1
|
Patterson LL, Byerly CD, Solomon R, Pittner N, Bui DC, Patel J, McBride JW. Ehrlichia Notch signaling induction promotes XIAP stability and inhibits apoptosis. Infect Immun 2023; 91:e0000223. [PMID: 37594275 PMCID: PMC10501217 DOI: 10.1128/iai.00002-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/07/2023] [Indexed: 08/19/2023] Open
Abstract
Ehrlichia chaffeensis has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the E. chaffeensis tandem repeat protein (TRP)120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7, a negative regulator of Notch. The Notch intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation. In this study, we determined that E. chaffeensis activation of Notch signaling increases XIAP levels, thereby inhibiting apoptosis through both the intrinsic and executioner pathways. Increased NICD and XIAP levels were detected during E. chaffeensis infection and after TRP120 Notch ligand mimetic peptide treatment. Conversely, XIAP levels were reduced in the presence of Notch inhibitor DAPT. Cytoplasmic and nuclear colocalization of NICD and XIAP was observed during infection and a direct interaction was confirmed by co-immunoprecipitation. Procaspase levels increased temporally during infection, consistent with increased XIAP levels; however, knockdown (KD) of XIAP during infection significantly increased apoptosis and Caspase-3, -7, and -9 levels. Furthermore, treatment with SM-164, a second mitochondrial activator of caspases (Smac/DIABLO) antagonist, resulted in decreased procaspase levels and increased caspase activation, induced apoptosis, and significantly decreased infection. In addition, RNAi KD of XIAP also decreased infection and significantly increased apoptosis. Moreover, ectopic expression of TRP120 HECT Ub ligase catalytically defective mutant in HeLa cells decreased NICD and XIAP levels and increased caspase activation compared to HeLa cells with functional HECT Ub ligase catalytic activity (TRP120-WT). This investigation reveals a mechanism whereby E. chaffeensis modulates Notch signaling to stabilize XIAP and inhibit apoptosis.
Collapse
Affiliation(s)
- LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Regina Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicholas Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Duc Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Pittner NA, Solomon RN, Bui DC, McBride JW. Ehrlichia effector SLiM-icry: Artifice of cellular subversion. Front Cell Infect Microbiol 2023; 13:1150758. [PMID: 36960039 PMCID: PMC10028187 DOI: 10.3389/fcimb.2023.1150758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
As an obligately intracellular bacterial pathogen that selectively infects the mononuclear phagocyte, Ehrlichia chaffeensis has evolved sophisticated mechanisms to subvert innate immune defenses. While the bacterium accomplishes this through a variety of mechanisms, a rapidly expanding body of evidence has revealed that E. chaffeensis has evolved survival strategies that are directed by the versatile, intrinsically disordered, 120 kDa tandem repeat protein (TRP120) effector. E. chaffeensis establishes infection by manipulating multiple evolutionarily conserved cellular signaling pathways through effector-host interactions to subvert innate immune defenses. TRP120 activates these pathways using multiple functionally distinct, repetitive, eukaryote-mimicking short linear motifs (SLiMs) located within the tandem repeat domain that have evolved in nihilo. Functionally, the best characterized TRP120 SLiMs mimic eukaryotic ligands (SLiM-icry) to engage pathway-specific host receptors and activate cellular signaling, thereby repurposing these pathways to promote infection. Moreover, E. chaffeensis TRP120 contains SLiMs that are targets of post-translational modifications such as SUMOylation in addition to many other validated SLiMs that are curated in the eukaryotic linear motif (ELM) database. This review will explore the extracellular and intracellular roles TRP120 SLiM-icry plays during infection - mediated through a variety of SLiMs - that enable E. chaffeensis to subvert mononuclear phagocyte innate defenses.
Collapse
Affiliation(s)
- Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Regina N. Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Duc-Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
3
|
Notch Signaling in Acute Inflammation and Sepsis. Int J Mol Sci 2023; 24:ijms24043458. [PMID: 36834869 PMCID: PMC9967996 DOI: 10.3390/ijms24043458] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Notch signaling, a highly conserved pathway in mammals, is crucial for differentiation and homeostasis of immune cells. Besides, this pathway is also directly involved in the transmission of immune signals. Notch signaling per se does not have a clear pro- or anti-inflammatory effect, but rather its impact is highly dependent on the immune cell type and the cellular environment, modulating several inflammatory conditions including sepsis, and therefore significantly impacts the course of disease. In this review, we will discuss the contribution of Notch signaling on the clinical picture of systemic inflammatory diseases, especially sepsis. Specifically, we will review its role during immune cell development and its contribution to the modulation of organ-specific immune responses. Finally, we will evaluate to what extent manipulation of the Notch signaling pathway could be a future therapeutic strategy.
Collapse
|
4
|
Patterson LL, Byerly CD, Solomon R, Pittner N, Bui DC, Patel J, McBride JW. Ehrlichia Notch signaling induction promotes XIAP stability and inhibits apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523066. [PMID: 36711597 PMCID: PMC9881962 DOI: 10.1101/2023.01.06.523066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ehrlichia chaffeensis has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the E. chaffeensis TRP120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7 (FBW7), a negative regulator of Notch. The Notch receptor intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation. In this study, we determined E. chaffeensis activation of Notch signaling increases XIAP levels, thereby inhibiting intrinsic apoptosis. Increased NICD and XIAP levels were detected during E. chaffeensis infection and after TRP120 Notch ligand mimetic peptide treatment. Conversely, XIAP levels were reduced in the presence of Notch inhibitor DAPT. Cytoplasmic colocalization of NICD and XIAP was observed during infection and a direct interaction was confirmed by co-immunoprecipitation. Procaspase levels increased temporally during infection, consistent with increased XIAP levels; however, knockdown of XIAP during infection significantly increased apoptosis and Caspase-3, -7 and -9 levels. Further, treatment with SM-164, a second mitochondrial activator of caspases (Smac/DIABLO) antagonist, resulted in decreased procaspase levels and increased caspase activation, induced apoptosis, and significantly decreased infection. In addition, iRNA knockdown of XIAP also decreased infection and significantly increased apoptosis. Moreover, ectopic expression of TRP120 HECT Ub ligase catalytically defective mutant in HeLa cells decreased NICD and XIAP levels and increased caspase activation compared to WT. This investigation reveals a mechanism whereby E. chaffeensis repurposes Notch signaling to stabilize XIAP and inhibit apoptosis. Author Summary Ehrlichia chaffeensis is a tick-borne, obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes. E. chaffeensis survives by mobilizing various molecular strategies to promote cell survival, including modulation of apoptosis. This investigation reveals an E. chaffeensis initiated, Notch signaling regulated, antiapoptotic mechanism involving inhibitor of apoptosis proteins (IAPs). Herein, we demonstrate that E. chaffeensis induced Notch activation results in Notch intracellular domain stabilization of X-linked inhibitor of apoptosis protein (XIAP) to inhibit intrinsic apoptosis. This study highlights a novel mechanistic strategy whereby intracellular pathogens repurpose evolutionarily conserved eukaryotic signaling pathways to engage an antiapoptotic program for intracellular survival.
Collapse
|
5
|
Borbora SM, Rajmani RS, Balaji KN. PRMT5 epigenetically regulates the E3 ubiquitin ligase ITCH to influence lipid accumulation during mycobacterial infection. PLoS Pathog 2022; 18:e1010095. [PMID: 35658060 PMCID: PMC9200362 DOI: 10.1371/journal.ppat.1010095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/15/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), triggers enhanced accumulation of lipids to generate foamy macrophages (FMs). This process has been often attributed to the surge in the expression of lipid influx genes with a concomitant decrease in those involved in lipid efflux. Here, we define an Mtb-orchestrated modulation of the ubiquitination of lipid accumulation markers to enhance lipid accretion during infection. We find that Mtb infection represses the expression of the E3 ubiquitin ligase, ITCH, resulting in the sustenance of key lipid accrual molecules viz. ADRP and CD36, that are otherwise targeted by ITCH for proteasomal degradation. In line, overexpressing ITCH in Mtb-infected cells was found to suppress Mtb-induced lipid accumulation. Molecular analyses including loss-of-function and ChIP assays demonstrated a role for the concerted action of the transcription factor YY1 and the arginine methyl transferase PRMT5 in restricting the expression of Itch gene by conferring repressive symmetrical H4R3me2 marks on its promoter. Consequently, siRNA-mediated depletion of YY1 or PRMT5 rescued ITCH expression, thereby compromising the levels of Mtb-induced ADRP and CD36 and limiting FM formation during infection. Accumulation of lipids within the host has been implicated as a pro-mycobacterial process that aids in pathogen persistence and dormancy. In line, we found that perturbation of PRMT5 enzyme activity resulted in compromised lipid levels and reduced mycobacterial survival in mouse peritoneal macrophages (ex vivo) and in a therapeutic mouse model of TB infection (in vivo). These findings provide new insights into the role of PRMT5 and YY1 in augmenting mycobacterial pathogenesis. Thus, we posit that our observations could help design novel adjunct therapies and combinatorial drug regimen for effective anti-TB strategies. Mycobacterium tuberculosis infection leads to the formation of lipid-laden cells (foamy macrophages-FMs) that offer a favorable shelter for its persistence. During infection, we observe a significant reduction in the expression of the E3 ubiquitin ligase, ITCH. This repression allows the sustenance of key lipid accretion molecules (ADRP and CD36), by curbing their proteasomal degradation. Further, we show the repression of ITCH to be dependent on the concerted action of the bifunctional transcription factor, YY1 and the arginine methyl transferase, PRMT5. NOTCH signaling pathway was identified as a master-regulator of YY1 expression. In vitro and in vivo analyses revealed the significance of PRMT5 in regulating FM formation and consequently mycobacterial burden.
