1
|
Wang C, Du M, Jiang Z, Cong R, Wang W, Zhang G, Li L. Comparative proteomic and phosphoproteomic analysis reveals differential heat response mechanism in two congeneric oyster species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115197. [PMID: 37451098 DOI: 10.1016/j.ecoenv.2023.115197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
High-temperature stress caused by global climate change poses a significant threat to marine ectotherms. This study investigated the role of protein phosphorylation modifications in the molecular regulation network under heat stress in oysters, which are representative intertidal organisms that experience considerable temperature changes. Firstly, the study compared the extent of thermal damage between two congeneric oyster species, the relative heat-tolerant Crassostrea angulata (C. angulata) and heat-sensitive Crassostrea gigas (C. gigas), under sublethal temperature (37 °C) for 12 h, using various physiological and biochemical methods. Subsequently, the comparative proteomic and phosphoproteomic analyses revealed that high-temperature considerably regulated signal transduction, energy metabolism, protein synthesis, cell survival and apoptosis, and cytoskeleton remodeling through phosphorylation modifications of related receptors and kinases. Furthermore, the protein kinase A, mitogen-activated protein kinase 1, tyrosine-protein kinase Src, and serine/threonine kinase AKT, exhibiting differential phosphorylation modification patterns, were identified as hub regulators that may enhance glycolysis and TCA cycle to increase the energy supply, distribute protein synthesis, inhibit Caspase-dependent apoptosis activated by endogenous mitochondrial cytochrome release and maintain cytoskeletal stability, ultimately shaping the higher thermal resistance of C. angulata. This study represents the first investigation of protein phosphorylation dynamics in marine invertebrates under heat stress, reveals the molecular mechanisms underlying the differential thermal responses between two Crassostrea oysters at the phosphorylation level, and provides new insights into understanding phosphorylation-mediated molecular responses in marine organisms during environmental changes and predicting the adaptive potential in the context of global warming.
Collapse
Affiliation(s)
- Chaogang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mingyang Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhuxiang Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China.
| |
Collapse
|
2
|
Hu L, Liu M, Tang B, Li Q, Pan BS, Xu C, Lin HK. Posttranslational regulation of liver kinase B1 (LKB1) in human cancer. J Biol Chem 2023; 299:104570. [PMID: 36870679 PMCID: PMC10068580 DOI: 10.1016/j.jbc.2023.104570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Liver kinase B1 (LKB1) is a serine-threonine kinase that participates in multiple cellular and biological processes, including energy metabolism, cell polarity, cell proliferation, cell migration, and many others. LKB1 is initially identified as a germline-mutated causative gene in Peutz-Jeghers syndrome (PJS) and is commonly regarded as a tumor suppressor due to frequent inactivation in a variety of cancers. LKB1 directly binds and activates its downstream kinases including the AMP-activated protein kinase (AMPK) and AMPK-related kinases by phosphorylation, which has been intensively investigated for the past decades. An increasing number of studies has uncovered the posttranslational modifications (PTMs) of LKB1 and consequent changes in its localization, activity, and interaction with substrates. The alteration in LKB1 function as a consequence of genetic mutations and aberrant upstream signaling regulation leads to tumor development and progression. Here, we review current knowledge about the mechanism of LKB1 in cancer and the contributions of PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, prenylation, and others, to the regulation of LKB1 function, offering new insights into the therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxin Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Tang
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
3
|
Scaduto P, Lauterborn JC, Cox CD, Fracassi A, Zeppillo T, Gutierrez BA, Keene CD, Crane PK, Mukherjee S, Russell WK, Taglialatela G, Limon A. Functional excitatory to inhibitory synaptic imbalance and loss of cognitive performance in people with Alzheimer's disease neuropathologic change. Acta Neuropathol 2023; 145:303-324. [PMID: 36538112 PMCID: PMC9925531 DOI: 10.1007/s00401-022-02526-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Individuals at distinct stages of Alzheimer's disease (AD) show abnormal electroencephalographic activity, which has been linked to network hyperexcitability and cognitive decline. However, whether pro-excitatory changes at the synaptic level are observed in brain areas affected early in AD, and if they are emergent in MCI, is not clearly known. Equally important, it is not known whether global synaptic E/I imbalances correlate with the severity of cognitive impairment in the continuum of AD. Measuring the amplitude of ion currents of human excitatory and inhibitory synaptic receptors microtransplanted from the hippocampus and temporal cortex of cognitively normal, mildly cognitively impaired and AD individuals into surrogate cells, we found regional differences in pro-excitatory shifts of the excitatory to inhibitory (E/I) current ratio that correlates positively with toxic proteins and degree of pathology, and impinges negatively on cognitive performance scores. Using these data with electrophysiologically anchored analysis of the synapto-proteome in the same individuals, we identified a group of proteins sustaining synaptic function and those related to synaptic toxicity. We also found an uncoupling between the function and expression of proteins for GABAergic signaling in the temporal cortex underlying larger E/I and worse cognitive performance. Further analysis of transcriptomic and in situ hybridization datasets from an independent cohort across the continuum of AD confirm regional differences in pro-excitatory shifts of the E/I balance that correlate negatively with the most recent calibrated composite scores for memory, executive function, language and visuospatial abilities, as well as overall cognitive performance. These findings indicate that early shifts of E/I balance may contribute to loss of cognitive capabilities in the continuum of AD clinical syndrome.
Collapse
Affiliation(s)
- Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Julie C Lauterborn
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Anna Fracassi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Tommaso Zeppillo
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Berenice A Gutierrez
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
4
|
Bourouh M, Marignani PA. The Tumor Suppressor Kinase LKB1: Metabolic Nexus. Front Cell Dev Biol 2022; 10:881297. [PMID: 35573694 PMCID: PMC9097215 DOI: 10.3389/fcell.2022.881297] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Liver kinase B1 (LKB1) is a multitasking tumor suppressor kinase that is implicated in multiple malignancies such as lung, gastrointestinal, pancreatic, and breast. LKB1 was first identified as the gene responsible for Peutz-Jeghers syndrome (PJS) characterized by hamartomatous polyps and oral mucotaneous pigmentation. LKB1 functions to activate AMP-activated protein kinase (AMPK) during energy stress to shift metabolic processes from active anabolic pathways to active catabolic pathways to generate ATP. Genetic loss or inactivation of LKB1 promotes metabolic reprogramming and metabolic adaptations of cancer cells that fuel increased growth and division rates. As a result, LKB1 loss is associated with increased aggressiveness and treatment options for patients with LKB1 mutant tumors are limited. Recently, there has been new insights into the role LKB1 has on metabolic regulation and the identification of potential vulnerabilities in LKB1 mutant tumors. In this review, we discuss the tumor suppressive role of LKB1 and the impact LKB1 loss has on metabolic reprograming in cancer cells, with a focus on lung cancer. We also discuss potential therapeutic avenues to treat malignancies associated with LKB1 loss by targeting aberrant metabolic pathways associated with LKB1 loss.
Collapse
Affiliation(s)
- Mohammed Bourouh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University Halifax, Halifax, NS, Canada
| | - Paola A Marignani
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University Halifax, Halifax, NS, Canada
| |
Collapse
|
5
|
Zhang QL, Wang Y, Liu JS, DU YZ. Effects of hypercaloric diet-induced hyperinsulinemia and hyperlipidemia on the ovarian follicular development in mice. J Reprod Dev 2022; 68:173-180. [PMID: 35236789 PMCID: PMC9184829 DOI: 10.1262/jrd.2021-132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-term hypercaloric diets may adversely affect the development of ovarian follicles. We investigated the effects of high sugar (HS), high fat low sugar (HFLS), and high fat normal sugar
(HFNS) diets on the ovarian follicle development in mice fed with these diets as compared to those fed with normal diet (control) for 180 days. Body weight, gonadal fat, glucose, lipid,
insulin, estrous cycle, sex hormones and ovarian tissues were examined, and metabolism-related protein expression in the ovaries was evaluated by immunoblotting. The mice fed with
hypercaloric diets showed hyperinsulinemia and hyperlipidemia, and exhibited heavier body and gonadal fat weights, longer estrous cycles, and fewer preantral and antral follicles than mice
fed with normal diet. The sex hormone levels in the blood were similar to those in controls, except for significantly elevated estradiol levels in the HS diet group. The AMPKα
phosphorylation was reduced, while AKT phosphorylation and caspase-3 levels were increased in the ovarian tissues of mice in all three hypercaloric diet groups than those in control. Taken
together, the results suggest hyperinsulinemia and hyperlipidemia as possible mechanisms that impair the development of ovarian follicles in response to long-term exposure to unhealthy
hypercaloric diets.
