereby inhibited growth plate chondrogenesis and longitudinal bone growth. Remarkably, NPY activated the mTORC1 pathway in chondrocytes, whereas attenuation of mTORC1 activity by administration of rapamycin in vitro partially abrogated NPY-mediated effects on chondrocyte proliferation and hypertrophic differentiation. In addition, a combination of Y2R antagonist but not Y1R antagonist with NPY abolished NPY-mediated inhibition of metatarsal growth and growth plate chondrogenesis. Mechanistically, NPY activated Erk1/2 by NPY2R, then phosphorylated ERK1/2 activated mTORC1 to initiate PTHrP expression, which in turn promoted chondrocyte proliferation and inhibited chondrocyte hypertrophic differentiation. In conclusion, our data identified NPY as a crucial regulator of chondrogenesis and may provide a promising therapeutic strategy for skeletal diseases.
Collapse
Affiliation(s)
- Xiaomin Kang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Xiao Ma
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Huixia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P.R. China
| | - Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P.R. China
| | - Xin Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P.R. China
| | - Dongxu Feng
- Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an 710061, P.R. China
| | - Shufang Wu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
6
|
Zeng W, Yang F, Shen WL, Zhan C, Zheng P, Hu J. Interactions between central nervous system and peripheral metabolic organs. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1929-1958. [PMID: 35771484 DOI: 10.1007/s11427-021-2103-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
According to Descartes, minds and bodies are distinct kinds of "substance", and they cannot have causal interactions. However, in neuroscience, the two-way interaction between the brain and peripheral organs is an emerging field of research. Several lines of evidence highlight the importance of such interactions. For example, the peripheral metabolic systems are overwhelmingly regulated by the mind (brain), and anxiety and depression greatly affect the functioning of these systems. Also, psychological stress can cause a variety of physical symptoms, such as bone loss. Moreover, the gut microbiota appears to play a key role in neuropsychiatric and neurodegenerative diseases. Mechanistically, as the command center of the body, the brain can regulate our internal organs and glands through the autonomic nervous system and neuroendocrine system, although it is generally considered to be outside the realm of voluntary control. The autonomic nervous system itself can be further subdivided into the sympathetic and parasympathetic systems. The sympathetic division functions a bit like the accelerator pedal on a car, and the parasympathetic division functions as the brake. The high center of the autonomic nervous system and the neuroendocrine system is the hypothalamus, which contains several subnuclei that control several basic physiological functions, such as the digestion of food and regulation of body temperature. Also, numerous peripheral signals contribute to the regulation of brain functions. Gastrointestinal (GI) hormones, insulin, and leptin are transported into the brain, where they regulate innate behaviors such as feeding, and they are also involved in emotional and cognitive functions. The brain can recognize peripheral inflammatory cytokines and induce a transient syndrome called sick behavior (SB), characterized by fatigue, reduced physical and social activity, and cognitive impairment. In summary, knowledge of the biological basis of the interactions between the central nervous system and peripheral organs will promote the full understanding of how our body works and the rational treatment of disorders. Thus, we summarize current development in our understanding of five types of central-peripheral interactions, including neural control of adipose tissues, energy expenditure, bone metabolism, feeding involving the brain-gut axis and gut microbiota. These interactions are essential for maintaining vital bodily functions, which result in homeostasis, i.e., a natural balance in the body's systems.
Collapse
Affiliation(s)
- Wenwen Zeng
- Institute for Immunology, and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China. .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, 100084, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Cheng Zhan
- Department of Hematology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,National Institute of Biological Sciences, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
7
|
Zhang Y, Chen C, Liu Y, Rao S, Tan Y, Qian Y, Xia K, Huang J, Liu X, Hong C, Yin H, Cao J, Feng S, He Z, Li Y, Luo Z, Wu B, Yan Z, Chen T, Chen M, Wang Y, Wang Z, Liu Z, Luo M, Hu X, Jin L, Wan T, Yue T, Tang S, Xie H. Neuronal Induction of Bone-Fat Imbalance through Osteocyte Neuropeptide Y. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100808. [PMID: 34719888 PMCID: PMC8693044 DOI: 10.1002/advs.202100808] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/24/2021] [Indexed: 05/08/2023]
Abstract
A differentiation switch of bone marrow mesenchymal stem/stromal cells (BMSCs) from osteoblasts to adipocytes contributes to age- and menopause-associated bone loss and marrow adiposity. Here it is found that osteocytes, the most abundant bone cells, promote adipogenesis and inhibit osteogenesis of BMSCs by secreting neuropeptide Y (NPY), whose expression increases with aging and osteoporosis. Deletion of NPY in osteocytes generates a high bone mass phenotype, and attenuates aging- and ovariectomy (OVX)-induced bone-fat imbalance in mice. Osteocyte NPY production is under the control of autonomic nervous system (ANS) and osteocyte NPY deletion blocks the ANS-induced regulation of BMSC fate and bone-fat balance. γ-Oryzanol, a clinically used ANS regulator, significantly increases bone formation and reverses aging- and OVX-induced osteocyte NPY overproduction and marrow adiposity in control mice, but not in mice lacking osteocyte NPY. The study suggests a new mode of neuronal control of bone metabolism through the ANS-induced regulation of osteocyte NPY.
Collapse
|
8
|
Sun JS, Yang DJ, Kinyua AW, Yoon SG, Seong JK, Kim J, Moon SJ, Shin DM, Choi YH, Kim KW. Ventromedial hypothalamic primary cilia control energy and skeletal homeostasis. J Clin Invest 2021; 131:138107. [PMID: 33021968 DOI: 10.1172/jci138107] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Dysfunction of primary cilia is related to dyshomeostasis, leading to a wide range of disorders. The ventromedial hypothalamus (VMH) is known to regulate several homeostatic processes, but those modulated specifically by VMH primary cilia are not yet known. In this study, we identify VMH primary cilia as an important organelle that maintains energy and skeletal homeostasis by modulating the autonomic nervous system. We established loss-of-function models of primary cilia in the VMH by either targeting IFT88 (IFT88-KOSF-1) using steroidogenic factor 1-Cre (SF-1-Cre) or injecting an adeno-associated virus Cre (AAV-Cre) directly into the VMH. Functional impairments of VMH primary cilia were linked to decreased sympathetic activation and central leptin resistance, which led to marked obesity and bone-density accrual. Obesity was caused by hyperphagia, decreased energy expenditure, and blunted brown fat function and was also associated with insulin and leptin resistance. The effect of bone-density accrual was independent of obesity, as it was caused by decreased sympathetic tone resulting in increased osteoblastic and decreased osteoclastic activities in the IFT88-KOSF-1 and VMH primary cilia knockdown mice. Overall, our current study identifies VMH primary cilia as a critical hypothalamic organelle that maintains energy and skeletal homeostasis.
Collapse
Affiliation(s)
- Ji Su Sun
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea.,Department of Applied Biological Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| | - Dong Joo Yang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea.,Departments of Laboratory Medicine and Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Ann W Kinyua
- Departments of Laboratory Medicine and Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea
| | | | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul, Korea.,Laboratory of Developmental Biology and Genomics, The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Juwon Kim
- Departments of Laboratory Medicine and Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Seok Jun Moon
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea.,Department of Applied Biological Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Yun-Hee Choi
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Ki Woo Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea.,Department of Applied Biological Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
9
|
Sex differences in behavioral and metabolic effects of gene inactivation: The neuropeptide Y and Y receptors in the brain. Neurosci Biobehav Rev 2020; 119:333-347. [PMID: 33045245 DOI: 10.1016/j.neubiorev.2020.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Brain and gonadal hormones interplay controls metabolic and behavioral functions in a sex-related manner. However, most translational neuroscience research related to animal models of endocrine and psychiatric disorders are often carried out in male animals only. The Neuropeptide Y (NPY) system shows sex-dependent differences and is sensitive to gonadal steroids. Based on published data from our and other laboratories, in this review we will discuss the sex related differences of NPY action on energy balance, bone homeostasis and behavior in rodents with the genetic manipulation of genes encoding NPY and its Y1, Y2 and Y5 cognate receptors. Comparative analyses of the phenotype of transgenic and knockout NPY and Y receptor rodents unravels sex dependent differences in the functions of this neurotransmission system, potentially helping to develop therapeutics for a variety of sex-related disorders including metabolic syndrome, osteoporosis and ethanol addiction.