Collapse
Affiliation(s)
- Salik Miskat Borbora
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raju S. Rajmani
- Center for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
6
|
Yildiz C, Karabulut D, Erdal G, Hergünsel G, Karabulut U, Binboğa E, Isiksacan N. NOTCH and tumor necrosis factor-alpha converting enzyme levels could be used in COVID-19 for risk stratification. INDIAN JOURNAL OF MEDICAL SPECIALITIES 2022. [DOI: 10.4103/injms.injms_52_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Singh SB, Coffman CN, Carroll-Portillo A, Varga MG, Lin HC. Notch Signaling Pathway Is Activated by Sulfate Reducing Bacteria. Front Cell Infect Microbiol 2021; 11:695299. [PMID: 34336718 PMCID: PMC8319767 DOI: 10.3389/fcimb.2021.695299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/28/2021] [Indexed: 12/05/2022] Open
Abstract
Sulfate Reducing Bacteria (SRB), usually rare residents of the gut, are often found in increased numbers (called a SRB bloom) in inflammatory conditions such as Inflammatory Bowel Disease (IBD), pouchitis, and periodontitis. However, the underlying mechanisms of this association remain largely unknown. Notch signaling, a conserved cell-cell communication pathway, is usually involved in tissue development and differentiation. Dysregulated Notch signaling is observed in inflammatory conditions such as IBD. Lipolysaccharide and pathogens also activate Notch pathway in macrophages. In this study, we tested whether Desulfovibrio, the most dominant SRB genus in the gut, may activate Notch signaling. RAW 264.7 macrophages were infected with Desulfovibrio vulgaris (DSV) and analyzed for the expression of Notch signaling pathway-related proteins. We found that DSV induced protein expression of Notch1 receptor, Notch intracellular domain (NICD) and p21, a downstream Notch target, in a dose-and time-dependent manner. DSV also induced the expression of pro-IL1β, a precursor of IL-1β, and SOCS3, a regulator of cytokine signaling. The gamma secretase inhibitor DAPT or Notch siRNA dampened DSV-induced Notch-related protein expression as well the expression of pro-IL1β and SOCS3. Induction of Notch-related proteins by DSV was not affected by TLR4 -IN -C34(C34), a TLR4 receptor antagonist. Additionally, cell-free supernatant of DSV-infected macrophages induced NICD expression in uninfected macrophages. DSV also activated Notch pathway in the human epithelial cell line HCT116 and in mouse small intestine. Thus, our study uncovers a novel mechanism by which SRB interact with host cells by activating Notch signaling pathway. Our study lays a framework for examining whether the Notch pathway induced by SRB contributes to inflammation in conditions associated with SRB bloom and whether it can be targeted as a therapeutic approach to treat these conditions.
Collapse
Affiliation(s)
- Sudha B Singh
- Biomedical Research Institute of New Mexico, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Cristina N Coffman
- Biomedical Research Institute of New Mexico, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, Department of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Matthew G Varga
- Biomedical Research Institute of New Mexico, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Henry C Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, University of New Mexico, Albuquerque, NM, United States.,Medicine Service, New Mexico VA Health Care System, Albuquerque, NM, United States
| |
Collapse
|
8
|
Wen J, Chen C, Luo M, Liu X, Guo J, Wei T, Gu X, Gu S, Ning Y, Li Y. Notch Signaling Ligand Jagged1 Enhances Macrophage-Mediated Response to Helicobacter pylori. Front Microbiol 2021; 12:692832. [PMID: 34305857 PMCID: PMC8297740 DOI: 10.3389/fmicb.2021.692832] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the gram-negative bacteria that mainly colonize the stomach mucosa and cause many gastrointestinal diseases, such as gastritis, peptic ulcer, and gastric cancer. Macrophages play a key role in eradicating H. pylori. Recent data have shown that Notch signaling could modulate the activation and bactericidal activities of macrophages. However, the role of Notch signaling in macrophages against H. pylori remains unclear. In the present study, in the co-culture model of macrophages with H. pylori, the inhibition of Notch signaling using γ-secretase decreased the expression of inducible nitric oxide synthase (iNOS) and its product, nitric oxide (NO), and downregulated the secretion of pro-inflammatory cytokine and attenuated phagocytosis and bactericidal activities of macrophages to H. pylori. Furthermore, we identified that Jagged1, one of Notch signaling ligands, was both upregulated in mRNA and protein level in activated macrophages induced by H. pylori. Clinical specimens showed that the number of Jagged1+ macrophages in the stomach mucosa from H. pylori-infected patients was significantly higher than that in healthy control. The overexpression of Jagged1 promoted bactericidal activities of macrophages against H. pylori and siRNA-Jagged1 presented the opposite effect. Besides, the addition of exogenous rJagged1 facilitated the pro-inflammatory mediators of macrophages against H. pylori, but the treatment of anti-Jagged1 neutralizing antibody attenuated it. Taken together, these results suggest that Jagged1 is a promoting molecule for macrophages against H. pylori, which will provide insight for exploring Jagged1 as a novel therapeutic target for the control of H. pylori infection.
Collapse
Affiliation(s)
- Junjie Wen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chuxi Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Meiqun Luo
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaocong Liu
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Jiading Guo
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Tingting Wei
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Xinyi Gu
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Sinan Gu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Byerly CD, Patterson LL, McBride JW. Ehrlichia TRP effectors: moonlighting, mimicry and infection. Pathog Dis 2021; 79:6261440. [PMID: 33974702 PMCID: PMC8112483 DOI: 10.1093/femspd/ftab026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Intracellular bacteria have evolved various strategies to evade host defense mechanisms. Remarkably, the obligately intracellular bacterium, Ehrlichia chaffeensis, hijacks host cell processes of the mononuclear phagocyte to evade host defenses through mechanisms executed in part by tandem repeat protein (TRP) effectors secreted by the type 1 secretion system. In the past decade, TRP120 has emerged as a model moonlighting effector, acting as a ligand mimetic, nucleomodulin and ubiquitin ligase. These defined functions illuminate the diverse roles TRP120 plays in exploiting and manipulating host cell processes, including cytoskeletal organization, vesicle trafficking, cell signaling, transcriptional regulation, post-translational modifications, autophagy and apoptosis. This review will focus on TRP effectors and their expanding roles in infection and provide perspective on Ehrlichia chaffeensis as an invaluable model organism for understanding infection strategies of obligately intracellular bacteria.
Collapse
Affiliation(s)
- Caitlan D Byerly
- Departments of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - LaNisha L Patterson
- Departments of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jere W McBride
- Departments of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
10
|
Castro RC, Gonçales RA, Zambuzi FA, Frantz FG. Notch signaling pathway in infectious diseases: role in the regulation of immune response. Inflamm Res 2021; 70:261-274. [PMID: 33558976 DOI: 10.1007/s00011-021-01442-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND The Notch signaling pathway is a cell signaling system that is conserved in a variety of eukaryotes. Overall, Notch receptors and their ligands are single-pass transmembrane proteins, which often require cell-cell interactions and proteolytic processing to promote signaling. Since its discovery, it has been the subject of extensive research that revealed its importance in several cellular mechanisms, including cell fate determination, hematopoiesis, tissue self-renewal, proliferation, and apoptosis during embryogenesis. Many studies have described the influence of the Notch pathway in modulating the innate and adaptive immune systems. METHODS We analyzed the literature on the role of the Notch pathway in regulating immune responses during infections, aiming to discuss the importance of establishing a Notch signaling pathway-based approach for predicting the outcome of infectious diseases. CONCLUSION In this review, we present an overview of evidence that demonstrates the direct and indirect effects of interaction between the Notch signaling pathway and the immune responses against bacterial, viral, fungal, and parasitic infections, as well as the importance of this pathway to predict the outcome of infectious diseases.
Collapse
Affiliation(s)
- Ricardo Cardoso Castro
- Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Ribeirão Preto, São Paulo, Brazil.,Immunology and Epigenetics Lab, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-FCFRP/USP, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Relber Aguiar Gonçales
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
| | - Fabiana Albani Zambuzi
- Immunology and Epigenetics Lab, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-FCFRP/USP, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Fabiani Gai Frantz
- Immunology and Epigenetics Lab, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-FCFRP/USP, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| |
Collapse
|
11
|
NOTCH1 and DLL4 are involved in the human tuberculosis progression and immune response activation. Tuberculosis (Edinb) 2020; 124:101980. [PMID: 32801053 DOI: 10.1016/j.tube.2020.101980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/21/2020] [Accepted: 07/19/2020] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) is the leading cause of mortality among infectious diseases worldwide. The study of molecular targets for therapy and diagnosis suggested that Notch signaling is an important pathway for the maintenance of the immune response during Mycobacterium tuberculosis (Mtb) infection. We evaluated the participation of the Notch pathway in the modulation of immune response during Mtb infection, and observed that patients with active TB had increased DLL4 expression in intermediate and non-classic monocytes. Further, patients with moderate and advanced lung injury have higher Notch1 expression in CD4+ T cells when compared to patients with a minimal lung injury. When we considered the severity of disease in active TB patients, the expression of the DLL4 in intermediate monocytes and the expression of Notch1 in CD4+ T cells are positively correlated with the degree of lung injury. In vitro, PBMCs treated with the Notch pharmacological inhibitor reduced the production of IL-17A and IL-2, whereas anti-hDLL4 treatment promoted a significant increase in TNF-α and phagocytosis. We suggest that Notch1 and DLL4 are associated with immune response activation in human tuberculosis, and can be a novel target to be exploited in the future in the searching of biomarkers.