Collapse
Affiliation(s)
- Qiao-Li Zhang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Yan Wang
- Department of Immunology and Pathogenic Biology, Molecular Bacteriology Laboratory, Key Laboratory of Environment and Genes Related to Diseases of Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jian-Sheng Liu
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Yan-Zhi DU
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| |
Collapse
|
6
|
Bileck A, Bortel P, Kriz M, Janker L, Kiss E, Gerner C, Del Favero G. Inward Outward Signaling in Ovarian Cancer: Morpho-Phospho-Proteomic Profiling Upon Application of Hypoxia and Shear Stress Characterizes the Adaptive Plasticity of OVCAR-3 and SKOV-3 Cells. Front Oncol 2022; 11:746411. [PMID: 35251951 PMCID: PMC8896345 DOI: 10.3389/fonc.2021.746411] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/27/2021] [Indexed: 12/26/2022] Open
Abstract
With the onset of resistance, ovarian cancer cells display almost unpredictable adaptive potential. This may derive from the tumor genetic ancestry and can be additionally tailored by post translational protein modifications (PTMs). In this study, we took advantage of high-end (phospho)-proteome analysis combined with multiparametric morphometric profiling in high-grade serous (OVCAR-3) and non-serous (SKOV-3) ovarian carcinoma cells. For functional experiments, we applied two different protocols, representing typical conditions of the abdominal cavity and of the growing tumor tissue: on the one side hypoxia (oxygen 1%) which develops within the tumor mass or is experienced during migration/extravasation in non-vascularized areas. On the other hand, fluid shear stress (250 rpm, 2.8 dyn/cm2) which affects tumor surface in the peritoneum or metastases in the bloodstream. After 3 hours incubation, treatment groups were clearly distinguishable by PCA analysis. Whereas basal proteome profiles of OVCAR-3 and SKOV-3 cells appeared almost unchanged, phosphoproteome analysis revealed multiple regulatory events. These affected primarily cellular structure and proliferative potential and consolidated in the proteome signature after 24h treatment. Upon oxygen reduction, metabolism switched toward glycolysis (e.g. upregulation hexokinase-2; HK2) and cell size increased, in concerted regulation of pathways related to Rho-GTPases and/or cytoskeletal elements, resembling a vasculogenic mimicry response. Shear stress regulated proteins governing cell cycle and structure, as well as the lipid metabolism machinery including the delta(14)-sterol reductase, kinesin-like proteins (KIF-22/20A) and the actin-related protein 2/3 complex. Independent microscopy-based validation experiments confirmed cell-type specific morphometric responses. In conclusion, we established a robust workflow enabling the description of the adaptive potential of ovarian cancer cells to physical and chemical stressors typical for the abdominal cavity and supporting the identification of novel molecular mechanisms sustaining tumor plasticity and pharmacologic resistance.
Collapse
Affiliation(s)
- Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Patricia Bortel
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Michelle Kriz
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
- Department of Food Chemistry and Toxicology, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Endre Kiss
- Core Facility Multimodal Imaging, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry University of Vienna, Vienna, Austria
- *Correspondence: Giorgia Del Favero, ; Christopher Gerner,
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry University of Vienna, Vienna, Austria
- *Correspondence: Giorgia Del Favero, ; Christopher Gerner,
| |
Collapse
|
7
|
Deng J, Wen C, Ding X, Zhang X, Hou G, Liu A, Xu H, Cao X, Bai Y. LKB1-MARK2 signalling mediates lipopolysaccharide-induced production of cytokines in mouse macrophages. J Cell Mol Med 2020; 24:11307-11317. [PMID: 32841502 PMCID: PMC7576310 DOI: 10.1111/jcmm.15710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/17/2020] [Accepted: 07/10/2020] [Indexed: 01/25/2023] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin involved in a number of acute and chronic inflammatory syndromes. Although LPS-induced signalling has been extensively studied, there are still mysteries remaining to be revealed. In the current study, we used high-throughput phosphoproteomics to profile LPS-initiated signalling and aimed to find novel mediators. A total of 448 phosphoproteins with 765 phosphorylation sites were identified, and we further validated that the phosphorylation of MARK2 on T208 was important for the regulation on LPS-induced CXCL15 (human IL-8 homolog), IL-1β, IL-6 and TNF-α release, in which LKB1 had a significant contribution. In summary, induction of cytokines by LPS in mouse macrophage is regulated by LKB1-MARK2 signals. Our study provides new clues for further exploring the underlying mechanisms of LPS-induced diseases, and new therapeutic approaches concerning bacterial infection may be derived from these findings.
Collapse
Affiliation(s)
- Jie Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chunmei Wen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiangyu Ding
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xi Zhang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoqing Hou
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andong Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xu
- Ultrastructural Pathology Laboratory, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Cao
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Chronic Kidney Disease, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Gong Y, Wang C, Jiang Y, Zhang S, Feng S, Fu Y, Luo Y. Metformin Inhibits Tumor Metastasis through Suppressing Hsp90α Secretion in an AMPKα1-PKCγ Dependent Manner. Cells 2020; 9:cells9010144. [PMID: 31936169 PMCID: PMC7016760 DOI: 10.3390/cells9010144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin has been documented in epidemiological studies to mitigate tumor progression. Previous reports show that metformin inhibits tumor migration in several cell lines, such as MCF-7 and H1299, but the mechanisms whereby metformin exerts its inhibitory effects on tumor metastasis remain largely unknown. The secreted proteins in cancer cell-derived secretome have been reported to play important roles in tumor metastasis, but whether metformin has an effect on tumor secretome remains unclear. Here we show that metformin inhibits tumor metastasis by suppressing Hsp90α (heat shock protein 90α) secretion. Mass spectrometry (MS) analysis and functional validation identify that eHsp90α (extracellular Hsp90α) is one of the most important secreted proteins for metformin to inhibit tumor cells migration, invasion and metastasis both in vitro and in vivo. Moreover, we find that metformin inhibits Hsp90α secretion in an AMPKα1 dependent manner. Our data elucidate that AMPKα1 (AMP-activated protein kinase α1) decreases the phosphorylation level of Hsp90α by inhibiting the kinase activity of PKCγ (protein kinase Cγ), which suppresses the membrane translocation and secretion of Hsp90α. Collectively, our results illuminate that metformin inhibits tumor metastasis by suppressing Hsp90α secretion in an AMPKα1 dependent manner.
Collapse
Affiliation(s)
- Yuanchao Gong
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Caihong Wang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Jiang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shaosen Zhang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shi Feng
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Correspondence: ; Tel.: +86-10-6277-2897; Fax: +86-10-6279-4691
| |
Collapse
|
9
|
Cao Z, Li G, Shao Q, Yang G, Zheng L, Zhang T, Zhao Y. CHIP: A new modulator of human malignant disorders. Oncotarget 2018; 7:29864-74. [PMID: 27007160 PMCID: PMC5045438 DOI: 10.18632/oncotarget.8219] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
Carboxyl terminus of Hsc70-interacting protein (CHIP) is known as a chaperone-associated E3 for a variety of protein substrates. It acts as a link between molecular chaperones and ubiquitin-proteasome system. Involved in the process of protein clearance, CHIP plays a critical role in maintaining protein homeostasis in diverse conditions. Here, we provide a comprehensive review of our current understanding of CHIP and summarize recent advances in CHIP biology, with a focus on CHIP in the setting of malignancies.
