1
|
Hsu MF, Ito Y, Singh JP, Hsu SF, Wells A, Jen KY, Meng TC, Haj FG. Protein tyrosine phosphatase 1B is a regulator of alpha-actinin4 in the glomerular podocyte. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119590. [PMID: 37730132 PMCID: PMC11060668 DOI: 10.1016/j.bbamcr.2023.119590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Glomerular podocytes are instrumental for the barrier function of the kidney, and podocyte injury contributes to proteinuria and the deterioration of renal function. Protein tyrosine phosphatase 1B (PTP1B) is an established metabolic regulator, and the inactivation of this phosphatase mitigates podocyte injury. However, there is a paucity of data regarding the substrates that mediate PTP1B actions in podocytes. This study aims to uncover novel substrates of PTP1B in podocytes and validate a leading candidate. To this end, using substrate-trapping and mass spectroscopy, we identified putative substrates of this phosphatase and investigated the actin cross-linking cytoskeletal protein alpha-actinin4. PTP1B and alpha-actinin4 co-localized in murine and human glomeruli and transiently transfected E11 podocyte cells. Additionally, podocyte PTP1B deficiency in vivo and culture was associated with elevated tyrosine phosphorylation of alpha-actinin4. Conversely, reconstitution of the knockdown cells with PTP1B attenuated alpha-actinin4 tyrosine phosphorylation. We demonstrated co-association between alpha-actinin4 and the PTP1B substrate-trapping mutant, which was enhanced upon insulin stimulation and disrupted by vanadate, consistent with an enzyme-substrate interaction. Moreover, we identified alpha-actinin4 tandem tyrosine residues 486/487 as mediators of its interaction with PTP1B. Furthermore, knockdown studies in E11 cells suggest that PTP1B and alpha-actinin4 are modulators of podocyte motility. These observations indicate that PTP1B and alpha-actinin4 are likely interacting partners in a signaling node that modulates podocyte function. Targeting PTP1B and plausibly this one of its substrates may represent a new therapeutic approach for podocyte injury that warrants additional investigation.
Collapse
Affiliation(s)
- Ming-Fo Hsu
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Yoshihiro Ito
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Jai Prakash Singh
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Shu-Fang Hsu
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Alan Wells
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kuang-Yu Jen
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, Davis, CA, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
2
|
Wu B, Wang YX, Wang JJ, Xiang DF, Zhang MS, Yan ZX, Wang WY, Miao JY, Lan X, Liu JJ, Li ZY, Li C, Fan JY, Liu JY, Jiang L, Xu SL, Cui YH, Qian F. PLXDC2 enhances invadopodium formation to promote invasion and metastasis of gastric cancer cells via interacting with PTP1B. Clin Exp Metastasis 2022; 39:691-710. [PMID: 35661947 PMCID: PMC9338914 DOI: 10.1007/s10585-022-10168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
Plexin-domain containing 2 (PLXDC2) has been reported as an oncoprotein in several human malignancies. However, its expression and roles in gastric cancer remain largely unclear. In this study, we found that PLXDC2 was highly expressed in gastric cancer tissues, and the expression levels were positively correlated with clinicopathological features, but negatively with the patients’ outcome. Cox regression analysis identified PLXDC2 as an independent prognostic indicator for the patients. Knockdown of PLXDC2 markedly suppressed the in vitro invasion and in vivo metastasis of gastric cancer cells, while overexpression of PLXDC2 resulted in opposite effects. Mechanistically, PLXDC2 enhanced the level of phosphorylated Cortactin (p-Cortactin) by physically interacting with protein tyrosine phosphatase 1B (PTP1B), an important dephosphorylase, to prevent its dephosphorylating of p-Cortactin, thereby promoting the formation of invadopodia. Collectively, our results indicate that PLXDC2 contributes to the invasion and metastasis of gastric cancer by inhibiting PTP1B to facilitate the invadopodium formation, and may serve as a potential prognostic biomarker and a therapeutic target for this disease.
Collapse
Affiliation(s)
- Bin Wu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Yan-Xia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Jun-Jie Wang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Dong-Fang Xiang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Meng-Si Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Ze-Xuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Wen-Ying Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Jing-Ya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Xi Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Jia-Jia Liu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Zheng-Yan Li
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Chuan Li
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Jun-Yan Fan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Jun-Yan Liu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Lei Jiang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Sen-Lin Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China.
| | - Feng Qian
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
3
|
Young KA, Biggins L, Sharpe HJ. Protein tyrosine phosphatases in cell adhesion. Biochem J 2021; 478:1061-1083. [PMID: 33710332 PMCID: PMC7959691 DOI: 10.1042/bcj20200511] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Adhesive structures between cells and with the surrounding matrix are essential for the development of multicellular organisms. In addition to providing mechanical integrity, they are key signalling centres providing feedback on the extracellular environment to the cell interior, and vice versa. During development, mitosis and repair, cell adhesions must undergo extensive remodelling. Post-translational modifications of proteins within these complexes serve as switches for activity. Tyrosine phosphorylation is an important modification in cell adhesion that is dynamically regulated by the protein tyrosine phosphatases (PTPs) and protein tyrosine kinases. Several PTPs are implicated in the assembly and maintenance of cell adhesions, however, their signalling functions remain poorly defined. The PTPs can act by directly dephosphorylating adhesive complex components or function as scaffolds. In this review, we will focus on human PTPs and discuss their individual roles in major adhesion complexes, as well as Hippo signalling. We have collated PTP interactome and cell adhesome datasets, which reveal extensive connections between PTPs and cell adhesions that are relatively unexplored. Finally, we reflect on the dysregulation of PTPs and cell adhesions in disease.