Collapse
|
12
|
Notch-1 Signaling Modulates Macrophage Polarization and Immune Defense against Mycobacterium avium paratuberculosis Infection in Inflammatory Diseases. Microorganisms 2020; 8:microorganisms8071006. [PMID: 32635645 PMCID: PMC7409363 DOI: 10.3390/microorganisms8071006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the extensive research on Notch signaling involvement in inflammation, its specific role in macrophage response in autoimmune disease and defense mechanisms against bacterial infection, such as Mycobacterium avium paratuberculosis (MAP), remains unknown. In this study, we investigated the molecular role of Notch-1 signaling in the macrophage response during MAP infection. In particular, we measured the in vitro effect of MAP on Notch-1 signaling and downstream influence on interleukin (IL)-6 and myeloid cell leukemia sequence-1 (MCL-1) and consequent cellular apoptosis, MAP viability, and macrophage polarization. Overall, the data show significant upregulation in Notch-1, IL-6, and MCL-1 in MAP-infected macrophages, parallel with a decrease in apoptosis and elevated pro-inflammatory response in these infected cells. On the contrary, blocking Notch signaling with γ-secretase inhibitor (DAPT) decreased MAP survival and burden, increased apoptosis, and diminished the pro-inflammatory response. In particular, the treatment of infected macrophages with DAPT shifted macrophage polarization toward M2 anti-inflammatory phenotypic response. The outcome of this study clearly demonstrates the critical role of Notch signaling in macrophage response during infection. We conclude that MAP infection in macrophages activates Notch-1 signaling and downstream influence on IL-6 which hijack MCL-1 dependent inhibition of apoptosis leading to its chronic persistence, and further inflammation. This study supports Notch-1 signaling as a therapeutic target to combat infection in autoimmune diseases such as Crohn’s disease and Rheumatoid Arthritis.
Collapse
|
13
|
Wang JY, Zhu B, Patterson LL, Rogan MR, Kibler CE, McBride JW. Ehrlichia chaffeensis TRP120-mediated ubiquitination and proteasomal degradation of tumor suppressor FBW7 increases oncoprotein stability and promotes infection. PLoS Pathog 2020; 16:e1008541. [PMID: 32353058 PMCID: PMC7217479 DOI: 10.1371/journal.ppat.1008541] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/12/2020] [Accepted: 04/14/2020] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis (E. chaffeensis) exploits evolutionarily conserved Notch and Wnt host cell signaling pathways to downregulate innate immune host defenses and promote infection. The multifunctional E. chaffeensis TRP120 effector which has HECT E3 ubiquitin ligase activity, interacts with the host nuclear tumor suppressor F-BOX and WD domain repeating-containing 7 (FBW7). FBW7 is the substrate recognition subunit of the Skp1-cullin-1-FBOX E3 ubiquitin (Ub) ligase complex (SCF) known to negatively regulate a network of oncoproteins (Notch, cyclin E, c-Jun, MCL1 and cMYC). In this study, we demonstrate that TRP120 and FBW7 colocalize strongly in the nucleus by confocal immunofluorescent microscopy and interactions between TRP120 and FBW7 FBOX and WD40 domains were demonstrated by ectopic expression and co-immunoprecipitation. Although FBW7 gene expression increased during E. chaffeensis infection, FBW7 levels significantly decreased (>70%) by 72 h post infection. Moreover, an iRNA knockdown of FBW7 coincided with increased E. chaffeensis infection and levels of Notch intracellular domain (NICD), phosphorylated c-Jun, MCL-1 and cMYC, which are negatively regulated by FBW7. An increase in FBW7 K48 ubiquitination was detected during infection by co-IP, and FBW7 degradation was inhibited in infected cells treated with the proteasomal inhibitor bortezomib. Direct TRP120 ubiquitination of native and recombinant FBW7 was demonstrated in vitro and confirmed by ectopic expression of TRP120 HECT Ub ligase catalytic site mutant. This study identifies the tumor suppressor, FBW7, as a TRP120 HECT E3 Ub ligase substrate, and demonstrates that TRP120 ligase activity promotes ehrlichial infection by degrading FBW7 to maintain stability of Notch and other oncoproteins involved in cell survival and apoptosis.
Collapse
Affiliation(s)
- Jennifer Y. Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bing Zhu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Madison R. Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Clayton E. Kibler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
14
|
Keewan E, Naser SA. The Role of Notch Signaling in Macrophages during Inflammation and Infection: Implication in Rheumatoid Arthritis? Cells 2020; 9:cells9010111. [PMID: 31906482 PMCID: PMC7016800 DOI: 10.3390/cells9010111] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Notch signaling coordinates numerous cellular processes and has been implicated in many pathological conditions, including rheumatoid arthritis (RA). Although the role of Notch signaling in development, maturation, differentiation, and activation of lymphocytes has been comprehensively reported, less is known about its role in myeloid cells. Certainly, limited data are available about the role of Notch signaling in macrophages during inflammation and infection. In this review, we discuss the recent advances pertaining to the role of Notch signaling in differentiation, activation, and metabolism of macrophages during inflammation and infection. We also highlight the reciprocal interplay between Notch signaling and other signaling pathways in macrophages under different inflammatory and infectious conditions including pathogenesis of RA. Finally, we discuss approaches that could consider Notch signaling as a potential therapeutic target against infection- and inflammation-driven diseases.
Collapse
Affiliation(s)
| | - Saleh A. Naser
- Correspondence: ; Tel.: +1-407-823-0955; Fax: +1-407-823-0956
| |
Collapse
|
15
|
Li QF, He XY, Xin T. [Role of the Notch signaling pathway in children with tuberculosis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21. [PMID: 31642436 PMCID: PMC7389733 DOI: 10.7499/j.issn.1008-8830.2019.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
OBJECTIVE To study the expression of molecules associated with the Notch signaling pathway in children with tuberculosis, as well as the role of this pathway in the pathogenesis of tuberculosis in children. METHODS A total of 62 children who were diagnosed with tuberculosis from June 2017 to December 2018 were enrolled as the case group, and 64 healthy children were enrolled as the healthy control group. Peripheral venous blood samples with a volume of 2 mL were collected, and quantitative real-time PCR was used to measure the mRNA expression levels of the molecules associated with the Notch signaling pathway (receptors Notch1-4, ligands Jagged1/2 and DLL1/3/4, and downstream target genes Hes1 and Hey1) in leukocytes. RESULTS Compared with the healthy control group, the case group had significant increases in the mRNA expression levels of Notch1, Notch2, and DLL4 in leukocytes (P<0.05), while there were no significant differences in the mRNA expression levels of Notch3/4, Jagged1/2, DLL1/3, Hes1, and Hey1 between the two groups (P>0.05). CONCLUSIONS There are significant increases in the mRNA expression of Notch1/2 and DLL4 in children with tuberculosis, while there are no significant changes in the expression of downstream target genes, suggesting that the Notch signaling pathway, which is activated by the interaction between Notch1/2 and DLL4 after Mycobacterium tuberculosis infection, may play a role in childhood tuberculosis by acting on other target genes, and further studies are needed for clarification.
Collapse
Affiliation(s)
- Qi-Feng Li
- Xinjiang Institute of Pediatrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China.
| | | | | |
Collapse
|
16
|
Wei W, Li ZP, Bian ZX, Han QB. Astragalus Polysaccharide RAP Induces Macrophage Phenotype Polarization to M1 via the Notch Signaling Pathway. Molecules 2019; 24:E2016. [PMID: 31137782 PMCID: PMC6572696 DOI: 10.3390/molecules24102016] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022] Open
Abstract
Macrophages occur in polarized phenotypes, whose characteristics determine the role they play in tumor growth. The M1 phenotype macrophages promote tumoricidal responses and suppress tumor growth. Our previous study showed that a polysaccharide isolated from Radix Astragali, named RAP, was itself non-cytotoxic but induced RAW264.7 cells' cytotoxicity against cancer cells. The current study was undertaken to determine its mechanism. Series studies was conducted to show that RAP is able to induce much higher gene expression of M1 markers, including iNOS, IL-6, TNF-a, and CXCL10, compared with the control group. When RAP-induced BMDMs were transplanted together with 4T1 tumor cells in BALB/c mice, both tumor volume and tumor weight decreased. Further studies indicated that RAP induces the Notch signaling pathway in RAW264.7 cells. The function of Notch signaling in macrophage polarization was confirmed by using γ-secretase inhibitor. These results suggested that Astragalus polysaccharide RAP induces macrophage's polarization to M1 phenotype via the Notch signaling pathway.
Collapse
Affiliation(s)
- Wei Wei
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China.
| | - Zhi-Peng Li
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China.
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China.
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
17
|
Curto P, Riley SP, Simões I, Martinez JJ. Macrophages Infected by a Pathogen and a Non-pathogen Spotted Fever Group Rickettsia Reveal Differential Reprogramming Signatures Early in Infection. Front Cell Infect Microbiol 2019; 9:97. [PMID: 31024862 PMCID: PMC6467950 DOI: 10.3389/fcimb.2019.00097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/22/2019] [Indexed: 12/22/2022] Open
Abstract
Despite their high degree of genomic similarity, different spotted fever group (SFG) Rickettsia are often associated with very different clinical presentations. For example, Rickettsia conorii causes Mediterranean spotted fever, a life-threatening disease for humans, whereas Rickettsia montanensis is associated with limited or no pathogenicity to humans. However, the molecular basis responsible for the different pathogenicity attributes are still not understood. Although killing microbes is a critical function of macrophages, the ability to survive and/or proliferate within phagocytic cells seems to be a phenotypic feature of several intracellular pathogens. We have previously shown that R. conorii and R. montanensis exhibit different intracellular fates within macrophage-like cells. By evaluating early macrophage responses upon insult with each of these rickettsial species, herein we demonstrate that infection with R. conorii results in a profound reprogramming of host gene expression profiles. Transcriptional programs generated upon infection with this pathogenic bacteria point toward a sophisticated ability to evade innate immune signals, by modulating the expression of several anti-inflammatory molecules. Moreover, R. conorii induce the expression of several pro-survival genes, which may result in the ability to prolong host cell survival, thus protecting its replicative niche. Remarkably, R. conorii-infection promoted a robust modulation of different transcription factors, suggesting that an early manipulation of the host gene expression machinery may be key to R. conorii proliferation in THP-1 macrophages. This work provides new insights into the early molecular processes hijacked by a pathogenic SFG Rickettsia to establish a replicative niche in macrophages, opening several avenues of research in host-rickettsiae interactions.