Collapse
Affiliation(s)
- Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanqiao Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianqian Shao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Zhang C, Xiao X, Chen M, Aldharee H, Chen Y, Long W. Liver kinase B1 restoration promotes exosome secretion and motility of lung cancer cells. Oncol Rep 2017; 39:376-382. [PMID: 29138862 PMCID: PMC5783601 DOI: 10.3892/or.2017.6085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022] Open
Abstract
Liver kinase B1 (LKB1) regulates a variety of cellular functions, including cell polarity, energy metabolism and cell growth, by targeting multiple signaling pathways such as AMPK/mTOR and p53. LKB1 functions as a tumor suppressor in sporadic cancers including lung cancer. Extracellular vesicles such as exosomes secreted by cancer cells modulate the tumor microenvironment and progression by targeting both tumor cells (autocrine actions) and other types of cells associated with tumors (paracrine actions). While the roles of LKB1 in cellular signaling in general is well-studied, its specific role in exosome-mediated signaling remains to be explored. To this purpose, we reintroduced LKB1 into H460 and A549 lung cancer cells that are endogenously deficient in LKB1 expression. Notably, we found that while restoration of LKB1 significantly reduced lung cancer cell growth as expected, it greatly promoted cell motility and enhanced the release of exosomes. In addition, exosomes isolated from H460 cells with stable restoration of LKB1 had much higher ability in stimulating lung cancer cell migration than did those from H460 cells lacking LKB1. Mechanistically, restoration of LKB1 in H460 cells inhibited cellular expression and exosomal secretion of migration-suppressing microRNAs (miRNAs), including miR-125a, miR-126 and let7b. Taken together, the present study revealed a new role for LKB1 in promoting cell motility by downregulating migration-suppressing miRNA expression and exosome secretion.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | - Xiang Xiao
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435, USA
| | - Minyi Chen
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | - Hitham Aldharee
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435, USA
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
11
|
Novozhylov DO, Karpov PA, Blume YB. Bioinformatic search for Ca2+- and calmodulin-dependent protein kinases potentially associated with the regulation of plant cytoskeleton. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717040053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Deoxypodophyllotoxin suppresses tumor vasculature in HUVECs by promoting cytoskeleton remodeling through LKB1-AMPK dependent Rho A activatio. Oncotarget 2016; 6:29497-512. [PMID: 26470595 PMCID: PMC4745742 DOI: 10.18632/oncotarget.4985] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/16/2015] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis plays a critical role in the growth and metastasis of tumors, which makes it an attractive target for anti-tumor drug development. Deoxypodophyllotoxin (DPT), a natural product isolated from Anthriscus sylvestris, inhibits cell proliferation and migration in various cancer cell types. Our previous studies indicate that DPT possesses both anti-angiogenic and vascular-disrupting activities. Although the RhoA/ RhoA kinase (ROCK) signaling pathway is implicated in DPT-stimulated cytoskeleton remodeling and tumor vasculature suppressing, the detailed mechanisms by which DPT mediates these effects are poorly understood. In the current study, we found that DPT promotes cytoskeleton remodeling in human umbilical vein endothelial cells (HUVECs) via stimulation of AMP-activated protein kinase (AMPK) and that this effect is abolished by either treatment with a selective AMPK inhibitor or knockdown. Moreover, the cellular levels of LKB1, a kinase upstream of AMPK, were enhanced following DPT exposure. DPT-induced activation of AMPK in tumor vasculature effect was also verified by transgenic zebrafish (VEGFR2:GFP), Matrigel plug assay, and xenograft model in nude mice. The present findings may lay the groundwork for a novel therapeutic approach in treating cancer.
Collapse
|
13
|
Bertoldo MJ, Guibert E, Faure M, Guillou F, Ramé C, Nadal-Desbarats L, Foretz M, Viollet B, Dupont J, Froment P. Specific deletion of AMP-activated protein kinase (α1AMPK) in mouse Sertoli cells modifies germ cell quality. Mol Cell Endocrinol 2016; 423:96-112. [PMID: 26772142 DOI: 10.1016/j.mce.2016.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 11/28/2022]
Abstract
The AMP-activated protein kinase (AMPK) is an important regulator of cellular energy homeostasis which plays a role in fertility. Complete disruption of the AMPK catalytic subunit α1 gene (α1AMPK KO) in male mice results in a decrease in litter size which is associated with the production of altered sperm morphology and motility. Because of the importance of Sertoli cells in the formation of germ cells, we have chosen to selectively disrupt α1AMPK only in the Sertoli cells in mice (Sc-α1AMPK-KO mice). Specific deletion of the α1AMPK gene in Sertoli cells resulted in a 25% reduction in male fertility associated with abnormal spermatozoa with a thin head. No clear alterations in testis morphology or modification in the number of Sertoli cells in vivo were observed, but a dysregulation in energy metabolism in Sertoli cells occurred. We have reported an increase in lactate production, in lipid droplets, and a reduction in ATP production in Sc-α1AMPK-KO Sertoli cells. These perturbations were associated with lower expression of mitochondrial markers (cytochrome c and PGC1-α). In addition another metabolic sensor, the deacetylase SIRT1, had a reduction in expression which is correlated with a decline in deacetylase activity. Finally, expression and localization of junctions forming the blood-testis barrier between Sertoli cells themselves and with germ cells were deregulated in Sc-α1AMPK-KO. In conclusion, these results suggest that dysregulation of the energy sensing machinery exclusively through disruption of α1AMPK in Sertoli cells translates to a reduction in the quality of germ cells and fertility.
Collapse
Affiliation(s)
- Michael J Bertoldo
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Centre Val de Loire, UMR85, 37380 Nouzilly, France; School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales, Sydney, NSW, Australia
| | - Edith Guibert
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Centre Val de Loire, UMR85, 37380 Nouzilly, France
| | - Melanie Faure
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Centre Val de Loire, UMR85, 37380 Nouzilly, France
| | - Florian Guillou
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Centre Val de Loire, UMR85, 37380 Nouzilly, France
| | - Christelle Ramé
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Centre Val de Loire, UMR85, 37380 Nouzilly, France
| | - Lydie Nadal-Desbarats
- INSERM U930, Équipe Neurogénétique et Neurométabolomique, Université François-Rabelais, 37044 Tours, France; Département d'Analyse Chimique Biologique et Médicale, PPF "Analyses des Systèmes Biologiques", Université François-Rabelais, Tours, France
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Univ Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Univ Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Joëlle Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Centre Val de Loire, UMR85, 37380 Nouzilly, France
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Centre Val de Loire, UMR85, 37380 Nouzilly, France.
| |
Collapse
|
14
|
Bertoldo MJ, Faure M, Dupont J, Froment P. AMPK: a master energy regulator for gonadal function. Front Neurosci 2015; 9:235. [PMID: 26236179 PMCID: PMC4500899 DOI: 10.3389/fnins.2015.00235] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/19/2015] [Indexed: 12/11/2022] Open
Abstract
From C. elegans to mammals (including humans), nutrition and energy metabolism significantly influence reproduction. At the cellular level, some detectors of energy status indicate whether energy reserves are abundant (obesity), or poor (diet restriction). One of these detectors is AMPK (5′ AMP-activated protein kinase), a protein kinase activated by ATP deficiency but also by several natural substances such as polyphenols or synthetic molecules like metformin, used in the treatment of insulin resistance. AMPK is expressed in muscle and liver, but also in the ovary and testis. This review focuses on the main effects of AMPK identified in gonadal cells. We describe the role of AMPK in gonadal steroidogenesis, in proliferation and survival of somatic gonadal cells and in the maturation of oocytes or spermatozoa. We discuss also the role of AMPK in germ and somatic cell interactions within the cumulus-oocyte complex and in the blood testis barrier. Finally, the interface in the gonad between AMPK and modification of metabolism is reported and discussion about the role of AMPK on fertility, in regards to the treatment of infertility associated with insulin resistance (male obesity, polycystic ovary syndrome).
Collapse
Affiliation(s)
- Michael J Bertoldo
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales Sydney, NSW, Australia
| | - Melanie Faure
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| | - Joëlle Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| |
Collapse
|
15
|
Swisa A, Granot Z, Tamarina N, Sayers S, Bardeesy N, Philipson L, Hodson DJ, Wikstrom JD, Rutter GA, Leibowitz G, Glaser B, Dor Y. Loss of Liver Kinase B1 (LKB1) in Beta Cells Enhances Glucose-stimulated Insulin Secretion Despite Profound Mitochondrial Defects. J Biol Chem 2015; 290:20934-20946. [PMID: 26139601 PMCID: PMC4543653 DOI: 10.1074/jbc.m115.639237] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor liver kinase B1 (LKB1) is an important regulator of pancreatic β cell biology. LKB1-dependent phosphorylation of distinct AMPK (adenosine monophosphate-activated protein kinase) family members determines proper β cell polarity and restricts β cell size, total β cell mass, and glucose-stimulated insulin secretion (GSIS). However, the full spectrum of LKB1 effects and the mechanisms involved in the secretory phenotype remain incompletely understood. We report here that in the absence of LKB1 in β cells, GSIS is dramatically and persistently improved. The enhancement is seen both in vivo and in vitro and cannot be explained by altered cell polarity, increased β cell number, or increased insulin content. Increased secretion does require membrane depolarization and calcium influx but appears to rely mostly on a distal step in the secretion pathway. Surprisingly, enhanced GSIS is seen despite profound defects in mitochondrial structure and function in LKB1-deficient β cells, expected to greatly diminish insulin secretion via the classic triggering pathway. Thus LKB1 is essential for mitochondrial homeostasis in β cells and in parallel is a powerful negative regulator of insulin secretion. This study shows that β cells can be manipulated to enhance GSIS to supra-normal levels even in the face of defective mitochondria and without deterioration over months.
