1
|
Evangelista BG, Giardini AC, Hösch NG, Sant'Anna MB, Martins BB, Neto BS, Chacur M, Pagano RL, Picolo G, Zambelli VO. Aldehyde dehydrogenase-2 deficiency aggravates neuroinflammation, nociception, and motor impairment in a mouse model of multiple sclerosis. Free Radic Biol Med 2024; 225:767-775. [PMID: 39481766 DOI: 10.1016/j.freeradbiomed.2024.10.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Aldehyde dehydrogenase-2 deficiency (ALDH2∗2) found in 36 % of Han Chinese, affects approximately 8 % of the world population. ALDH2 is a mitochondrial key enzyme in detoxifying reactive aldehydes to less reactive forms. Studies demonstrate a potential link between ALDH2∗2 mutation and neurodegenerative diseases. Multiple sclerosis (MS) is an incurable and disabling neurodegenerative autoimmune disease that induces motor, and cognitive impairment, and hypersensitivity, including chronic pain. Accumulating evidence suggests that reactive aldehydes, such as 4-hydroxynonenal (4-HNE), contribute to MS pathogenesis. Here, using knock-in mice carrying the inactivating point mutation in ALDH2, identical to the mutation found in Han Chinese, we showed that the impairment in ALDH2 activity heightens motor disabilities, and hypernociception induced by experimental autoimmune encephalomyelitis (EAE). The deleterious clinical signs are followed by glial cell activation in the spinal cord and increased 4-HNE levels in the spinal cord and serum. Importantly, the pharmacological ALDH2 activation by Alda-1 ameliorates EAE-induced hypernociception and motor impairment in both wild-type and ALDH2∗2KI mice. Reduced hypernociception was associated with less early growth response protein 1 (EGR1), neuronal and glial activation, and reactive aldehyde accumulation in the spinal cord and serum. Taken together, our data suggest that the mitochondrial enzyme ALDH2 plays a role in regulating clinical, cellular, and molecular responses associated with EAE. This indicates that ALDH2 could serve as a molecular target for MS control, with ALDH2 activators, like Alda-1 as potential neuroprotective candidates. Furthermore, ALDH2∗2 carriers may be at increased risk of developing more accentuated MS symptoms.
Collapse
MESH Headings
- Animals
- Aldehyde Dehydrogenase, Mitochondrial/genetics
- Aldehyde Dehydrogenase, Mitochondrial/metabolism
- Mice
- Multiple Sclerosis/genetics
- Multiple Sclerosis/pathology
- Multiple Sclerosis/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Disease Models, Animal
- Aldehydes/metabolism
- Nociception
- Neuroinflammatory Diseases/metabolism
- Neuroinflammatory Diseases/pathology
- Neuroinflammatory Diseases/genetics
- Neuroinflammatory Diseases/etiology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Benzamides/pharmacology
- Gene Knock-In Techniques
- Humans
- Mice, Inbred C57BL
- Female
- Benzodioxoles/pharmacology
Collapse
Affiliation(s)
- Bianca G Evangelista
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Aline C Giardini
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Natália G Hösch
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Morena B Sant'Anna
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Bárbara B Martins
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Beatriz S Neto
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Marucia Chacur
- Department of Anatomy, University of São Paulo, São Paulo, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, 01308-060, Brazil
| | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Vanessa O Zambelli
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil.
| |
Collapse
|
2
|
Zhou C, Zhong Y, Chu Y, Chen R, Wang Y, Zheng Y, Dai H, Zhan C, Xie A, Luo J. Glutathione S-Transferase α4 Alleviates Hyperlipidemia-Induced Vascular Neointimal Hyperplasia in Arteriovenous Grafts via Inhibiting Endoplasmic Reticulum Stress. J Cardiovasc Pharmacol 2024; 84:58-70. [PMID: 38573593 DOI: 10.1097/fjc.0000000000001570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
ABSTRACT Neointimal hyperplasia causes the failure of coronary artery bypass grafting. Our previous studies have found that endothelial dysfunction is 1 candidate for triggering neointimal hyperplasia, but which factors are involved in this process is unclear. Glutathione S-transferase α4 (GSTA4) plays an important role in metabolizing 4-hydroxynonenal (4-HNE), a highly reactive lipid peroxidation product, which causes endothelial dysfunction or death. Here, we investigated the role of GSTA4 in neointima formation after arteriovenous grafts (AVGs) with or without high-fat diet (HFD). Compared with normal diet, HFD caused endothelial dysfunction and increased neointima formation, concomitantly accompanied by downregulated expression of GSTA4 at the mRNA and protein levels. In vitro, overexpression of GSTA4 attenuated 4-HNE-induced endothelial dysfunction and knockdown of GSTA4 aggravated endothelial dysfunction. Furthermore, silencing GSTA4 expression facilitated the activation of 4-HNE-induced endoplasmic reticulum stress and inhibition of endoplasmic reticulum stress pathway alleviated 4-HNE-induced endothelial dysfunction. In addition, compared with wild-type mice, mice with knockout of endothelial-specific GSTA4 (GSTA4 endothelial cell KO) exhibited exacerbated vascular endothelial dysfunction and increased neointima formation caused by HFD. Together, these results demonstrate the critical role of GSTA4 in protecting the function of endothelial cells and in alleviating hyperlipidemia-induced vascular neointimal hyperplasia in arteriovenous grafts.
Collapse
Affiliation(s)
- Chenchen Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanxia Zhong
- Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; and
| | - Yun Chu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyu Chen
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yurou Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingfang Zheng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongkai Dai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengye Zhan
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aini Xie
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlong Luo
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Hu Y, Huang Y, Zong L, Lin J, Liu X, Ning S. Emerging roles of ferroptosis in pulmonary fibrosis: current perspectives, opportunities and challenges. Cell Death Discov 2024; 10:301. [PMID: 38914560 PMCID: PMC11196712 DOI: 10.1038/s41420-024-02078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disorder characterized by abnormal myofibroblast activation, accumulation of extracellular matrix (ECM), and thickening of fibrotic alveolar walls, resulting in deteriorated lung function. PF is initiated by dysregulated wound healing processes triggered by factors such as excessive inflammation, oxidative stress, and coronavirus disease (COVID-19). Despite advancements in understanding the disease's pathogenesis, effective preventive and therapeutic interventions are currently lacking. Ferroptosis, an iron-dependent regulated cell death (RCD) mechanism involving lipid peroxidation and glutathione (GSH) depletion, exhibits unique features distinct from other RCD forms (e.g., apoptosis, necrosis, and pyroptosis). Imbalance between reactive oxygen species (ROS) production and detoxification leads to ferroptosis, causing cellular dysfunction through lipid peroxidation, protein modifications, and DNA damage. Emerging evidence points to the crucial role of ferroptosis in PF progression, driving macrophage polarization, fibroblast proliferation, and ECM deposition, ultimately contributing to alveolar cell death and lung tissue scarring. This review provides a comprehensive overview of the latest findings on the involvement and signaling mechanisms of ferroptosis in PF pathogenesis, emphasizing potential novel anti-fibrotic therapeutic approaches targeting ferroptosis for PF management.
Collapse
Affiliation(s)
- Yixiang Hu
- Department of Clinical Pharmacy, The Affiliated Xiangtan Center Hospital of Hunan University, Xiangtan, 411100, China
| | - Ying Huang
- Zhongshan Hospital of Traditional Chinese Medicine Afflilated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, China
| | - Lijuan Zong
- Department of Rehabilitation Medicine, Zhongda Hospital of Southeast University, Nanjing, 210096, China
| | - Jiaxin Lin
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Xiang Liu
- Department of Clinical Pharmacy, The Affiliated Xiangtan Center Hospital of Hunan University, Xiangtan, 411100, China.
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
4
|
Hussain T, Metwally E, Murtaza G, Kalhoro DH, Chughtai MI, Tan B, Omur AD, Tunio SA, Akbar MS, Kalhoro MS. Redox mechanisms of environmental toxicants on male reproductive function. Front Cell Dev Biol 2024; 12:1333845. [PMID: 38469179 PMCID: PMC10925774 DOI: 10.3389/fcell.2024.1333845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Humans and wildlife, including domesticated animals, are exposed to a myriad of environmental contaminants that are derived from various human activities, including agricultural, household, cosmetic, pharmaceutical, and industrial products. Excessive exposure to pesticides, heavy metals, and phthalates consequently causes the overproduction of reactive oxygen species. The equilibrium between reactive oxygen species and the antioxidant system is preserved to maintain cellular redox homeostasis. Mitochondria play a key role in cellular function and cell survival. Mitochondria are vulnerable to damage that can be provoked by environmental exposures. Once the mitochondrial metabolism is damaged, it interferes with energy metabolism and eventually causes the overproduction of free radicals. Furthermore, it also perceives inflammation signals to generate an inflammatory response, which is involved in pathophysiological mechanisms. A depleted antioxidant system provokes oxidative stress that triggers inflammation and regulates epigenetic function and apoptotic events. Apart from that, these chemicals influence steroidogenesis, deteriorate sperm quality, and damage male reproductive organs. It is strongly believed that redox signaling molecules are the key regulators that mediate reproductive toxicity. This review article aims to spotlight the redox toxicology of environmental chemicals on male reproduction function and its fertility prognosis. Furthermore, we shed light on the influence of redox signaling and metabolism in modulating the response of environmental toxins to reproductive function. Additionally, we emphasize the supporting evidence from diverse cellular and animal studies.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Murtaza
- Department of Livestock and Fisheries, Government of Sindh, Karachi, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Ali Dogan Omur
- Department of Artificial Insemination, Faculty, Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Shakeel Ahmed Tunio
- Department of Livestock Management, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Shahzad Akbar
- Faculty of Animal Husbandry and Veterinary Sciences, University of Poonch, Rawalakot, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Centre, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| |
Collapse
|
5
|
Si Z, Su W, Zhou Z, Li J, Su C, Zhang Y, Hu Z, Huang Z, Zhou H, Cong A, Zhou Z, Cao W. Hyperglycolysis in endothelial cells drives endothelial injury and microvascular alterations in peritoneal dialysis. Clin Transl Med 2023; 13:e1498. [PMID: 38037461 PMCID: PMC10689974 DOI: 10.1002/ctm2.1498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Endothelial cell (EC) dysfunction leading to microvascular alterations is a hallmark of technique failure in peritoneal dialysis (PD). However, the mechanisms underlying EC dysfunction in PD are poorly defined. METHODS We combined RNA sequencing with metabolite set analysis to characterize the metabolic profile of peritoneal ECs from a mouse model of PD. This was combined with EC-selective blockade of glycolysis by genetic or pharmacological inhibition of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in vivo and in vitro. We also investigated the association between peritoneal EC glycolysis and microvascular alterations in human peritoneal samples from patients with end-stage kidney disease (ESKD). RESULTS In a mouse model of PD, peritoneal ECs had a hyperglycolytic metabolism that shunts intermediates into nucleotide synthesis. Hyperglycolytic mouse peritoneal ECs displayed a unique active phenotype with increased proliferation, permeability and inflammation. The active phenotype of mouse peritoneal ECs can be recapitulated in human umbilical venous ECs and primary human peritoneal ECs by vascular endothelial growth factor that was released from high glucose-treated mesothelial cells. Importantly, reduction of peritoneal EC glycolysis, via endothelial deficiency of the glycolytic activator PFKFB3, inhibited PD fluid-induced increases in peritoneal capillary density, vascular permeability and monocyte extravasation, thereby protecting the peritoneum from the development of structural and functional damages. Mechanistically, endothelial PFKFB3 deficiency induced the protective effects in part by inhibiting cell proliferation, VE-cadherin endocytosis and monocyte-adhesion molecule expression. Pharmacological PFKFB3 blockade induced a similar therapeutic benefit in this PD model. Human peritoneal tissue from patients with ESKD also demonstrated evidence of increased EC PFKFB3 expression associated with microvascular alterations and peritoneal dysfunction. CONCLUSIONS These findings reveal a critical role of glycolysis in ECs in mediating the deterioration of peritoneal function and suggest that strategies targeting glycolysis in peritoneal ECs may be of therapeutic benefit for patients undergoing PD.