Collapse
Affiliation(s)
- Pedro Curto
- Ph.D. Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Sean P. Riley
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Isaura Simões
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Juan J. Martinez
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
18
|
Notch signaling induces lymphoproliferation, T helper cell activation and Th1/Th2 differentiation in leprosy. Immunol Lett 2019; 207:6-16. [PMID: 30629982 DOI: 10.1016/j.imlet.2019.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 02/02/2023]
Abstract
The present study evaluates role of Notch1 signaling in the regulation of T cell immunity in leprosy. Peripheral blood mononuclear cells from leprosy patients and healthy controls were activated with Mycobacterium leprae antigens along with activation of Notch1 signaling pathway and then lymphoproliferation was analyzed by lymphocytes transformation test and the expression of Notch1 and its ligands DLL1, Jagged1 and Jagged 2, T cell activation marker and Th1-Th2 cytokines on Th cells in PBMCs of study subjects were analyzed by flow cytometry. Further, these parameters were also analyzed after inhibition of Notch1 signaling pathway. Higher percentage of Notch1expressing Th cells were noted in TT/BT cases and higher percentage of DLL1 expressing Th cells in TT/BT and BL/LL cases. M. leprae antigens were found to induce the expression of Jagged1 on Th cells. Interestingly activation of Notch1 signaling pathway induced lymphoproliferation in BL/LL cases in response of PGL-1. Activation of Notch1 signaling was also found to induce the expression of T cell activation markers CD25, CD69 and Th1 cytokine IFN-γ in response to M. leprae antigens. Immunomodulation through Notch1 signaling seen in our study could be helpful in augmenting Th1 response in leprosy.
Collapse
|
19
|
Hildebrand D, Uhle F, Sahin D, Krauser U, Weigand MA, Heeg K. The Interplay of Notch Signaling and STAT3 in TLR-Activated Human Primary Monocytes. Front Cell Infect Microbiol 2018; 8:241. [PMID: 30042932 PMCID: PMC6048282 DOI: 10.3389/fcimb.2018.00241] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022] Open
Abstract
The highly conserved Notch signaling pathway essentially participates in immunity through regulation of developmental processes and immune cell activity. In the adaptive immune system, the impact of the Notch cascade in T and B differentiation is well studied. In contrast, the function, and regulation of Notch signaling in the myeloid lineage during infection is poorly understood. Here we show that TLR signaling, triggered through LPS stimulation or in vitro infection with various Gram-negative and -positive bacteria, stimulates Notch receptor ligand Delta-like 1 (DLL1) expression and Notch signaling in human blood-derived monocytes. TLR activation induces DLL1 indirectly, through stimulated cytokine expression and autocrine cytokine receptor-mediated signal transducer and activator of transcription 3 (STAT3). Furthermore, we reveal a positive feedback loop between Notch signaling and Janus kinase (JAK)/STAT3 pathway during in vitro infection that involves Notch-boosted IL-6. Inhibition of Notch signaling by γ-secretase inhibitor DAPT impairs TLR4-stimulated accumulation of NF-κB subunits p65 in the nucleus and subsequently reduces LPS- and infection-mediated IL-6 production. The reduced IL-6 release correlates with a diminished STAT3 phosphorylation and reduced expression of STAT3-dependent target gene programmed death-ligand 1 (PD-L1). Corroborating recombinant soluble DLL1 and Notch activator oxaliplatin stimulate STAT3 phosphorylation and expression of immune-suppressive PD-L1. Therefore we propose a bidirectional interaction between Notch signaling and STAT3 that stabilizes activation of the transcription factor and supports STAT3-dependent remodeling of myeloid cells toward an immuno-suppressive phenotype. In summary, the study provides new insights into the complex network of Notch regulation in myeloid cells during in vitro infection. Moreover, it points to a participation of Notch in stabilizing TLR-mediated STAT3 activation and STAT3-mediated modulation of myeloid functional phenotype through induction of immune-suppressive PD-L1.
Collapse
Affiliation(s)
- Dagmar Hildebrand
- Centre for Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Delal Sahin
- Centre for Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Ute Krauser
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Klaus Heeg
- Centre for Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
20
|
Goel S, Sahu S, Minz RW, Singh S, Suri D, Oh YM, Rawat A, Sehgal S, Saikia B. STAT3-Mediated Transcriptional Regulation of Osteopontin in STAT3 Loss-of-Function Related Hyper IgE Syndrome. Front Immunol 2018; 9:1080. [PMID: 29868029 PMCID: PMC5966547 DOI: 10.3389/fimmu.2018.01080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/30/2018] [Indexed: 11/22/2022] Open
Abstract
Background Hyper-IgE syndrome (HIES) caused by loss-of-function (LOF) mutations in STAT3 gene (STAT3 LOF HIES) is associated with dental and facial abnormalities in addition to immunological defects. The role of STAT3 in the pathogenesis of the dental/facial features is, however, poorly elucidated. Objectives Since mechanism of cellular resorption of mineralized tissues such as bone and teeth are similar, we attempted to study the expression of genes involved in bone homeostasis in STAT3 LOF HIES. Methods Peripheral blood mononuclear cells from healthy controls (HCs), STAT3 LOF HIES patients, STAT3−/− PC-3 cells and STAT3+/+ LNCaP cells were stimulated with IL-6 and quantitative PCR array was performed to study the relative mRNA expression of 43 pre-selected genes. PCR array finding were further evaluated after stattic induced STAT3 inhibition. Results Osteopontin (OPN) gene was seen to be significantly upregulated after IL-6 stimulation in HC (mean fold change 18.6, p = 0.01) compared with HIES subjects. Inhibition of STAT3 signaling by stattic followed by IL-6 stimulation abrogated the OPN response in HCs suggesting that IL-6-induced STAT3 signaling regulates OPN expression. Bioinformatics analysis predicted the presence of STAT3 response element TTCCAAGAA at position -2005 of the OPN gene. Conclusion Regulation of OPN gene through IL-6-mediated STAT3 activation and its significant dysregulation in STAT3 LOF HIES subjects could make OPN a plausible candidate involved in the pathogenesis of dental/facial manifestations in HIES.
Collapse
Affiliation(s)
- Shubham Goel
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Smrity Sahu
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana W Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Young M Oh
- Cell Line Development Team, Bio Research Institute, Genexine Inc, Seongnam, South Korea
| | - Amit Rawat
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shobha Sehgal
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
21
|
Mahadik K, Prakhar P, Rajmani RS, Singh A, Balaji KN. c-Abl-TWIST1 Epigenetically Dysregulate Inflammatory Responses during Mycobacterial Infection by Co-Regulating Bone Morphogenesis Protein and miR27a. Front Immunol 2018; 9:85. [PMID: 29449840 PMCID: PMC5799226 DOI: 10.3389/fimmu.2018.00085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022] Open
Abstract
Mycobacteria propelled modulation of host responses is of considerable interest in the face of emerging drug resistance. Although it is known that Abl tyrosine kinases affect entry and persistence of mycobacteria, mechanisms that couple c-Abl to proximal signaling pathways during immunity are poorly understood. Loss-of-function of c-Abl through Imatinib, in a mouse model of tuberculosis or RNA interference, identified bone morphogenesis protein (BMP) signaling as its cellular target. We demonstrate that c-Abl promotes mycobacterial survival through epigenetic modification brought about by KAT5-TWIST1 at Bmp loci. c-Abl-BMP signaling deregulated iNOS, aggravating the inflammatory balance. Interestingly, BMP signaling was observed to have far-reaching effects on host immunity, as it attenuated TLR3 pathway by engaging miR27a. Significantly, these events were largely mediated via WhiB3 and DosR/S/T but not SecA signaling pathway of mycobacteria. Our findings suggest molecular mechanisms of host pathways hijacked by mycobacteria and expand our understanding of c-Abl inhibitors in potentiating innate immune responses.
Collapse
Affiliation(s)
- Kasturi Mahadik
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - R S Rajmani
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
22
|
Affiliation(s)
- Chang-Hoon Lee
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University School of Medicine, Iksan, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
MicroRNA Signature of Human Microvascular Endothelium Infected with Rickettsia rickettsii. Int J Mol Sci 2017; 18:ijms18071471. [PMID: 28698491 PMCID: PMC5535962 DOI: 10.3390/ijms18071471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) mediate gene silencing by destabilization and/or translational repression of target mRNA. Infection of human microvascular endothelial cells as primary targets of Rickettsiarickettsii, the etiologic agent of Rocky Mountain spotted fever, triggers host responses appertaining to alterations in cellular gene expression. Microarray-based profiling of endothelial cells infected with R.rickettsii for 3 or 24 h revealed differential expression of 33 miRNAs, of which miRNAs129-5p, 200a-3p, 297, 200b-3p, and 595 were identified as the top five up-regulated miRNAs (5 to 20-fold, p ≤ 0.01) and miRNAs 301b-3p, 548a-3p, and 377-3p were down-regulated (2 to 3-fold, p ≤ 0.01). Changes in the expression of selected miRNAs were confirmed by q-RT-PCR in both in vitro and in vivo models of infection. As potential targets, expression of genes encoding NOTCH1, SMAD2, SMAD3, RIN2, SOD1, and SOD2 was either positively or negatively regulated. Using a miRNA-specific mimic or inhibitor, NOTCH1 was determined to be a target of miRNA 200a-3p in R. rickettsii-infected human dermal microvascular endothelial cells (HMECs). Predictive interactome mapping suggested the potential for miRNA-mediated modulation of regulatory gene networks underlying important host cell signaling pathways. This first demonstration of altered endothelial miRNA expression provides new insights into regulatory elements governing mechanisms of host responses and pathogenesis during human rickettsial infections.