Collapse
|
10
|
Wu JQ, Jiang N, Yu B. Mechanisms of action of neuropeptide Y on stem cells and its potential applications in orthopaedic disorders. World J Stem Cells 2020; 12:986-1000. [PMID: 33033559 PMCID: PMC7524693 DOI: 10.4252/wjsc.v12.i9.986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life. The neuro-osteogenic network is one of the most promising fields in orthopaedic research. Neuropeptide Y (NPY) system has been reported to be involved in the regulations of bone metabolism and homeostasis, which also provide feedback to the central NPY system via NPY receptors. Currently, potential roles of peripheral NPY in bone metabolism remain unclear. Growing evidence suggests that NPY can regulate biological actions of bone marrow mesenchymal stem cells, hematopoietic stem cells, endothelial cells, and chondrocytes via a local autocrine or paracrine manner by different NPY receptors. The regulative activities of NPY may be achieved through the plasticity of NPY receptors, and interactions among the targeted cells as well. In general, NPY can influence proliferation, apoptosis, differentiation, migration, mobilization, and cytokine secretion of different types of cells, and play crucial roles in the development of bone delayed/non-union, osteoporosis, and osteoarthritis. Further basic research should clarify detailed mechanisms of action of NPY on stem cells, and clinical investigations are also necessary to comprehensively evaluate potential applications of NPY and its receptor-targeted drugs in management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Jian-Qun Wu
- Department of Orthopedics and Traumatology, Huadu District People’s Hospital, Guangzhou 510800, Guangdong Province, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
11
|
Idelevich A, Sato K, Avihai B, Nagano K, Galien A, Rowe G, Gori F, Baron R. Both NPY-Expressing and CART-Expressing Neurons Increase Energy Expenditure and Trabecular Bone Mass in Response to AP1 Antagonism, But Have Opposite Effects on Bone Resorption. J Bone Miner Res 2020; 35:1107-1118. [PMID: 31995643 DOI: 10.1002/jbmr.3967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/26/2019] [Accepted: 01/16/2020] [Indexed: 01/20/2023]
Abstract
Energy metabolism and bone homeostasis share several neuronal regulatory pathways. Within the ventral hypothalamus (VHT), the orexigenic neurons co-express Agouti-related peptide (AgRP) and neuropeptide Y (NPY) and the anorexigenic neurons co-express, α-melanocyte stimulating hormone derived from proopiomelanocortin (POMC), and cocaine and amphetamine-regulated transcript (CART). These neurons regulate both processes, yet their relative contribution is unknown. Previously, using genetically targeted activator protein (AP1) alterations as a tool, we showed in adult mice that AgRP or POMC neurons are capable of inducing whole-body energy catabolism and bone accrual, with different effects on bone resorption. Here, we investigated whether co-residing neurons exert similar regulatory effects. We show that AP1 antagonists targeted to NPY-producing or CART-producing neurons in adult mice stimulate energy expenditure, reduce body weight gain and adiposity and promote trabecular bone formation and mass, yet again via different effects on bone resorption, as measured by serum level of carboxy-terminal collagen type I crosslinks (CTX). In addition, AP1 antagonists promote neurite expansion, increasing neurite number, length, and surface area in primary hypothalamic neuronal cultures. Overall, our data demonstrate that the orexigenic NPY and anorexigenic CART neurons both have the capacity to stimulate energy burning state and increase bone mass. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anna Idelevich
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kazusa Sato
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Byron Avihai
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kenichi Nagano
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Antonin Galien
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Glenn Rowe
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Francesca Gori
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
12
|
Tomlinson RE, Christiansen BA, Giannone AA, Genetos DC. The Role of Nerves in Skeletal Development, Adaptation, and Aging. Front Endocrinol (Lausanne) 2020; 11:646. [PMID: 33071963 PMCID: PMC7538664 DOI: 10.3389/fendo.2020.00646] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022] Open
Abstract
The skeleton is well-innervated, but only recently have the functions of this complex network in bone started to become known. Although our knowledge of skeletal sensory and sympathetic innervation is incomplete, including the specific locations and subtypes of nerves in bone, we are now able to reconcile early studies utilizing denervation models with recent work dissecting the molecular signaling between bone and nerve. In total, sensory innervation functions in bone much as it does elsewhere in the body-to sense and respond to stimuli, including mechanical loading. Similarly, sympathetic nerves regulate autonomic functions related to bone, including homeostatic remodeling and vascular tone. However, more study is required to translate our current knowledge of bone-nerve crosstalk to novel therapeutic strategies that can be effectively utilized to combat skeletal diseases, disorders of low bone mass, and age-related decreases in bone quality.
Collapse
Affiliation(s)
- Ryan E. Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Ryan E. Tomlinson
| | - Blaine A. Christiansen
- Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Adrienne A. Giannone
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Damian C. Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
13
|
The role of GPCRs in bone diseases and dysfunctions. Bone Res 2019; 7:19. [PMID: 31646011 PMCID: PMC6804689 DOI: 10.1038/s41413-019-0059-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
The superfamily of G protein-coupled receptors (GPCRs) contains immense structural and functional diversity and mediates a myriad of biological processes upon activation by various extracellular signals. Critical roles of GPCRs have been established in bone development, remodeling, and disease. Multiple human GPCR mutations impair bone development or metabolism, resulting in osteopathologies. Here we summarize the disease phenotypes and dysfunctions caused by GPCR gene mutations in humans as well as by deletion in animals. To date, 92 receptors (5 glutamate family, 67 rhodopsin family, 5 adhesion, 4 frizzled/taste2 family, 5 secretin family, and 6 other 7TM receptors) have been associated with bone diseases and dysfunctions (36 in humans and 72 in animals). By analyzing data from these 92 GPCRs, we found that mutation or deletion of different individual GPCRs could induce similar bone diseases or dysfunctions, and the same individual GPCR mutation or deletion could induce different bone diseases or dysfunctions in different populations or animal models. Data from human diseases or dysfunctions identified 19 genes whose mutation was associated with human BMD: 9 genes each for human height and osteoporosis; 4 genes each for human osteoarthritis (OA) and fracture risk; and 2 genes each for adolescent idiopathic scoliosis (AIS), periodontitis, osteosarcoma growth, and tooth development. Reports from gene knockout animals found 40 GPCRs whose deficiency reduced bone mass, while deficiency of 22 GPCRs increased bone mass and BMD; deficiency of 8 GPCRs reduced body length, while 5 mice had reduced femur size upon GPCR deletion. Furthermore, deficiency in 6 GPCRs induced osteoporosis; 4 induced osteoarthritis; 3 delayed fracture healing; 3 reduced arthritis severity; and reduced bone strength, increased bone strength, and increased cortical thickness were each observed in 2 GPCR-deficiency models. The ever-expanding number of GPCR mutation-associated diseases warrants accelerated molecular analysis, population studies, and investigation of phenotype correlation with SNPs to elucidate GPCR function in human diseases.
Collapse
|
14
|
Lee NJ, Clarke IM, Zengin A, Enriquez RF, Nagy V, Penninger JM, Baldock PA, Herzog H. RANK deletion in neuropeptide Y neurones attenuates oestrogen deficiency-related bone loss. J Neuroendocrinol 2019; 31:e12687. [PMID: 30633834 DOI: 10.1111/jne.12687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
The RANKL pathway is known to be an important aspect of the pathogenesis of oestrogen deficiency-induced bone loss. RANK deletion specifically in neuropeptide Y (NPY) neurones has been shown to enhance the ability of the skeleton to match increases in body weight caused by high-fat diet feeding, likely via the modulation of NPY levels. In the present study, we used ovariectomy in female mice to show that RANK deletion in NPY neurones attenuates bone loss caused by long-term oestrogen deficiency, particularly in the vertebral compartment. Ovariectomy led to a reduction in NPY expression levels in the arcuate nucleus of NPYcre/+ ;RANKlox/lox mice compared to NPYcre/+ ;RANKlox/+ controls. Because NPY deficient mice also displayed a similar protection against ovariectomy-induced bone loss, modulation of hypothalamic NPY signalling is the likely mechanism behind the protection from bone loss in the NPYcre/+ ;RANKlox/lox mice.
Collapse
Affiliation(s)
- Nicola J Lee
- Neuroscience Division, Garvan Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- St Vincents Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ireni M Clarke
- Neuroscience Division, Garvan Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Ayse Zengin
- Bone Biology Division, Garvan Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Ronaldo F Enriquez
- Neuroscience Division, Garvan Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- Bone Biology Division, Garvan Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Vanj Nagy
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Paul A Baldock
- St Vincents Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
- Bone Biology Division, Garvan Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- St Vincents Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Abstract
It is from the discovery of leptin and the central nervous system as a regulator of bone remodeling that the presence of autonomic nerves within the skeleton transitioned from a mere histological observation to the mechanism whereby neurons of the central nervous system communicate with cells of the bone microenvironment and regulate bone homeostasis. This shift in paradigm sparked new preclinical and clinical investigations aimed at defining the contribution of sympathetic, parasympathetic, and sensory nerves to the process of bone development, bone mass accrual, bone remodeling, and cancer metastasis. The aim of this article is to review the data that led to the current understanding of the interactions between the autonomic and skeletal systems and to present a critical appraisal of the literature, bringing forth a schema that can put into physiological and clinical context the main genetic and pharmacological observations pointing to the existence of an autonomic control of skeletal homeostasis. The different types of nerves found in the skeleton, their functional interactions with bone cells, their impact on bone development, bone mass accrual and remodeling, and the possible clinical or pathophysiological relevance of these findings are discussed.
Collapse
Affiliation(s)
- Florent Elefteriou
- Department of Molecular and Human Genetics and Orthopedic Surgery, Center for Skeletal Medicine and Biology, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
16
|
Idelevich A, Baron R. Brain to bone: What is the contribution of the brain to skeletal homeostasis? Bone 2018; 115:31-42. [PMID: 29777919 PMCID: PMC6110971 DOI: 10.1016/j.bone.2018.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
The brain, which governs most, if not all, physiological functions in the body, from the complexities of cognition, learning and memory, to the regulation of basal body temperature, heart rate and breathing, has long been known to affect skeletal health. In particular, the hypothalamus - located at the base of the brain in close proximity to the medial eminence, where the blood-brain-barrier is not as tight as in other regions of the brain but rather "leaky", due to fenestrated capillaries - is exposed to a variety of circulating body cues, such as nutrients (glucose, fatty acids, amino acids), and hormones (insulin, glucagon, leptin, adiponectin) [1-3].Information collected from the body via these peripheral cues is integrated by hypothalamic sensing neurons and glial cells [4-7], which express receptors for these nutrients and hormones, transforming these cues into physiological outputs. Interestingly, many of the same molecules, including leptin, adiponectin and insulin, regulate both energy and skeletal homeostasis. Moreover, they act on a common set of hypothalamic nuclei and their residing neurons, activating endocrine and neuronal systems, which ultimately fine-tune the body to new physiological states. This review will focus exclusively on the brain-to-bone pathway, highlighting the most important anatomical sites within the brain, which are known to affect bone, but not covering the input pathways and molecules informing the brain of the energy and bone metabolic status, covered elsewhere [8-10]. The discussion in each section will present side by side the metabolic and bone-related functions of hypothalamic nuclei, in an attempt to answer some of the long-standing questions of whether energy is affected by bone remodeling and homeostasis and vice versa.