Collapse
Affiliation(s)
- Zekun Si
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Wenyan Su
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Zhuoyu Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Jinjin Li
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Cailing Su
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Ying Zhang
- Division of NephrologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouP. R. China
| | - Zuoyu Hu
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Zhijie Huang
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Hong Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Ansheng Cong
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Zhanmei Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Wei Cao
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| |
Collapse
|
6
|
Baoyinna B, Miao J, Oliver PJ, Ye Q, Shaheen N, Kalin T, He J, Parinandi NL, Zhao Y, Zhao J. Non-Lethal Doses of RSL3 Impair Microvascular Endothelial Barrier through Degradation of Sphingosie-1-Phosphate Receptor 1 and Cytoskeletal Arrangement in A Ferroptosis-Independent Manner. Biomedicines 2023; 11:2451. [PMID: 37760892 PMCID: PMC10525432 DOI: 10.3390/biomedicines11092451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The excess microvascular endothelial permeability is a hallmark of acute inflammatory diseases. Maintenance of microvascular integrity is critical to preventing leakage of vascular components into the surrounding tissues. Sphingosine-1-phosphate (S1P) is an active lysophospholipid that enhances the endothelial cell (EC) barrier via activation of its receptor S1PR1. Here, we delineate the effect of non-lethal doses of RSL3, an inhibitor of glutathione peroxidase 4 (GPX4), on EC barrier function. Low doses of RSL3 (50-100 nM) attenuated S1P-induced human lung microvascular barrier enhancement and the phosphorylation of AKT. To investigate the molecular mechanisms by which RSL3 attenuates S1P's effect, we examined the S1PR1 levels. RSL3 treatment reduced S1PR1 levels in 1 h, whereas the effect was attenuated by the proteasome and lysosome inhibitors as well as a lipid raft inhibitor. Immunofluorescence staining showed that RSL3 induced S1PR1 internalization from the plasma membrane into the cytoplasm. Furthermore, we found that RSL3 (100 and 200 nM) increased EC barrier permeability and cytoskeletal rearrangement without altering cell viability. Taken together, our data delineates that non-lethal doses of RSL3 impair EC barrier function via two mechanisms. RSL3 attenuates S1P1-induced EC barrier enhancement and disrupts EC barrier integrity through the generation of 4-hydroxynonena (4HNE). All these effects are independent of ferroptosis.
Collapse
Affiliation(s)
- Boina Baoyinna
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jiaxing Miao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Patrick J. Oliver
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Nargis Shaheen
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Timothy Kalin
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jinshan He
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Pereira WR, Ferreira JCB, Artioli GG. Commentary: Aldehyde dehydrogenase, redox balance and exercise physiology: What is missing? Comp Biochem Physiol A Mol Integr Physiol 2023; 283:111470. [PMID: 37364662 DOI: 10.1016/j.cbpa.2023.111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme involved in reactive aldehyde detoxification. Approximately 560 million people (about 8% of the world's population) carry a point mutation in the aldehyde dehydrogenase 2 gene (ALDH2), identified as ALDH2*2, which leads to decreased ALDH2 catalytic activity. ALDH2*2 variant is associated with an accumulation of toxic reactive aldehydes and consequent disruption of cellular metabolism, which contributes to the establishment and progression of several degenerative diseases. Consequences of aldehyde accumulation include impaired mitochondrial functional, hindered anabolic signaling in the skeletal muscle, impaired cardiovascular and pulmonary function, and reduced osteoblastogenesis. Considering that aldehydes are endogenously produced through redox processes, it is expected that conditions that have a high energy demand, such as exercise, might be affected by impaired aldehyde clearance in ALDH2*2 individuals. Despite the large body of evidence supporting the importance of ALDH2 to ethanol metabolism, redox homeostasis and overall health, specific research investigating the impact of ALDH2*2 on phenotypes relevant to exercise performance are notoriously scarce. In this commentary, we highlight the consolidated knowledge on the impact of ALDH2*2 on physiological processes that are relevant to exercise.
Collapse
Affiliation(s)
- Wagner Ribeiro Pereira
- Applied Physiology & Nutrition Research Group, University of Sao Paulo, Sao Paulo, Brazil; Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
8
|
4-Hydroxynonenal Modulates Blood-Brain Barrier Permeability In Vitro through Changes in Lipid Composition and Oxidative Status of Endothelial Cells and Astrocytes. Int J Mol Sci 2022; 23:ijms232214373. [PMID: 36430852 PMCID: PMC9698020 DOI: 10.3390/ijms232214373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Blood brain barrier (BBB) is a dynamic interface responsible for proper functioning of brain, but also a major obstacle for effective treatment of neurological diseases. Increased levels of free radicals, in high ferrous and high lipid content surrounding, induce lipid peroxidation, leading to production of 4-hydroxynonenal (HNE). HNE modifies all key proteins responsible for proper brain functioning thus playing a major role in the onset of neurological diseases. To investigate HNE effects on BBB permeability, we developed two in vitro BBB models-'physiological' and 'pathological'. The latter mimicked HNE modified extracellular matrix under oxidative stress conditions in brain pathologies. We showed that exogenous HNE induce activation of antioxidative defense systems by increasing catalase activity and glutathione content as well as reducing lipid peroxide levels in endothelial cells and astrocytes of 'physiological' model. While in 'pathological' model, exogenous HNE further increased lipid peroxidation levels of endothelial cells and astrocytes, followed by increase in Nrf2 and glutathione levels in endothelial cells. At lipid composition level, HNE caused increase in ω3 polyunsaturated fatty acid (PUFA) level in endothelial cells, followed by decrease in ω3 PUFA level and increase in monounsaturated fatty acid level in astrocytes. Using these models, we showed for the first time that HNE in 'pathological' model can reduce BBB permeability.
Collapse
|
9
|
Electrophilic Aldehyde 4-Hydroxy-2-Nonenal Mediated Signaling and Mitochondrial Dysfunction. Biomolecules 2022; 12:biom12111555. [PMID: 36358905 PMCID: PMC9687674 DOI: 10.3390/biom12111555] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS), a by-product of aerobic life, are highly reactive molecules with unpaired electrons. The excess of ROS leads to oxidative stress, instigating the peroxidation of polyunsaturated fatty acids (PUFA) in the lipid membrane through a free radical chain reaction and the formation of the most bioactive aldehyde, known as 4-hydroxynonenal (4-HNE). 4-HNE functions as a signaling molecule and toxic product and acts mainly by forming covalent adducts with nucleophilic functional groups in proteins, nucleic acids, and lipids. The mitochondria have been implicated as a site for 4-HNE generation and adduction. Several studies clarified how 4-HNE affects the mitochondria's functions, including bioenergetics, calcium homeostasis, and mitochondrial dynamics. Our research group has shown that 4-HNE activates mitochondria apoptosis-inducing factor (AIFM2) translocation and facilitates apoptosis in mice and human heart tissue during anti-cancer treatment. Recently, we demonstrated that a deficiency of SOD2 in the conditional-specific cardiac knockout mouse increases ROS, and subsequent production of 4-HNE inside mitochondria leads to the adduction of several mitochondrial respiratory chain complex proteins. Moreover, we highlighted the physiological functions of HNE and discussed their relevance in human pathophysiology and current discoveries concerning 4-HNE effects on mitochondria.
Collapse
|
10
|
Huang Z, Zhang Z, Zhou C, Liu L, Huang C. Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm (Beijing) 2022; 3:e144. [PMID: 35601657 PMCID: PMC9115588 DOI: 10.1002/mco2.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a program wherein epithelial cells lose their junctions and polarity while acquiring mesenchymal properties and invasive ability. Originally defined as an embryogenesis event, EMT has been recognized as a crucial process in tumor progression. During EMT, cell–cell junctions and cell–matrix attachments are disrupted, and the cytoskeleton is remodeled to enhance mobility of cells. This transition of phenotype is largely driven by a group of key transcription factors, typically Snail, Twist, and ZEB, through epigenetic repression of epithelial markers, transcriptional activation of matrix metalloproteinases, and reorganization of cytoskeleton. Mechanistically, EMT is orchestrated by multiple pathways, especially those involved in embryogenesis such as TGFβ, Wnt, Hedgehog, and Hippo, suggesting EMT as an intrinsic link between embryonic development and cancer progression. In addition, redox signaling has also emerged as critical EMT modulator. EMT confers cancer cells with increased metastatic potential and drug resistant capacity, which accounts for tumor recurrence in most clinic cases. Thus, targeting EMT can be a therapeutic option providing a chance of cure for cancer patients. Here, we introduce a brief history of EMT and summarize recent advances in understanding EMT mechanisms, as well as highlighting the therapeutic opportunities by targeting EMT in cancer treatment.
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Chengwei Zhou
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Lin Liu
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| |
Collapse
|
11
|
Zhu G, Wang X, Chen L, Lenahan C, Fu Z, Fang Y, Yu W. Crosstalk Between the Oxidative Stress and Glia Cells After Stroke: From Mechanism to Therapies. Front Immunol 2022; 13:852416. [PMID: 35281064 PMCID: PMC8913707 DOI: 10.3389/fimmu.2022.852416] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Stroke is the second leading cause of global death and is characterized by high rates of mortality and disability. Oxidative stress is accompanied by other pathological processes that together lead to secondary brain damage in stroke. As the major component of the brain, glial cells play an important role in normal brain development and pathological injury processes. Multiple connections exist in the pathophysiological changes of reactive oxygen species (ROS) metabolism and glia cell activation. Astrocytes and microglia are rapidly activated after stroke, generating large amounts of ROS via mitochondrial and NADPH oxidase pathways, causing oxidative damage to the glial cells themselves and neurons. Meanwhile, ROS cause alterations in glial cell morphology and function, and mediate their role in pathological processes, such as neuroinflammation, excitotoxicity, and blood-brain barrier damage. In contrast, glial cells protect the Central Nervous System (CNS) from oxidative damage by synthesizing antioxidants and regulating the Nuclear factor E2-related factor 2 (Nrf2) pathway, among others. Although numerous previous studies have focused on the immune function of glial cells, little attention has been paid to the role of glial cells in oxidative stress. In this paper, we discuss the adverse consequences of ROS production and oxidative-antioxidant imbalance after stroke. In addition, we further describe the biological role of glial cells in oxidative stress after stroke, and we describe potential therapeutic tools based on glia cells.