Collapse
|
24
|
Fu Y, Xu X, Xue J, Duan W, Yi Z. Deregulated lncRNAs in B Cells from Patients with Active Tuberculosis. PLoS One 2017; 12:e0170712. [PMID: 28125665 PMCID: PMC5268381 DOI: 10.1371/journal.pone.0170712] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022] Open
Abstract
Role of lncRNAs in human adaptive immune response to TB infection is largely unexplored. To address this issue, here we characterized lncRNA expression profile in primary human B cell response to TB infection using microarray assay. Several lncRNAs and mRNAs were chosen for RT-qPCR validation. Bioinformatics prediction was applied to delineate function of the deregulated mRNAs. We found that 844 lncRNAs and 597 mRNAs were differentially expressed between B cell samples from individuals with or without TB. KEGG pathway analysis for the deregulated mRNAs indicated a number of pathways, such as TB, TLR signaling pathway and antigen processing and presentation. Moreover, corresponding to the dysregulation of many lncRNAs, we also found that their adjacent protein-coding genes were also deregulated. Functional annotation for the corresponding mRNAs showed that these lncRNAs were mainly associated with TLR signaling, TGF-β signaling. Interestingly, SOCS3, which is a critical negative regulator of cytokine response to TB infection and its nearby lncRNA XLOC_012582, were highly expressed in active TB B cells. Subsequent RT-qPCR results confirmed the changes. Whether upregulated XLOC_012582 causes SOCS3 overexpression and is eventually involved in the context of exacerbations of active TB represents an interesting issue that deserves to be further explored. Taken together, for the first time, we identified a set of deregulated lncRNAs in active TB B cells and their functions were predicted. Such findings provided novel insight into the pathogenesis of TB and further studies should focus on the function and pathogenic mechanisms of the lncRNAs involved in active TB.
Collapse
Affiliation(s)
- Yurong Fu
- Department of Medical Microbiology of Clinical Medicine College, Weifang Medical University, Shandong, Weifang, China
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Shandong, Weifang, China
- * E-mail: (YF); (ZY)
| | - Xianqin Xu
- Department of Clinical Skill Laboratory of Clinical Medicine College, Weifang Medical University, Shandong, Weifang, China
| | - Junfang Xue
- Department of Surgery of Gaomi City people's Hospital, Shandong, Weifang, China
| | - Wenping Duan
- Department of Nursing of Affiliated Hospital of Weifang Medical University, Shandong, Weifang, China
| | - Zhengjun Yi
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Shandong, Weifang, China
- * E-mail: (YF); (ZY)
| |
Collapse
|
25
|
Mycobacterium tuberculosis-triggered Hippo pathway orchestrates CXCL1/2 expression to modulate host immune responses. Sci Rep 2016; 6:37695. [PMID: 27883091 PMCID: PMC5121601 DOI: 10.1038/srep37695] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) pathogenesis encompasses a plethora of finely regulated alterations within the host which eventually coin the outcome of infection. Chemokines are important components in directing immune cell recruitment to the site of infection, and shaping the disease progression. Here, we demonstrate that Hippo (mammalian sterile 20-like 1 and 2 kinases, MST1/2, in mammals), is activated during mycobacterial infection in a toll-like receptor (TLR) 2-interleukin receptor-1 associated kinases (IRAK1/4)-dependent manner. Mtb-triggered Hippo signaling modulates the expression and secretion of chemokines (CXCL1 and CXCL2); as silencing MST1/2 compromised the ability of Mtb to furnish the same. Further insight into the mechanism of Hippo-mediated regulation of chemokines revealed the role for a non-canonical Hippo effector interferon (IFN) regulatory factor (IRF) 3 in the process and marked the effect to be independent of LATS1. Alongside their ability to guide directed recruitment of immune cells, we have uncovered a paracrine role for Hippo-mediated secretion of CXCL1 and CXCL2 in the production of anti-microbial peptides (beta-defensins), iNOS, NOX2 and pro-inflammatory molecules during mycobacterial infection of the host. This study highlights the involvement of TLR2-IRAK1/4-MST1/2-IRF3 axis in Mtb-triggered modulation of chemokines and identifies Hippo signaling as a novel regulator of host-mycobacterial interactions.
Collapse
|
26
|
Mahony R, Ahmed S, Diskin C, Stevenson NJ. SOCS3 revisited: a broad regulator of disease, now ready for therapeutic use? Cell Mol Life Sci 2016; 73:3323-36. [PMID: 27137184 PMCID: PMC11108554 DOI: 10.1007/s00018-016-2234-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Abstract
Since their discovery, SOCS have been characterised as regulatory cornerstones of intracellular signalling. While classically controlling the JAK/STAT pathway, their inhibitory effects are documented across several cascades, underpinning their essential role in homeostatic maintenance and disease. After 20 years of extensive research, SOCS3 has emerged as arguably the most important family member, through its regulation of both cytokine- and pathogen-induced cascades. In fact, low expression of SOCS3 is associated with autoimmunity and oncogenesis, while high expression is linked to diabetes and pathogenic immune evasion. The induction of SOCS3 by both viruses and bacteria and its impact upon inflammatory disorders, underscores this protein's increasing clinical potential. Therefore, with the aim of highlighting SOCS3 as a therapeutic target for future development, this review revisits its multi-faceted immune regulatory functions and summarises its role in a broad ranges of diseases.
Collapse
Affiliation(s)
- R Mahony
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - S Ahmed
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - C Diskin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - N J Stevenson
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
27
|
Holla S, Prakhar P, Singh V, Karnam A, Mukherjee T, Mahadik K, Parikh P, Singh A, Rajmani RS, Ramachandra SG, Balaji KN. MUSASHI-Mediated Expression of JMJD3, a H3K27me3 Demethylase, Is Involved in Foamy Macrophage Generation during Mycobacterial Infection. PLoS Pathog 2016; 12:e1005814. [PMID: 27532872 PMCID: PMC4988650 DOI: 10.1371/journal.ppat.1005814] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/18/2016] [Indexed: 12/11/2022] Open
Abstract
Foamy macrophages (FM)s harbor lipid bodies that not only assist mycobacterial persistence within the granulomas but also are sites for intracellular signaling and inflammatory mediators which are essential for mycobacterial pathogenesis. However, molecular mechanisms that regulate intracellular lipid accumulation in FMs during mycobacterial infection are not clear. Here, we report for the first time that jumonji domain containing protein (JMJD)3, a demethylase of the repressive H3K27me3 mark, orchestrates the expression of M. tuberculosis H37Rv-, MDR-JAL2287-, H37Ra- and M. bovis BCG-induced genes essential for FM generation in a TLR2-dependent manner. Further, NOTCH1-responsive RNA-binding protein MUSASHI (MSI), targets a transcriptional repressor of JMJD3, Msx2-interacting nuclear target protein, to positively regulate infection-induced JMJD3 expression, FM generation and M2 phenotype. Investigations in in vivo murine models further substantiated these observations. Together, our study has attributed novel roles for JMJD3 and its regulators during mycobacterial infection that assist FM generation and fine-tune associated host immunity. Foamy macrophages (FMs) not only provide a suitable survival niche for the mycobacteria in the granuloma but also are reservoirs for several inflammatory mediators that regulate mycobacterial pathogenesis. Hence, understanding the mechanisms that regulate infection-induced FM generation assumes importance. In this investigation, we present empirical evidence to support the role of host epigenetic mechanisms in generating FMs and thus facilitating mycobacterial persistence in vivo. We show that the signaling pathways that mediate mycobacteria-induced expression of JMJD3, a demethylase of the facultative repression mark, regulate the genes assisting in FM generation. Importantly, the identified pathway could largely contribute to the evasive responses during mycobacterial infection and suppression of such pathways during infection could confer stronger immunity. Together, these regulators could be potential candidates for host-directed therapies against mycobacterial infection.
Collapse
Affiliation(s)
- Sahana Holla
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Vikas Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Anupama Karnam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Tanushree Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kasturi Mahadik
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Pankti Parikh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, India
| | - R. S. Rajmani
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, India
| | | | | |
Collapse
|
28
|
Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival. mBio 2016; 7:mBio.00672-16. [PMID: 27381289 PMCID: PMC4958247 DOI: 10.1128/mbio.00672-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E. chaffeensis type 1 secreted tandem repeat protein (TRP) effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E. chaffeensis, via the TRP120 effector, activates the canonical Notch signaling pathway to promote intracellular survival. We found that nuclear translocation of the transcriptionally active Notch intracellular domain (NICD) occurs in response to E. chaffeensis or recombinant TRP120, resulting in upregulation of Notch signaling pathway components and target genes notch1, adam17, hes, and hey Significant differences in canonical Notch signaling gene expression levels (>40%) were observed during early and late stages of infection, indicating activation of the Notch pathway. We linked Notch pathway activation specifically to the TRP120 effector, which directly interacts with the Notch metalloprotease ADAM17. Using pharmacological inhibitors and small interfering RNAs (siRNAs) against γ-secretase enzyme, Notch transcription factor complex, Notch1, and ADAM17, we demonstrated that Notch signaling is required for ehrlichial survival. We studied the downstream effects and found that E. chaffeensis TRP120-mediated activation of the Notch pathway causes inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways required for PU.1 and subsequent Toll-like receptor 2/4 (TLR2/4) expression. This investigation reveals a novel mechanism whereby E. chaffeensis exploits the Notch pathway to evade the host innate immune response for intracellular survival. IMPORTANCE E. chaffeensis is an obligately intracellular bacterium and the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection and avoids innate host defenses are not understood, but functionally relevant host-pathogen interactions with type 1 secreted TRP effectors are essential for the ehrlichial cellular reprogramming strategy. This study provides further insight into the molecular strategies used by obligately intracellular pathogens such as E. chaffeensis, which have small genomes and a limited number of effector proteins and exploit evolutionarily conserved host cell programs such as Notch signaling to promote infection and intracellular survival.
Collapse
|
29
|
Lina TT, Farris T, Luo T, Mitra S, Zhu B, McBride JW. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy. Front Cell Infect Microbiol 2016; 6:58. [PMID: 27303657 PMCID: PMC4885862 DOI: 10.3389/fcimb.2016.00058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/17/2016] [Indexed: 01/02/2023] Open
Abstract
Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.