Collapse
Affiliation(s)
- Anna Idelevich
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
17
|
刘 松, 吴 建, 胡 稷, 王 簕, 王 钊, 孟 欢, 卓 灵, 郑 健. [Neuropeptide Y Y1 receptor antagonist PD160170 promotes osteogenic differentiation of rat bone marrow mesenchymal stem cells in vitro and femoral defect repair in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:669-676. [PMID: 29997088 PMCID: PMC6765719 DOI: 10.3969/j.issn.1673-4254.2018.06.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the effects of neuropeptide Y (NPY) Y1 receptor antagonist PD160170 in promoting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and accelerating healing of femoral defect in rats. METHODS The third generation of rat BMSCs were treated with PBS (control) or 10-6, 10-7, or 10-8 mol/L NPY Y1 receptor antagonist PD160170. After 7 and 14 days of treatment, the cells were examined for osteogenic differentiation with alkaline phosphatase (ALP) and alizarin red staining. At 7 and 21 days of treatment, the mRNA and protein expressions of collagen type I (COLI), osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) in the cells were detected using q-PCR and Westem Blotting. In a male SD rat model (body weight 300∓20 g) of bilateral femoral condyle defects (2.5 mm in diameter), the effect of daily local injection of 0.2 mL PD160170 (10-6 and 10-8 mol/L, for 28 consecutive days) in promoting bone defect repair was evaluated with micro-CT scans. RESULTS ALP and alizarin red staining showed that the BMSCs treated with PD160170, at the optimal concentration of 10-8 mol/L, contained more intracellular cytoplasmic brown particles and mineralized nodules in extracellular matrix than PBS-treated cells. PD160170 (10-8 mol/L) significantly up-regulated the mRNA and protein expressions of COLI at day 7 and those of OCN and Runx2 at day 21 (P<0.05). In the rat models of femoral bone defect, the volume/tissue volume ratio, bone mineral density and the number of bone trabeculae were significantly greater in 10-6 mol/L PD160170 group than in the control group (P<0.05), but the bone trabecular thickness (P=0.07) and bone volume (P=0.35) were similar between the two groups. CONCLUSION NPY Y1 receptor antagonist PD160170 can promote osteogenic differentiation of BMSCs and healing of femoral defects in rats, suggesting the potential of therapeutic strategies targeting NPY Y1 receptor signaling in the prevention and treatment of bone fracture and osteoporosis.
Collapse
Affiliation(s)
- 松 刘
- 广州医科大学附属第三医院骨科二区,广东 广州 510150Department of Orthopedics, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - 建群 吴
- 广州市花都区人民医院骨科,广东 广州 510800Department of Orthopedics, Huadu District People's Hospital, Guangzhou 510800, China
- 南方医院医科大学南方医院创伤骨科,广东 广州 510515Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 稷杰 胡
- 南方医院医科大学南方医院创伤骨科,广东 广州 510515Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 簕 王
- 广州医科大学附属第三医院骨科二区,广东 广州 510150Department of Orthopedics, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - 钊 王
- 广州医科大学附属第三医院骨科二区,广东 广州 510150Department of Orthopedics, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - 欢 孟
- 南方医院医科大学南方医院创伤骨科,广东 广州 510515Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 灵剑 卓
- 南方医院医科大学南方医院创伤骨科,广东 广州 510515Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 健雄 郑
- 南方医院医科大学南方医院创伤骨科,广东 广州 510515Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
18
|
Idelevich A, Sato K, Nagano K, Rowe G, Gori F, Baron R. Neuronal hypothalamic regulation of body metabolism and bone density is galanin dependent. J Clin Invest 2018; 128:2626-2641. [PMID: 29596063 DOI: 10.1172/jci99350] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/20/2018] [Indexed: 12/13/2022] Open
Abstract
In the brain, the ventral hypothalamus (VHT) regulates energy and bone metabolism. Whether this regulation uses the same or different neuronal circuits is unknown. Alteration of AP1 signaling in the VHT increases energy expenditure, glucose utilization, and bone density, yet the specific neurons responsible for each or all of these phenotypes are not identified. Using neuron-specific, genetically targeted AP1 alterations as a tool in adult mice, we found that agouti-related peptide-expressing (AgRP-expressing) or proopiomelanocortin-expressing (POMC-expressing) neurons, predominantly present in the arcuate nucleus (ARC) within the VHT, stimulate whole-body energy expenditure, glucose utilization, and bone formation and density, although their effects on bone resorption differed. In contrast, AP1 alterations in steroidogenic factor 1-expressing (SF1-expressing) neurons, present in the ventromedial hypothalamus (VMH), increase energy but decrease bone density, suggesting that these effects are independent. Altered AP1 signaling also increased the level of the neuromediator galanin in the hypothalamus. Global galanin deletion (VHT galanin silencing using shRNA) or pharmacological galanin receptor blockade counteracted the observed effects on energy and bone. Thus, AP1 antagonism reveals that AgRP- and POMC-expressing neurons can stimulate body metabolism and increase bone density, with galanin acting as a central downstream effector. The results obtained with SF1-expressing neurons, however, indicate that bone homeostasis is not always dictated by the global energy status, and vice versa.
Collapse
|
19
|
Gu XC, Zhang XB, Hu B, Zi Y, Li M. Neuropeptide Y accelerates post-fracture bone healing by promoting osteogenesis of mesenchymal stem cells. Neuropeptides 2016; 60:61-66. [PMID: 27720230 DOI: 10.1016/j.npep.2016.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/09/2016] [Accepted: 09/11/2016] [Indexed: 01/27/2023]
Abstract
Fracture repair is a complex yet well orchestrated regenerative process involving numerous signaling and cell types including osteoblasts. Here we showed that NPY, a neurotransmitter with regulatory functions in bone homeostasis, may contribute to the post-fracture bone healing in patients with traumatic brain injury-fracture combined injuries. Our results suggested NPY levels were increased in patients with the combined injuries, accomplished by arising of bone healing markers, such as ALP, OC, PICP and ICTP, than in those with simple fractures, and NPY have direct actions on MSCs to promote their osteogenic differentiation. Our results provided clinical evidences for NPY participating in the bone healing process in a nonhypothalamic manner, most probably by directly promoting osteogenesis of mesenchymal stem cells.
Collapse
Affiliation(s)
- Xiao-Chuan Gu
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Bin Zhang
- Department of Emergency Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bing Hu
- Department of Medical Oncology, Shanghai Minhang District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zi
- Department of Emergency, 463rd Hospital of PLA, Shenyang 110042, China.
| | - Ming Li
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
20
|
Alves CJ, Alencastre IS, Neto E, Ribas J, Ferreira S, Vasconcelos DM, Sousa DM, Summavielle T, Lamghari M. Bone Injury and Repair Trigger Central and Peripheral NPY Neuronal Pathways. PLoS One 2016; 11:e0165465. [PMID: 27802308 PMCID: PMC5089690 DOI: 10.1371/journal.pone.0165465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/12/2016] [Indexed: 11/21/2022] Open
Abstract
Bone repair is a specialized type of wound repair controlled by complex multi-factorial events. The nervous system is recognized as one of the key regulators of bone mass, thereby suggesting a role for neuronal pathways in bone homeostasis. However, in the context of bone injury and repair, little is known on the interplay between the nervous system and bone. Here, we addressed the neuropeptide Y (NPY) neuronal arm during the initial stages of bone repair encompassing the inflammatory response and ossification phases in femoral-defect mouse model. Spatial and temporal analysis of transcriptional and protein levels of NPY and its receptors, Y1R and Y2R, reported to be involved in bone homeostasis, was performed in bone, dorsal root ganglia (DRG) and hypothalamus after femoral injury. The results showed that NPY system activity is increased in a time- and space-dependent manner during bone repair. Y1R expression was trigged in both bone and DRG throughout the inflammatory phase, while a Y2R response was restricted to the hypothalamus and at a later stage, during the ossification step. Our results provide new insights into the involvement of NPY neuronal pathways in bone repair.