Collapse
Affiliation(s)
- Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luxi Chen
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A Redox Disease-What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid Redox Signal 2021; 35:1226-1268. [PMID: 33985343 DOI: 10.1089/ars.2021.0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anna D Clark
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), Biochemistry, Biophysics and Structural Biology, CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Martin Feelisch
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
13
|
Pan G, Roy B, Palaniyandi SS. Diabetic Aldehyde Dehydrogenase 2 Mutant (ALDH2*2) Mice Are More Susceptible to Cardiac Ischemic-Reperfusion Injury Due to 4-Hydroxy-2-Nonenal Induced Coronary Endothelial Cell Damage. J Am Heart Assoc 2021; 10:e021140. [PMID: 34482710 PMCID: PMC8649540 DOI: 10.1161/jaha.121.021140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Aldehyde dehydrogenase‐2 (ALDH2), a mitochondrial enzyme, detoxifies reactive aldehydes such as 4‐hydroxy‐2‐nonenal (4HNE). A highly prevalent E487K mutation in ALDH2 (ALDH2*2) in East Asian people with intrinsic low ALDH2 activity is implicated in diabetic complications. 4HNE‐induced cardiomyocyte dysfunction was studied in diabetic cardiac damage; however, coronary endothelial cell (CEC) injury in myocardial ischemia‐reperfusion injury (IRI) in diabetic mice has not been studied. Therefore, we hypothesize that the lack of ALDH2 activity exacerbates 4HNE‐induced CEC dysfunction which leads to cardiac damage in ALDH2*2 mutant diabetic mice subjected to myocardial IRI. Methods and Results Three weeks after diabetes mellitus (DM) induction, hearts were subjected to IRI either in vivo via left anterior descending artery occlusion and release or ex vivo IRI by using the Langendorff system. The cardiac performance was assessed by conscious echocardiography in mice or by inserting a balloon catheter in the left ventricle in the ex vivo model. Just 3 weeks of DM led to an increase in cardiac 4HNE protein adducts and, cardiac dysfunction, and a decrease in the number of CECs along with reduced myocardial ALDH2 activity in ALDH2*2 mutant diabetic mice compared with their wild‐type counterparts. Systemic pretreatment with Alda‐1 (10 mg/kg per day), an activator of both ALDH2 and ALDH2*2, led to a reduction in myocardial infarct size and dysfunction, and coronary perfusion pressure upon cardiac IRI by increasing CEC population and coronary arteriole opening. Conclusions Low ALDH2 activity exacerbates 4HNE‐mediated CEC injury and thereby cardiac dysfunction in diabetic mouse hearts subjected to IRI, which can be reversed by ALDH2 activation.
Collapse
Affiliation(s)
- Guodong Pan
- Division of Hypertension and Vascular ResearchDepartment of Internal MedicineHenry Ford Health SystemDetroitMI
| | - Bipradas Roy
- Division of Hypertension and Vascular ResearchDepartment of Internal MedicineHenry Ford Health SystemDetroitMI
- Department of PhysiologyWayne State UniversityDetroitMI
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular ResearchDepartment of Internal MedicineHenry Ford Health SystemDetroitMI
- Department of PhysiologyWayne State UniversityDetroitMI
| |
Collapse
|
14
|
Li MM, Zheng YL, Wang WD, Lin S, Lin HL. Neuropeptide Y: An Update on the Mechanism Underlying Chronic Intermittent Hypoxia-Induced Endothelial Dysfunction. Front Physiol 2021; 12:712281. [PMID: 34512386 PMCID: PMC8430344 DOI: 10.3389/fphys.2021.712281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Endothelial dysfunction (ED) is a core pathophysiological process. The abnormal response of vascular endothelial (VE) cells to risk factors can lead to systemic consequences. ED caused by intermittent hypoxia (IH) has also been recognized. Neuropeptide Y (NPY) is an important peripheral neurotransmitter that binds to different receptors on endothelial cells, thereby causing ED. Additionally, hypoxia can induce the release of peripheral NPY; however, the involvement of NPY and its receptor in IH-induced ED has not been determined. This review explains the definition of chronic IH and VE function, including the relationship between ED and chronic IH-related vascular diseases. The results showed that that the effect of IH on VE injury is mediated by the VE-barrier structure and endothelial cell dysfunction. These findings offer new ideas for the prevention and treatment of obstructive sleep apnea syndrome and its complications.
Collapse
Affiliation(s)
- Mei-Mei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Li Zheng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-da Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Hui-Li Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
15
|
Reyes-Jiménez E, Ramírez-Hernández AA, Santos-Álvarez JC, Velázquez-Enríquez JM, Pina-Canseco S, Baltiérrez-Hoyos R, Vásquez-Garzón VR. Involvement of 4-hydroxy-2-nonenal in the pathogenesis of pulmonary fibrosis. Mol Cell Biochem 2021; 476:4405-4419. [PMID: 34463938 DOI: 10.1007/s11010-021-04244-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023]
Abstract
Pulmonary fibrosis is a chronic progressive disease with high incidence, prevalence, and mortality rates worldwide. It is characterized by excessive accumulation of extracellular matrix in the lung parenchyma. The cellular and molecular mechanisms involved in its pathogenesis are complex, and some are still unknown. Several studies indicate that oxidative stress, characterized by overproduction of 4-hydroxy-2-nonenal (4-HNE), is an important player in pulmonary fibrosis. 4-HNE is a highly reactive compound derived from polyunsaturated fatty acids that can react with proteins, phospholipids, and nucleic acids. Thus, many of the altered cellular mechanisms that contribute to this disease can be explained by the participation of 4-HNE. Here, we summarize the current knowledge on the molecular states and signal transduction pathways that contribute to the pathogenesis of pulmonary fibrosis. Furthermore, we describe the participation of 4-HNE in various mechanisms involved in pulmonary fibrosis development, with a focus on the cell populations involved in the initiation, development, and maintenance of the fibrotic process, mainly alveolar cells, endothelial cells, macrophages, and inflammatory cells. Due to its characteristic activity as a second messenger, 4-HNE, in addition to being a consequence of oxidative stress, can support maintenance of the inflammatory and fibrotic process by spreading the effects of reactive oxygen species (ROS). Thus, regulation of 4-HNE levels could be a viable strategy to reduce its effects on the mechanisms involved in pulmonary fibrosis development.
Collapse
Affiliation(s)
- Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | | | - Rafael Baltiérrez-Hoyos
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | | |
Collapse
|
16
|
Ebenezer DL, Ramchandran R, Fu P, Mangio LA, Suryadevara V, Ha AW, Berdyshev E, Van Veldhoven PP, Kron SJ, Schumacher F, Kleuser B, Natarajan V. Nuclear Sphingosine-1-phosphate Lyase Generated ∆2-hexadecenal is A Regulator of HDAC Activity and Chromatin Remodeling in Lung Epithelial Cells. Cell Biochem Biophys 2021; 79:575-592. [PMID: 34085165 PMCID: PMC9128239 DOI: 10.1007/s12013-021-01005-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Sphingosine-1-phosphate (S1P), a bioactive lipid mediator, is generated from sphingosine by sphingosine kinases (SPHKs) 1 and 2 and is metabolized to ∆2-hexadecenal (∆2-HDE) and ethanolamine phosphate by S1P lyase (S1PL) in mammalian cells. We have recently demonstrated the activation of nuclear SPHK2 and the generation of S1P in the nucleus of lung epithelial cells exposed to Pseudomonas aeruginosa. Here, we have investigated the nuclear localization of S1PL and the role of ∆2-HDE generated from S1P in the nucleus as a modulator of histone deacetylase (HDAC) activity and histone acetylation. Electron micrographs of the nuclear fractions isolated from MLE-12 cells showed nuclei free of ER contamination, and S1PL activity was detected in nuclear fractions isolated from primary lung bronchial epithelial cells and alveolar epithelial MLE-12 cells. Pseudomonas aeruginosa-mediated nuclear ∆2-HDE generation, and H3/H4 histone acetylation was attenuated by S1PL inhibitors in MLE-12 cells and human bronchial epithelial cells. In vitro, the addition of exogenous ∆2-HDE (100-10,000 nM) to lung epithelial cell nuclear preparations inhibited HDAC1/2 activity, and increased acetylation of Histone H3 and H4, whereas similar concentrations of S1P did not show a significant change. In addition, incubation of ∆2-HDE with rHDAC1 generated five different amino acid adducts as detected by LC-MS/MS; the predominant adduct being ∆2-HDE with lysine residues of HDAC1. Together, these data show an important role for the nuclear S1PL-derived ∆2-HDE in the modification of HDAC activity, histone acetylation, and chromatin remodeling in lung epithelial cells.
Collapse
Affiliation(s)
- David L Ebenezer
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ramaswamy Ramchandran
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Panfeng Fu
- The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Lizar A Mangio
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Vidyani Suryadevara
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Alison W Ha
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Medical Center, Denver, CO, USA
| | - Paul P Van Veldhoven
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Fabian Schumacher
- Institute of Pharmacy, Department of Pharmacology & Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Department of Pharmacology & Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Viswanathan Natarajan
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
17
|
Perrelli A, Retta SF. Polymorphisms in genes related to oxidative stress and inflammation: Emerging links with the pathogenesis and severity of Cerebral Cavernous Malformation disease. Free Radic Biol Med 2021; 172:403-417. [PMID: 34175437 DOI: 10.1016/j.freeradbiomed.2021.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin affecting 0.5% of the population and characterized by abnormally enlarged and leaky capillaries that predispose to seizures, neurological deficits, and intracerebral hemorrhage (ICH). CCM occurs sporadically or is inherited as dominant condition with incomplete penetrance and highly variable expressivity. Three disease genes have been identified: KRIT1 (CCM1), CCM2 and CCM3. Previous results demonstrated that loss-of-function mutations of CCM genes cause pleiotropic effects, including defective autophagy, altered reactive oxygen species (ROS) homeostasis, and enhanced sensitivity to oxidative stress and inflammatory events, suggesting a novel unifying pathogenetic mechanism, and raising the possibility that CCM disease onset and severity are influenced by the presence of susceptibility and modifier genes. Consistently, genome-wide association studies (GWAS) in large and homogeneous cohorts of patients sharing the familial form of CCM disease and identical mutations in CCM genes have led to the discovery of distinct genetic modifiers of major disease severity phenotypes, such as development of numerous and large CCM lesions, and susceptibility to ICH. This review deals with the identification of genetic modifiers with a significant impact on inter-individual variability in CCM disease onset and severity, including highly polymorphic genes involved in oxidative stress, inflammatory and immune responses, such as cytochrome P450 monooxygenases (CYP), matrix metalloproteinases (MMP), and Toll-like receptors (TLR), pointing to their emerging prognostic value, and opening up new perspectives for risk stratification and personalized medicine strategies.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
18
|
Kuang H, Wang T, Liu L, Tang C, Li T, Liu M, Wang T, Zhong W, Wang Y. Treatment of early brain injury after subarachnoid hemorrhage in the rat model by inhibiting p53-induced ferroptosis. Neurosci Lett 2021; 762:136134. [PMID: 34311053 DOI: 10.1016/j.neulet.2021.136134] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 12/01/2022]
Abstract
Post-subarachnoid hemorrhage (SAH) survivors experience severe neurological disability. Previous studies implicate that ferroptosis is involved in SAH. Ferroptosis is an iron-dependent form of regulated cell death caused by the accumulation of lipid peroxidation. However, the role and the mechanism of ferroptosis in SAH are still uncertain and need further study. Thus, we investigated the effect of ferroptosis on early brain injury (EBI) after SAH and further clarified its mechanism. The results showed ferroptosis characteristics appeared in the cerebral cortex of rats with SAH after 24 h. However, ferroptosis could be rescued by Ferrostatin-1 (Fer-1). Treatment with Fer-1 could increase SLc7a11 and GPx4, and alleviated damage-associated molecular pattern molecules and inflammatory cytokines. Similarly, blood-brain barrier impairment, brain edema, behavioral deficits and neuronal damage were reduced by inhibiting ferroptosis. More importantly, the p53 inhibitor pifithrin-α could significantly block cortical SAH-induced ferroptosis. Collectively, these results indicated that ferroptosis aggravated EBI after SAH was partly dependent on p53, and inhibiting ferroptosis might be an effective therapeutic target for EBI.