Collapse
Affiliation(s)
- Katherine A. Young
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Laura Biggins
- Bioinformatics, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hayley J. Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
4
|
GWAS for Meat and Carcass Traits Using Imputed Sequence Level Genotypes in Pooled F2-Designs in Pigs. G3-GENES GENOMES GENETICS 2019; 9:2823-2834. [PMID: 31296617 PMCID: PMC6723123 DOI: 10.1534/g3.119.400452] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to gain insight into the genetic architecture of economically important traits in pigs and to derive suitable genetic markers to improve these traits in breeding programs, many studies have been conducted to map quantitative trait loci. Shortcomings of these studies were low mapping resolution, large confidence intervals for quantitative trait loci-positions and large linkage disequilibrium blocks. Here, we overcome these shortcomings by pooling four large F2 designs to produce smaller linkage disequilibrium blocks and by resequencing the founder generation at high coverage and the F1 generation at low coverage for subsequent imputation of the F2 generation to whole genome sequencing marker density. This lead to the discovery of more than 32 million variants, 8 million of which have not been previously reported. The pooling of the four F2 designs enabled us to perform a joint genome-wide association study, which lead to the identification of numerous significantly associated variant clusters on chromosomes 1, 2, 4, 7, 17 and 18 for the growth and carcass traits average daily gain, back fat thickness, meat fat ratio, and carcass length. We could not only confirm previously reported, but also discovered new quantitative trait loci. As a result, several new candidate genes are discussed, among them BMP2 (bone morphogenetic protein 2), which we recently discovered in a related study. Variant effect prediction revealed that 15 high impact variants for the traits back fat thickness, meat fat ratio and carcass length were among the statistically significantly associated variants.
Collapse
|
5
|
Abstract
Actin remodeling plays an essential role in diverse cellular processes such as cell motility, vesicle trafficking or cytokinesis. The scaffold protein and actin nucleation promoting factor Cortactin is present in virtually all actin-based structures, participating in the formation of branched actin networks. It has been involved in the control of endocytosis, and vesicle trafficking, axon guidance and organization, as well as adhesion, migration and invasion. To migrate and invade through three-dimensional environments, cells have developed specialized actin-based structures called invadosomes, a generic term to designate invadopodia and podosomes. Cortactin has emerged as a critical regulator of invadosome formation, function and disassembly. Underscoring this role, Cortactin is frequently overexpressed in several types of invasive cancers. Herein we will review the roles played by Cortactin in these specific invasive structures.
Collapse
Affiliation(s)
- Pauline Jeannot
- CRCT INSERM UMR1037, Université Toulouse III Paul Sabatier , CNRS ERL5294, Toulouse, France.,Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester , Manchester M20 4BX, UK
| | - Arnaud Besson
- CRCT INSERM UMR1037, Université Toulouse III Paul Sabatier , CNRS ERL5294, Toulouse, France.,LBCMCP , Centre de Biologie Intégrative, Université de Toulouse , CNRS, UPS, Toulouse Cedex, France
| |
Collapse
|
6
|
Liang X, Kiru S, Gomez GA, Yap AS. Regulated recruitment of SRGAP1 modulates RhoA signaling for contractility during epithelial junction maturation. Cytoskeleton (Hoboken) 2017; 75:61-69. [PMID: 29160905 DOI: 10.1002/cm.21420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 11/06/2022]
Abstract
Adherens junctions in epithelia are contractile structures, where coupling of adhesion to the actomyosin cytoskeleton generates mechanical tension for morphogenesis and homeostasis. In established monolayers, junctional contractility is supported by the interplay between cell signals and scaffolding proteins. However, less is known about how contractile junctions develop, especially during the establishment of epithelial monolayers. Here, we show that junctional tension increases concomitant with accumulation of actomyosin networks as Caco-2 epithelia become confluent. This is associated with development of a zone of RhoA signaling at junctions. Further, we find that the low levels of RhoA signaling and contractility found in subconfluent cultures reflect a mechanism for their active suppression. Specifically, the RhoA antagonist, SRGAP1, is present at subconfluent junctions to a greater extent than in confluent cultures and SRGAP1 RNAi restores RhoA signaling and contractility in subconfluent cultures to levels seen in confluent cells. Overall, these observations suggest that regulated changes in junctional contractility mediated by modulation of RhoA signaling occur as epithelial monolayers mature.