Collapse
Affiliation(s)
- Avital Swisa
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Natalia Tamarina
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Sophie Sayers
- Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114
| | - Louis Philipson
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - David J Hodson
- Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Jakob D Wikstrom
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; Unit of Dermatology and Venereology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Gil Leibowitz
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
16
|
Mao K, Liu F, Liu X, Khuri FR, Marcus AI, Li M, Zhou W. Re-expression of LKB1 in LKB1-mutant EKVX cells leads to resistance to paclitaxel through the up-regulation of MDR1 expression. Lung Cancer 2015; 88:131-8. [PMID: 25769882 DOI: 10.1016/j.lungcan.2015.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/21/2015] [Accepted: 02/23/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The tumor suppressor LKB1 has recently been shown to be involved in the regulation of microtubule dynamics, thus cancer cells with inactivated LKB1 may have developed a means to overcome dysregulated microtubule functions, making them intrinsically resistant to microtubule targeting agents. Here, we generated isogenic LKB1-wild type and mutant non-small cell lung cancer (NSCLC) cell lines to evaluate the role of LKB1 in paclitaxel resistance. MATERIALS AND METHODS SRB, flow cytometry and immunoblotting were used to assess cell proliferation and apoptosis in NSCLC cell lines after paclitaxel treatment. Expression of LKB1 was restored in LKB1-null cells by retrovirus infection and was reduced in LKB1-wild type cells by shRNA knock down. RESULTS AND CONCLUSION The restoration of LKB1 in LKB1-null cells failed to promote paclitaxel-induced apoptosis in both p53-wild type and p53-mutant backgrounds, indicating that LKB1 was not required for paclitaxel-induced apoptosis. Interestingly, the re-establishment of LKB1 expression led to the up-regulation of class III beta-tubulin and MDR1 in EKVX cells. The up-regulation of MDR1 protein and transcripts in EKVX cells was specifically associated with the expression of wild-type LKB1 and mainly responsible for the increased cellular resistance to paclitaxel. However, the presence of LKB1 protein was not required to maintain this increased MDR1 expression even though there was no genetic amplification or promoter de-methylation of the ABCB1 locus in EKVX-LKB1-WT cells. These data suggest that LKB1 does not promote paclitaxel-induced apoptosis in most NSCLC cell lines. In contrast, in some NSCLC, the presence of LKB1 may facilitate increases in either MDR1 or class III beta-tubulin expression which can lead to paclitaxel resistance.
Collapse
Affiliation(s)
- Kaisheng Mao
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States; Department of Hepatobiliary Surgery, NanFang Hospital, Guangzhou, People's Republic of China; Department of Gastroenterology, NanFang Hospital, Guangzhou, People's Republic of China
| | - Fakeng Liu
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiuju Liu
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States
| | - Fadlo R Khuri
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States
| | - Adam I Marcus
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States
| | - Mingsong Li
- Department of Gastroenterology, NanFang Hospital, Guangzhou, People's Republic of China.
| | - Wei Zhou
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 32322, United States.
| |
Collapse
|
17
|
Krawchuk D, Anani S, Honma-Yamanaka N, Polito S, Shafik M, Yamanaka Y. Loss of LKB1 leads to impaired epithelial integrity and cell extrusion in the early mouse embryo. J Cell Sci 2015; 128:1011-22. [PMID: 25588837 DOI: 10.1242/jcs.162156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LKB1/PAR-4 is essential for the earliest polarization steps in Caenorhabditis elegans embryos and Drosophila oocytes. Although LKB1 (also known as STK11) is sufficient to initiate polarity in a single mammalian intestinal epithelial cell, its necessity in the formation and maintenance of mammalian epithelia remains unclear. To address this, we completely remove LKB1 from mouse embryos by generating maternal-zygotic Lkb1 mutants and find that it is dispensable for polarity and epithelia formation in the early embryo. Instead, loss of Lkb1 leads to the extrusion of cells from blastocyst epithelia that remain alive and can continue to divide. Chimeric analysis shows that Lkb1 is cell-autonomously required to prevent these extrusions. Furthermore, heterozygous loss of Cdh1 exacerbates the number of extrusions per blastocyst, suggesting that LKB1 has a role in regulating adherens junctions in order to prevent extrusion in epithelia.
Collapse
Affiliation(s)
- Dayana Krawchuk
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada
| | - Shihadeh Anani
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada Department of Human Genetics, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada
| | - Nobuko Honma-Yamanaka
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada
| | - Samantha Polito
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada
| | - Marian Shafik
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada Department of Human Genetics, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
18
|
Paul I, Ghosh MK. A CHIPotle in physiology and disease. Int J Biochem Cell Biol 2014; 58:37-52. [PMID: 25448416 DOI: 10.1016/j.biocel.2014.10.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/21/2014] [Accepted: 10/25/2014] [Indexed: 01/06/2023]
Abstract
The carboxy-terminus of Hsc70 interacting protein (CHIP) is known to function as a chaperone associated E3 ligase for several proteins and regulates a variety of physiological processes. Being a connecting link between molecular chaperones and 26S proteasomes, it is widely regarded as the central player in the cellular protein quality control system. Recent analyses have provided new insights on the biochemical and functional dynamics of CHIP. In this review article, we give a comprehensive account of our current knowledge on the biology of CHIP, which apart from shedding light on fundamental biological questions promises to provide a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Indranil Paul
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
19
|
Murray PS, Kirkwood CM, Gray MC, Fish KN, Ikonomovic MD, Hamilton RL, Kofler JK, Klunk WE, Lopez OL, Sweet RA. Hyperphosphorylated tau is elevated in Alzheimer's disease with psychosis. J Alzheimers Dis 2014; 39:759-73. [PMID: 24270207 DOI: 10.3233/jad-131166] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Psychosis occurs in 40-60% of Alzheimer's disease (AD) subjects, is heritable, and indicates a more rapidly progressive disease phenotype. Neuroimaging and postmortem evidence support an exaggerated prefrontal cortical synaptic deficit in AD with psychosis. Microtubule-associated protein tau is a key mediator of amyloid-β-induced synaptotoxicity in AD, and differential mechanisms of progressive intraneuronal phospho-tau accumulation and interneuronal spread of tau aggregates have recently been described. We hypothesized that psychosis in AD would be associated with greater intraneuronal concentration of phospho-tau and greater spread of tau aggregates in prefrontal cortex. We therefore evaluated prefrontal cortex phospho-tau in a cohort of 45 AD cases with and without psychosis. Intraneuronal phospho-tau concentration was higher in subjects with psychosis, while a measure of phospho-tau spread, volume fraction, was not. Across groups both measures were associated with lower scores on the Mini-Mental State Examination and Digit Span Backwards test. These novel findings indicate that tau phosphorylation may be accelerated in AD with psychosis, indicating a more dynamic, exaggerated pathology in AD with psychosis.
Collapse
Affiliation(s)
- Patrick S Murray
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA VISN 4 Mental Illness Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Caitlin M Kirkwood
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Megan C Gray
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Milos D Ikonomovic
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Ronald L Hamilton
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA VISN 4 Mental Illness Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Recent progress on liver kinase B1 (LKB1): expression, regulation, downstream signaling and cancer suppressive function. Int J Mol Sci 2014; 15:16698-718. [PMID: 25244018 PMCID: PMC4200829 DOI: 10.3390/ijms150916698] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/12/2014] [Accepted: 08/28/2014] [Indexed: 12/15/2022] Open
Abstract
Liver kinase B1 (LKB1), known as a serine/threonine kinase, has been identified as a critical cancer suppressor in many cancer cells. It is a master upstream kinase of 13 AMP-activated protein kinase (AMPK)-related protein kinases, and possesses versatile biological functions. LKB1 gene is mutated in many cancers, and its protein can form different protein complexes with different cellular localizations in various cell types. The expression of LKB1 can be regulated through epigenetic modification, transcriptional regulation and post-translational modification. LKB1 dowcnstream pathways mainly include AMPK, microtubule affinity regulating kinase (MARK), salt-inducible kinase (SIK), sucrose non-fermenting protein-related kinase (SNRK) and brain selective kinase (BRSK) signalings, etc. This review, therefore, mainly discusses recent studies about the expression, regulation, downstream signaling and cancer suppressive function of LKB1, which can be helpful for better understanding of this molecular and its significance in cancers.