Collapse
Affiliation(s)
- Hong Kuang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China; Department of Neurosurgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Tianhong Wang
- School of Biological Science, University of California Irvine, Irvine, CA 92697, USA
| | - Lei Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Chunhai Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Tao Li
- Department of Neurosurgery, the Thrid Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250012, China
| | - Ming Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tianping Wang
- Department of Neurosurgery, People's Hospital of Chiping City, Liaocheng, Shandong 252000, China
| | - Weiying Zhong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China.
| | - Yunyan Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China.
| |
Collapse
|
19
|
Lipid peroxidation in brain tumors. Neurochem Int 2021; 149:105118. [PMID: 34197897 DOI: 10.1016/j.neuint.2021.105118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
There is a lot of evidence showing that lipid peroxidation plays very important role in development of various diseases, including neurodegenerative diseases and brain tumors. Lipid peroxidation is achieved by two main pathways, by enzymatic or by non-enzymatic oxidation, respectively. In this paper, we focus on non-enzymatic, self-catalyzed chain reaction of poly-unsaturated fatty acid (PUFA) peroxidation generating reactive aldehydes, notably 4-hydroxynonenal (4-HNE), which acts as second messenger of free radicals and as growth regulating factor. It might originate from astrocytes as well as from blood vessels, even within the blood-brain barrier (BBB), which is in case of brain tumors transformed into the blood-brain-tumor barrier (BBTB). The functionality of the BBB is strongly affected by 4-HNE because it forms relatively stable protein adducts thus allowing the persistence and the spread of lipid peroxidation, as revealed by immunohistochemical findings. Because 4-HNE can act as a regulator of vital functions of normal and of malignant cells acting in the cell type- and concentration-dependent manners, the bioactivities of this product of lipid peroxidation be should further studied to reveal if it acts as a co-factor of carcinogenesis or as natural factor of defense against primary brain tumors and metastatic cancer.
Collapse
|
20
|
Garcés M, Magnani ND, Pecorelli A, Calabró V, Marchini T, Cáceres L, Pambianchi E, Galdoporpora J, Vico T, Salgueiro J, Zubillaga M, Moretton MA, Desimone MF, Alvarez S, Valacchi G, Evelson P. Alterations in oxygen metabolism are associated to lung toxicity triggered by silver nanoparticles exposure. Free Radic Biol Med 2021; 166:324-336. [PMID: 33596456 DOI: 10.1016/j.freeradbiomed.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Along with the AgNP applications development, the concern about their possible toxicity has increasingly gained attention. As the respiratory system is one of the main exposure routes, the aim of this study was to evaluate the harmful effects developed in the lung after an acute AgNP exposure. In vivo studies using Balb/c mice intranasally instilled with 0.1 mg AgNP/kg b.w, were performed. 99mTc-AgNP showed the lung as the main organ of deposition, where, in turn, AgNP may exert barrier injury observed by increased protein content and total cell count in BAL samples. In vivo acute exposure showed altered lung tissue O2 consumption due to increased mitochondrial active respiration and NOX activity. Both O2 consumption processes release ROS triggering the antioxidant system as observed by the increased SOD, catalase and GPx activities and a decreased GSH/GSSG ratio. In addition, increased protein oxidation was observed after AgNP exposure. In A549 cells, exposure to 2.5 μg/mL AgNP during 1 h resulted in augment NOX activity, decreased mitochondrial ATP associated respiration and higher H2O2 production rate. Lung 3D tissue model showed AgNP-initiated barrier alterations as TEER values decreased and morphological alterations. Taken together, these results show that AgNP exposure alters O2 metabolism leading to alterations in oxygen metabolism lung toxicity. AgNP-triggered oxidative damage may be responsible for the impaired lung function observed due to alveolar epithelial injury.
Collapse
Affiliation(s)
- Mariana Garcés
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Natalia D Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Alessandra Pecorelli
- NC State University, Plants for Human Health Institute, Animal Science Department, USA
| | - Valeria Calabró
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Timoteo Marchini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Lourdes Cáceres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Erika Pambianchi
- NC State University, Plants for Human Health Institute, Animal Science Department, USA
| | - Juan Galdoporpora
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química Analítica Instrumental, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Argentina
| | - Tamara Vico
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Argentina
| | - Jimena Salgueiro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Cátedra de Física, Argentina
| | - Marcela Zubillaga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Cátedra de Física, Argentina
| | - Marcela A Moretton
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química Analítica Instrumental, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Argentina
| | - Silvia Alvarez
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Argentina
| | - Giuseppe Valacchi
- NC State University, Plants for Human Health Institute, Animal Science Department, USA; Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina.
| |
Collapse
|
21
|
Islam SMT, Won J, Kim J, Qiao F, Singh AK, Khan M, Singh I. Detoxification of Reactive Aldehydes by Alda-1 Treatment Ameliorates Experimental Autoimmune Encephalomyelitis in Mice. Neuroscience 2021; 458:31-42. [PMID: 33493617 DOI: 10.1016/j.neuroscience.2021.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/12/2020] [Accepted: 01/12/2021] [Indexed: 11/28/2022]
Abstract
Reactive aldehydes are generated as a toxic end-product of lipid peroxidation under inflammatory oxidative stress condition which is a well-established phenomenon in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Alda-1, a selective agonist of mitochondrial aldehyde dehydrogenase 2 (ALDH2), is known to detoxify the reactive aldehydes. In this study, we investigated the effect of Alda-1 on CNS myelin pathology associated with reactive aldehydes and mitochondrial/peroxisomal dysfunctions in a mouse model of EAE. Daily treatment of EAE mice with Alda-1, starting at the peak of disease, ameliorated the clinical manifestation of disease along with the improvement of motor functions. Accordingly, Alda-1 treatment improved demyelination and neuroaxonal degeneration in EAE mice. EAE mice had increased levels of reactive aldehyde species, such as 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), and acrolein (ACL) in the spinal cords and these levels were significantly reduced in Alda-1-treated EAE mice. Furthermore, Alda-1 treatment improved the loss of mitochondrial (OXPHOS) and peroxisomal (PMP70 and catalase) proteins as well as mitochondrial/peroxisomal proliferation factors (PGC-1α and PPARs) in the spinal cords of EAE mice. Taken together, this study demonstrates the therapeutic efficacy of ALDH2-agonist Alda-1 in the abatement of EAE disease through the detoxification of reactive aldehydes, thus suggesting Alda-1 as a potential therapeutic intervention for MS.
Collapse
Affiliation(s)
- S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Judong Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Fei Qiao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| |
Collapse
|
22
|
Ferreira HB, Neves B, Guerra IM, Moreira A, Melo T, Paiva A, Domingues MR. An overview of lipidomic analysis in different human matrices of multiple sclerosis. Mult Scler Relat Disord 2020; 44:102189. [PMID: 32516740 DOI: 10.1016/j.msard.2020.102189] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis is a chronic inflammatory and neurodegenerative disease of the central nervous system, and it is one of the most common neurological cause of disability in young adults. It is known that several factors contribute to increase the risk of development and pathogenesis of multiple sclerosis, nonetheless, but the true etiology of this pathology remains unknown. Similar to other inflammatory diseases, oxidative stress and lipid peroxidation are also associated to multiple sclerosis. Alterations in the lipid profile seem to be a hallmark of this pathology which can contribute to the dysregulation of lipid homeostasis and lipid metabolism in multiple sclerosis. Lipidomic studies analysed in this review clearly demonstrate the role of lipids in inflammatory processes, in immunity, and in the onset and development of multiple sclerosis. Several investigations reported alterations of some molecular lipid species, in particular, with decrease of fatty acids (FA) 18:2 and 20:4 and total polyunsaturated FA, with compensatory increases of saturated FA with shorter carbon chains. Oxidized phospholipids were reported in few studies as well. Also, it was shown that clinical lipidomics has potential as a tool to aid both in multiple sclerosis diagnosis and therapeutics by allowing a detailed lipidome profiling of the patients suffering with this disease.
Collapse
Affiliation(s)
- Helena Beatriz Ferreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês M Guerra
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Moreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.; Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Ciências Biomédicas Laboratoriais, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal.
| |
Collapse
|
23
|
Yang D, Shen J, Fan J, Chen Y, Guo X. Paracellular permeability changes induced by multi-walled carbon nanotubes in brain endothelial cells and associated roles of hemichannels. Toxicology 2020; 440:152491. [PMID: 32413421 DOI: 10.1016/j.tox.2020.152491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 01/14/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have promising applications in neurology depending on their unique physicochemical properties. However, there is limited understanding of their impacts on brain microvascular endothelial cells, the cells lining the vessels and maintaining the low and selective permeability of the blood-brain barrier. In this study, we examined the influence of pristine MWCNT (p-MWCNT) and carboxylated MWCNT (c-MWCNT) on permeability and tight junction tightness of murine brain microvascular endothelial cells, and investigated the potential mechanisms in the sight of hemichannel activity. Treatment with p-MWCNT for 24 h at subtoxic concentration (20 μg/mL) decreased the protein expression of occludin, disrupted zonula occludens-1 continuity, and elevated monolayer permeability as quantified by transendothelial electrical resistance and paracellular flux of 4000 Da fluorescein isothiocyanate-dextran conjugates. Moreover, p-MWCNT exposure also increased hemichannel activity with upregulated protein expression and altered subcellular localization of connexin (Cx)43 and pannexin (Panx)1. p-MWCNT-induced elevation in endothelial permeability could be prevented by hemichannel inhibitor carbenoxolone and peptide blocker of Cx43 and Panx1, indicating the crucial role of activated Cx43 and Panx1 hemichannels. Furthermore, Cx43 and Panx1 hemichannel-mediated ATP release might be involved in p-MWCNT-induced rise in endothelial permeability. In contrast, the above effects caused by p-MWCNT were not observed in cells treated with c-MWCNT, the functionalized form with more stable dispersion and a lower tendency to aggregate. Our study contributes further understanding of the impact of MWCNTs on brain endothelial tightness and permeability, which may have important implications for the safety application of MWCNTs in nanomedicine.
Collapse
Affiliation(s)
- Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Jie Shen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Jingpu Fan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Yiyong Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
24
|
Ebenezer DL, Fu P, Ramchandran R, Ha AW, Putherickal V, Sudhadevi T, Harijith A, Schumacher F, Kleuser B, Natarajan V. S1P and plasmalogen derived fatty aldehydes in cellular signaling and functions. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158681. [PMID: 32171908 DOI: 10.1016/j.bbalip.2020.158681] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/24/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Long-chain fatty aldehydes are present in low concentrations in mammalian cells and serve as intermediates in the interconversion between fatty acids and fatty alcohols. The long-chain fatty aldehydes are generated by enzymatic hydrolysis of 1-alkyl-, and 1-alkenyl-glycerophospholipids by alkylglycerol monooxygenase, plasmalogenase or lysoplasmalogenase while hydrolysis of sphingosine-1-phosphate (S1P) by S1P lyase generates trans ∆2-hexadecenal (∆2-HDE). Additionally, 2-chloro-, and 2-bromo- fatty aldehydes are produced from plasmalogens or lysoplasmalogens by hypochlorous, and hypobromous acid generated by activated neutrophils and eosinophils, respectively while 2-iodofatty aldehydes are produced by excess iodine in thyroid glands. The 2-halofatty aldehydes and ∆2-HDE activated JNK signaling, BAX, cytoskeletal reorganization and apoptosis in mammalian cells. Further, 2-chloro- and 2-bromo-fatty aldehydes formed GSH and protein adducts while ∆2-HDE formed adducts with GSH, deoxyguanosine in DNA and proteins such as HDAC1 in vitro. ∆2-HDE also modulated HDAC activity and stimulated H3 and H4 histone acetylation in vitro with lung epithelial cell nuclear preparations. The α-halo fatty aldehydes elicited endothelial dysfunction, cellular toxicity and tissue damage. Taken together, these investigations suggest a new role for long-chain fatty aldehydes as signaling lipids, ability to form adducts with GSH, proteins such as HDACs and regulate cellular functions.