Collapse
Affiliation(s)
- Xuan Liang
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Sajini Kiru
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Guillermo A Gomez
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
7
|
Tyrosine dephosphorylated cortactin downregulates contractility at the epithelial zonula adherens through SRGAP1. Nat Commun 2017; 8:790. [PMID: 28983097 PMCID: PMC5629210 DOI: 10.1038/s41467-017-00797-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 07/20/2017] [Indexed: 11/25/2022] Open
Abstract
Contractile adherens junctions support cell−cell adhesion, epithelial integrity, and morphogenesis. Much effort has been devoted to understanding how contractility is established; however, less is known about whether contractility can be actively downregulated at junctions nor what function this might serve. We now identify such an inhibitory pathway that is mediated by the cytoskeletal scaffold, cortactin. Mutations of cortactin that prevent its tyrosine phosphorylation downregulate RhoA signaling and compromise the ability of epithelial cells to generate a contractile zonula adherens. This is mediated by the RhoA antagonist, SRGAP1. We further demonstrate that this mechanism is co-opted by hepatocyte growth factor to promote junctional relaxation and motility in epithelial collectives. Together, our findings identify a novel function of cortactin as a regulator of RhoA signaling that can be utilized by morphogenetic regulators for the active downregulation of junctional contractility. Epithelial cell-cell adhesions are contractile junctions, but whether contractility can be down-regulated is not known. Here the authors report how tyrosine dephosphorylation of the cytoskeletal scaffold, cortactin, recruits the RhoA antagonist SRGAP1 to relax adherens junctions in response to HGF.
Collapse
|
8
|
Mining the Complex Family of Protein Tyrosine Phosphatases for Checkpoint Regulators in Immunity. Curr Top Microbiol Immunol 2017; 410:191-214. [PMID: 28929190 DOI: 10.1007/82_2017_68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The family of protein tyrosine phosphatases (PTPs) includes 107 genes in humans that are diverse in their structures and expression profiles. The majority are present in immune cells and play various roles in either inhibiting or promoting the duration and amplitude of signaling cascades. Several PTPs, including TC-PTP (PTPN2) and SHP-1 (PTPN6), have been recognized as being crucial for maintaining proper immune response and self-tolerance, and have gained recognition as true immune system checkpoint modulators. This chapter details the most recent literature on PTPs and immunity by examining their known functions in regulating signaling from either established checkpoint inhibitors or by their intrinsic properties, as modulators of the immune response. Notably, we review PTP regulatory properties in macrophages, antigen-presenting dendritic cells, and T cells. Overall, we present the PTP gene family as a remarkable source of novel checkpoint inhibitors wherein lies a great number of new targets for immunotherapies.
Collapse
|
9
|
Mena INV dysregulates cortactin phosphorylation to promote invadopodium maturation. Sci Rep 2016; 6:36142. [PMID: 27824079 PMCID: PMC5099927 DOI: 10.1038/srep36142] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/11/2016] [Indexed: 01/12/2023] Open
Abstract
Invadopodia, actin-based protrusions of invasive carcinoma cells that focally activate extracellular matrix-degrading proteases, are essential for the migration and intravasation of tumor cells during dissemination from the primary tumor. We have previously shown that cortactin phosphorylation at tyrosine residues, in particular tyrosine 421, promotes actin polymerization at newly-forming invadopodia, promoting their maturation to matrix-degrading structures. However, the mechanism by which cells regulate the cortactin tyrosine phosphorylation-dephosphorylation cycle at invadopodia is unknown. Mena, an actin barbed-end capping protein antagonist, is expressed as various splice-isoforms. The MenaINV isoform is upregulated in migratory and invasive sub-populations of breast carcinoma cells, and is involved in tumor cell intravasation. Here we show that forced MenaINV expression increases invadopodium maturation to a far greater extent than equivalent expression of other Mena isoforms. MenaINV is recruited to invadopodium precursors just after their initial assembly at the plasma membrane, and promotes the phosphorylation of cortactin tyrosine 421 at invadopodia. In addition, we show that cortactin phosphorylation at tyrosine 421 is suppressed by the phosphatase PTP1B, and that PTP1B localization to the invadopodium is reduced by MenaINV expression. We conclude that MenaINV promotes invadopodium maturation by inhibiting normal dephosphorylation of cortactin at tyrosine 421 by the phosphatase PTP1B.
Collapse
|
10
|
AlFadhli S, Al-Zufairi AAM, Nizam R, AlSaffar HA, Al-Mutairi N. De-regulation of diabetic regulatory genes in psoriasis: Deciphering the unsolved riddle. Gene 2016; 593:110-116. [PMID: 27530212 DOI: 10.1016/j.gene.2016.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
The purpose of our study was to identify the currently lacking molecular mechanism that accounts for the co-occurrence of two seemingly disparate diseases: psoriasis and type II diabetes. We aimed to investigate a panel of 84 genes related to the diabetic regulatory network in psoriasis (Ps), psoriasis type II diabetes (Ps-T2D), type II diabetes (T2D) and healthy control (HC). We hypothesize that such attempts would provide novel diagnostic markers and/or insights into pathogenesis of the disease. A quantitative Real Time-PCR Human Diabetes RT(2) Profiler PCR Array was chosen to explore the expression profile 84 diabetic genes in study subjects. Statistical analysis was carried out using appropriate software. The analysis revealed three candidate genes GSK3B, PTPN1, STX4 that are differentially expressed in study subjects. GSK3B was highly significant in Ps-T2D (P=0.00018, FR=-26.6), followed by Ps (P=0.0028, FR=-14.5) and T2D groups (P=0.032, FR=-5.9). PTPN1 showed significant association only with PS-T2D (P=0.00027, FR=-8.5). STX4 showed significant association with both Ps (P=0.0002, FR=-20) and Ps-T2D (P=0.0016, FR=-11.2). ACE represents an additional marker that showed suggestive association with Ps (P=0.0079, FR=-9.37). Our study highlights the complex genetics of Ps-T2D and present biomarkers for the development of T2D in Ps cases.