Collapse
Affiliation(s)
- Cecília J. Alves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Inês S. Alencastre
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Estrela Neto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto (FMUP), Porto, Portugal
| | - João Ribas
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Sofia Ferreira
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Daniel M. Vasconcelos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
| | - Daniela M. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Teresa Summavielle
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
21
|
Alasvand M, Javanmard SH, Rashidi B, Khazaei M. Myocardial capillary density after neuropeptide Y antagonist administration in normal and high-fat diet C57BL6 mice. Adv Biomed Res 2016; 5:165. [PMID: 27995104 PMCID: PMC5137228 DOI: 10.4103/2277-9175.190998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
Background: Neuropeptide Y (NPY), a 36 amino acid peptide, has several effects on cardiovascular system. It is demonstrated that the angiogenic activity of NPY is similar to fibroblast growth factor and vascular endothelial growth factor (VEGF). The aim of this study was to evaluate the effect of systemic administration of antagonist of NPY receptor (BIIE0742) on coronary angiogenesis in normal and diet-induced obese animals. Materials and Methods: Twenty-four male mice were received high-fat diet (HFD) or normal diet (ND) for 14 weeks. Then, each group was randomized to the treatment of antagonist of NPY receptor (BIIE0246) or saline as following: ND+ BIIE0246 (100 μl/kg; i.p.), ND+ saline, HFD+ BIIE0246, HFD+ saline. After 14 days, blood samples were taken, and myocardial tissue (left ventricle) from all experimental groups was evaluated by immunohistochemistry. Results: Serum VEGF concentration and VEGF: Soluble VEGF receptor (sVEGFR)-1 ratio in obese animals was higher than normal group. Administration of BIIE0246 significantly reduced serum VEGF and VEGF: sVEGFR-1 ratio and increased serum sVEGFR-1 concentrations in obese animals (P < 0.05). In normal animals, BIIE0246 increased serum sVEGFR-1 level and decreased VEGF: sVEGFR-1 ratio. Serum nitrite did not alter after administration of BIIE0246 in both groups (P > 0.05). Myocardial capillary density expressed as the number of CD31 positive cells/mm2 was reduced after NPY antagonist treatment in obese and normal animals (P > 0.05). Conclusion: Administration of NPY antagonist impairs myocardial capillary density, reduces angiogenic factors and elevates anti-angiogenic factors, and there are no differences between obese and normal animals.
Collapse
Affiliation(s)
- Masoud Alasvand
- Department of Physiology, Sanandaj University of Medical Sciences, Sanandaj, Iran
| | | | - Bahman Rashidi
- Department of Anatomy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Khazaei
- Neurogenic Inflammatory Research Center and Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Khor EC, Yulyaningsih E, Driessler F, Kovaĉić N, Wee NKY, Kulkarni RN, Lee NJ, Enriquez RF, Xu J, Zhang L, Herzog H, Baldock PA. The y6 receptor suppresses bone resorption and stimulates bone formation in mice via a suprachiasmatic nucleus relay. Bone 2016; 84:139-147. [PMID: 26721736 DOI: 10.1016/j.bone.2015.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/06/2015] [Accepted: 12/19/2015] [Indexed: 12/15/2022]
Abstract
The neuropeptide Y system is known to play an important role in the regulation of bone homeostasis and while the functions of its major receptors, Y1R and Y2R, in this process have become clearer, the contributions of other Y-receptors, like the y6 receptor (y6R), are unknown. Y6R expression is restricted to the suprachiasmatic nucleus (SCN) of the hypothalamus, an area known to regulate circadian rhythms, and the testis. Here we show that lack of y6R signalling, results in significant reduction in bone mass, but no changes in bone length. Male and female y6R knockout (KO) mice display reduced cortical and cancellous bone volume in axial and appendicular bones. Mechanistically, the reduction in cancellous bone is the result of an uncoupling of bone remodelling, leading to an increase in osteoclast surface and number, and a reduction in osteoblast number, osteoid surface, mineralizing surface and bone formation rate. y6R KO mice displayed increased numbers of osteoclast precursors and produced greater numbers of osteoclasts in RANKL-treated cultures. They also produced fewer CFU-ALP osteoblast precursors in the marrow and showed reduced mineralization in primary osteoblastic cultures, as well as reduced expression for the osteoblast lineage marker, alkaline phosphatase, in bone isolates. The almost exclusive location of y6Rs in the hypothalamus suggests a critical role of central neuronal pathways controlling this uncoupling of bone remodelling which is in line with known actions or other Y-receptors in the brain. In conclusion, y6R signalling is required for maintenance of bone mass, with loss of y6R uncoupling bone remodelling and resulting in a negative bone balance. This study expands the scope of hypothalamic regulation of bone, highlighting the importance for neural/endocrine coordination and their marked effect upon skeletal homeostasis.
Collapse
Affiliation(s)
- Ee-Cheng Khor
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Ernie Yulyaningsih
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Frank Driessler
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Natasha Kovaĉić
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Natalie K Y Wee
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Rishikesh N Kulkarni
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Nicola J Lee
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of NSW, Kensington, Sydney, NSW 2052, Australia
| | - Ronaldo F Enriquez
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, WA 6009, Australia
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of NSW, Kensington, Sydney, NSW 2052, Australia
| | - Paul A Baldock
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of NSW, Kensington, Sydney, NSW 2052, Australia.
| |
Collapse
|
23
|
Horsnell H, Baldock PA. Osteoblastic Actions of the Neuropeptide Y System to Regulate Bone and Energy Homeostasis. Curr Osteoporos Rep 2016; 14:26-31. [PMID: 26872458 DOI: 10.1007/s11914-016-0300-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neural pathways are now a well-appreciated factor in the regulatory milieu controlling the maintenance of bone mass. A number of neural pathways from the brain to bone have been identified. These pathways often involve elements of the energy homeostatic apparatus, indicating links between the regulation of bone metabolism and energy balance. Neuropeptide Y is one such factor that co-regulates these two processes. Initial studies outlined the skeletal actions of NPY from within the brain and the interactions with energy homeostatic processes. However, in recent years, an appreciation for the actions of NPY within bone cells has expanded. Cells of the osteoblastic lineage express both NPY ligand and a cognate receptor NPY, Y1R. Murine studies have demonstrated that both ligand and receptor actively control bone mass and osteoblast activity and interact with mechanical signals to integrate with the local loading environment. Local NPY signalling regulates osteoprogenitor production and differentiation, to cover the entire osteoblastic lineage. In addition, several recent studies have demonstrated extra-skeletal actions of osteoblastic NPY signalling, to regulate energy expenditure and with it adiposity, and in a separate study, to control release of a factor-controlling beta cell mass and insulin production/release and with it glucose tolerance. Thus, osteoblastic neuropeptide production and signalling illustrates the rapidly widening sphere of influence of skeletal tissue, and suggests a far more complex and interconnected physiology then is currently appreciated.
Collapse
Affiliation(s)
- Harry Horsnell
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, St Vincent's Hospital, 390 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
- Department of Biology and Biochemistry, Bath University, Claverton Down Rd, Bath, North East Somerset, BA2 7AY, UK
| | - Paul A Baldock
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, St Vincent's Hospital, 390 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia.
- School of Medicine, The University of Notre Dame Australia, 160 Oxford St, Darlinghurst, Sydney, NSW, 2010, Australia.
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
24
|
|
25
|
Abstract
Bone metabolism is regulated by the action of two skeletal cells: osteoblasts and osteoclasts. This process is controlled by many genetic, hormonal and lifestyle factors, but today more and more studies have allowed us to identify a neuronal regulation system termed 'bone-brain crosstalk', which highlights a direct relationship between bone tissue and the nervous system. The first documentation of an anatomic relationship between nerves and bone was made via a wood cut by Charles Estienne in Paris in 1545. His diagram demonstrated nerves entering and leaving the bones of a skeleton. Later, several studies were conducted on bone innervation and, as of today, many observations on the regulation of bone remodeling by neurons and neuropeptides that reside in the CNS have created a new research field, that is, neuroskeletal research.
Collapse
Affiliation(s)
- Alessia Metozzi
- a 1 Department of Surgery and Translational Medicine, Metabolic Bone Diseases Unit, University of Florence, Largo Palagi 1, 50138 Florence, Italy
| | - Lorenzo Bonamassa
- a 1 Department of Surgery and Translational Medicine, Metabolic Bone Diseases Unit, University of Florence, Largo Palagi 1, 50138 Florence, Italy
| | - Gemma Brandi
- b 2 Public Mental Health system 1-4 of Florence, Florence, Italy
| | - Maria Luisa Brandi
- c 3 Department of Surgery and Translational Medicine, Metabolic Bone Diseases Unit, AOUC Careggi, University of Florence, Largo Palagi 1, 50138 Florence, Italy
| |
Collapse
|
26
|
Fernando HA, Zibellini J, Hsu MS, Seimon RV, Nguyen AD, Sainsbury A. The neuropeptide Y-ergic system: potential therapeutic target against bone loss with obesity treatments. Expert Rev Endocrinol Metab 2015; 10:177-191. [PMID: 30293515 DOI: 10.1586/17446651.2015.1001741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Obesity is no longer considered to provide protection against osteoporosis. Moreover, treatments for obesity are now suspected of reducing bone mass. With the escalating incidence of obesity, combined with increases in the frequency, duration and intensity of interventions used to combat it, we face a potential increase in health burden due to osteoporotic fractures. The neuropeptide Y-ergic system offers a potential target for the prevention and anabolic treatment of bone loss in obesity, due to its dual role in the regulation of energy homeostasis and bone mass. Although the strongest stimulation of bone mass by this system appears to occur via indirect hypothalamic pathways involving Y2 receptors (one of the five types of receptors for neuropeptide Y), Y1 receptors on osteoblasts (bone-forming cells) induce direct effects to enhance bone mass. This latter pathway may offer a suitable target for anti-osteoporotic treatment while also minimizing the risk of adverse side effects.