Collapse
|
21
|
Kim BM, You MH, Chen CH, Lee S, Hong Y, Hong Y, Kimchi A, Zhou XZ, Lee TH. Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function. Cell Death Dis 2014; 5:e1237. [PMID: 24853415 PMCID: PMC4047864 DOI: 10.1038/cddis.2014.216] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/03/2014] [Accepted: 04/14/2014] [Indexed: 12/17/2022]
Abstract
The presence of tangles composed of phosphorylated tau is one of the neuropathological hallmarks of Alzheimer's disease (AD). Tau, a microtubule (MT)-associated protein, accumulates in AD potentially as a result of posttranslational modifications, such as hyperphosphorylation and conformational changes. However, it has not been fully understood how tau accumulation and phosphorylation are deregulated. In the present study, we identified a novel role of death-associated protein kinase 1 (DAPK1) in the regulation of the tau protein. We found that hippocampal DAPK1 expression is markedly increased in the brains of AD patients compared with age-matched normal subjects. DAPK1 overexpression increased tau protein stability and phosphorylation at multiple AD-related sites. In contrast, inhibition of DAPK1 by overexpression of a DAPK1 kinase-deficient mutant or by genetic knockout significantly decreased tau protein stability and abolished its phosphorylation in cell cultures and in mice. Mechanistically, DAPK1-enhanced tau protein stability was mediated by Ser71 phosphorylation of Pin1, a prolyl isomerase known to regulate tau protein stability, phosphorylation, and tau-related pathologies. In addition, inhibition of DAPK1 kinase activity significantly increased the assembly of MTs and accelerated nerve growth factor-mediated neurite outgrowth. Given that DAPK1 has been genetically linked to late onset AD, these results suggest that DAPK1 is a novel regulator of tau protein abundance, and that DAPK1 upregulation might contribute to tau-related pathologies in AD. Therefore, we offer that DAPK1 might be a novel therapeutic target for treating human AD and other tau-related pathologies.
Collapse
Affiliation(s)
- B M Kim
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M-H You
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C-H Chen
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - S Lee
- 1] Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea [2] Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea
| | - Y Hong
- 1] Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea [2] Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea
| | - Y Hong
- 1] Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA [2] Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea [3] Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea
| | - A Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - X Z Zhou
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - T H Lee
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Murray PS, Kumar S, Demichele-Sweet MAA, Sweet RA. Psychosis in Alzheimer's disease. Biol Psychiatry 2014; 75:542-52. [PMID: 24103379 PMCID: PMC4036443 DOI: 10.1016/j.biopsych.2013.08.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/22/2013] [Accepted: 08/19/2013] [Indexed: 12/13/2022]
Abstract
Psychotic symptoms, delusions and hallucinations, occur in approximately 50% of individuals with Alzheimer's disease (AD) (AD with psychosis [AD + P]). Pharmacotherapies for AD + P have limited efficacy and can increase short-term mortality. These observations have motivated efforts to identify the underlying biology of AD + P. Psychosis in AD indicates a more severe phenotype, with more rapid cognitive decline beginning even before psychosis onset. Neuroimaging studies suggest that AD + P subjects demonstrate greater cortical synaptic impairments than AD subjects without psychosis, reflected in reduced gray matter volume, reduced regional blood flow, and reduced regional glucose metabolism. Neuroimaging and available postmortem evidence further indicate that the impairments in AD + P, relative to AD subjects without psychosis, are localized to neocortex rather than medial temporal lobe. Neuropathologic studies provide consistent evidence of accelerated accumulation of hyperphosphorylated microtubule associated protein tau in AD + P. Finally, studies of familial aggregation of AD + P have established that the risk for psychosis in AD is, in part, genetically mediated. Although no genes are established as associated with AD + P, the first genome-wide association study of AD + P has generated some promising leads. The study of the neurobiology of AD + P is rapidly accelerating and may be poised for translational discovery. This process can be enhanced by identifying points of convergence and divergence with the neurobiology of AD proper and of schizophrenia, by innovative extension of current approaches, and by development of relevant animal models.
Collapse
Affiliation(s)
- Patrick S Murray
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Veterans Integrated Service Network 4 Mental Illness Research, Education and Clinical Center, US Department of Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Sanjeev Kumar
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania; Veterans Integrated Service Network 4 Mental Illness Research, Education and Clinical Center, US Department of Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.
| |
Collapse
|
23
|
Abstract
Psychosis occurs in approximately half of patients with Alzheimer disease (AD with psychosis, AD+P). AD+P patients have more rapid cognitive decline, greater behavioral symptoms, and higher mortality than do AD patients without psychosis. Studies in three independent cohorts have shown that psychosis in AD aggregates in families, with estimated heritability of 29.5 - 60.8%. These findings have motivated studies to investigate and uncover the genes responsible for the development of psychosis, with the ultimate goal of identifying potential biologic mechanisms that may serve as leads to specific therapies. Linkage analyses have implicated loci on chromosomes 2, 6, 7, 8, 15, and 21 with AD+P. Association studies of APOE do not support it as a risk gene for psychosis in AD. No other candidate genes, such as neurodegenerative and monoamine genes, show conclusive evidence of association with AD+P. However, a recent genome-side association study has produced some promising leads, including among them genes that have been associated with schizophrenia. This review summarizes the current knowledge of the genetic basis of AD+P.
Collapse
Affiliation(s)
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA
- VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA
| |
Collapse
|
24
|
Abstract
During spermatogenesis, spermatids derived from meiosis simultaneously undergo extensive morphological transformation, to become highly specialized and metabolically quiescent cells, and transport across the seminiferous epithelium. Spermatids are also transported back-and-forth across the seminiferous epithelium during the epithelial cycle until they line up at the luminal edge of the tubule to prepare for spermiation at stage VIII of the cycle. Spermatid transport thus requires the intricate coordination of the cytoskeletons in Sertoli cells (SCs) as spermatids are nonmotile cells lacking the ultrastructures of lamellipodia and filopodia, as well as the organized components of the cytoskeletons. In the course of preparing this brief review, we were surprised to see that, except for some earlier eminent morphological studies, little is known about the regulation of the microtubule (MT) cytoskeleton and the coordination of MT with the actin-based cytoskeleton to regulate spermatid transport during the epithelia cycle, illustrating that this is a largely neglected area of research in the field. Herein, we summarize recent findings in the field regarding the significance of actin- and tubulin-based cytoskeletons in SCs that support spermatid transport; we also highlight specific areas of research that deserve attention in future studies.
Collapse
Affiliation(s)
- Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | | | | |
Collapse
|
25
|
Korsse SE, Peppelenbosch MP, van Veelen W. Targeting LKB1 signaling in cancer. Biochim Biophys Acta Rev Cancer 2012; 1835:194-210. [PMID: 23287572 DOI: 10.1016/j.bbcan.2012.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 12/13/2022]
Abstract
The serine/threonine kinase LKB1 is a master kinase involved in cellular responses such as energy metabolism, cell polarity and cell growth. LKB1 regulates these crucial cellular responses mainly via AMPK/mTOR signaling. Germ-line mutations in LKB1 are associated with the predisposition of the Peutz-Jeghers syndrome in which patients develop gastrointestinal hamartomas and have an enormously increased risk for developing gastrointestinal, breast and gynecological cancers. In addition, somatic inactivation of LKB1 has been associated with sporadic cancers such as lung cancer. The exact mechanisms of LKB1-mediated tumor suppression remain so far unidentified; however, the inability to activate AMPK and the resulting mTOR hyperactivation has been detected in PJS-associated lesions. Therefore, targeting LKB1 in cancer is now mainly focusing on the activation of AMPK and inactivation of mTOR. Preclinical in vitro and in vivo studies show encouraging results regarding these approaches, which have even progressed to the initiation of a few clinical trials. In this review, we describe the functions, regulation and downstream signaling of LKB1, and its role in hereditary and sporadic cancers. In addition, we provide an overview of several AMPK activators, mTOR inhibitors and additional mechanisms to target LKB1 signaling, and describe the effect of these compounds on cancer cells. Overall, we will explain the current strategies attempting to find a way of treating LKB1-associated cancer.
Collapse
Affiliation(s)
- S E Korsse
- Dept. of Gastroenterology and Hepatology, Erasmus Medical University Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
26
|
Wei C, Bhattaram VK, Igwe JC, Fleming E, Tirnauer JS. The LKB1 tumor suppressor controls spindle orientation and localization of activated AMPK in mitotic epithelial cells. PLoS One 2012; 7:e41118. [PMID: 22815934 PMCID: PMC3399794 DOI: 10.1371/journal.pone.0041118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022] Open
Abstract
Orientation of mitotic spindles plays an integral role in determining the relative positions of daughter cells in a tissue. LKB1 is a tumor suppressor that controls cell polarity, metabolism, and microtubule stability. Here, we show that germline LKB1 mutation in mice impairs spindle orientation in cells of the upper gastrointestinal tract and causes dramatic mislocalization of the LKB1 substrate AMPK in mitotic cells. RNAi of LKB1 causes spindle misorientation in three-dimensional MDCK cell cysts. Maintaining proper spindle orientation, possibly mediated by effects on the downstream kinase AMPK, could be an important tumor suppressor function of LKB1.