Collapse
Affiliation(s)
- Suad AlFadhli
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait.
| | - Alaa A M Al-Zufairi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait
| | - Rasheeba Nizam
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait
| | | | - Nawaf Al-Mutairi
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
11
|
Chen DY, Husain M. Caspase-mediated degradation of host cortactin that promotes influenza A virus infection in epithelial cells. Virology 2016; 497:146-156. [PMID: 27471953 DOI: 10.1016/j.virol.2016.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023]
Abstract
Influenza A virus (IAV) is well-known to exploit host factors to its advantage. Here, we report that IAV exploits host cortactin, an actin filament-stabilising protein for infection in epithelial cells. By using RNA interference-mediated knockdown and overexpression approach, we demonstrate that cortactin promotes IAV infection. However, cortactin polypeptide undergoes the degradation during late IAV infection. By perturbing the lysosome and proteasome, two main compartments governing the degradation of mammalian proteins, we demonstrate that a lysosome-associated apoptotic pathway mediates the degradation of cortactin in IAV-infected cells. However, we could not detect cleaved cortactin fragments by western blotting using the antibodies recognising either N-terminal/Central or C-terminal cortactin regions, which suggested the presence of multiple caspase cleavage sites. Indeed, CaspDB, a recently-described database predicted up to 35 caspase cleavage motifs present across cortactin polypeptide. The data presented indicate that host cortactin potentially has a dual but contrasting role during IAV infection.
Collapse
Affiliation(s)
- Da-Yuan Chen
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
12
|
Novel role of cortactin in G protein-coupled receptor agonist-induced nuclear export and degradation of p21Cip1. Sci Rep 2016; 6:28687. [PMID: 27363897 PMCID: PMC4929470 DOI: 10.1038/srep28687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022] Open
Abstract
Monocyte chemotactic protein 1 (MCP1) stimulates phosphorylation of cortactin on Y421 and Y446 residues in a time-dependent manner and phosphorylation at Y446 but not Y421 residue is required for MCP1-induced CDK-interacting protein 1 (p21Cip1) nuclear export and degradation in facilitating human aortic smooth muscle cell (HASMC) proliferation. In addition, MCP1-induced cortactin tyrosine phosphorylation, p21Cip1 degradation and HASMC proliferation are dependent on Fyn activation. Upstream to Fyn, MCP1 stimulated C-C chemokine receptor type 2 (CCR2) and Gi/o and inhibition of either one of these molecules using their specific antagonists or inhibitors attenuated MCP1-induced cortactin tyrosine phosphorylation, p21Cip1 degradation and HASMC proliferation. Cortactin phosphorylation at Y446 residue is also required for another G protein-coupled receptor (GPCR) agonist, thrombin-induced p21Cip1 nuclear export and its degradation in promoting HASMC proliferation. Quite interestingly, the receptor tyrosine kinase (RTK) agonist, platelet-derived growth factor-BB (PDGF-BB)-induced p21Cip1 degradation and HASMC proliferation do not require cortactin tyrosine phosphorylation. Together, these findings demonstrate that tyrosine phosphorylation of cortactin at Y446 residue is selective for only GPCR but not RTK agonist-induced nuclear export and proteolytic degradation of p21Cip1 in HASMC proliferation.
Collapse
|
13
|
Qin Z, Zhou X, Pandey NR, Vecchiarelli HA, Stewart CA, Zhang X, Lagace DC, Brunel JM, Béïque JC, Stewart AFR, Hill MN, Chen HH. Chronic stress induces anxiety via an amygdalar intracellular cascade that impairs endocannabinoid signaling. Neuron 2015; 85:1319-31. [PMID: 25754825 DOI: 10.1016/j.neuron.2015.02.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 01/09/2015] [Accepted: 02/03/2015] [Indexed: 01/27/2023]
Abstract
Collapse of endocannabinoid (eCB) signaling in the amygdala contributes to stress-induced anxiety, but the mechanisms of this effect remain unclear. eCB production is tied to the function of the glutamate receptor mGluR5, itself dependent on tyrosine phosphorylation. Herein, we identify a novel pathway linking eCB regulation of anxiety through phosphorylation of mGluR5. Mice lacking LMO4, an endogenous inhibitor of the tyrosine phosphatase PTP1B, display reduced mGluR5 phosphorylation, eCB signaling, and profound anxiety that is reversed by genetic or pharmacological suppression of amygdalar PTP1B. Chronically stressed mice exhibited elevated plasma corticosterone, decreased LMO4 palmitoylation, elevated PTP1B activity, reduced amygdalar eCB levels, and anxiety behaviors that were restored by PTP1B inhibition or by glucocorticoid receptor antagonism. Consistently, corticosterone decreased palmitoylation of LMO4 and its inhibition of PTP1B in neuronal cells. Collectively, these data reveal a stress-responsive corticosterone-LMO4-PTP1B-mGluR5 cascade that impairs amygdalar eCB signaling and contributes to the development of anxiety.