Collapse
Affiliation(s)
- Hamish A Fernando
- a 1 The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, Camperdown NSW 2006, Australia
| | - Jessica Zibellini
- a 1 The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, Camperdown NSW 2006, Australia
| | - Michelle Sh Hsu
- a 1 The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, Camperdown NSW 2006, Australia
| | - Radhika V Seimon
- a 1 The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, Camperdown NSW 2006, Australia
| | - Amy D Nguyen
- b 2 Neuroscience Program, Garvan Institute of Medical Research, University of New South Wales, Darlinghurst, Australia
| | - Amanda Sainsbury
- a 1 The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, Camperdown NSW 2006, Australia
| |
Collapse
|
27
|
Central genes, pathways and modules that regulate bone mass. Arch Biochem Biophys 2014; 561:130-6. [DOI: 10.1016/j.abb.2014.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 01/07/2023]
|
28
|
Abstract
Bones are structures in vertebrates that provide support to organs, protect soft organs, and give them shape and defined features, functions that are essential for their survival. To perform these functions, bones are constantly renewed throughout life. The process through which bones are renewed is known as bone remodeling, an energy demanding process sensitive to changes in energy homeostasis of the organism. A close interplay takes place between the diversity of nutritional cues and metabolic signals with different elements of the hypothalamic circuits to co-ordinate energy metabolism with the regulation of bone mass. In this review, we focus on how mouse and human genetics have elucidated the roles of hormonal signals and neural circuits that originate in, or impinge on, the hypothalamus in the regulation of bone mass. This will help to understand the mechanisms whereby regulation of bone is gated and dynamically regulated by the hypothalamus.
Collapse
Affiliation(s)
- Kunal Sharan
- Systems Biology of Bone Laboratory, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Vijay K Yadav
- Systems Biology of Bone Laboratory, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Sanger Mouse Genetics Project, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom.
| |
Collapse
|
29
|
Baldock PA, Lin S, Zhang L, Karl T, Shi Y, Driessler F, Zengin A, Hörmer B, Lee NJ, Wong IPL, Lin EJD, Enriquez RF, Stehrer B, During MJ, Yulyaningsih E, Zolotukhin S, Ruohonen ST, Savontaus E, Sainsbury A, Herzog H. Neuropeptide y attenuates stress-induced bone loss through suppression of noradrenaline circuits. J Bone Miner Res 2014; 29:2238-49. [PMID: 24535841 DOI: 10.1002/jbmr.2205] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 02/09/2014] [Accepted: 02/12/2014] [Indexed: 12/23/2022]
Abstract
Chronic stress and depression have adverse consequences on many organ systems, including the skeleton, but the mechanisms underlying stress-induced bone loss remain unclear. Here we demonstrate that neuropeptide Y (NPY), centrally and peripherally, plays a critical role in protecting against stress-induced bone loss. Mice lacking the anxiolytic factor NPY exhibit more anxious behavior and elevated corticosterone levels. Additionally, following a 6-week restraint, or cold-stress protocol, Npy-null mice exhibit three-fold greater bone loss compared to wild-type mice, owing to suppression of osteoblast activity. This stress-protective NPY pathway acts specifically through Y2 receptors. Centrally, Y2 receptors suppress corticotropin-releasing factor expression and inhibit activation of noradrenergic neurons in the paraventricular nucleus. In the periphery, they act to control noradrenaline release from sympathetic neurons. Specific deletion of arcuate Y2 receptors recapitulates the Npy-null stress response, coincident with elevated serum noradrenaline. Importantly, specific reintroduction of NPY solely in noradrenergic neurons of otherwise Npy-null mice blocks the increase in circulating noradrenaline and the stress-induced bone loss. Thus, NPY protects against excessive stress-induced bone loss, through Y2 receptor-mediated modulation of central and peripheral noradrenergic neurons.
Collapse
Affiliation(s)
- P A Baldock
- Neurological Disease Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia; Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wong IPL, Nguyen AD, Khor EC, Enriquez RF, Eisman JA, Sainsbury A, Herzog H, Baldock PA. Neuropeptide Y is a critical modulator of leptin's regulation of cortical bone. J Bone Miner Res 2013; 28:886-98. [PMID: 23044938 DOI: 10.1002/jbmr.1786] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/07/2012] [Accepted: 09/24/2012] [Indexed: 12/27/2022]
Abstract
Leptin signaling is required for normal bone homeostasis; however, loss of leptin results in differing effects on cortical and cancellous bone, as well as altered responses between the axial and appendicular regions. Local β-adrenergic actions are responsible for the greater cancellous bone volume in leptin-deficient (ob/ob) mice; however, the mechanism responsible for the opposing reduction in cortical bone in ob/ob mice is not known. Here we show that blocking the leptin-deficient increase in neuropeptide Y (NPY) expression reverses the cortical bone loss in ob/ob mice. Mice null for both NPY and leptin (NPY(-/-) ob/ob), display greater cortical bone mass in both long-bones and vertebra, with NPY(-/-) ob/ob mice exhibiting thicker and denser cortical bone, associated with greater endocortical and periosteal mineral apposition rate (MAR), compared to ob/ob animals. Importantly, these cortical changes occurred without significant increases in body weight, with NPY(-/-) ob/ob mice showing significantly reduced adiposity compared to ob/ob controls, most likely due to the reduced respiratory exchange ratio seen in these animals. Interestingly, cancellous bone volume was not different between NPY(-/-) ob/ob and ob/ob, suggesting that NPY is not influencing the adrenergic axis. Taken together, this work demonstrates the critical role of NPY signaling in the regulation of bone and energy homeostasis, and more importantly, suggests that reduced leptin levels or leptin resistance, which occurs in obesity, could potentially inhibit cortical bone formation via increased central NPY signaling.
Collapse
Affiliation(s)
- Iris P L Wong
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Baldock PA, Driessler F, Lin S, Wong IPL, Shi Y, Yulyaningsih E, Castillo L, Janmaat S, Enriquez RF, Zengin A, Kieffer BL, Schwarzer C, Eisman JA, Sainsbury A, Herzog H. The endogenous opioid dynorphin is required for normal bone homeostasis in mice. Neuropeptides 2012; 46:383-94. [PMID: 23062312 DOI: 10.1016/j.npep.2012.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/16/2012] [Accepted: 08/16/2012] [Indexed: 11/20/2022]
Abstract
Chronic opiate usage, whether prescribed or illicit, has been associated with changes in bone mass and is a recognized risk factor for the development of osteoporosis; however, the mechanism behind this effect is unknown. Here we show that lack of dynorphin, an endogenous opioid, in mice (Dyn-/-), resulted in a significantly elevated cancellous bone volume associated with greater mineral apposition rate and increased resorption indices. A similar anabolic phenotype was evident in bone of mice lacking dynorphin's cognate receptor, the kappa opioid receptor. Lack of opioid receptor expression in primary osteoblastic cultures and no change in bone cell function after dynorphin agonist treatment in vitro indicates an indirect mode of action. Consistent with a hypothalamic action, central dynorphin signaling induces extracellular signal-regulated kinase (ERK) phosphorylation and c-fos activation of neurons in the arcuate nucleus of the hypothalamus (Arc). Importantly, this signaling also leads to an increase in Arc NPY mRNA expression, a change known to decrease bone formation. Further implicating NPY in the skeletal effects of dynorphin, Dyn-/-/NPY-/- double mutant mice showed comparable increases in bone formation to single mutant mice, suggesting that dynorphin acts upstream of NPY signaling to control bone formation. Thus the dynorphin system, acting via NPY, may represent a pathway by which higher processes including stress, reward/addiction and depression influence skeletal metabolism. Moreover, understanding of these unique interactions may enable modulation of the adverse effects of exogenous opioid treatment without directly affecting analgesic responses.
Collapse
Affiliation(s)
- Paul A Baldock
- Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, Sydney, NSW 2010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The relationship between body composition and skeletal metabolism has received growing recognition. Low body weight is an established risk factor for fracture. The effect of obesity on skeletal health is less well defined. Extensive studies in patients with anorexia nervosa and obesity have illuminated many of the underlying biologic mechanisms by which body composition modulates bone mass. This review examines the relationship between body composition and bone mass through data from recent research studies throughout the weight spectrum ranging from anorexia nervosa to obesity.
Collapse
Affiliation(s)
- Alexander Faje
- BUL 457, Neuroendocrine Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| | | |
Collapse
|
33
|
Wong IPL, Driessler F, Khor EC, Shi YC, Hörmer B, Nguyen AD, Enriquez RF, Eisman JA, Sainsbury A, Herzog H, Baldock PA. Peptide YY regulates bone remodeling in mice: a link between gut and skeletal biology. PLoS One 2012; 7:e40038. [PMID: 22792209 PMCID: PMC3391226 DOI: 10.1371/journal.pone.0040038] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 05/31/2012] [Indexed: 12/29/2022] Open
Abstract
Background & Aims Gastrointestinal peptides are increasingly being linked to processes controlling the maintenance of bone mass. Peptide YY (PYY), a gut-derived satiety peptide of the neuropeptide Y family, is upregulated in some states that also display low bone mass. Importantly, PYY has high affinity for Y-receptors, particularly Y1R and Y2R, which are known to regulate bone mass. Anorexic conditions and bariatric surgery for obesity influence circulating levels of PYY and have a negative impact on bone mass, but the precise mechanism behind this is unclear. We thus examined whether alterations in PYY expression affect bone mass. Methods Bone microstructure and cellular activity were analyzed in germline PYY knockout and conditional adult-onset PYY over-expressing mice at lumbar and femoral sites using histomorphometry and micro-computed tomography. Results PYY displayed a negative relationship with osteoblast activity. Male and female PYY knockout mice showed enhanced osteoblast activity, with greater cancellous bone mass. Conversely, PYY over-expression lowered osteoblast activity in vivo, via a direct Y1 receptor mediated mechanism involving MAPK stimulation evident in vitro. In contrast to PYY knockout mice, PYY over expression also altered bone resorption, as indicated by greater osteoclast surface, despite the lack of Y-receptor expression in osteoclastic cells. While evident in both sexes, cellular changes were generally more pronounced in females. Conclusions These data demonstrate that the gut peptide PYY is critical for the control of bone remodeling. This regulatory axis from the intestine to bone has the potential to contribute to the marked bone loss observed in situations of extreme weight loss and higher circulating PYY levels, such as anorexia and bariatric obesity surgery, and may be important in the maintenance of bone mass in the general population.