Collapse
Affiliation(s)
- David L Ebenezer
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Ramaswamy Ramchandran
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Alison W Ha
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America
| | - Vijay Putherickal
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Tara Sudhadevi
- Department of Pediatrics, University of Illinois, Chicago, IL, United States of America
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Chicago, IL, United States of America
| | - Fabian Schumacher
- Institute of Nutritional Sciences, University of Potsdam, Germany; Department of Molecular Biology, University of Duisburg-, Essen, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Sciences, University of Potsdam, Germany
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America; Department of Medicine, University of Illinois, Chicago, IL, United States of America.
| |
Collapse
|
25
|
4-Hydroxy-Trans-2-Nonenal in the Regulation of Anti-Oxidative and Pro-Inflammatory Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5937326. [PMID: 31781341 PMCID: PMC6875399 DOI: 10.1155/2019/5937326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/13/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022]
Abstract
Recent studies indicate that 4-hydroxy-trans-2-nonenal (HNE), a major oxidative stress triggered lipid peroxidation-derived aldehyde, plays a critical role in the pathophysiology of various human pathologies including metabolic syndrome, diabetes, cardiovascular, neurological, immunological, and age-related diseases and various types of cancer. HNE is the most abundant and toxic α, β-unsaturated aldehyde formed during the peroxidation of polyunsaturated fatty acids in a series of free radical-mediated reactions. The presence of an aldehyde group at C1, a double bond between C2 and C3 and a hydroxyl group at C4 makes HNE a highly reactive molecule. These strong reactive electrophilic groups favor the formation of HNE adducts with cellular macromolecules such as proteins and nucleic acids leading to the regulation of various cell signaling pathways and processes involved in cell proliferation, differentiation, and apoptosis. Many studies suggest that the cell-specific intracellular concentrations of HNE dictate the anti-oxidative and pro-inflammatory activities of this important molecule. In this review, we focused on how HNE could alter multiple anti-oxidative defense pathways and pro-inflammatory cytotoxic pathways by interacting with various cell-signaling intermediates.
Collapse
|
26
|
Matthews JD, Owens JA, Naudin CR, Saeedi BJ, Alam A, Reedy AR, Hinrichs BH, Sumagin R, Neish AS, Jones RM. Neutrophil-Derived Reactive Oxygen Orchestrates Epithelial Cell Signaling Events during Intestinal Repair. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2221-2232. [PMID: 31472109 PMCID: PMC6892184 DOI: 10.1016/j.ajpath.2019.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/18/2019] [Accepted: 07/30/2019] [Indexed: 01/17/2023]
Abstract
Recent evidence has demonstrated that reactive oxygen (eg, hydrogen peroxide) can activate host cell signaling pathways that function in repair. We show that mice deficient in their capacity to generate reactive oxygen by the NADPH oxidase 2 holoenzyme, an enzyme complex highly expressed in neutrophils and macrophages, have disrupted capacity to orchestrate signaling events that function in mucosal repair. Similar observations were made for mice after neutrophil depletion, pinpointing this cell type as the source of the reactive oxygen driving oxidation-reduction protein signaling in the epithelium. To simulate epithelial exposure to high levels of reactive oxygen produced by neutrophils and gain new insight into this oxidation-reduction signaling, epithelial cells were treated with hydrogen peroxide, biochemical experiments were conducted, and a proteome-wide screen was performed using isotope-coded affinity tags to detect proteins oxidized after exposure. This analysis implicated signaling pathways regulating focal adhesions, cell junctions, and maintenance of the cytoskeleton. These pathways are also known to act via coordinated phosphorylation events within proteins that constitute the focal adhesion complex, including focal adhesion kinase and Crk-associated substrate. We identified the Rho family small GTP-binding protein Ras-related C3 botulinum toxin substrate 1 and p21 activated kinases 2 as operational in these signaling and localization pathways. These data support the hypothesis that reactive oxygen species from neutrophils can orchestrate epithelial cell-signaling events functioning in intestinal repair.
Collapse
Affiliation(s)
- Jason D Matthews
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Joshua A Owens
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Crystal R Naudin
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Bejan J Saeedi
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Ashfaqul Alam
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - April R Reedy
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Benjamin H Hinrichs
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago Illinois
| | - Andrew S Neish
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Rheinallt M Jones
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
27
|
Kim JS, Jeong K, Murphy JM, Rodriguez YAR, Lim STS. A Quantitative Method to Measure Low Levels of ROS in Nonphagocytic Cells by Using a Chemiluminescent Imaging System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1754593. [PMID: 31285782 PMCID: PMC6594271 DOI: 10.1155/2019/1754593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022]
Abstract
Chemiluminescence (CL) is one of the most useful methods for detecting reactive oxygen species (ROS). Although fluorescence dyes or genetically encoded biosensors have been developed, CL is still used due to its high sensitivity, ease of use, and low cost. While initially established and used to measure high levels of ROS in phagocytic cells, CL assays are not ideal for measuring low levels of ROS. Here, we developed a newly modified CL assay using a chemiluminescent imaging system for measuring low concentrations of ROS in nonphagocytic cells. We found that dissolving luminol in NaOH, rather than DMSO, increased the H2O2-induced CL signal and that the addition of 4-iodophenylboronic acid (4IPBA) further increased CL intensity. Our new system also increased the rate and intensity of the CL signal in phorbol 12-myristate 13-acetate- (PMA-) treated HT-29 colon cancer cells compared to those in luminol only. We were able to quantify ROS levels from both cells and media in parallel using an H2O2 standard. A significant benefit to our system is that we can easily measure stimulus-induced ROS formation in a real-time manner and also investigate intracellular signaling pathways from a single sample simultaneously. We found that PMA induced tyrosine phosphorylation of protein tyrosine kinases (PTKs), such as focal adhesion kinase (FAK), protein tyrosine kinase 2 (Pyk2), and Src, and increased actin stress fiber formation in a ROS-dependent manner. Interestingly, treatment with either N-acetyl-L-cysteine (NAC) or diphenyleneiodonium (DPI) reduced the PMA-stimulated phosphorylation of these PTKs, implicating a potential role in cellular ROS signaling. Thus, our newly optimized CL assay using 4IPBA and a chemiluminescent imaging method provides a simple, real-time, and low-cost method for the quantification of low levels of ROS.
Collapse
Affiliation(s)
- Jun-Sub Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - James M. Murphy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Yelitza A. R. Rodriguez
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ssang-Taek Steve Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
28
|
Munukutla S, Pan G, Palaniyandi SS. Aldehyde Dehydrogenase (ALDH) 2 in Diabetic Heart Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:155-174. [PMID: 31368103 DOI: 10.1007/978-981-13-6260-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A major pathophysiological mechanism behind the development of diabetic heart diseases is oxidative stress mediated by toxic reactive aldehydes such as 4-hydroxynonenal (4HNE). Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial enzyme that has been found to detoxify these deleterious aldehydes and thereby mitigate cardiac damage. Furthermore, its protective role in cellular signaling reverses aberrations caused by hyperglycemia, thereby protecting cardiac function. This chapter assesses the role of ALDH2 in diabetic heart diseases by examining preclinical studies where ALDH2 activity is perturbed in both decreased and increased directions. In doing so, issues in improving ALDH2 activity in select human populations are elucidated, and further research directions are discussed.
Collapse
Affiliation(s)
- Srikar Munukutla
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Suresh S Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.
- Department of Physiology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
29
|
Sarkar P, Bhowmick A, Banu S. Comparative analysis of different dietary antioxidants on oxidative stress pathway genes in L6 myotubes under oxidative stress. Cytotechnology 2018. [PMID: 29541961 DOI: 10.1007/s10616-018-0209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Enhanced oxidative stress plays an important role in the progression and onset of diabetes and its complications. Strategies or efforts meant to reduce the oxidative stress are needed which may mitigate these pathogenic processes. The present study aims to investigate the in vitro ameliorative potential of nine antioxidant molecules in L6 myotubes under oxidative stress condition induced by 4-hydroxy-2-nonenal and also to comprehend the gene expression patterns of oxidative stress genes upon the supplementation of different antioxidants in induced stress condition. The study results demonstrated a marked increase in the level of malondialdehyde and protein carbonyl content with a subsequent increase in the free radicals that was reversed by the pretreatment of different dietary antioxidant. From the expression analysis of the oxidative stress genes, it is evident that the expression of these genes is modulated by the presence of antioxidants. The highest expression was found in the cells treated with Insulin in conjugation with an antioxidant. Resveratrol is the most potent modulator followed by Mangiferin, Estragole, and Capsaicin. This comparative analysis ascertains the potency of Resveratrol along with Insulin in scavenging the reactive oxygen species (ROS) generated under induced stress conditions through antioxidant defense mechanism against excessive ROS production, contributing to the prevention of oxidative damage in L6 myotubes.
Collapse
Affiliation(s)
- Purabi Sarkar
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati, Assam, 781014, India
| | - Ananya Bhowmick
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati, Assam, 781014, India
| | - Sofia Banu
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
30
|
Lu Q, Gottlieb E, Rounds S. Effects of cigarette smoke on pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 2018; 314:L743-L756. [PMID: 29351435 DOI: 10.1152/ajplung.00373.2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cigarette smoking is the leading cause of preventable disease and death in the United States. Cardiovascular comorbidities associated with both active and secondhand cigarette smoking indicate the vascular toxicity of smoke exposure. Growing evidence supports the injurious effect of cigarette smoke on pulmonary endothelial cells and the roles of endothelial cell injury in development of acute respiratory distress syndrome (ARDS), emphysema, and pulmonary hypertension. This review summarizes results from studies of humans, preclinical animal models, and cultured endothelial cells that document toxicities of cigarette smoke exposure on pulmonary endothelial cell functions, including barrier dysfunction, endothelial activation and inflammation, apoptosis, and vasoactive mediator production. The discussion is focused on effects of cigarette smoke-induced endothelial injury in the development of ARDS, emphysema, and vascular remodeling in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center , Providence, Rhode Island.,Department of Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| | - Eric Gottlieb
- Department of Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center , Providence, Rhode Island.,Department of Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| |
Collapse
|
31
|
Herrero R, Sanchez G, Lorente JA. New insights into the mechanisms of pulmonary edema in acute lung injury. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:32. [PMID: 29430449 DOI: 10.21037/atm.2017.12.18] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Appearance of alveolar protein-rich edema is an early event in the development of acute respiratory distress syndrome (ARDS). Alveolar edema in ARDS results from a significant increase in the permeability of the alveolar epithelial barrier, and represents one of the main factors that contribute to the hypoxemia in these patients. Damage of the alveolar epithelium is considered a major mechanism responsible for the increased pulmonary permeability, which results in edema fluid containing high concentrations of extravasated macromolecules in the alveoli. The breakdown of the alveolar-epithelial barrier is a consequence of multiple factors that include dysregulated inflammation, intense leukocyte infiltration, activation of pro-coagulant processes, cell death and mechanical stretch. The disruption of tight junction (TJ) complexes at the lateral contact of epithelial cells, the loss of contact between epithelial cells and extracellular matrix (ECM), and relevant changes in the communication between epithelial and immune cells, are deleterious alterations that mediate the disruption of the alveolar epithelial barrier and thereby the formation of lung edema in ARDS.