Collapse
Affiliation(s)
- Zhaohong Qin
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Xun Zhou
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Nihar R Pandey
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Haley A Vecchiarelli
- Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Chloe A Stewart
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Xia Zhang
- Royal Ottawa Mental Health Centre, Ottawa, ON K1Z7K4, Canada; Department of Cellular and Molecular Medicine, Ottawa, ON K1H8M5, Canada
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine, Ottawa, ON K1H8M5, Canada
| | - Jean Michel Brunel
- Centre de Recherche en Cancérologie de Marseille, Laboratory of Integrative Structural & Chemical Biology (iSCB), Aix-Marseille Université, 13385 Marseille Cedex 5, France
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, Ottawa, ON K1H8M5, Canada
| | - Alexandre F R Stewart
- Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H8M5, Canada; University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada; Department of Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; Department of Cellular and Molecular Medicine, Ottawa, ON K1H8M5, Canada; Department of Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada.
| |
Collapse
|
14
|
Zhang S, Qi Q. MTSS1 suppresses cell migration and invasion by targeting CTTN in glioblastoma. J Neurooncol 2014; 121:425-31. [PMID: 25385572 DOI: 10.1007/s11060-014-1656-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
Abstract
Glioblastomas (GBMs) are the highest grade of primary brain tumors with astrocytic similarity and are characterized dispersal of tumor cell. Metastasis suppressor 1 (MTSS1) play an important role in cancer metastasis. Recent studies indicating that MTSS1 as a potential tumor suppressor and its reduced expression associated with poor prognosis in many cancer types. However, the relationship with the prognosis of patients and the molecular mechanism of MTSS1 renders a tumor suppressor effect in GBM is unknown. Here, we showed that low MTSS1 gene expression is associated with poor outcomes in patients with GBM. Overexpression of MTSS1 in U-87 MG cells exhibited inhibited glioma cell growth, colony formation, migration and invasion. Mechanistically, we found that high MTSS1 expression in U-87 MG reduced expression of CTTN. These results implicate that the role of MTSS1 suppresses cell migration and invasion by inhibiting expression of CTTN and as a prognosis biomarker in GBM.
Collapse
Affiliation(s)
- Shoudan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121000, China
| | | |
Collapse
|
15
|
Bakke J, Haj FG. Protein-tyrosine phosphatase 1B substrates and metabolic regulation. Semin Cell Dev Biol 2014; 37:58-65. [PMID: 25263014 DOI: 10.1016/j.semcdb.2014.09.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 01/19/2023]
Abstract
Metabolic homeostasis requires integration of complex signaling networks which, when deregulated, contribute to metabolic syndrome and related disorders. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as a key regulator of signaling networks that are implicated in metabolic diseases such as obesity and type 2 diabetes. In this review, we examine mechanisms that regulate PTP1B-substrate interaction, enzymatic activity and experimental approaches to identify PTP1B substrates. We then highlight findings that implicate PTP1B in metabolic regulation. In particular, insulin and leptin signaling are discussed as well as recently identified PTP1B substrates that are involved in endoplasmic reticulum stress response, cell-cell communication, energy balance and vesicle trafficking. In summary, PTP1B exhibits exquisite substrate specificity and is an outstanding pharmaceutical target for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Jesse Bakke
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, United States; Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, United States.
| |
Collapse
|
16
|
Liu S, Xi Y, Bettaieb A, Matsuo K, Matsuo I, Kulkarni RN, Haj FG. Disruption of protein-tyrosine phosphatase 1B expression in the pancreas affects β-cell function. Endocrinology 2014; 155:3329-38. [PMID: 24956127 PMCID: PMC4138572 DOI: 10.1210/en.2013-2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and energy balance. However, the role of PTP1B in pancreatic endocrine function remains largely unknown. To investigate the metabolic role of pancreatic PTP1B, we generated mice with pancreas PTP1B deletion (panc-PTP1B KO). Mice were fed regular chow or a high-fat diet, and metabolic parameters, insulin secretion and glucose tolerance were determined. On regular chow, panc-PTP1B KO and control mice exhibited comparable glucose tolerance whereas aged panc-PTP1B KO exhibited mild glucose intolerance. Furthermore, high-fat feeding promoted earlier impairment of glucose tolerance and attenuated glucose-stimulated insulin secretion in panc-PTP1B KO mice. The secretory defect in glucose-stimulated insulin secretion was recapitulated in primary islets ex vivo, suggesting that the effects were likely cell-autonomous. At the molecular level, PTP1B deficiency in vivo enhanced basal and glucose-stimulated tyrosyl phosphorylation of EphA5 in islets. Consistently, PTP1B overexpression in the glucose-responsive MIN6 β-cell line attenuated EphA5 tyrosyl phosphorylation, and substrate trapping identified EphA5 as a PTP1B substrate. In summary, these studies identify a novel role for PTP1B in pancreatic endocrine function.