Collapse
Affiliation(s)
- Iris P. L. Wong
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Frank Driessler
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ee Cheng Khor
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Yan-Chuan Shi
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Birgit Hörmer
- Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Amy D. Nguyen
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ronaldo F. Enriquez
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - John A. Eisman
- Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Amanda Sainsbury
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Herbert Herzog
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Paul A. Baldock
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
34
|
Ma Y, Wu X, Li X, Fu J, Shen J, Li X, Wang H. Corticosterone regulates the expression of neuropeptide Y and reelin in MLO-Y4 cells. Mol Cells 2012; 33:611-6. [PMID: 22610366 PMCID: PMC3887760 DOI: 10.1007/s10059-012-0053-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/13/2022] Open
Abstract
Osteocytes that have a dendritic appearance are widely believed to form a complex cellular network system and play crucial roles in mechanotransduction as a principal bone mechanosensor, which is the basis of their neuronallike biology, as previously reported. Neuropeptide Y (NPY) and reelin mRNA, which are brain-specific neurogenic markers, have been identified in osteocytes. However, changes in the production of NPY and reelin in response to specific biochemical stimulation are unknown. In this study, we investigated the in vitro effect of corticosterone, one of the endogenous glucocorticoids, on the expression of NPY and reelin in the MLO-Y4 osteocyte cell line. Cells were treated with corticosterone at different concentrations (10(-9) M-10(-5) M) for 1, 3, 6, 12 and 24 h. As revealed, corticosterone reduced the MLO-Y4 cell viability and proliferation in a dose- and time-dependent manner based on an MTT assay and a Vi-CELL analyzer. The cells were then incubated with corticosterone (10(-6) μM), and the NPY and reelin expression levels were detected at 1, 3, 6, 12 and 24 h using real-time PCR and Western blot analysis. These results demonstrated that at the gene and the protein levels, corticosterone significantly upregulated the NPY and reelin expression in a time-dependent manner. The application of a glucocorticoid receptor antagonist, RU486, reversed the reduced cell viability and the increased expression of NPY and reelin that were caused by corticosterone. To the best of our knowledge, this is the first report to verify that corticosterone regulates the NPY and reelin expression in osteocytes.
Collapse
Affiliation(s)
- Yuanyuan Ma
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041,
China
- Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041,
China
| | - Xiangnan Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041,
China
- Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041,
China
| | - Xianxian Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041,
China
- Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041,
China
| | - Jing Fu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041,
China
- Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041,
China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041,
China
- Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041,
China
| | - Xiaoyu Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041,
China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041,
China
- Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041,
China
| |
Collapse
|
35
|
Abstract
The past decade has seen a significant expansion of our understanding of the interaction between the neural system and bone. While innervation of bone was long appreciated, the discovery of central relays from the hypothalamus to the cells of bone has seen the identification of a number of efferent neural pathways to bone. The neuropeptide Y (NPY) system has proven to represent a major central pathway, regulating the activity of osteoblasts and osteoclasts, through signaling of central and peripheral ligands, through specific receptors within the hypothalamus and the osteoblast. Moreover, this pathway is now recognized as acting to coordinate both skeletal and energy homeostasis. This review examines the mechanism and actions of the NPY pathway to regulate bone mass and bone cell activity.
Collapse
Affiliation(s)
- Ee Cheng Khor
- Bone Regulation, Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | | |
Collapse
|
36
|
Shi YC, Baldock PA. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 2012; 50:430-6. [PMID: 22008645 DOI: 10.1016/j.bone.2011.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 12/24/2022]
Abstract
Skeletal research is currently undergoing a period of marked expansion. The boundaries of "bone" research are being re-evaluated and with this, a growing recognition of a more complex and interconnected biology than previously considered. One aspect that has become the focus of particular attention is the relationship between bone and fat homeostasis. Evidence from a number of avenues indicates that bone and adipose regulation are both related and interdependent. This review examines the neuropeptide Y (NPY) system, known to exert powerful control over both bone and fat tissue. The actions of this system are characterized by signaling both within specific nuclei of the hypothalamus and also the target tissues, mediated predominantly through two G-protein coupled receptors (Y1 and Y2). In bone tissue, elevated NPY levels act consistently to repress osteoblast activity. Moreover, both central Y2 receptor and osteoblastic Y1 receptor signaling act similarly to repress bone formation. Conversely, loss of NPY expression or receptor signaling induces increased osteoblast activity and bone mass in both cortical and cancellous envelopes. In fat tissue, NPY action is more complex. Energy homeostasis is powerfully altered by elevations in hypothalamic NPY, resulting in increases in fat accretion and body-wide energy conservation, through the action of locally expressed Y1 receptors, while local Y2 receptors act to inhibit NPY-ergic tone. Loss of central NPY expression has a markedly reduced effect, consistent with a physiological drive to promote fat accretion. In fat tissue, NPY and Y1 receptors act to promote lipogenesis, consistent with their roles in the brain. Y2 receptors expressed in adipocytes also act in this manner, showing an opposing action to their role in the hypothalamus. While direct investigation of these processes has yet to be completed, these responses appear to be interrelated to some degree. The starvation-based signal of elevated central NPY inducing marked inhibition of osteoblast activity, whilst promoting fat accretion, indicating skeletal tissue is a component of the energy conservation system. Moreover, when NPY expression is reduced, consistent with high calorie intake and weight gain, bone formation is stimulated, strengthening the skeleton. In conclusion, NPY acts to regulate both bone and fat tissue in a coordinated manner, and remains a strong candidate for mediating interactions between these two tissues.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia
| | | |
Collapse
|
37
|
Yulyaningsih E, Zhang L, Herzog H, Sainsbury A. NPY receptors as potential targets for anti-obesity drug development. Br J Pharmacol 2011; 163:1170-202. [PMID: 21545413 DOI: 10.1111/j.1476-5381.2011.01363.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The neuropeptide Y system has proven to be one of the most important regulators of feeding behaviour and energy homeostasis, thus presenting great potential as a therapeutic target for the treatment of disorders such as obesity and at the other extreme, anorexia. Due to the initial lack of pharmacological tools that are active in vivo, functions of the different Y receptors have been mainly studied in knockout and transgenic mouse models. However, over recent years various Y receptor selective peptidic and non-peptidic agonists and antagonists have been developed and tested. Their therapeutic potential in relation to treating obesity and other disorders of energy homeostasis is discussed in this review.
Collapse
Affiliation(s)
- Ernie Yulyaningsih
- Neuroscience Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
38
|
The neuropeptide Y system: Pathophysiological and therapeutic implications in obesity and cancer. Pharmacol Ther 2011; 131:91-113. [DOI: 10.1016/j.pharmthera.2011.03.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 12/28/2022]
|
39
|
Franquinho F, Liz MA, Nunes AF, Neto E, Lamghari M, Sousa MM. Neuropeptide Y and osteoblast differentiation - the balance between the neuro-osteogenic network and local control. FEBS J 2010; 277:3664-74. [DOI: 10.1111/j.1742-4658.2010.07774.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Zhang L, Lee NJ, Nguyen AD, Enriquez RF, Riepler SJ, Stehrer B, Yulyaningsih E, Lin S, Shi YC, Baldock PA, Herzog H, Sainsbury A. Additive actions of the cannabinoid and neuropeptide Y systems on adiposity and lipid oxidation. Diabetes Obes Metab 2010; 12:591-603. [PMID: 20590734 DOI: 10.1111/j.1463-1326.2009.01193.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Energy homeostasis is regulated by a complex interaction of molecules and pathways, and new antiobesity treatments are likely to require multiple pharmacological targeting of anorexigenic or orexigenic pathways to achieve effective loss of excess body weight and adiposity. Cannabinoids, acting via the cannabinoid-1 (CB1) receptor, and neuropeptide Y (NPY) are important modulators of feeding behaviour, energy metabolism and body composition. We investigated the interaction of CB1 and NPY in the regulation of energy homeostasis, hypothesizing that dual blockade of CB1 and NPY signalling will induce greater weight and/or fat loss than that induced by single blockade of either system alone. METHODS We studied the effects of the CB1 antagonist Rimonabant on food intake, body weight, body composition, energy metabolism and bone physiology in wild-type (WT) and NPY knockout (NPY(-/-)) mice. Rimonabant was administered orally at 10 mg/kg body weight twice per day for 3 weeks. Oral Rimonabant was delivered voluntarily to mice via a novel method enabling studies to be carried out in the absence of gavage-induced stress. RESULTS Mice with dual blockade of CB1 and NPY signalling (Rimonabant-treated NPY(-/-) mice) exhibited greater reductions in body weight and adiposity than mice with single blockade of either system alone (Rimonabant-treated WT or vehicle-treated NPY(-/-) mice). These changes occurred without loss of lean tissue mass or bone mass. Furthermore, Rimonabant-treated NPY(-/-) mice showed a lower respiratory exchange ratio than that seen in Rimonabant-treated WT or vehicle-treated NPY(-/-) mice, suggesting that this additive effect of dual blockade of CB1 and NPY involves promotion of lipid oxidation. On the other hand, energy expenditure and physical activity were comparable amongst all treatment groups. Interestingly, Rimonabant similarly and transiently reduced spontaneous and fasting-induced food intake in WT and NPY(-/-) mice in the first hour after administration only, suggesting independent regulation of feeding by CB1 and NPY signalling. In contrast, Rimonabant increased serum corticosterone levels in WT mice, but this effect was not seen in NPY(-/-) mice, indicating that NPY signalling may be required for effects of CB1 on the hypothalamo-pituitary-adrenal axis. CONCLUSIONS Dual blockade of CB1 and NPY signalling leads to additive reductions in body weight and adiposity without concomitant loss of lean body mass or bone mass. An additive increase in lipid oxidation in dual CB1 and NPY blockade may contribute to the effect on adiposity. These findings open new avenues for more effective treatment of obesity via dual pharmacological manipulations of the CB1 and NPY systems.