Collapse
Affiliation(s)
- Chongjuan Wei
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | | | | | | | | |
Collapse
|
27
|
Tanwar PS, Kaneko-Tarui T, Zhang L, Teixeira JM. Altered LKB1/AMPK/TSC1/TSC2/mTOR signaling causes disruption of Sertoli cell polarity and spermatogenesis. Hum Mol Genet 2012; 21:4394-405. [PMID: 22791749 DOI: 10.1093/hmg/dds272] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Male patients with Peutz-Jeghers syndrome (PJS) have defective spermatogenesis and are at increased risk of developing Sertoli cell tumors. Mutations in the Liver Kinase B1 (LKB1/STK11) gene are associated with the pathogenesis of PJS and have been identified in non-PJS patients with sporadic testicular cancers. The mechanisms controlled by LKB1 signaling in Sertoli cell functions and testicular biology have not been described. We have conditionally deleted the Lkb1 gene (Lkb1(cko)) in somatic testicular cells to define the molecular mechanisms involved in the development of the testicular phenotype observed in PJS patients. Focal vacuolization in some of the seminiferous tubules was observed in 4-week-old mutant testes but germ cell development appeared to be normal. However, similar to PJS patients, we observed progressive germ cell loss and Sertoli cell only tubules in Lkb1(cko) testes from mice older than 10 weeks, accompanied by defects in Sertoli cell polarity and testicular junctional complexes and decreased activation of the MAP/microtubule affinity regulating and focal adhesion kinases. Suppression of AMP kinase and activation of mammalian target of rapamycin (mTOR) signaling were also observed in Lkb1(cko) testes. Loss of Tsc1 or Tsc2 copies the progressive Lkb1(cko) phenotype, suggesting that dysregulated activation of mTOR contributes to the pathogenesis of the Lkb1(cko) testicular phenotype. Pten(cko) mice had a normal testicular phenotype, which could be explained by the comparative lack of mTOR activation detected. These studies describe the importance of LKB1 signaling in testicular biology and the possible molecular mechanisms driving the pathogenesis of the testicular defects observed in PJS patients.
Collapse
Affiliation(s)
- Pradeep S Tanwar
- Vincent Center For Reproductive Biology/Thier 931, Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
28
|
Mian I, Pierre-Louis WS, Dole N, Gilberti RM, Dodge-Kafka K, Tirnauer JS. LKB1 destabilizes microtubules in myoblasts and contributes to myoblast differentiation. PLoS One 2012; 7:e31583. [PMID: 22348111 PMCID: PMC3279410 DOI: 10.1371/journal.pone.0031583] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 01/09/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Skeletal muscle myoblast differentiation and fusion into multinucleate myotubes is associated with dramatic cytoskeletal changes. We find that microtubules in differentiated myotubes are highly stabilized, but premature microtubule stabilization blocks differentiation. Factors responsible for microtubule destabilization in myoblasts have not been identified. FINDINGS We find that a transient decrease in microtubule stabilization early during myoblast differentiation precedes the ultimate microtubule stabilization seen in differentiated myotubes. We report a role for the serine-threonine kinase LKB1 in both microtubule destabilization and myoblast differentiation. LKB1 overexpression reduced microtubule elongation in a Nocodazole washout assay, and LKB1 RNAi increased it, showing LKB1 destabilizes microtubule assembly in myoblasts. LKB1 levels and activity increased during myoblast differentiation, along with activation of the known LKB1 substrates AMP-activated protein kinase (AMPK) and microtubule affinity regulating kinases (MARKs). LKB1 overexpression accelerated differentiation, whereas RNAi impaired it. CONCLUSIONS Reduced microtubule stability precedes myoblast differentiation and the associated ultimate microtubule stabilization seen in myotubes. LKB1 plays a positive role in microtubule destabilization in myoblasts and in myoblast differentiation. This work suggests a model by which LKB1-induced microtubule destabilization facilitates the cytoskeletal changes required for differentiation. Transient destabilization of microtubules might be a useful strategy for enhancing and/or synchronizing myoblast differentiation.
Collapse
Affiliation(s)
- Isma Mian
- Center for Molecular Medicine and University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Willythssa Stéphie Pierre-Louis
- Center for Molecular Medicine and University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Neha Dole
- Center for Molecular Medicine and University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Renée M. Gilberti
- Center for Molecular Medicine and University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Kimberly Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Jennifer S. Tirnauer
- Center for Molecular Medicine and University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
29
|
Abstract
Initially identified as the Caenorhabditis elegans PAR-4 homologue, the serine threonine kinase LKB1 is conserved throughout evolution and ubiquitously expressed. In humans, LKB1 is causally linked to the Peutz-Jeghers syndrome and is one of the most commonly mutated genes in several cancers like lung and cervical carcinomas. These observations have led to classify LKB1 as tumour suppressor gene. Although, considerable dark zones remain, an impressive leap in the understanding of LKB1 functions has been done during the last decade. Role of LKB1 as a major actor of the AMPK/mTOR pathway connecting cellular metabolism, cell growth and tumorigenesis has been extensively studied probably to the detriment of other functions of equal importance. This review will discuss about LKB1 activity regulation, its effectors and clues on their involvement in cell polarity.
Collapse
|
30
|
Denison FC, Smith LB, Muckett PJ, O'Hara L, Carling D, Woods A. LKB1 is an essential regulator of spermatozoa release during spermiation in the mammalian testis. PLoS One 2011; 6:e28306. [PMID: 22145035 PMCID: PMC3228757 DOI: 10.1371/journal.pone.0028306] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/05/2011] [Indexed: 11/18/2022] Open
Abstract
LKB1 acts as a master upstream protein kinase regulating a number of kinases involved in diverse cellular functions. Recent studies have suggested a role for LKB1 in male fertility. Male mice with reduced total LKB1 expression, including the complete absence of the major splice variant in testis (LKB1(S)), are completely infertile. We sought to further characterise these mice and determine the mechanism underlying this infertility. This involved expression studies of LKB1 in developing germ cells, morphological analysis of mature spermatozoa and histological studies of both the testis and epididymis using light microscopy and transmission electron microscopy. We conclude that a defect in the release of mature spermatids from the seminiferous epithelium (spermiation) during spermatozoan development is a major cause of the infertility phenotype. We also present evidence that this is due, at least in part, to defects in the breakdown of the junctions, known as ectoplasmic specialisations, between the sertoli cells of the testis epithelium and the heads of the maturing spermatids. Overall this study uncovers a critical role for LKB1 in spermiation, a highly regulated, but poorly understood process vital for male fertility.
Collapse
Affiliation(s)
- Fiona C. Denison
- Medical Research Council's Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Lee B. Smith
- Medical Research Council's Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Phillip J. Muckett
- Medical Research Council's Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Laura O'Hara
- Medical Research Council's Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - David Carling
- Medical Research Council's Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Angela Woods
- Medical Research Council's Clinical Sciences Centre, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Semighini EP, Taft CA, Silva CH. Homology modelling, virtual screening and molecular dynamics of the MARK3 KA1 domain for cancer drug design. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.589052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Abstract
The formation of axon/dendrite polarity is critical for the neuron to perform its signaling function in the brain. Recent advance in our understanding of cellular and molecular mechanisms underlying the development and maintenance of neuronal polarity has been greatly facilitated by the use of the culture system of dissociated hippocampal neurons. Among many polarization-related proteins, we here focus on the mammalian LKB1, the counterpart of the C. elegans Par-4, which is an upstream regulator among six Par (partitioning-defective) genes that act as master regulators of cell polarity in different cell types across evolutionary distant species. Recent studies have identified LKB1 and its downstream targets SAD/MARK kinases (mammalian homologs of Par-1) as key regulators of neuronal polarization and axon development in cultured neurons and in developing cortical neurons in vivo. We will review the properties of and interactions among proteins in this LKB1-SAD/MARK pathway, drawing upon information obtained from both neuronal and non-neuronal systems. Due to central role of the protein kinase A-dependent phosphorylation of LKB1 in the activation of this pathway, we will review recent findings on how cAMP and cGMP signaling may serve as antagonistic second messengers for axon/dendrite development, and how these cyclic nucleotides may mediate the action of extracellular polarizing factors by modulating the activity of the LKB1-SAD/MARK pathway.