Collapse
Affiliation(s)
- Siming Liu
- Nutrition Department (S.L., Y.X., A.B., K.M., I.M., F.G.H.), University of California Davis, Davis, California 95616; Joslin Diabetes Center (R.N.K.), Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215; and Division of Endocrinology, Diabetes and Metabolism (F.G.H.), Department of Internal Medicine, and Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817
| | | | | | | | | | | | | |
Collapse
|
17
|
White KS, Nicoletti G, Borland R. Nitropropenyl benzodioxole, an anti-infective agent with action as a protein tyrosine phosphatase inhibitor. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2014; 8:1-16. [PMID: 24976873 PMCID: PMC4073595 DOI: 10.2174/1874104501408010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/27/2014] [Accepted: 02/17/2014] [Indexed: 12/25/2022]
Abstract
We report on the activities of a broad spectrum antimicrobial compound,nitropropenyl benzodioxole (NPBD) which are of relevance to its potential as an anti-infective drug. These investigations support the proposal that a major mechanism of NPBD is action as a tyrosine mimetic, competitively inhibiting bacterial and fungal protein tyrosine phosphatases (PTP). NPBD did not affect major anti-bacterial drug targets, namely, ATP production, cell wall or cell membrane integrity, or transcription and translation of RNA. NPBD inhibited bacterial YopH and human PTP1B and not human CD45 in enzyme assays. NPBD inhibited PTP-associated bacterial virulence factors, namely, endospore formation in Bacillus cereus, prodigiosin secretion in Serratia marcescens , motility in Proteus spp., and adherence and invasion of mammalian cells by Yersinia enterocolitica . NPBD acts intracellularly to inhibit the early development stages of the Chlamydia trachomatis infection cycle in mammalian cells known to involve sequestration of host cell PTPs. NPBD thus both kills pathogens and inhibits virulence factors relevant to early infection, making it a suitable candidate for development as an anti-infective agent, particularly for pathogens that enter through, or cause infections at, mucosal surfaces. Though much is yet to be understood about bacterial PTPs, they are proposed as suitable anti-infective targets and have been linked to agents similar to NPBD. The structural and functional diversity and heterogeneous distribution of PTPs across microbial species make them suitably selective targets for the development of both broadly active and pathogen-specific drugs.
Collapse
Affiliation(s)
- Kylie S White
- School of Applied Sciences, College of Science, Engineering and Technology, RMIT University, 124 Latrobe St, Victoria, 3000, Australia
| | | | | |
Collapse
|
18
|
Prediction of substrate sites for protein phosphatases 1B, SHP-1, and SHP-2 based on sequence features. Amino Acids 2014; 46:1919-28. [PMID: 24760585 DOI: 10.1007/s00726-014-1739-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
Tyrosine phosphorylation plays crucial roles in numerous physiological processes. The level of phosphorylation state depends on the combined action of protein tyrosine kinases and protein tyrosine phosphatases. Detection of possible phosphorylation and dephosphorylation sites can provide useful information to the functional studies of relevant proteins. Several studies have focused on the identification of protein tyrosine kinase substrates. However, compared with protein tyrosine kinases, the prediction of protein tyrosine phosphatase substrates involved in the balance of protein phosphorylation level falls behind. This paper described a method that utilized the k-nearest neighbor algorithm to identity the substrate sites of three protein tyrosine phosphatases based on the sequence features of manually collected dephosphorylation sites. In the performance evaluation, both sensitivities and specificities could reach above 75% for all three protein tyrosine phosphatases. Finally, the method was applied on a set of known tyrosine phosphorylation sites to search for candidate substrates.