Collapse
Affiliation(s)
- L Zhang
- Neuroscience Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zengin A, Zhang L, Herzog H, Baldock PA, Sainsbury A. Neuropeptide Y and sex hormone interactions in humoral and neuronal regulation of bone and fat. Trends Endocrinol Metab 2010; 21:411-8. [PMID: 20202858 DOI: 10.1016/j.tem.2010.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 02/09/2010] [Accepted: 02/09/2010] [Indexed: 02/03/2023]
Abstract
The hypothalamus regulates the skeleton and adipose tissue via endocrine mechanisms. Changes in sex steroid levels in menopause and aging are central to the associated changes in bone mass and adiposity. Whereas many of these effects occur via direct actions on osteoblasts or adipocytes, sex hormones can also mediate effects on bone and adipose tissue via interaction with neuronal pathways. A key hypothalamic regulator of bone and adipose tissue is neuropeptide Y (NPY), which coordinately influences these tissues via effects on neuroendocrine and sympathetic nervous output. Better understanding of the interaction between NPY and sex steroids in regulating skeletal and energy homeostasis could lead to more effective treatments for osteoporosis and obesity.
Collapse
Affiliation(s)
- Ayse Zengin
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, New South Wales (NSW), Australia
| | | | | | | | | |
Collapse
|
42
|
Shi YC, Lin S, Wong IPL, Baldock PA, Aljanova A, Enriquez RF, Castillo L, Mitchell NF, Ye JM, Zhang L, Macia L, Yulyaningsih E, Nguyen AD, Riepler SJ, Herzog H, Sainsbury A. NPY neuron-specific Y2 receptors regulate adipose tissue and trabecular bone but not cortical bone homeostasis in mice. PLoS One 2010; 5:e11361. [PMID: 20613867 PMCID: PMC2894044 DOI: 10.1371/journal.pone.0011361] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 06/01/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODOLOGY/PRINCIPAL FINDINGS We thus generated two conditional knockout mouse models, Y2(lox/lox) and NPYCre/+;Y2(lox/lox), in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver carnitine palmitoyltransferase (CPT1) and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC). While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. CONCLUSIONS/SIGNIFICANCE Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of the hypothalamus, reducing lipogenic pathways in liver and/or skeletal muscle in females. These data also reveal as an anti-osteogenic effect of Y2 receptors on hypothalamic NPY-expressing neurons on trabecular but not on cortical bone.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Shu Lin
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Iris P. L. Wong
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paul A. Baldock
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Aygul Aljanova
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ronaldo F. Enriquez
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Lesley Castillo
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Natalie F. Mitchell
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ji-Ming Ye
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Lei Zhang
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Laurence Macia
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ernie Yulyaningsih
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Amy D. Nguyen
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sabrina J. Riepler
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Herbert Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Amanda Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
43
|
Alam I, Carr LG, Liang T, Liu Y, Edenberg HJ, Econs MJ, Turner CH. Identification of genes influencing skeletal phenotypes in congenic P/NP rats. J Bone Miner Res 2010; 25:1314-25. [PMID: 20200994 PMCID: PMC3153136 DOI: 10.1002/jbmr.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/28/2009] [Accepted: 12/15/2010] [Indexed: 01/09/2023]
Abstract
We previously showed that alcohol-preferring (P) rats have higher bone density than alcohol-nonpreferring (NP) rats. Genetic mapping in P and NP rats identified a major quantitative trait locus (QTL) between 4q22 and 4q34 for alcohol preference. At the same location, several QTLs linked to bone density and structure were detected in Fischer 344 (F344) and Lewis (LEW) rats, suggesting that bone mass and strength genes might cosegregate with genes that regulate alcohol preference. The aim of this study was to identify the genes segregating for skeletal phenotypes in congenic P and NP rats. Transfer of the NP chromosome 4 QTL into the P background (P.NP) significantly decreased areal bone mineral density (aBMD) and volumetric bone mineral density (vBMD) at several skeletal sites, whereas transfer of the P chromosome 4 QTL into the NP background (NP.P) significantly increased bone mineral content (BMC) and aBMD in the same skeletal sites. Microarray analysis from the femurs using Affymetrix Rat Genome arrays revealed 53 genes that were differentially expressed among the rat strains with a false discovery rate (FDR) of less than 10%. Nine candidate genes were found to be strongly correlated (r(2) > 0.50) with bone mass at multiple skeletal sites. The top three candidate genes, neuropeptide Y (Npy), alpha synuclein (Snca), and sepiapterin reductase (Spr), were confirmed using real-time quantitative PCR (qPCR). Ingenuity pathway analysis revealed relationships among the candidate genes related to bone metabolism involving beta-estradiol, interferon-gamma, and a voltage-gated calcium channel. We identified several candidate genes, including some novel genes on chromosome 4 segregating for skeletal phenotypes in reciprocal congenic P and NP rats.
Collapse
Affiliation(s)
- Imranul Alam
- Departments of Biomedical Engineering, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Lucinda G Carr
- Medicine, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
- Pharmacology, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Tiebing Liang
- Medicine, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Yunlong Liu
- Medicine, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Howard J Edenberg
- Biochemistry and Molecular Biology, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Michael J Econs
- Medicine, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Charles H Turner
- Departments of Biomedical Engineering, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
- Biomechanics and Biomaterials Research Center, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| |
Collapse
|
44
|
Baldock PA, Lee NJ, Driessler F, Lin S, Allison S, Stehrer B, Lin EJD, Zhang L, Enriquez RF, Wong IPL, McDonald MM, During M, Pierroz DD, Slack K, Shi YC, Yulyaningsih E, Aljanova A, Little DG, Ferrari SL, Sainsbury A, Eisman JA, Herzog H. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight. PLoS One 2009; 4:e8415. [PMID: 20027231 PMCID: PMC2794533 DOI: 10.1371/journal.pone.0008415] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 10/15/2009] [Indexed: 12/20/2022] Open
Abstract
Changes in whole body energy levels are closely linked to alterations in body weight and bone mass. Here, we show that hypothalamic signals contribute to the regulation of bone mass in a manner consistent with the central perception of energy status. Mice lacking neuropeptide Y (NPY), a well-known orexigenic factor whose hypothalamic expression is increased in fasting, have significantly increased bone mass in association with enhanced osteoblast activity and elevated expression of bone osteogenic transcription factors, Runx2 and Osterix. In contrast, wild type and NPY knockout (NPY (-/-)) mice in which NPY is specifically over expressed in the hypothalamus (AAV-NPY+) show a significant reduction in bone mass despite developing an obese phenotype. The AAV-NPY+ induced loss of bone mass is consistent with models known to mimic the central effects of fasting, which also show increased hypothalamic NPY levels. Thus these data indicate that, in addition to well characterized responses to body mass, skeletal tissue also responds to the perception of nutritional status by the hypothalamus independently of body weight. In addition, the reduction in bone mass by AAV NPY+ administration does not completely correct the high bone mass phenotype of NPY (-/-) mice, indicating the possibility that peripheral NPY may also be an important regulator of bone mass. Indeed, we demonstrate the expression of NPY specifically in osteoblasts. In conclusion, these data identifies NPY as a critical integrator of bone homeostatic signals; increasing bone mass during times of obesity when hypothalamic NPY expression levels are low and reducing bone formation to conserve energy under 'starving' conditions, when hypothalamic NPY expression levels are high.
Collapse
Affiliation(s)
- Paul A. Baldock
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicola J. Lee
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Frank Driessler
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Shu Lin
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Susan Allison
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Bernhard Stehrer
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - En-Ju D. Lin
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Lei Zhang
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Ronald F. Enriquez
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Iris P. L. Wong
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Michelle M. McDonald
- Department of Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead, Sydney, Australia
| | - Matthew During
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Dominique D. Pierroz
- Service and Laboratory of Bone Diseases, Department of Rehabilitation and Geriatrics, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Katy Slack
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Yan C. Shi
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Ernie Yulyaningsih
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Aygul Aljanova
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - David G. Little
- Department of Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead, Sydney, Australia
| | - Serge L. Ferrari
- Service and Laboratory of Bone Diseases, Department of Rehabilitation and Geriatrics, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Amanda Sainsbury
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - John A. Eisman
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Herbert Herzog
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
45
|
Lee NJ, Herzog H. NPY regulation of bone remodelling. Neuropeptides 2009; 43:457-63. [PMID: 19748118 DOI: 10.1016/j.npep.2009.08.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/13/2009] [Accepted: 08/21/2009] [Indexed: 01/06/2023]
Abstract
Neuropeptide Y (NPY), a classic neuronal regulator of energy homeostasis, is now also known to be involved in the control of bone homeostasis. Of the five known Y receptors through which the NPY family of ligands signals, the Y1 and Y2 receptors have so far been implicated in the control of osteoblast activity and thus bone formation. Analysis of brain specific NPY overexpressing and Y receptor knockout models has revealed a powerful anabolic pathway likely involving hypothalamic Y2 receptors and osteoblastic Y1 receptors. Furthering our understanding of the mechanisms underlying the involvement of the NPY system in the control of bone could lead to the development of therapies to improve bone mass in patients with diseases such as osteoporosis.