Collapse
Affiliation(s)
- Taslima T Lina
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Tierra Farris
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Shubhajit Mitra
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Bing Zhu
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Jere W McBride
- Department of Pathology, University of Texas Medical BranchGalveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical BranchGalveston, TX, USA; Sealy Center for Vaccine Development, University of Texas Medical BranchGalveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
30
|
Mycobacteria-responsive sonic hedgehog signaling mediates programmed death-ligand 1- and prostaglandin E2-induced regulatory T cell expansion. Sci Rep 2016; 6:24193. [PMID: 27080341 PMCID: PMC4832185 DOI: 10.1038/srep24193] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 03/22/2016] [Indexed: 12/14/2022] Open
Abstract
CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) are exploited by mycobacteria to subvert the protective host immune responses. The Treg expansion in the periphery requires signaling by professional antigen presenting cells and in particularly dendritic cells (DC). However, precise molecular mechanisms by which mycobacteria instruct Treg expansion via DCs are not established. Here we demonstrate that mycobacteria-responsive sonic hedgehog (SHH) signaling in human DCs leads to programmed death ligand-1 (PD-L1) expression and cyclooxygenase (COX)-2-catalyzed prostaglandin E2 (PGE2) that orchestrate mycobacterial infection-induced expansion of Tregs. While SHH-responsive transcription factor GLI1 directly arbitrated COX-2 transcription, specific microRNAs, miR-324-5p and miR-338-5p, which target PD-L1 were downregulated by SHH signaling. Further, counter-regulatory roles of SHH and NOTCH1 signaling during mycobacterial-infection of human DCs was also evident. Together, our results establish that Mycobacterium directs a fine-balance of host signaling pathways and molecular regulators in human DCs to expand Tregs that favour immune evasion of the pathogen.
Collapse
|
31
|
Shang Y, Smith S, Hu X. Role of Notch signaling in regulating innate immunity and inflammation in health and disease. Protein Cell 2016; 7:159-74. [PMID: 26936847 PMCID: PMC4791423 DOI: 10.1007/s13238-016-0250-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 01/26/2016] [Indexed: 12/16/2022] Open
Abstract
The Notch signaling pathway is conserved from Drosophila to mammals and is critically involved in developmental processes. In the immune system, it has been established that Notch signaling regulates multiple steps of T and B cell development in both central and peripheral lymphoid organs. Relative to the well documented role of Notch signaling in lymphocyte development, less is known about its role in regulating myeloid lineage development and function, especially in the context of acute and chronic inflammation. In this review article, we will describe the evidence accumulated during the recent years to support a key regulatory role of the Notch pathway in innate immune and inflammatory responses and discuss the potential implications of such regulation for pathogenesis and therapy of inflammatory disorders.
Collapse
Affiliation(s)
- Yingli Shang
- School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Sinead Smith
- Department of Clinical Medicine, Trinity College Dublin, Dublin, 2, Ireland
| | - Xiaoyu Hu
- School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
32
|
Prakhar P, Holla S, Ghorpade DS, Gilleron M, Puzo G, Udupa V, Balaji KN. Ac2PIM-responsive miR-150 and miR-143 target receptor-interacting protein kinase 2 and transforming growth factor beta-activated kinase 1 to suppress NOD2-induced immunomodulators. J Biol Chem 2015; 290:26576-86. [PMID: 26391398 PMCID: PMC4646315 DOI: 10.1074/jbc.m115.662817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-α, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKCδ-MAPK pathway to suppress β-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.
Collapse
Affiliation(s)
- Praveen Prakhar
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | - Sahana Holla
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | - Devram Sampat Ghorpade
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS and Université de Toulouse, 31077 Toulouse, France
| | - Germain Puzo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS and Université de Toulouse, 31077 Toulouse, France
| | - Vibha Udupa
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | | |
Collapse
|
33
|
Rottenberg ME, Carow B. SOCS3 and STAT3, major controllers of the outcome of infection with Mycobacterium tuberculosis. Semin Immunol 2014; 26:518-32. [DOI: 10.1016/j.smim.2014.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 01/04/2023]
|
34
|
Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol 2014; 5:614. [PMID: 25506346 PMCID: PMC4246889 DOI: 10.3389/fimmu.2014.00614] [Citation(s) in RCA: 1389] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022] Open
Abstract
As an essential component of innate immunity, macrophages have multiple functions in both inhibiting or promoting cell proliferation and tissue repair. Diversity and plasticity are hallmarks of macrophages. Classical M1 and alternative M2 activation of macrophages, mirroring the Th1–Th2 polarization of T cells, represent two extremes of a dynamic changing state of macrophage activation. M1-type macrophages release cytokines that inhibit the proliferation of surrounding cells and damage contiguous tissue, and M2-type macrophages release cytokines that promote the proliferation of contiguous cells and tissue repair. M1–M2 polarization of macrophage is a tightly controlled process entailing a set of signaling pathways, transcriptional and posttranscriptional regulatory networks. An imbalance of macrophage M1–M2 polarization is often associated with various diseases or inflammatory conditions. Therefore, identification of the molecules associated with the dynamic changes of macrophage polarization and understanding their interactions is crucial for elucidating the molecular basis of disease progression and designing novel macrophage-mediated therapeutic strategies.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences , Nanjing , China ; Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), Nanjing University School of Life Sciences , Nanjing , China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences , Nanjing , China ; Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), Nanjing University School of Life Sciences , Nanjing , China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences , Nanjing , China ; Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), Nanjing University School of Life Sciences , Nanjing , China
| |
Collapse
|
35
|
Mohamad D, Suppian R, Mohd Nor N. Immunomodulatory effects of recombinant BCG expressing MSP-1C of Plasmodium falciparum on LPS- or LPS+IFN-γ-stimulated J774A.1 cells. Hum Vaccin Immunother 2014; 10:1880-6. [PMID: 25424796 DOI: 10.4161/hv.28695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Macrophage phagocytosis is the first line of defense of the innate immune system against malaria parasite infection. This study evaluated the immunomodulatory effects of BCG and recombinant BCG (rBCG) strains expressing the C-terminus of the merozoite surface protein-1 (MSP-1C) of Plasmodium falciparum on mouse macrophage cell line J774A.1 in the presence or absence of lipopolysaccharide (LPS) or LPS + IFN-γ. The rBCG strain significantly enhanced phagocytic activity, production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, nitric oxide (NO), and inducible nitric oxide synthase (iNOS) as compared with parental BCG strain, and these activities increased in the presence of LPS and LPS+IFN-γ. Furthermore, the rBCG strain also significantly reduced the macrophage viability as well as the rBCG growth suggesting the involvement of macrophage apoptosis. Taken together, these data indicate that the rBCG strain has an immunomodulatory effect on macrophages, thus strengthen the rational use of rBCG to control malaria infection.
Collapse
Affiliation(s)
- Dhaniah Mohamad
- a School of Health Sciences; Health Campus; Universiti Sains Malaysia; Kelantan, Malaysia
| | | | | |
Collapse
|
36
|
The WNT signaling pathway contributes to dectin-1-dependent inhibition of Toll-like receptor-induced inflammatory signature. Mol Cell Biol 2014; 34:4301-14. [PMID: 25246634 DOI: 10.1128/mcb.00641-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Macrophages regulate cell fate decisions during microbial challenges by carefully titrating signaling events activated by innate receptors such as dectin-1 or Toll-like receptors (TLRs). Here, we demonstrate that dectin-1 activation robustly dampens TLR-induced proinflammatory signature in macrophages. Dectin-1 induced the stabilization of β-catenin via spleen tyrosine kinase (Syk)-reactive oxygen species (ROS) signals, contributing to the expression of WNT5A. Subsequently, WNT5A-responsive protein inhibitors of activated STAT (PIAS-1) and suppressor of cytokine signaling 1 (SOCS-1) mediate the downregulation of IRAK-1, IRAK-4, and MyD88, resulting in decreased expression of interleukin 12 (IL-12), IL-1β, and tumor necrosis factor alpha (TNF-α). In vivo activation of dectin-1 with pathogenic fungi or ligand resulted in an increased bacterial burden of Mycobacteria, Klebsiella, Staphylococcus, or Escherichia, with a concomitant decrease in TLR-triggered proinflammatory cytokines. All together, our study establishes a new role for dectin-1-responsive inhibitory mechanisms employed by virulent fungi to limit the proinflammatory environment of the host.