Collapse
Affiliation(s)
- Raquel Herrero
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain
| | - Gema Sanchez
- Department of Clinical Analysis, Hospital Universitario de Getafe, Madrid, Spain
| | - Jose Angel Lorente
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
32
|
Luo J, Chen G, Liang M, Xie A, Li Q, Guo Q, Sharma R, Cheng J. Reduced Expression of Glutathione S-Transferase α 4 Promotes Vascular Neointimal Hyperplasia in CKD. J Am Soc Nephrol 2017; 29:505-517. [PMID: 29127112 DOI: 10.1681/asn.2017030290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/27/2017] [Indexed: 11/03/2022] Open
Abstract
Neointima formation is the leading cause of arteriovenous fistula (AVF) failure. We have shown that CKD accelerates this process by transforming the vascular smooth muscle cells (SMCs) lining the AVF from a contractile to the synthetic phenotype. However, the underlying mechanisms affecting this transformation are not clear. Previous studies have shown that the α-class glutathione transferase isozymes have an important role in regulating 4-hydroxynonenal (4-HNE)-mediated proliferative signaling of cells. Here, using both the loss- and gain-of-function approaches, we investigated the role of glutathione S-transferase α4 (GSTA4) in modulating cellular 4-HNE levels for the transformation and proliferation of SMCs. Compared with non-CKD controls, mice with CKD had downregulated expression of GSTA4 at the mRNA and protein levels, with concomitant increase in 4-HNE in arteries and veins. This effect was associated with upregulated phosphorylation of MAPK signaling pathway proteins in proliferating SMCs. Overexpressing GSTA4 blocked 4-HNE-induced SMC proliferation. Additionally, inhibitors of MAPK signaling inhibited the 4-HNE-induced responses. Compared with wild-type mice, mice lacking GSTA4 exhibited increased CKD-induced neointima formation in AVF. Transient expression of an activated form of GSTA4, achieved using a combined Tet-On/Cre induction system in mice, lowered levels of 4-HNE and reduced the proliferation of SMCs. Together, these results demonstrate the critical role of GSTA4 in blocking CKD-induced neointima formation and AVF failure.
Collapse
Affiliation(s)
- Jinlong Luo
- Department of Emergency, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Guang Chen
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Integrative Traditional Chinese & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; and
| | - Ming Liang
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, China
| | - Aini Xie
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Qingtian Li
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Qunying Guo
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rajendra Sharma
- Department of Integrative Traditional Chinese & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; and
| | - Jizhong Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas;
| |
Collapse
|
33
|
Romano A, Serviddio G, Calcagnini S, Villani R, Giudetti AM, Cassano T, Gaetani S. Linking lipid peroxidation and neuropsychiatric disorders: focus on 4-hydroxy-2-nonenal. Free Radic Biol Med 2017; 111:281-293. [PMID: 28063940 DOI: 10.1016/j.freeradbiomed.2016.12.046] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/27/2016] [Accepted: 12/30/2016] [Indexed: 12/25/2022]
Abstract
4-hydroxy-2-nonenal (HNE) is considered to be a strong marker of oxidative stress; the interaction between HNE and cellular proteins leads to the formation of HNE-protein adducts able to alter cellular homeostasis and cause the development of a pathological state. By virtue of its high lipid concentration, oxygen utilization, and the presence of metal ions participating to redox reactions, the brain is highly susceptible to the formation of free radicals and HNE-related compounds. A variety of neuropsychiatric disorders have been associated with elevations of HNE concentration. For example, increased levels of HNE were found in the cortex of bipolar and schizophrenic patients, while HNE plasma concentrations resulted high in patients with major depression. On the same line, high brain concentrations of HNE were found associated with Huntington's inclusions. The incidence of high HNE levels is relevant also in the brain and cerebrospinal fluid of patients suffering from Parkinson's disease. Intriguingly, in this case the increase of HNE was associated with an accumulation of iron in the substantia nigra, a brain region highly affected by the pathology. In the present review we recapitulate the findings supporting the role of HNE in the pathogenesis of different neuropsychiatric disorders to highlight the pathogenic mechanisms ascribed to HNE accumulation. The aim of this review is to offer novel perspectives both for the understanding of etiopathogenetic mechanisms that remain still unclear and for the identification of new useful biological markers. We conclude suggesting that targeting HNE-driven cellular processes may represent a new more efficacious therapeutical intervention.
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Centro Ecotekne, sp Lecce-Monteroni 73100 Lecce, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy.
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
34
|
Gargiulo S, Testa G, Gamba P, Staurenghi E, Poli G, Leonarduzzi G. Oxysterols and 4-hydroxy-2-nonenal contribute to atherosclerotic plaque destabilization. Free Radic Biol Med 2017; 111:140-150. [PMID: 28057601 DOI: 10.1016/j.freeradbiomed.2016.12.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 12/31/2022]
Abstract
A growing bulk of evidence suggests that cholesterol oxidation products, known as oxysterols, and 4-hydroxy-2-nonenal (HNE), the major proatherogenic components of oxidized low density lipoproteins (oxLDLs), significantly contribute to atherosclerotic plaque progression and destabilization, with eventual plaque rupture. These oxidized lipids are involved in various key steps of this complex process, mainly thanks to their ability to induce inflammation, oxidative stress, and apoptosis. This review summarizes the current knowledge of the effects induced by these compounds on vascular cells, after their accumulation in the arterial wall and in the atherosclerotic plaque.
Collapse
Affiliation(s)
- Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
35
|
Redox regulation in tumor cell epithelial-mesenchymal transition: molecular basis and therapeutic strategy. Signal Transduct Target Ther 2017; 2:17036. [PMID: 29263924 PMCID: PMC5661624 DOI: 10.1038/sigtrans.2017.36] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is recognized as a driving force of cancer cell metastasis and drug resistance, two leading causes of cancer recurrence and cancer-related death. It is, therefore, logical in cancer therapy to target the EMT switch to prevent such cancer metastasis and recurrence. Previous reports have indicated that growth factors (such as epidermal growth factor and fibroblast growth factor) and cytokines (such as the transforming growth factor beta (TGF-β) family) are major stimulators of EMT. However, the mechanisms underlying EMT initiation and progression remain unclear. Recently, emerging evidence has suggested that reactive oxygen species (ROS), important cellular secondary messengers involved in diverse biological events in cancer cells, play essential roles in the EMT process in cancer cells by regulating extracellular matrix (ECM) remodeling, cytoskeleton remodeling, cell–cell junctions, and cell mobility. Thus, targeting EMT by manipulating the intracellular redox status may hold promise for cancer therapy. Herein, we will address recent advances in redox biology involved in the EMT process in cancer cells, which will contribute to the development of novel therapeutic strategies by targeting redox-regulated EMT for cancer treatment.
Collapse
|
36
|
Groschner K, Shrestha N, Fameli N. Cardiovascular and Hemostatic Disorders: SOCE in Cardiovascular Cells: Emerging Targets for Therapeutic Intervention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:473-503. [PMID: 28900929 DOI: 10.1007/978-3-319-57732-6_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery of the store-operated Ca2+ entry (SOCE) phenomenon is tightly associated with its recognition as a pathway of high (patho)physiological significance in the cardiovascular system. Early on, SOCE has been investigated primarily in non-excitable cell types, and the vascular endothelium received particular attention, while a role of SOCE in excitable cells, specifically cardiac myocytes and pacemakers, was initially ignored and remains largely enigmatic even to date. With the recent gain in knowledge on the molecular components of SOCE as well as their cellular organization within nanodomains, potential tissue/cell type-dependent heterogeneity of the SOCE machinery along with high specificity of linkage to downstream signaling pathways emerged for cardiovascular cells. The basis of precise decoding of cellular Ca2+ signals was recently uncovered to involve correct spatiotemporal organization of signaling components, and even minor disturbances in these assemblies trigger cardiovascular pathologies. With this chapter, we wish to provide an overview on current concepts of cellular organization of SOCE signaling complexes in cardiovascular cells with particular focus on the spatiotemporal aspects of coupling to downstream signaling and the potential disturbance of these mechanisms by pathogenic factors. The significance of these mechanistic concepts for the development of novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Klaus Groschner
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria.
| | - Niroj Shrestha
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria
| | - Nicola Fameli
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Longato L, Andreola F, Davies SS, Roberts JL, Fusai G, Pinzani M, Moore K, Rombouts K. Reactive gamma-ketoaldehydes as novel activators of hepatic stellate cells in vitro. Free Radic Biol Med 2017; 102:162-173. [PMID: 27890721 DOI: 10.1016/j.freeradbiomed.2016.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 11/28/2022]
Abstract
AIMS Products of lipid oxidation, such as 4-hydroxynonenal (4-HNE), are key activators of hepatic stellate cells (HSC) to a pro-fibrogenic phenotype. Isolevuglandins (IsoLG) are a family of acyclic γ-ketoaldehydes formed through oxidation of arachidonic acid or as by-products of the cyclooxygenase pathway. IsoLGs are highly reactive aldehydes which are efficient at forming protein adducts and cross-links at concentrations 100-fold lower than 4-hydroxynonenal. Since the contribution of IsoLGs to liver injury has not been studied, we synthesized 15-E2-IsoLG and used it to investigate whether IsoLG could induce activation of HSC. RESULTS Primary human HSC were exposed to 15-E2-IsoLG for up to 48h. Exposure to 5μM 15-E2-IsoLG in HSCs promoted cytotoxicity and apoptosis. At non-cytotoxic doses (50 pM-500nM) 15-E2-IsoLG promoted HSC activation, indicated by increased expression of α-SMA, sustained activation of ERK and JNK signaling pathways, and increased mRNA and/or protein expression of cytokines and chemokines, which was blocked by inhibitors of JNK and NF-kB. In addition, IsoLG promoted formation of reactive oxygen species, and induced an early activation of ER stress, followed by autophagy. Inhibition of autophagy partially reduced the pro-inflammatory effects of IsoLG, suggesting that it might serve as a cytoprotective response. INNOVATION This study is the first to describe the biological effects of IsoLG in primary HSC, the main drivers of hepatic fibrosis. CONCLUSIONS IsoLGs represent a newly identified class of activators of HSC in vitro, which are biologically active at concentrations as low as 500 pM, and are particularly effective at promoting a pro-inflammatory response and autophagy.
Collapse
Affiliation(s)
- Lisa Longato
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jackson L Roberts
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Giuseppe Fusai
- Division of Surgery, University College London, Royal Free, London, UK
| | - Massimo Pinzani
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Kevin Moore
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Krista Rombouts
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK.
| |
Collapse
|
38
|
Escribano BM, Medina-Fernández FJ, Aguilar-Luque M, Agüera E, Feijoo M, Garcia-Maceira FI, Lillo R, Vieyra-Reyes P, Giraldo AI, Luque E, Drucker-Colín R, Túnez I. Lipopolysaccharide Binding Protein and Oxidative Stress in a Multiple Sclerosis Model. Neurotherapeutics 2017; 14:199-211. [PMID: 27718209 PMCID: PMC5233624 DOI: 10.1007/s13311-016-0480-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent findings in experimental autoimmune encephalomyelitis (EAE) suggest that altering certain bacterial populations present in the gut may lead to a proinflammatory condition, that could result in the development of multiple sclerosis (MS). Also, Reactive Oxygen Species seem to be involved in the course of MS. In this study, it has been aimed to relate all these variables starting from an analysis of the lipopolysaccharide (LPS) and LPS-binding protein (LBP) with the determination of parameters related to oxidative stress in the blood, brain and spinal cord. For this purpose, samples obtained from EAE rats and relapsing-remitting (RRMS) MS patients were used. In addition, EAE rats were treated with Natalizumab, N-acetyl-cysteine and dimethyl fumarate. Natalizumab was also employed in RRMS. The results of this study revealed an improvement in the clinical symptoms of the EAE and MS with the treatments, as well as a reduction in the oxidative stress parameters and in LBP. Correlations between the clinical variables of the disease, i.e. oxidative damage and LBP, were established. Although the conclusions of this research are indeed relevant, further investigation would be necessary to establish the intrinsic mechanisms of the MS-oxidative stress-microbiota relationship.