Collapse
Affiliation(s)
- Nicola J Lee
- Neuroscience Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | | |
Collapse
|
46
|
Teixeira L, Sousa DM, Nunes AF, Sousa MM, Herzog H, Lamghari M. NPY revealed as a critical modulator of osteoblast function in vitro: new insights into the role of Y1 and Y2 receptors. J Cell Biochem 2009; 107:908-16. [PMID: 19459152 DOI: 10.1002/jcb.22194] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neuropeptide Y (NPY) has recently emerged as a potential regulator of bone homeostasis. However, the relevance of NPY's role in osteoblast activity and the biological functions involving NPY receptors in bone homeostasis remain to be clarified. Here we report that chronically elevated NPY levels leaded to a modulation of the level of Y2 receptor expression marked with a transient down and upregulation according to the stage of osteoblast differentiation. We also show that NPY is a negative regulator of Y1 receptor expression. The pharmacological activation of Y2 receptor with its agonist resulted in similar effect. Functional analysis also revealed the osteogenic potential of NPY with osteoblast phenotype markers being significantly enhanced in osteoprogenitor cells stimulated by NPY, probably due to the down-regulation of Y1 receptor. In contrasts, these cells exhibit a reduction in calcium deposition in extracellular matrix most likely mediated via Y2 receptor signalling. Furthermore, we show that NPY modulates receptor activator of nuclear factor kB (NF-kB) (RANK) ligand and osteoprotegerin, two key factors regulating bone remodelling. Specifically, NPY inhibits the transcriptional activity of RANKL promoter in osteoprogenitor cells and enhances OPG expression in osteoblasts at early stages of differentiation. However, NPY effect on OPG seemed to be unrelated to Y2 receptor activation. Taken together the present data supported the contribution of NPY pathway in bone homeostasis via a direct action on osteoblasts cells.
Collapse
Affiliation(s)
- Liliana Teixeira
- Instituto de Engenharia Biomédica (INEB), Divisão de Biomateriais, NewTherapies Group, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
47
|
Bouxsein ML, Devlin MJ, Glatt V, Dhillon H, Pierroz DD, Ferrari SL. Mice lacking beta-adrenergic receptors have increased bone mass but are not protected from deleterious skeletal effects of ovariectomy. Endocrinology 2009; 150:144-52. [PMID: 18801900 PMCID: PMC2630907 DOI: 10.1210/en.2008-0843] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Activation of beta2-adrenergic receptors inhibits osteoblastic bone formation and enhances osteoclastic bone resorption. Whether beta-blockers inhibit ovariectomy-induced bone loss and decrease fracture risk remains controversial. To further explore the role of beta-adrenergic signaling in skeletal acquisition and response to estrogen deficiency, we evaluated mice lacking the three known beta-adrenergic receptors (beta-less). Body weight, percent fat, and bone mineral density were significantly higher in male beta-less than wild-type (WT) mice, more so with increasing age. Consistent with their greater fat mass, serum leptin was significantly higher in beta-less than WT mice. Mid-femoral cross-sectional area and cortical thickness were significantly higher in adult beta-less than WT mice, as were femoral biomechanical properties (+28 to +49%, P < 0.01). Young male beta-less had higher vertebral (1.3-fold) and distal femoral (3.5-fold) trabecular bone volume than WT (P < 0.001 for both) and lower osteoclast surface. With aging, these differences lessened, with histological evidence of increased osteoclast surface and decreased bone formation rate at the distal femur in beta-less vs. WT mice. Serum tartrate-resistance alkaline phosphatase-5B was elevated in beta-less compared with WT mice from 8-16 wk of age (P < 0.01). Ovariectomy inhibited bone mass gain and decreased trabecular bone volume/total volume similarly in beta-less and WT mice. Altogether, these data indicate that absence of beta-adrenergic signaling results in obesity and increased cortical bone mass in males but does not prevent deleterious effects of estrogen deficiency on trabecular bone microarchitecture. Our findings also suggest direct positive effects of weight and/or leptin on bone turnover and cortical bone structure, independent of adrenergic signaling.
Collapse
Affiliation(s)
- M L Bouxsein
- Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Targeting Homer genes using adeno-associated viral vector: lessons learned from behavioural and neurochemical studies. Behav Pharmacol 2008; 19:485-500. [PMID: 18690104 DOI: 10.1097/fbp.0b013e32830c369f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over a decade of in-vitro data support a critical role for members of the Homer family of postsynaptic scaffolding proteins in regulating the functional architecture of glutamate synapses. Earlier studies of Homer knockout mice indicated a necessary role for Homer gene products in normal mesocorticolimbic glutamate transmission and behaviours associated therewith. The advent of adeno-associated viral vectors carrying cDNA for, or short hairpin RNA against, specific Homer isoforms enabled the site-directed targeting of Homers to neurons in the brain. This approach has allowed our groups to address developmental issues associated with conventional knockout mice, to confirm active roles for distinct Homer isoforms in regulating glutamate transmission in vivo, as well as in mediating a variety of behavioural processes. This review summarizes the existing data derived from our studies using adeno-associated viral vector-mediated neuronal targeting of Homer in rodents, implicating this family of proteins in drug and alcohol addiction, learning/memory and emotional processing.
Collapse
|
49
|
Hosaka H, Nagata A, Yoshida T, Shibata T, Nagao T, Tanaka T, Saito Y, Tatsuno I. Pancreatic polypeptide is secreted from and controls differentiation through its specific receptors in osteoblastic MC3T3-E1 cells. Peptides 2008; 29:1390-5. [PMID: 18440094 DOI: 10.1016/j.peptides.2008.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/15/2008] [Accepted: 03/17/2008] [Indexed: 12/22/2022]
Abstract
Although the neuropeptide Y (NPY) family has been demonstrated to control bone metabolism, the role of pancreatic polypeptide (PP), which has structural homology with NPY and peptide YY (PYY) to share the NPY family receptors, in peripheral bone tissues has remained unknown. In the present study, we studied the regulatory roles of PP and its Y receptors using MC3T3-E1 cells, a murine transformed osteoblastic cell line, as a model for osteoblastic differentiation. We found that (1) PP mRNA was detected and increased during cell-contact-induced differentiation in MC3T3-E1 cells; (2) the immunoreactivity of PP was detected by radioimmunoassay and increased in culture medium during differentiation; (3) all the types of NPY family receptor mRNAs (Y1, Y2, Y4, Y5, and y6) were found to increase during differentiation; (4) PP stimulated differentiation in MC3T3-E1 cells in terms of ALP mRNA and BMP-2 mRNA. These findings suggested that MC3T3-E1 cells produce and secrete PP, which may in turn stimulate the differentiation of MC3T3-E1 through its specific receptors in an autocrine manner.
Collapse
Affiliation(s)
- Hiroaki Hosaka
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The neuropeptide Y system - comprising neuropeptide Y, peptide YY, pancreatic polypeptide and the Y receptors through which they act (Y1, Y2, Y4, Y5 and y6) - has been at the center of attention with regards to regulation of feeding behavior and its possible involvement in obesity. In the past, research has focused mainly on the orexigenic and obesogenic action of this system, with Y1 and Y5 receptors being prime candidates as mediators of neuropeptide Y-induced hyperphagia and obesity. However, in recent years, the role of other members of the neuropeptide Y family, peptide YY, pancreatic polypeptide and the Y2 and Y4 receptors through which they predominantly act, have commanded increasing attention on account of their effects to mediate satiety and promote weight loss via actions in key brain structures, such as the arcuate nucleus of the hypothalamus and the brain stem. This review focuses on the role of peptide YY- and pancreatic polypeptide-like compounds as possible antiobesity drugs, taking into account their effects, not only on energy balance, but also in the regulation of bone formation, and highlights potential benefits of using Y2 and/or Y4 antagonists (as opposed to agonists such as peptide YY or pancreatic polypeptide) in the treatment of obesity.
Collapse
Affiliation(s)
- En-Ju D Lin
- a Research Officer, The Garvan Institute of Medical Research, Neuroscience Research Program, 384 Victoria Street, Darlinghurst NSW 2010, Sydney, Australia.
| | - Lei Zhang
- b Research Officer, The Garvan Institute of Medical Research, Neuroscience Research Program, 384 Victoria Street, Darlinghurst NSW 2010, Sydney, Australia.
| | - Amanda Sainsbury
- c Research Fellow, The Garvan Institute of Medical Research, Neuroscience Research Program, 384 Victoria Street, Darlinghurst NSW 2010, Sydney, Australia.
| | - Herbert Herzog
- d Director of Neuroscience Research Program, The Garvan Institute of Medical Research, Neuroscience Research Program, 384 Victoria Street, Darlinghurst NSW 2010, Sydney, Australia.
| |
Collapse
|