Collapse
|
19
|
Radhakrishnan VM, Kojs P, Young G, Ramalingam R, Jagadish B, Mash EA, Martinez JD, Ghishan FK, Kiela PR. pTyr421 cortactin is overexpressed in colon cancer and is dephosphorylated by curcumin: involvement of non-receptor type 1 protein tyrosine phosphatase (PTPN1). PLoS One 2014; 9:e85796. [PMID: 24465712 PMCID: PMC3899080 DOI: 10.1371/journal.pone.0085796] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/02/2013] [Indexed: 02/06/2023] Open
Abstract
Cortactin (CTTN), first identified as a major substrate of the Src tyrosine kinase, actively participates in branching F-actin assembly and in cell motility and invasion. CTTN gene is amplified and its protein is overexpressed in several types of cancer. The phosphorylated form of cortactin (pTyr421) is required for cancer cell motility and invasion. In this study, we demonstrate that a majority of the tested primary colorectal tumor specimens show greatly enhanced expression of pTyr421-CTTN, but no change at the mRNA level as compared to healthy subjects, thus suggesting post-translational activation rather than gene amplification in these tumors. Curcumin (diferulolylmethane), a natural compound with promising chemopreventive and chemosensitizing effects, reduced the indirect association of cortactin with the plasma membrane protein fraction in colon adenocarcinoma cells as measured by surface biotinylation, mass spectrometry, and Western blotting. Curcumin significantly decreased the pTyr421-CTTN in HCT116 cells and SW480 cells, but was ineffective in HT-29 cells. Curcumin physically interacted with PTPN1 tyrosine phosphatases to increase its activity and lead to dephosphorylation of pTyr421-CTTN. PTPN1 inhibition eliminated the effects of curcumin on pTyr421-CTTN. Transduction with adenovirally-encoded CTTN increased migration of HCT116, SW480, and HT-29. Curcumin decreased migration of HCT116 and SW480 cells which highly express PTPN1, but not of HT-29 cells with significantly reduced endogenous expression of PTPN1. Curcumin significantly reduced the physical interaction of CTTN and pTyr421-CTTN with p120 catenin (CTNND1). Collectively, these data suggest that curcumin is an activator of PTPN1 and can reduce cell motility in colon cancer via dephosphorylation of pTyr421-CTTN which could be exploited for novel therapeutic approaches in colon cancer therapy based on tumor pTyr421-CTTN expression.
Collapse
Affiliation(s)
- Vijayababu M. Radhakrishnan
- Department of Pediatrics, Steele Children's Research Center, University of Arizona Health Sciences Center, Tucson, Arizona, United States of America
| | - Pawel Kojs
- Department of Nutritional Sciences, Tucson, Arizona, United States of America
| | - Gavin Young
- Arizona Cancer Center, Tucson, Arizona, United States of America
| | - Rajalakshmy Ramalingam
- Department of Pediatrics, Steele Children's Research Center, University of Arizona Health Sciences Center, Tucson, Arizona, United States of America
| | - Bhumasamudram Jagadish
- Arizona Cancer Center, Tucson, Arizona, United States of America
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, United States of America
| | - Eugene A. Mash
- Arizona Cancer Center, Tucson, Arizona, United States of America
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, United States of America
| | | | - Fayez K. Ghishan
- Department of Pediatrics, Steele Children's Research Center, University of Arizona Health Sciences Center, Tucson, Arizona, United States of America
| | - Pawel R. Kiela
- Department of Pediatrics, Steele Children's Research Center, University of Arizona Health Sciences Center, Tucson, Arizona, United States of America
- Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
20
|
The LIM domain only 4 protein is a metabolic responsive inhibitor of protein tyrosine phosphatase 1B that controls hypothalamic leptin signaling. J Neurosci 2013; 33:12647-55. [PMID: 23904601 DOI: 10.1523/jneurosci.0746-13.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) counteracts leptin signaling and is a therapeutic target for obesity and diabetes. Here we found that LIM domain only 4 (LMO4) inhibits PTP1B activity by increasing the oxidized inactive form of PTP1B. Mice with neuronal ablation of LMO4 have elevated PTP1B activity and impaired hypothalamic leptin signaling, and a PTP1B inhibitor normalized PTP1B activity and restored leptin control of circulating insulin levels. LMO4 is palmitoylated at its C-terminal cysteine, and deletion of this residue prevented palmitoylation and retention of LMO4 at the endoplasmic reticulum and abolished its inhibitory effect on PTP1B. Importantly, LMO4 palmitoylation is sensitive to metabolic stress; mice challenged with a brief high-fat diet or acute intracerebroventricular infusion of saturated fatty acid had less palmitoylated LMO4, less oxidized PTP1B, and increased PTP1B activity in the hypothalamus. Thus, unleashed PTP1B activity attributable to loss of LMO4 palmitoylation may account for rapid loss of central leptin signaling after acute exposure to saturated fat.
Collapse
|
21
|
Arregui CO, González Á, Burdisso JE, González Wusener AE. Protein tyrosine phosphatase PTP1B in cell adhesion and migration. Cell Adh Migr 2013; 7:418-23. [PMID: 24104540 DOI: 10.4161/cam.26375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell migration requires a highly coordinated interplay between specialized plasma membrane adhesion complexes and the cytoskeleton. Protein phosphorylation/dephosphorylation modifications regulate many aspects of the integrin-cytoskeleton interdependence, including their coupling, dynamics, and organization to support cell movement. The endoplasmic reticulum-bound protein tyrosine phosphatase PTP1B has been implicated as a regulator of cell adhesion and migration. Recent results from our laboratory shed light on potential mechanisms, such as Src/FAK signaling through Rho GTPases and integrin-cytoskeletal coupling.