Collapse
Affiliation(s)
- Maya Shelly
- Department of Neurobiology and Behavior, State University of New York, Stony Brook, NY 11794-5230, USA.
| | | |
Collapse
|
33
|
Ahmed AA, Wang X, Lu Z, Goldsmith J, Le XF, Grandjean G, Bartholomeusz G, Broom B, Bast RC. Modulating microtubule stability enhances the cytotoxic response of cancer cells to Paclitaxel. Cancer Res 2011; 71:5806-17. [PMID: 21775522 DOI: 10.1158/0008-5472.can-11-0025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The extracellular matrix protein TGFBI enhances the cytotoxic response of cancer cells to paclitaxel by affecting integrin signals that stabilize microtubules. Extending the implications of this knowledge, we tested the more general hypothesis that cancer cell signals which increase microtubule stability before exposure to paclitaxel may increase its ability to stabilize microtubules and thereby enhance its cytotoxicity. Toward this end, we carried out an siRNA screen to evaluate how genetic depletion affected microtubule stabilization, cell viability, and apoptosis. High content microscopic analysis was carried out in the absence or presence of paclitaxel. Kinase knockdowns that stabilized microtubules strongly enhanced the effects of paclitaxel treatment. Conversely, kinase knockdowns that enhanced paclitaxel-mediated cytotoxicity sensitized cells to microtubule stabilization by paclitaxel. The siRNA screen identified several genes that have not been linked previously to microtubule regulation or paclitaxel response. Gene shaving and Bayesian resampling used to classify these genes suggested three pathways of paclitaxel-induced cell death related to apoptosis and microtubule stability, apoptosis alone, or neither process. Our results offer a functional classification of the genetic basis for paclitaxel sensitivity and they support the hypothesis that stabilizing microtubules prior to therapy could enhance antitumor responses to paclitaxel treatment.
Collapse
Affiliation(s)
- Ahmed Ashour Ahmed
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shorning BY, Clarke AR. LKB1 loss of function studied in vivo. FEBS Lett 2011; 585:958-66. [DOI: 10.1016/j.febslet.2011.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 12/12/2022]
|
35
|
Abstract
Intranuclear rodlets (INRs) are structures present within the nuclei of human insulin-secreting beta cells of the endocrine pancreas. Their physiological significance, and whether they are altered in disease, is unknown. In the present study, the proportion of pancreatic beta cells containing INRs was examined in mouse models of type II diabetes and in a model with improved beta cell function. To gain insights into the molecular regulators of INR formation, mice with a conditional adult beta cell-specific knockout of the serine/threonine protein kinase Lkb1 (Lkb1 adult beta cell knockout (LABKO) mice) were studied. To investigate INR changes in a pathophysiological context, beta cell INRs were examined in two models of human metabolic syndrome: (1) mice maintained on a high-fat diet and (2) leptin-deficient ob/ob mice. The proportion of beta cells containing INRs was significantly reduced in LABKO mice. This reduction was not mediated by two key downstream effectors of Lkb1, mTor and Mark2. High-fat diet regimen reduced beta cell INR frequency by more than 40%, and leptin-deficient ob/ob mice exhibited a dramatically (19-fold) reduced INR frequency relative to wild-type mice. Taken together, our results support the view that INR formation in pancreatic beta cells is a dynamic and regulated process. The substantial depletion of beta cell INRs in LABKO and diabetic mice suggests their relationship to beta cell function and potential involvement in diabetes pathogenesis.
Collapse
Affiliation(s)
- Pavel Milman
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
36
|
Liu Q, Zhang Y, Lin Z, Shen H, Chen L, Hu L, Jiang H, Shen X. Danshen extract 15,16-dihydrotanshinone I functions as a potential modulator against metabolic syndrome through multi-target pathways. J Steroid Biochem Mol Biol 2010; 120:155-63. [PMID: 20380878 DOI: 10.1016/j.jsbmb.2010.03.090] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 01/09/2023]
Abstract
Hypertension is a common complication of type 2 diabetes mellitus (T2DM), and is the main cause for T2DM-associated mortality. Although the stringent control of blood pressure is known to be beneficial in reducing the cardiovascular mortality of T2DM patients, drugs with both anti-hypertensive and anti-hyperglycemic effects are seldom reported. The traditional Chinese medicine danshen has long been used for lowering both blood pressure and blood glucose in T2DM patients, shedding lights on the development of such medication. However, the molecular mechanism and active component remain unclear. Here, we report that the lipophilic component, 15,16-dihydrotanshinone I (DHTH) from danshen potently antagonized both mineralocorticoid and glucocorticoid receptors, and efficiently inhibited the expression of their target genes like Na(+)/K(+) ATPase, glucose 6-phosphatase (G6Pase), and phosphoenolpyruvate carboxykinase (PEPCK). In addition, DHTH increased AMPKalpha phosphorylation and regulated its downstream pathways, including increasing acetyl-CoA carboxylase (ACC) phosphorylation, inhibiting transducer of regulated CREB activity 2 (TORC2) translocation and promoting glucose uptake. Such discovered multi-target effects of DHTH are expected to have provided additional understandings on the molecular basis of the therapeutic effects of danshen against the metabolic syndrome.
Collapse
Affiliation(s)
- Qiong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hernandez P, Tirnauer JS. Tumor suppressor interactions with microtubules: keeping cell polarity and cell division on track. Dis Model Mech 2010; 3:304-15. [DOI: 10.1242/dmm.004507] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor suppressor proteins protect cells and tissues from malignant transformation. Among their diverse actions, many of these proteins interact with the microtubule cytoskeleton. This review focuses on the interactions of several tumor suppressors with microtubules and speculates on how disruption of microtubule-dependent processes may contribute to cancer development and spread. We conclude that several tumor suppressors stabilize microtubules and organize microtubule arrays, functions that are likely to be important in preventing tumorigenesis. How tumor suppressors link microtubule stability with cell fate, and how their mutation affects the response of cancer cells to anti-microtubule chemotherapy drugs, remains unclear; these should prove fertile areas for future research.
Collapse
Affiliation(s)
- Paula Hernandez
- Center for Molecular Medicine and Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT 06030-3101, USA
| | - Jennifer S. Tirnauer
- Center for Molecular Medicine and Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT 06030-3101, USA
| |
Collapse
|
38
|
McCabe MT, Powell DR, Zhou W, Vertino PM. Homozygous deletion of the STK11/LKB1 locus and the generation of novel fusion transcripts in cervical cancer cells. ACTA ACUST UNITED AC 2010; 197:130-41. [PMID: 20193846 DOI: 10.1016/j.cancergencyto.2009.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 11/14/2009] [Accepted: 11/25/2009] [Indexed: 01/20/2023]
Abstract
The STK11/LKB1 gene encodes a ubiquitously expressed serine/threonine kinase that is mutated in multiple sporadic cancers including non-small cell lung carcinomas, pancreatic cancers, and melanomas. LKB1 plays a role in multiple cellular functions including cell growth, cell cycle progression, metabolism, cell polarity, and migration. To date, only a limited number of studies have assessed the status of LKB1 in cervical cancers. Herein, we investigate DNA methylation, DNA mutation, and transcription at the LKB1 locus in cervical cancer cell lines. We identified homozygous deletions of 25-85kb in the HeLa and SiHa cell lines. Deletion breakpoint analysis in HeLa cells revealed that the deletion resulted from an Alu-recombination-mediated deletion (ARMD) and generated a novel LKB1 fusion transcript driven by an uncharacterized CpG island promoter located approximately 11kb upstream of LKB1. Although the homozygous deletion in SiHa cells removes the entire LKB1 gene and portions of the neighboring genes SBNO2 and c19orf26, this deletion also generates a fusion transcript driven by the c19orf26 promoter and composed of both c19orf26 and SBNO2 sequences. Further analyses of public gene expression and mutation databases suggest that LKB1 and its neighboring genes are frequently dysregulated in primary cervical cancers. Thus, homozygous deletions affecting LKB1 in cervical cancers may generate multiple fusion transcripts involving LKB1, SBNO2, and c19orf26.