Collapse
|
37
|
Holla S, Ghorpade DS, Singh V, Bansal K, Balaji KN. Mycobacterium bovis BCG promotes tumor cell survival from tumor necrosis factor-α-induced apoptosis. Mol Cancer 2014; 13:210. [PMID: 25208737 PMCID: PMC4174669 DOI: 10.1186/1476-4598-13-210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 09/05/2014] [Indexed: 11/18/2022] Open
Abstract
Background Increased incidence of lung cancer among pulmonary tuberculosis patients suggests mycobacteria-induced tumorigenic response in the host. The alveolar epithelial cells, candidate cells that form lung adenocarcinoma, constitute a niche for mycobacterial replication and infection. We thus explored the possible mechanism of M. bovis Bacillus Calmette-Guérin (BCG)-assisted tumorigenicity in type II epithelial cells, human lung adenocarcinoma A549 and other cancer cells. Methods Cancer cell lines originating from lung, colon, bladder, liver, breast, skin and cervix were treated with tumor necrosis factor (TNF)-α in presence or absence of BCG infection. p53, COP1 and sonic hedgehog (SHH) signaling markers were determined by immunoblotting and luciferase assays, and quantitative real time PCR was done for p53-responsive pro-apoptotic genes and SHH signaling markers. MTT assays and Annexin V staining were utilized to study apoptosis. Gain- and loss-of-function approaches were used to investigate the role for SHH and COP1 signaling during apoptosis. A549 xenografted mice were used to validate the contribution of BCG during TNF-α treatment. Results Here, we show that BCG inhibits TNF-α-mediated apoptosis in A549 cells via downregulation of p53 expression. Substantiating this observation, BCG rescued A549 xenografts from TNF-α-mediated tumor clearance in nude mice. Furthermore, activation of SHH signaling by BCG induced the expression of an E3 ubiquitin ligase, COP1. SHH-driven COP1 targeted p53, thereby facilitating downregulation of p53-responsive pro-apoptotic genes and inhibition of apoptosis. Similar effects of BCG could be shown for HCT116, T24, MNT-1, HepG2 and HELA cells but not for HCT116 p53-/- and MDA-MB-231 cells. Conclusion Our results not only highlight possible explanations for the coexistence of pulmonary tuberculosis and lung cancer but also address probable reasons for failure of BCG immunotherapy of cancers. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-210) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Four CISH paralogues are present in rainbow trout Oncorhynchus mykiss: differential expression and modulation during immune responses and development. Mol Immunol 2014; 62:186-98. [PMID: 25014904 DOI: 10.1016/j.molimm.2014.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 01/20/2023]
Abstract
Suppressor of cytokine signalling (SOCS) family members are crucial in the control and attenuation of cytokine induced responses via activation of the JAK/STAT, TLR and NF-kB signalling pathways. SOCS proteins orchestrate the termination of many types of immune responses and are often the targets of microbial pathogens exploiting SOCS mechanisms to evade the host's immune response. Through whole and lineage specific genome duplication events, the teleost cytokine/SOCS network is complex. Not only are the orthologues of all mammalian SOCS members present, namely cytokine inducible Src homology 2 (SH2)-containing protein (CISH) and SOCS-1 to -7, but multiple gene copies exist that may potentially become functionally divergent. In this paper we focus on the CISH genes in rainbow trout (Oncorhynchus mykiss), and have cloned two further paralogues, CISHa2 and CISHb2, additional to the known CISHa1 and CISHb1 genes. We present for the first time a comparative expression analysis of these four paralogues, to establish whether subfunctionalisation is apparent. In vivo examination of gene expression revealed a higher constitutive expression level of CISHa paralogues compared to CISHb expression in adult trout tissues. All CISHs were relatively highly abundant in immune tissues but CISHa2 and CISHb2 had highest expression in the heart and muscle. An inverse picture of CISH abundance during trout ontogeny was seen, and further hints at differential roles of the four genes in immune regulation and development. Stimulation of head kidney (HK) leukocytes with trout recombinant interleukin (rIL)-15 and rIL-21 had a major effect on CISHa2 and to a lesser extent CISHa1 expression. In HK macrophages rIL-1β, phytohemagglutinin, and phorbol 12-myristate 13-acetate also had a strong impact on CISHa2 expression. Yersinia ruckeri infection caused a temporally and spatially differential onset of CISH expression that may be viewed in the context of pathogen evasion strategies. These data, against the backdrop of fish specific whole genome duplication events and functional divergence, provide the first evidence for differential roles of the four trout CISH genes in immune control and development.
Collapse
|
39
|
Carow B, Rottenberg ME. SOCS3, a Major Regulator of Infection and Inflammation. Front Immunol 2014; 5:58. [PMID: 24600449 PMCID: PMC3928676 DOI: 10.3389/fimmu.2014.00058] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/31/2014] [Indexed: 12/18/2022] Open
Abstract
In this review, we describe the role of suppressor of cytokine signaling-3 (SOCS3) in modulating the outcome of infections and autoimmune diseases as well as the underlying mechanisms. SOCS3 regulates cytokine or hormone signaling usually preventing, but in some cases aggravating, a variety of diseases. A main role of SOCS3 results from its binding to both the JAK kinase and the cytokine receptor, which results in the inhibition of STAT3 activation. Available data also indicate that SOCS3 can regulate signaling via other STATs than STAT3 and also controls cellular pathways unrelated to STAT activation. SOCS3 might either act directly by hampering JAK activation or by mediating the ubiquitination and subsequent proteasome degradation of the cytokine/growth factor/hormone receptor. Inflammation and infection stimulate SOCS3 expression in different myeloid and lymphoid cell populations as well as in diverse non-hematopoietic cells. The accumulated data suggest a relevant program coordinated by SOCS3 in different cell populations, devoted to the control of immune homeostasis in physiological and pathological conditions such as infection and autoimmunity.
Collapse
Affiliation(s)
- Berit Carow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
40
|
Ashenafi S, Aderaye G, Bekele A, Zewdie M, Aseffa G, Hoang ATN, Carow B, Habtamu M, Wijkander M, Rottenberg M, Aseffa A, Andersson J, Svensson M, Brighenti S. Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clin Immunol 2014; 151:84-99. [PMID: 24584041 DOI: 10.1016/j.clim.2014.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/08/2014] [Accepted: 01/30/2014] [Indexed: 02/06/2023]
Abstract
In this study, we explored the local cytokine/chemokine profiles in patients with active pulmonary or pleural tuberculosis (TB) using multiplex protein analysis of bronchoalveolar lavage and pleural fluid samples. Despite increased pro-inflammation compared to the uninfected controls; there was no up-regulation of IFN-γ or the T cell chemoattractant CCL5 in the lung of patients with pulmonary TB. Instead, elevated levels of IL-4 and CCL4 were associated with high mycobacteria-specific IgG titres as well as SOCS3 (suppressors of cytokine signaling) mRNA and progression of moderate-to-severe disease. Contrary, IL-4, CCL4 and SOCS3 remained low in patients with extrapulmonary pleural TB, while IFN-γ, CCL5 and SOCS1 were up-regulated. Both SOCS molecules were induced in human macrophages infected with Mycobacterium tuberculosis in vitro. The Th2 immune response signature found in patients with progressive pulmonary TB could result from inappropriate cytokine/chemokine responses and excessive SOCS3 expression that may represent potential targets for clinical TB management.
Collapse
Affiliation(s)
- Senait Ashenafi
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden; Black Lion University Hospital and Addis Ababa University, Department of Pathology, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Getachew Aderaye
- Black Lion University Hospital and Addis Ababa University, Department of Internal Medicine, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Amsalu Bekele
- Black Lion University Hospital and Addis Ababa University, Department of Internal Medicine, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Martha Zewdie
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Getachew Aseffa
- Black Lion University Hospital and Addis Ababa University, Department of Radiology, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Anh Thu Nguyen Hoang
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Berit Carow
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Stockholm, Sweden
| | - Meseret Habtamu
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Maria Wijkander
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Martin Rottenberg
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Stockholm, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Jan Andersson
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden; Karolinska University Hospital Huddinge, Department of Medicine, Division of Infectious Diseases, Stockholm, Sweden
| | - Mattias Svensson
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Susanna Brighenti
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
41
|
Holla S, Trinath J, Balaji KN. TNF-α modulates TLR2-dependent responses during mycobacterial infection. Methods Mol Biol 2014; 1155:133-150. [PMID: 24788179 DOI: 10.1007/978-1-4939-0669-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Multifunctional roles of tumor necrosis factor-alpha (TNF-α) during the mycobacterial pathogenesis make it an important molecule to understand and to examine the course of infection. Identification and analysis of TNF-α response can largely contribute to determine the potential host mediators for therapeutic intervention against tuberculosis. The current chapter describes several methods to assess the ability of TNF-α signaling to modulate toll-like receptor (TLR)2 signaling, another key player in mycobacterial infection and its responses. Experiments involving neutralizing antibodies, antagonists, pharmacological inhibitors, and siRNA-mediated gene silencing are discussed in this chapter to establish the role of TNF-α signaling. The widely used protein and mRNA analysis readouts like enzyme-linked immunosorbent assay (ELISA), immunoblotting, fluorescence-activated cell sorting (FACS), and quantitative real-time RT-PCR are useful to estimate and confirm the mediators involved in TNF-α and TLR2 signaling.
Collapse
Affiliation(s)
- Sahana Holla
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | | | | |
Collapse
|
42
|
Holla S, Kurowska-Stolarska M, Bayry J, Balaji KN. Selective inhibition of IFNG-induced autophagy by Mir155- and Mir31-responsive WNT5A and SHH signaling. Autophagy 2013; 10:311-30. [PMID: 24343269 DOI: 10.4161/auto.27225] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is one of the major immune mechanisms engaged to clear intracellular infectious agents. However, several pathogens have evolved strategies to evade autophagy. Here, we demonstrated that Mycobacteria, Shigella, and Listeria but not Klebsiella, Staphylococcus, and Escherichia inhibit IFNG-induced autophagy in macrophages by evoking selective and robust activation of WNT and SHH pathways via MTOR. Utilization of gain- or loss-of-function analyses as well as mir155-null macrophages emphasized the role of MTOR-responsive epigenetic modifications in the induction of Mir155 and Mir31. Importantly, cellular levels of PP2A, a phosphatase, were regulated by Mir155 and Mir31 to fine-tune autophagy. Diminished expression of PP2A led to inhibition of GSK3B, thus facilitating the prolonged activation of WNT and SHH signaling pathways. Sustained WNT and SHH signaling effectuated the expression of anti-inflammatory lipoxygenases, which in tandem inhibited IFNG-induced JAK-STAT signaling and contributed to evasion of autophagy. Altogether, these results established a role for new host factors and inhibitory mechanisms employed by the pathogens to limit autophagy, which could be targeted for therapeutic interventions.
Collapse
Affiliation(s)
- Sahana Holla
- Department of Microbiology and Cell Biology; Indian Institute of Science; Bangalore, Karnataka India
| | | | - Jagadeesh Bayry
- Centre de Recherche des Cordeliers; Institut National de la Santé et de la Recherche Médicale; Paris, France
| | | |
Collapse
|
43
|
Abhilash PA, Harikrishnan R, Indira M. Ascorbic acid suppresses endotoxemia and NF-κB signaling cascade in alcoholic liver fibrosis in guinea pigs: a mechanistic approach. Toxicol Appl Pharmacol 2013; 274:215-24. [PMID: 24239723 DOI: 10.1016/j.taap.2013.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 12/12/2022]
Abstract
Alcohol consumption increases the small intestinal bacterial overgrowth (SIBO) and intestinal permeability of endotoxin. The endotoxin mediated inflammatory signaling plays a major role in alcoholic liver fibrosis. We evaluated the effect of ascorbic acid (AA), silymarin and alcohol abstention on the alcohol induced endotoxemia and NF-κB activation cascade pathway in guinea pigs (Cavia porcellus). Guinea pigs were administered ethanol at a daily dose of 4g/kg b.wt for 90days. After 90days, ethanol administration was stopped. The ethanol treated animals were divided into abstention, silymarin (250mg/kg b.wt) and AA (250mg/kg b.wt) supplemented groups and maintained for 30days. The SIBO, intestinal permeability and endotoxin were significantly increased in the ethanol group. The mRNA expressions of intestinal proteins claudin, occludin and zona occludens-1 were significantly decreased in ethanol group. The mRNA levels of inflammatory receptors, activity of IKKβ and the protein expressions of phospho-IκBα, NF-κB, TNF-α, TGF-β1 and IL-6 were also altered in ethanol group. The expressions of fibrosis markers α-SMA, α1 (I) collagen and sirius red staining in the liver revealed the induction of fibrosis. But the supplementation of AA could induce greater reduction of ethanol induced SIBO, intestinal barrier defects, NF-κB activation and liver fibrosis than silymarin. The possible mechanism may be the inhibitory effect of AA on SIBO, intestinal barrier defect and IKKβ, which decreased the activation of NF-κB and synthesis of cytokines. This might have led to suppression of HSCs activation and liver fibrosis.