Collapse
Affiliation(s)
- Begoña M Escribano
- Departamento de Biologia Celular, Fisiologia e Inmunologia, Facultad de Veterinaria, Universidad de Cordoba, Cordoba, Spain
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
| | - Francisco J Medina-Fernández
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba, Cordoba, Spain
| | - Macarena Aguilar-Luque
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba, Cordoba, Spain
| | - Eduardo Agüera
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
- Servicio de Neurología, Hospital Universitario Reina Sofía de Cordoba, Cordoba, Spain
| | - Montserrat Feijoo
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba, Cordoba, Spain
| | | | - Rafael Lillo
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
- Departamento de Ciencias Sociosanitarias y Radiologia y Medicina Fisica, Seccion de Psiquiatria, Facultad de Medicina, Universidad de Cordoba, Cordoba, Spain
| | - Patricia Vieyra-Reyes
- Departamento Neurofisiología de la Conducta, Facultad de Medicina, Universidad Autonoma del Estado de México, Toluca, Estado de Mexico, Mexico
| | - Ana I Giraldo
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba, Cordoba, Spain
| | - Evelio Luque
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain
- Departamento de Ciencias Morfologicas, Seccion Histologia, Facultad de Medicina, Universidad de Cordoba, Cordoba, Spain
| | - René Drucker-Colín
- Departamento de Neuropatologia Molecular, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad de Mexico, D.F., Mexico
| | - Isaac Túnez
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain.
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba, Cordoba, Spain.
- Red Tematica de Investigacion Cooperativa en Envejecimiento y Fragilidad (RETICEF), Cordoba, Spain.
| |
Collapse
|
39
|
DelloStritto DJ, Sinharoy P, Connell PJ, Fahmy JN, Cappelli HC, Thodeti CK, Geldenhuys WJ, Damron DS, Bratz IN. 4-Hydroxynonenal dependent alteration of TRPV1-mediated coronary microvascular signaling. Free Radic Biol Med 2016; 101:10-19. [PMID: 27682362 PMCID: PMC5490661 DOI: 10.1016/j.freeradbiomed.2016.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/14/2016] [Accepted: 09/23/2016] [Indexed: 01/11/2023]
Abstract
We demonstrated previously that TRPV1-dependent regulation of coronary blood flow (CBF) is disrupted in diabetes. Further, we have shown that endothelial TRPV1 is differentially regulated, ultimately leading to the inactivation of TRPV1, when exposed to a prolonged pathophysiological oxidative environment. This environment has been shown to increase lipid peroxidation byproducts including 4-Hydroxynonenal (4-HNE). 4-HNE is notorious for producing protein post-translation modification (PTM) via reactions with the amino acids: cysteine, histidine and lysine. Thus, we sought to determine if 4-HNE mediated post-translational modification of TRPV1 could account for dysfunctional TRPV1-mediated signaling observed in diabetes. Our initial studies demonstrate 4-HNE infusion decreases TRPV1-dependent coronary blood flow in C57BKS/J (WT) mice. Further, we found that TRPV1-dependent vasorelaxation was suppressed after 4-HNE treatment in isolated mouse coronary arterioles. Moreover, we demonstrate 4-HNE significantly inhibited TRPV1 currents and Ca2+ entry utilizing patch-clamp electrophysiology and calcium imaging respectively. Using molecular modeling, we identified potential pore cysteines residues that, when mutated, could restore TRPV1 function in the presence of 4-HNE. Specifically, complete rescue of capsaicin-mediated activation of TRPV1 was obtained following mutation of pore Cysteine 621. Finally, His tag pull-down of TRPV1 in HEK cells treated with 4-HNE demonstrated a significant increase in 4-HNE binding to TRPV1, which was reduced in the TRPV1 C621G mutant. Taken together these data suggest that 4-HNE decreases TRPV1-mediated responses, at both the in vivo and in vitro levels and this dysfunction can be rescued via mutation of the pore Cysteine 621. Our results show the first evidence of an amino acid specific modification of TRPV1 by 4-HNE suggesting this 4-HNE-dependent modification of TRPV1 may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes.
Collapse
Affiliation(s)
- Daniel J DelloStritto
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH 44272, USA.
| | - Pritam Sinharoy
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH 44242, USA.
| | - Patrick J Connell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH 44272, USA.
| | - Joseph N Fahmy
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH 44272, USA.
| | - Holly C Cappelli
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH 44272, USA; Department of Biomedical Sciences, Kent State University, 256 Cunningham Hall, Kent, OH 44242, USA.
| | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH 44272, USA.
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, P.O. Box 9500, Morgantown, WV 26506, USA.
| | - Derek S Damron
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH 44242, USA.
| | - Ian N Bratz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH 44272, USA.
| |
Collapse
|
40
|
Luo D, Zhao J, Rong J. Plant-derived triterpene celastrol ameliorates oxygen glucose deprivation-induced disruption of endothelial barrier assembly via inducing tight junction proteins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1621-1628. [PMID: 27823626 DOI: 10.1016/j.phymed.2016.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/18/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The integrity and functions of blood-brain barrier (BBB) are regulated by the expression and organization of tight junction proteins. OBJECTIVE The present study was designed to explore whether plant-derived triterpenoid celastrol could regulate tight junction integrity in murine brain endothelial bEnd3 cells. METHODS We disrupted the tight junctions between endothelial bEnd3 cells by oxygen glucose deprivation (OGD). We investigated the effects of celastrol on the permeability of endothelial monolayers by measuring transepithelial electrical resistance (TEER). To clarify the tight junction composition, we analyzed the expression of tight junction proteins by RT-PCR and Western blotting techniques. RESULTS We found that celastrol recovered OGD-induced TEER loss in a concentration-dependent manner. Celastrol induced occludin, claudin-5 and zonula occludens-1 (ZO-1) in endothelial cells. As a result, celastrol effectively maintained tight junction integrity and inhibited macrophage migration through endothelial monolayers against OGD challenge. Further mechanistic studies revealed that celastrol induced the expression of occludin and ZO-1) via activating MAPKs and PI3K/Akt/mTOR pathway. We also observed that celastrol regulated claudin-5 expression through different mechanisms. CONCLUSION The present study demonstrated that celastrol effectively protected tight junction integrity against OGD-induced damage. Thus, celastrol could be a drug candidate for the treatment of BBB dysfunction in various diseases.
Collapse
Affiliation(s)
- Dan Luo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
41
|
Neoatherosclerosis after Drug-Eluting Stent Implantation: Roles and Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5924234. [PMID: 27446509 PMCID: PMC4944075 DOI: 10.1155/2016/5924234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/17/2023]
Abstract
In-stent neoatherosclerosis (NA), characterized by a relatively thin fibrous cap and large volume of yellow-lipid accumulation after drug-eluting stents (DES) implantation, has attracted much attention owing to its close relationship with late complications, such as revascularization and late stent thrombosis (ST). Accumulating evidence has demonstrated that more than one-third of patients with first-generation DES present with NA. Even in the advent of second-generation DES, NA still occurs. It is indicated that endothelial dysfunction induced by DES plays a critical role in neoatherosclerotic development. Upregulation of reactive oxygen species (ROS) induced by DES implantation significantly affects endothelial cells healing and functioning, therefore rendering NA formation. In light of the role of ROS in suppression of endothelial healing, combining antioxidant therapies with stenting technology may facilitate reestablishing a functioning endothelium to improve clinical outcome for patients with stenting.
Collapse
|
42
|
Galam L, Failla A, Soundararajan R, Lockey RF, Kolliputi N. 4-hydroxynonenal regulates mitochondrial function in human small airway epithelial cells. Oncotarget 2016; 6:41508-21. [PMID: 26484418 PMCID: PMC4747170 DOI: 10.18632/oncotarget.6131] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022] Open
Abstract
Prolonged exposure to oxidative stress causes Acute Lung Injury (ALI) and significantly impairs pulmonary function. Previously we have demonstrated that mitochondrial dysfunction is a key pathological factor in hyperoxic ALI. While it is known that hyperoxia induces the production of stable, but toxic 4-hydroxynonenal (4-HNE) molecule, it is unknown how the reactive aldehyde disrupts mitochondrial function. Our previous in vivo study indicated that exposure to hyperoxia significantly increases 4-HNE-Protein adducts, as well as levels of MDA in total lung homogenates. Based on the in vivo studies, we explored the effects of 4-HNE in human small airway epithelial cells (SAECs). Human SAECs treated with 25 μM of 4-HNE showed a significant decrease in cellular viability and increased caspase-3 activity. Moreover, 4-HNE treated SAECs showed impaired mitochondrial function and energy production indicated by reduced ATP levels, mitochondrial membrane potential, and aconitase activity. This was followed by a significant decrease in mitochondrial oxygen consumption and depletion of the reserve capacity. The direct effect of 4-HNE on the mitochondrial respiratory chain was confirmed using Rotenone. Furthermore, SAECs treated with 25 μM 4-HNE showed a time-dependent depletion of total Thioredoxin (Trx) proteins and Trx activity. Taken together, our results indicate that 4-HNE induces cellular and mitochondrial dysfunction in human SAECs, leading to an impaired endogenous antioxidant response.
Collapse
Affiliation(s)
- Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Athena Failla
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
43
|
Connexin43 hemichannels contributes to the disassembly of cell junctions through modulation of intracellular oxidative status. Redox Biol 2016; 9:198-209. [PMID: 27567473 PMCID: PMC5007435 DOI: 10.1016/j.redox.2016.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/28/2016] [Accepted: 08/18/2016] [Indexed: 12/25/2022] Open
Abstract
Connexin (Cx) hemichannels regulate many cellular processes with little information available regarding their mechanisms. Given that many pathological factors that activate hemichannels also disrupts the integrity of cellular junctions, we speculated a potential participation of hemichannels in the regulation of cell junctions. Here we tested this hypothesis. Exposure of renal tubular epithelial cells to Ca2+-free medium led to disassembly of tight and adherens junctions, as indicated by the reduced level of ZO-1 and cadherin, disorganization of F-actin, and severe drop in transepithelial electric resistance. These changes were preceded by an activation of Cx43 hemichannels, as revealed by extracellular efflux of ATP and intracellular influx of Lucifer Yellow. Inhibition of hemichannels with chemical inhibitors or Cx43 siRNA greatly attenuated the disassembly of cell junctions. Further analysis using fetal fibroblasts derived from Cx43 wide-type (Cx43+/+), heterozygous (Cx43+/-) and knockout (Cx43-/-) littermates showed that Cx43-positive cells (Cx43+/+) exhibited more dramatic changes in cell shape, F-actin, and cadherin in response to Ca2+ depletion, as compared to Cx43-null cells (Cx43-/-). Consistently, these cells had higher level of protein carbonyl modification and phosphorylation, and much stronger activation of P38 and JNK. Hemichannel opening led to extracellular loss of the major antioxidant glutathione (GSH). Supplement of cells with exogenous GSH or inhibition of oxidative sensitive kinases largely prevented the above-mentioned changes. Taken together, our study indicates that Cx43 hemichannels promote the disassembly of cell junctions through regulation of intracellular oxidative status. The mechanisms about the coordinated regulation of cell junctions are obscure. Ca2+ depletion activates hemichannels and disrupts cell junctions. Hemichannel opening exaggerates oxidative stress via efflux of GSH. Blocking hemichannels attenuates oxidative stress and cell junction disassembly. Hemichannels regulate cell junctions via modulation of intracellular redox status.