Collapse
Affiliation(s)
- Michael T McCabe
- Department of Radiation Oncology, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322; The Winship Cancer Institute of Emory University, 1365C Clifton Road, Atlanta, GA 30322
| | | | | | | |
Collapse
|
39
|
Deguchi A, Miyoshi H, Kojima Y, Okawa K, Aoki M, Taketo MM. LKB1 suppresses p21-activated kinase-1 (PAK1) by phosphorylation of Thr109 in the p21-binding domain. J Biol Chem 2010; 285:18283-90. [PMID: 20400510 DOI: 10.1074/jbc.m109.079137] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine/threonine protein kinase LKB1 is a tumor suppressor gene mutated in Peutz-Jeghers syndrome patients. The mutations are found also in several types of sporadic cancer. Although LKB1 is implicated in suppression of cell growth and metastasis, the detailed mechanisms have not yet been elucidated. In this study, we investigated the effect of LKB1 on cell motility, whose acquisition occurs in early metastasis. The knockdown of LKB1 enhanced cell migration and PAK1 activity in human colon cancer HCT116 cells, whereas forced expression of LKB1 in Lkb1-null mouse embryonic fibroblasts suppressed PAK1 activity and PAK1-mediated cell migration simultaneously. Notably, LKB1 directly phosphorylated PAK1 at Thr(109) in the p21-binding domain in vitro. The phosphomimetic T109E mutant showed significantly lower protein kinase activity than wild-type PAK1, suggesting that the phosphorylation at Thr(109) by LKB1 was responsible for suppression of PAK1. Consistently, the nonphosphorylatable T109A mutant was resistant to suppression by LKB1. Furthermore, we found that PAK1 was activated in the hepatocellular carcinomas and the precancerous liver lesions of Lkb1(+/-) mice. Taken together, these results suggest that PAK1 is a direct downstream target of LKB1 and plays an essential role in LKB1-induced suppression of cell migration.
Collapse
Affiliation(s)
- Atsuko Deguchi
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Miyoshi H, Deguchi A, Nakau M, Kojima Y, Mori A, Oshima M, Aoki M, Taketo MM. Hepatocellular carcinoma development induced by conditional beta-catenin activation in Lkb1+/- mice. Cancer Sci 2009; 100:2046-53. [PMID: 19671058 PMCID: PMC11159713 DOI: 10.1111/j.1349-7006.2009.01284.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/04/2009] [Accepted: 07/06/2009] [Indexed: 12/26/2022] Open
Abstract
The development of hepatocellular carcinomas (HCC) appears to be a multistep process that takes several decades in humans. However, the identities of specific gene alterations and their contribution to HCC pathogenesis remain poorly understood. We previously reported that Lkb1(+/-) mice spontaneously develop multiple hepatic nodular foci (NdFc) followed by HCC, and that the conditional activation of beta-catenin in Catnb(lox(ex3)) mouse livers alone does not cause tumor formation. We show here that the conditional activation of beta-catenin accelerates HCC development in Catnb(+/lox(ex3))Lkb1(+/-) compound mutant mice, affecting displastic hepatocytes in NdFc that suffered LOH at the Lkb1 locus. We further show that beta-catnin activation provides HCC with a growth advantage as well as transplantability. These results suggest that the loss of Lkb1 contributes to the formation of dysplastic NdFc, and that Wnt signaling activation is involved in ensuing progression toward HCC. A combination of these sequential changes can be a practical model for a subset of human HCC.
Collapse
Affiliation(s)
- Hiroyuki Miyoshi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jansen M, Ten Klooster JP, Offerhaus GJ, Clevers H. LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev 2009; 89:777-98. [PMID: 19584313 DOI: 10.1152/physrev.00026.2008] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Research on the LKB1 tumor suppressor protein mutated in cancer-prone Peutz-Jeghers patients has continued at a feverish pace following exciting developments linking energy metabolism and cancer development. This review summarizes the current state of research on the LKB1 tumor suppressor. The weight of the evidence currently indicates an evolutionary conserved role for the protein in the regulation of various aspects of cellular polarity and energy metabolism. We focus on studies examining the concept that both cellular polarity and energy metabolism are regulated through the conserved LKB1-AMPK signal transduction pathway. Recent studies from a variety of model organisms have given new insight into the mechanism of polyp development and cancer formation in Peutz-Jeghers patients and the role of LKB1 mutation in sporadic tumorigenesis. Conditional LKB1 mouse models have outlined a tissue-dependent context for pathway activation and suggest that LKB1 may affect different AMPK isoforms independently. Elucidation of the molecular mechanism responsible for Peutz-Jeghers syndrome will undoubtedly reveal important insight into cancer development in the larger population.
Collapse
Affiliation(s)
- Marnix Jansen
- Hubrecht Institute, Developmental Biology and Stem Cell Research, 3584 CT Utrecht, The Netherlands
| | | | | | | |
Collapse
|
42
|
Abstract
In the past decade, studies of the human tumour suppressor LKB1 have uncovered a novel signalling pathway that links cell metabolism to growth control and cell polarity. LKB1 encodes a serine-threonine kinase that directly phosphorylates and activates AMPK, a central metabolic sensor. AMPK regulates lipid, cholesterol and glucose metabolism in specialized metabolic tissues, such as liver, muscle and adipose tissue. This function has made AMPK a key therapeutic target in patients with diabetes. The connection of AMPK with several tumour suppressors suggests that therapeutic manipulation of this pathway using established diabetes drugs warrants further investigation in patients with cancer.
Collapse
Affiliation(s)
- David B. Shackelford
- Dulbecco Center for Cancer Research, Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA 92037
| | - Reuben J. Shaw
- Dulbecco Center for Cancer Research, Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA 92037
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA 92037
| |
Collapse
|
43
|
Matenia D, Mandelkow EM. The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem Sci 2009; 34:332-42. [PMID: 19559622 DOI: 10.1016/j.tibs.2009.03.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/12/2009] [Accepted: 03/21/2009] [Indexed: 12/21/2022]
Abstract
Microtubule-affinity regulating kinases (MARKs) were originally discovered by their ability to phosphorylate tau protein and related microtubule-associated proteins (MAPs), and thereby to regulate microtubule dynamics in neurons. Members of the MARK (also known as partition-defective [Par]-1 kinase) family were subsequently found to be highly conserved and to have key roles in cell processes such as determination of polarity, cell-cycle control, intracellular signal transduction, transport and cytoskeleton. This is important for neuronal differentiation, but is also prominent in neurodegenerative 'tauopathies' such as Alzheimer's disease. The identified functions of MARK/Par-1 are diverse and require accurate regulation. Recent discoveries including the x-ray structure of human MARKs contributed to an increased understanding of the mechanisms that control the kinase activity and, thus, the actin and microtubule cytoskeleton.
Collapse
Affiliation(s)
- Dorthe Matenia
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany.
| | | |
Collapse
|
44
|
Schmetsdorf S, Arnold E, Holzer M, Arendt T, Gärtner U. A putative role for cell cycle-related proteins in microtubule-based neuroplasticity. Eur J Neurosci 2009; 29:1096-107. [DOI: 10.1111/j.1460-9568.2009.06661.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Timm T, Balusamy K, Li X, Biernat J, Mandelkow E, Mandelkow EM. Glycogen Synthase Kinase (GSK) 3β Directly Phosphorylates Serine 212 in the Regulatory Loop and Inhibits Microtubule Affinity-regulating Kinase (MARK) 2. J Biol Chem 2008; 283:18873-82. [DOI: 10.1074/jbc.m706596200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Turner N, Li JY, Gosby A, To SWC, Cheng Z, Miyoshi H, Taketo MM, Cooney GJ, Kraegen EW, James DE, Hu LH, Li J, Ye JM. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes 2008; 57:1414-8. [PMID: 18285556 DOI: 10.2337/db07-1552] [Citation(s) in RCA: 400] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Berberine (BBR) activates AMP-activated protein kinase (AMPK) and improves insulin sensitivity in rodent models of insulin resistance. We investigated the mechanism of activation of AMPK by BBR and explored whether derivatization of BBR could improve its in vivo efficacy. RESEARCH DESIGN AND METHODS AMPK phosphorylation was examined in L6 myotubes and LKB1(-/-) cells, with or without the Ca(2+)/calmodulin-dependent protein kinase kinase (CAMKK) inhibitor STO-609. Oxygen consumption was measured in L6 myotubes and isolated muscle mitochondria. The effect of a BBR derivative, dihydroberberine (dhBBR), on adiposity and glucose metabolism was examined in rodents fed a high-fat diet. RESULTS; We have made the following novel observations: 1) BBR dose-dependently inhibited respiration in L6 myotubes and muscle mitochondria, through a specific effect on respiratory complex I, similar to that observed with metformin and rosiglitazone; 2) activation of AMPK by BBR did not rely on the activity of either LKB1 or CAMKKbeta, consistent with major regulation at the level of the AMPK phosphatase; and 3) a novel BBR derivative, dhBBR, was identified that displayed improved in vivo efficacy in terms of counteracting increased adiposity, tissue triglyceride accumulation, and insulin resistance in high-fat-fed rodents. This effect is likely due to enhanced oral bioavailability. CONCLUSIONS Complex I of the respiratory chain represents a major target for compounds that improve whole-body insulin sensitivity through increased AMPK activity. The identification of a novel derivative of BBR with improved in vivo efficacy highlights the potential importance of BBR as a novel therapy for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Nigel Turner
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|