Collapse
Affiliation(s)
- P A Abhilash
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| | - R Harikrishnan
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| | - M Indira
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India.
| |
Collapse
|
44
|
Palaga T, Ratanabunyong S, Pattarakankul T, Sangphech N, Wongchana W, Hadae Y, Kueanjinda P. Notch signaling regulates expression of Mcl-1 and apoptosis in PPD-treated macrophages. Cell Mol Immunol 2013; 10:444-52. [PMID: 23872918 DOI: 10.1038/cmi.2013.22] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/29/2013] [Accepted: 05/14/2013] [Indexed: 12/28/2022] Open
Abstract
Macrophages are cellular targets for infection by bacteria and viruses. The fate of infected macrophages plays a key role in determining the outcome of the host immune response. Apoptotic cell death of macrophages is considered to be a protective host defense that eliminates pathogens and infected cells. In this study, we investigated the involvement of Notch signaling in regulating apoptosis in macrophages treated with tuberculin purified protein derivative (PPD). Murine bone marrow-derived macrophages (BMMs) treated with PPD or infected with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) induced upregulation of Notch1. This upregulation correlated well with the upregulation of the anti-apoptotic gene mcl-1 both at the transcriptional and translational levels. Decreased levels of Notch1 and Mcl-1 were observed in BMM treated with PPD when a gamma secretase inhibitor (GSI), which inhibits the processing of Notch receptors, was used. Moreover, silencing Notch1 in the macrophage-like cell line RAW264.7 decreased Mcl-1 protein expression, suggesting that Notch1 is critical for Mcl-1 expression in macrophages. A significant increase in apoptotic cells was observed upon treatment of BMM with PPD in the presence of GSI compared to the vehicle-control treated cells. Finally, analysis of the mcl-1 promoter in humans and mice revealed a conserved potential CSL/RBP-Jκ binding site. The association of Notch1 with the mcl-1 promoter was confirmed by chromatin immunoprecipitation. Taken together, these results indicate that Notch1 inhibits apoptosis of macrophages stimulated with PPD by directly controlling the mcl-1 promoter.
Collapse
Affiliation(s)
- Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | | | | | | | | | |
Collapse
|
45
|
Carow B, Reuschl AK, Gavier-Widén D, Jenkins BJ, Ernst M, Yoshimura A, Chambers BJ, Rottenberg ME. Critical and independent role for SOCS3 in either myeloid or T cells in resistance to Mycobacterium tuberculosis. PLoS Pathog 2013; 9:e1003442. [PMID: 23853585 PMCID: PMC3701707 DOI: 10.1371/journal.ppat.1003442] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 05/06/2013] [Indexed: 02/05/2023] Open
Abstract
Suppressor of cytokine signalling 3 (SOCS3) negatively regulates STAT3 activation in response to several cytokines such as those in the gp130-containing IL-6 receptor family. Thus, SOCS3 may play a major role in immune responses to pathogens. In the present study, the role of SOCS3 in M. tuberculosis infection was examined. All Socs3(fl/fl) LysM cre, Socs3(fl/fl) lck cre (with SOCS3-deficient myeloid and lymphoid cells, respectively) and gp130(F/F) mice, with a mutation in gp130 that impedes binding to SOCS3, showed increased susceptibility to infection with M. tuberculosis. SOCS3 binding to gp130 in myeloid cells conveyed resistance to M. tuberculosis infection via the regulation of IL-6/STAT3 signalling. SOCS3 was redundant for mycobacterial control by macrophages in vitro. Instead, SOCS3 expression in infected macrophages and DCs prevented the IL-6-mediated inhibition of TNF and IL-12 secretion and contributed to a timely CD4+ cell-dependent IFN-γ expression in vivo. In T cells, SOCS3 expression was essential for a gp130-independent control of infection with M. tuberculosis, but was neither required for the control of infection with attenuated M. bovis BCG nor for M. tuberculosis in BCG-vaccinated mice. Socs3(fl/fl) lck cre mice showed an increased frequency of γδ+ T cells in different organs and an enhanced secretion of IL-17 by γδ+ T cells in response to infection. Socs3(fl/fl) lck cre γδ+ T cells impaired the control of infection with M. tuberculosis. Thus, SOCS3 expression in either lymphoid or myeloid cells is essential for resistance against M. tuberculosis via discrete mechanisms.
Collapse
Affiliation(s)
- Berit Carow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Kathrin Reuschl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Dolores Gavier-Widén
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences and National Veterinary Institute, Uppsala, Sweden
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - Matthias Ernst
- Cell Signaling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | | | - Martin E. Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Ghorpade DS, Holla S, Sinha AY, Alagesan SK, Balaji KN. Nitric oxide and KLF4 protein epigenetically modify class II transactivator to repress major histocompatibility complex II expression during Mycobacterium bovis bacillus Calmette-Guerin infection. J Biol Chem 2013; 288:20592-606. [PMID: 23733190 DOI: 10.1074/jbc.m113.472183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pathogenic mycobacteria employ several immune evasion strategies such as inhibition of class II transactivator (CIITA) and MHC-II expression, to survive and persist in host macrophages. However, precise roles for specific signaling components executing down-regulation of CIITA/MHC-II have not been adequately addressed. Here, we demonstrate that Mycobacterium bovis bacillus Calmette-Guérin (BCG)-mediated TLR2 signaling-induced iNOS/NO expression is obligatory for the suppression of IFN-γ-induced CIITA/MHC-II functions. Significantly, NOTCH/PKC/MAPK-triggered signaling cross-talk was found critical for iNOS/NO production. NO responsive recruitment of a bifunctional transcription factor, KLF4, to the promoter of CIITA during M. bovis BCG infection of macrophages was essential to orchestrate the epigenetic modifications mediated by histone methyltransferase EZH2 or miR-150 and thus calibrate CIITA/MHC-II expression. NO-dependent KLF4 regulated the processing and presentation of ovalbumin by infected macrophages to reactive T cells. Altogether, our study delineates a novel role for iNOS/NO/KLF4 in dictating the mycobacterial capacity to inhibit CIITA/MHC-II-mediated antigen presentation by infected macrophages and thereby elude immune surveillance.
Collapse
Affiliation(s)
- Devram Sampat Ghorpade
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
47
|
Sonic hedgehog-dependent induction of microRNA 31 and microRNA 150 regulates Mycobacterium bovis BCG-driven toll-like receptor 2 signaling. Mol Cell Biol 2012; 33:543-56. [PMID: 23166298 DOI: 10.1128/mcb.01108-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-α) secretion by macrophages was essential for robust SHH activation, as TNF-α(-/-) macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-α or blockade of TNF-α receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.
Collapse
|
48
|
Łabuzek K, Suchy D, Gabryel B, Pierzchała O, Okopień B. Role of the SOCS in monocytes/macrophages-related pathologies. Are we getting closer to a new pharmacological target? Pharmacol Rep 2012; 64:1038-54. [DOI: 10.1016/s1734-1140(12)70902-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 06/08/2012] [Indexed: 12/11/2022]
|
49
|
|
50
|
MicroRNA-155 is required for Mycobacterium bovis BCG-mediated apoptosis of macrophages. Mol Cell Biol 2012; 32:2239-53. [PMID: 22473996 DOI: 10.1128/mcb.06597-11] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pathogenic mycobacteria, including Mycobacterium tuberculosis and Mycobacterium bovis, cause significant morbidity and mortality worldwide. However, the vaccine strain Mycobacterium bovis BCG, unlike virulent strains, triggers extensive apoptosis of infected macrophages, a step necessary for the elicitation of robust protective immunity. We here demonstrate that M. bovis BCG triggers Toll-like receptor 2 (TLR2)-dependent microRNA-155 (miR-155) expression, which involves signaling cross talk among phosphatidylinositol 3-kinase (PI3K), protein kinase Cδ (PKCδ), and mitogen-activated protein kinases (MAPKs) and recruitment of NF-κB and c-ETS to miR-155 promoter. Genetic and signaling perturbations presented the evidence that miR-155 regulates PKA signaling by directly targeting a negative regulator of PKA, protein kinase inhibitor alpha (PKI-α). Enhanced activation of PKA signaling resulted in the generation of PKA C-α; phosphorylation of MSK1, cyclic AMP response element binding protein (CREB), and histone H3; and recruitment of phospho-CREB to the apoptotic gene promoters. The miR-155-triggered activation of caspase-3, BAK1, and cytochrome c translocation involved signaling integration of MAPKs and epigenetic or posttranslational modification of histones or CREB. Importantly, M. bovis BCG infection-induced apoptosis was severely compromised in macrophages derived from miR-155 knockout mice. Gain-of-function and loss-of-function studies validated the requirement of miR-155 for M. bovis BCG's ability to trigger apoptosis. Overall, M. bovis BCG-driven miR-155 dictates cell fate decisions of infected macrophages, strongly implicating a novel role for miR-155 in orchestrating cellular reprogramming during immune responses to mycobacterial infection.
Collapse
|