Collapse
|
44
|
Sulforaphane effects on postinfarction cardiac remodeling in rats: modulation of redox-sensitive prosurvival and proapoptotic proteins. J Nutr Biochem 2016; 34:106-17. [DOI: 10.1016/j.jnutbio.2016.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 12/24/2022]
|
45
|
Inhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH): Discovery, Synthesis and Development. Molecules 2016; 21:molecules21050615. [PMID: 27187323 PMCID: PMC6273216 DOI: 10.3390/molecules21050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
Dimethylarginine dimethylaminohydrolase (DDAH) is a highly conserved hydrolytic enzyme found in numerous species, including bacteria, rodents, and humans. In humans, the DDAH-1 isoform is known to metabolize endogenous asymmetric dimethylarginine (ADMA) and monomethyl arginine (l-NMMA), with ADMA proposed to be a putative marker of cardiovascular disease. Current literature reports identify the DDAH family of enzymes as a potential therapeutic target in the regulation of nitric oxide (NO) production, mediated via its biochemical interaction with the nitric oxide synthase (NOS) family of enzymes. Increased DDAH expression and NO production have been linked to multiple pathological conditions, specifically, cancer, neurodegenerative disorders, and septic shock. As such, the discovery, chemical synthesis, and development of DDAH inhibitors as potential drug candidates represent a growing field of interest. This review article summarizes the current knowledge on DDAH inhibition and the derived pharmacokinetic parameters of the main DDAH inhibitors reported in the literature. Furthermore, current methods of development and chemical synthetic pathways are discussed.
Collapse
|
46
|
Gargiulo S, Gamba P, Testa G, Leonarduzzi G, Poli G. The role of oxysterols in vascular ageing. J Physiol 2016; 594:2095-113. [PMID: 26648329 DOI: 10.1113/jp271168] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/06/2015] [Indexed: 12/24/2022] Open
Abstract
The ageing endothelium progressively loses its remarkable and crucial ability to maintain homeostasis of the vasculature, as it acquires a proinflammatory phenotype. Cellular and structural changes gradually accumulate in the blood vessels, and markedly in artery walls. Most changes in aged arteries are comparable to those occurring during the atherogenic process, the latter being more marked: pro-oxidant and proinflammatory molecules, mainly deriving from or triggered by oxidized low density lipoproteins (oxLDLs), are undoubtedly a major driving force of this process. Oxysterols, quantitatively relevant components of oxLDLs, are likely candidate molecules in the pathogenesis of vascular ageing, because of their marked pro-oxidant, proinflammatory and proapoptotic properties. An increasing bulk of experimental data point to the contribution of a variety of oxysterols of pathophysiological interest, also in the age-related genesis of endothelium dysfunction, intimal thickening due to lipid accumulation, and smooth muscle cell migration and arterial stiffness due to increasing collagen deposition and calcification. This review provides an updated analysis of the molecular mechanisms whereby oxysterols accumulating in the wall of ageing blood vessels may 'activate' endothelial and monocytic cells, through expression of an inflammatory phenotype, and 'convince' smooth muscle cells to proliferate, migrate and, above all, to act as fibroblast-like cells.
Collapse
Affiliation(s)
- Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| |
Collapse
|
47
|
Fu P, Usatyuk PV, Jacobson J, Cress AE, Garcia JGN, Salgia R, Natarajan V. Role played by paxillin and paxillin tyrosine phosphorylation in hepatocyte growth factor/sphingosine-1-phosphate-mediated reactive oxygen species generation, lamellipodia formation, and endothelial barrier function. Pulm Circ 2015; 5:619-30. [PMID: 26697169 DOI: 10.1086/683693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Paxillin is a multifunctional and multidomain focal adhesion adaptor protein. It serves as an important scaffolding protein at focal adhesions by recruiting and binding to structural and signaling molecules. Paxillin tyrosine phosphorylation at Y31 and Y118 is important for paxillin redistribution to focal adhesions and angiogenesis. Hepatocyte growth factor (HGF) and sphingosine-1-phosphate (S1P) are potent stimulators of lamellipodia formation, a prerequisite for endothelial cell migration. The role played by paxillin and its tyrosine phosphorylated forms in HGF- or S1P-induced lamellipodia formation and barrier function is unclear. HGF or S1P stimulated lamellipodia formation, tyrosine phosphorylation of paxillin at Y31 and Y118, and c-Abl in human lung microvascular endothelial cells (HLMVECs). Knockdown of paxillin with small interfering RNA (siRNA) or transfection with paxillin mutants (Y31F or Y118F) mitigated HGF- or S1P-induced lamellipodia formation, translocation of p47 (phox) to lamellipodia, and reactive oxygen species (ROS) generation in HLMVECs. Furthermore, exposure of HLMVECs to HGF or S1P stimulated c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 in a time-dependent fashion, and down-regulation of c-Abl with siRNA attenuated HGF- or S1P-mediated lamellipodia formation, translocation of p47 (phox) to lamellipodia, and endothelial barrier enhancement. In vivo, knockdown of paxillin with siRNA in mouse lungs attenuated ventilator-induced lung injury. Together, these results suggest that c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 regulates HGF- or S1P-mediated lamellipodia formation, ROS generation in lamellipodia, and endothelial permeability.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
| | - Peter V Usatyuk
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
| | - Jeffrey Jacobson
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Anne E Cress
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Joe G N Garcia
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Ravi Salgia
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA ; Department of Medicine, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
48
|
Mono-(2-ethylhexyl) phthalate (MEHP) affects intercellular junctions of Sertoli cell: A potential role of oxidative stress. Reprod Toxicol 2015; 58:203-12. [PMID: 26498383 DOI: 10.1016/j.reprotox.2015.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 12/19/2022]
Abstract
We analyzed the potential role of oxidative stress induced by mono (2-ethylhexyl) phthalate (MEHP) in adherent cell junction protein expression of prepubertal rat Sertoli cells (SC) in vitro. Five-day SC cultures were treated with MEHP (200μM) for 24h and compared to cells in basal conditions. Western blot and immunofluorescent (IF) analyses showed that MEHP induced increase of N-cadherin and catenin expression, modifying its distribution. Concomitantly, Cx-43 expression decreased significantly and delocalization of the IF signal for tight junction proteins (occludin, claudin-11 and ZO-1) occurred. Indicative of oxidative stress, MEHP induced in SC an increase of lipoperoxides, a decrease in glutathione (GSH) levels and a concomitant increase in Glutathione S-Transferases (GST) activity. Antioxidant N-acetyl-cysteine (1mM) treatment prevented GSH decrease and N-cadherin and α-catenin up-regulation induced by MEHP. Our data suggest that oxidative stress signaling is a mechanism involved in adherent cell junctions disruption induced by MEHP in SC cultures.
Collapse
|
49
|
Yamaguchi T, Yoneyama M, Hinoi E, Ogita K. Involvement of calpain in 4-hydroxynonenal-induced disruption of gap junction-mediated intercellular communication among fibrocytes in primary cultures derived from the cochlear spiral ligament. J Pharmacol Sci 2015; 129:127-34. [PMID: 26499182 DOI: 10.1016/j.jphs.2015.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/24/2015] [Accepted: 09/27/2015] [Indexed: 11/20/2022] Open
Abstract
The endocochlear potential in the inner ear is essential for hearing ability, and maintained by various K(+) transport apparatuses including Na(+), K(+)-ATPase and gap junction-mediated intercellular communication (GJ-IC) in the lateral wall structures of the cochlea. Noise-induced hearing loss is known at least in part due to disruption of GJ-IC resulting from an oxidative stress-induced decrease in connexins (Cxs) level in the lateral wall structures. The purpose of this study was to investigate, using primary cultures of fibrocytes from the cochlear spiral ligament of mice, the mechanism underlying GJ-IC disruption induced by 4-hydroxynonenal (4-HNE), which is formed as a mediator of oxidative stress. An exposure to 4-HNE produced the following events: i.e., an increase in 4-HNE-adducted proteins; a decrease in the protein levels of Cx43, β-catenin, and Cx43/β-catenin complex along with intracellular translocation of this complex from the cell membrane to the cytoplasm; enhanced calpain-dependent degradation of endogenous α-fodrin; and disruption of GJ-IC. The 4-HNE-induced decrease in these protein levels and disruption of GJ-IC were most completely abolished by the calpain inhibitor PD150606. Taken together, our data suggest that 4-HNE disrupted GJ-IC through calpain-mediated degradation of Cx43 and β-catenin in primary cultures of fibrocytes derived from the cochlear spiral ligament.
Collapse
Affiliation(s)
- Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan; Laboratory of Molecular Pharmacology, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | - Masanori Yoneyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | - Kiyokazu Ogita
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan.
| |
Collapse
|
50
|
Calamaras TD, Lee C, Lan F, Ido Y, Siwik DA, Colucci WS. The lipid peroxidation product 4-hydroxy-trans-2-nonenal causes protein synthesis in cardiac myocytes via activated mTORC1-p70S6K-RPS6 signaling. Free Radic Biol Med 2015; 82:137-46. [PMID: 25617592 PMCID: PMC4387097 DOI: 10.1016/j.freeradbiomed.2015.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/03/2014] [Accepted: 01/11/2015] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS) are elevated in the heart in response to hemodynamic and metabolic stress and promote hypertrophic signaling. ROS also mediate the formation of lipid peroxidation-derived aldehydes that may promote myocardial hypertrophy. One lipid peroxidation by-product, 4-hydroxy-trans-2-nonenal (HNE), is a reactive aldehyde that covalently modifies proteins thereby altering their function. HNE adducts directly inhibit the activity of LKB1, a serine/threonine kinase involved in regulating cellular growth in part through its interaction with the AMP-activated protein kinase (AMPK), but whether this drives myocardial growth is unclear. We tested the hypothesis that HNE promotes myocardial protein synthesis and if this effect is associated with impaired LKB1-AMPK signaling. In adult rat ventricular cardiomyocytes, exposure to HNE (10 μM for 1h) caused HNE-LKB1 adduct formation and inhibited LKB1 activity. HNE inhibited the downstream kinase AMPK, increased hypertrophic mTOR-p70S6K-RPS6 signaling, and stimulated protein synthesis by 27.1 ± 3.5%. HNE also stimulated Erk1/2 signaling, which contributed to RPS6 activation but was not required for HNE-stimulated protein synthesis. HNE-stimulated RPS6 phosphorylation was completely blocked using the mTOR inhibitor rapamycin. To evaluate if LKB1 inhibition by itself could promote the hypertrophic signaling changes observed with HNE, LKB1 was depleted in adult rat ventricular myocytes using siRNA. LKB1 knockdown did not replicate the effect of HNE on hypertrophic signaling or affect HNE-stimulated RPS6 phosphorylation. Thus, in adult cardiac myocytes HNE stimulates protein synthesis by activation of mTORC1-p70S6K-RPS6 signaling most likely mediated by direct inhibition of AMPK. Because HNE in the myocardium is commonly increased by stimuli that cause pathologic hypertrophy, these findings suggest that therapies that prevent activation of mTORC1-p70S6K-RPS6 signaling may be of therapeutic value.
Collapse
Affiliation(s)
- Timothy D Calamaras
- Myocardial Biology Unit, Cardiovascular Medicine, and Diabetes and Metabolism Research Unit, Section of Endocrinology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Charlie Lee
- Brigham and Women׳s Hospital, Boston, MA 02115, USA
| | - Fan Lan
- Department of Endocrinology, Second Affiliated Hospital Chongqing Medical University, Chongqing, China
| | - Yasuo Ido
- Diabetes and Metabolism Research Unit, Section of Endocrinology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Deborah A Siwik
- Myocardial Biology Unit, Cardiovascular Medicine, and Diabetes and Metabolism Research Unit, Section of Endocrinology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Wilson S Colucci
- Myocardial Biology Unit, Cardiovascular Medicine, and Diabetes and Metabolism Research Unit, Section of Endocrinology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|