Collapse
Affiliation(s)
- Carlos O Arregui
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH); Universidad Nacional de San Martín; Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires, Argentina
| | - Ángela González
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH); Universidad Nacional de San Martín; Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires, Argentina
| | - Juan E Burdisso
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH); Universidad Nacional de San Martín; Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires, Argentina
| | - Ana E González Wusener
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH); Universidad Nacional de San Martín; Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires, Argentina
| |
Collapse
|
22
|
Snider NT, Park H, Omary MB. A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 protein insolubility and filament organization. J Biol Chem 2013; 288:31329-37. [PMID: 24003221 DOI: 10.1074/jbc.m113.502724] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Post-translational modifications are important functional determinants for intermediate filament (IF) proteins. Phosphorylation of IF proteins regulates filament organization, solubility, and cell-protective functions. Most known IF protein phosphorylation sites are serines localized in the variable "head" and "tail" domain regions. By contrast, little is known about site-specific tyrosine phosphorylation or its implications on IF protein function. We used available proteomic data from large scale studies to narrow down potential phospho-tyrosine sites on the simple epithelial IF protein keratin 8 (K8). Validation of the predicted sites using a pan-phosphotyrosine and a site-specific antibody, which we generated, revealed that the highly conserved Tyr-267 in the K8 "rod" domain was basally phosphorylated. The charge at this site was critically important, as demonstrated by altered filament organization of site-directed mutants, Y267F and Y267D, the latter exhibiting significantly diminished solubility. Pharmacological inhibition of the protein-tyrosine phosphatase PTP1B increased K8 Tyr-267 phosphorylation, decreased solubility, and increased K8 filament bundling, whereas PTP1B overexpression had the opposite effects. Furthermore, there was significant co-localization between K8 and a "substrate-trapping" mutant of PTP1B (D181A). Because K8 Tyr-267 is conserved in many IFs (QYE motif), we tested the effect of the paralogous Tyr in glial fibrillary acidic protein (GFAP), which is mutated in Alexander disease (Y242D). Similar to K8, Y242D GFAP exhibited highly irregular filament organization and diminished solubility. Our results implicate the rod domain QYE motif tyrosine as an important determinant of IF assembly and solubility properties that can be dynamically modulated by phosphorylation.
Collapse
Affiliation(s)
- Natasha T Snider
- From the Departments of Molecular and Integrative Physiology and
| | | | | |
Collapse
|
23
|
Bakke J, Bettaieb A, Nagata N, Matsuo K, Haj FG. Regulation of the SNARE-interacting protein Munc18c tyrosine phosphorylation in adipocytes by protein-tyrosine phosphatase 1B. Cell Commun Signal 2013; 11:57. [PMID: 23937695 PMCID: PMC3751566 DOI: 10.1186/1478-811x-11-57] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/06/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of insulin signaling and adiposity and is a drug target for the treatment of obesity and diabetes. The molecular mechanisms underlying PTP1B metabolic actions require additional investigation. RESULTS Herein, we identify Munc18c as a novel PTP1B substrate in adipocytes and in vivo. We demonstrate nutritional regulation of Munc18c in adipose tissue revealing decreased expression upon high fat feeding. In addition, PTP1B deficiency leads to elevated Munc18c tyrosine phosphorylation and dissociation from syntaxin4. At the molecular level, we identify Munc18c Tyr218/219 and Tyr521 as key residues that mediate Munc18c interaction with PTP1B. Further, we uncover an essential role of Munc18c total tyrosine phosphorylation in general, and Tyr218/219 and Tyr521 in particular, in regulating its interactions and glucose uptake in adipocytes. CONCLUSION In conclusion, our findings identify PTP1B as the first known tyrosine phosphatase for Munc18c and a regulator of its phosphorylation and function in adipocytes.
Collapse
Affiliation(s)
- Jesse Bakke
- Nutrition Department, University of California Davis, One Shields Ave, 3135 Meyer Hall, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
24
|
Feldhammer M, Uetani N, Miranda-Saavedra D, Tremblay ML. PTP1B: a simple enzyme for a complex world. Crit Rev Biochem Mol Biol 2013; 48:430-45. [PMID: 23879520 DOI: 10.3109/10409238.2013.819830] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Our understanding of the fundamental regulatory roles that tyrosine phosphatases play within cells has advanced significantly in the last two decades. Out-dated ideas that tyrosine phosphatases acts solely as the "off" switch counterbalancing the action of tyrosine kinases has proved to be flawed. PTP1B is the most characterized of all the tyrosine phosphatases and it acts as a critical negative and positive regulator of numerous signaling cascades. PTP1B's direct regulation of the insulin and the leptin receptors makes it an ideal therapeutic target for type II diabetes and obesity. Moreover, the last decade has also seen several reports establishing PTP1B as key player in cancer serving as both tumor suppressor and tumor promoter depending on the cellular context. Despite many key advances in these fields one largely ignored area is what role PTP1B may play in the modulation of immune signaling. The important recognition that PTP1B is a major negative regulator of Janus kinase - signal transducer and activator of transcription (JAK-STAT) signaling throughout evolution places it as a key link between metabolic diseases and inflammation, as well as a unique regulator between immune response and cancer. This review looks at the emergence of PTP1B through evolution, and then explore at the cell and systemic levels how it is controlled physiologically. The second half of the review will focus on the role(s) PTP1B can play in disease and in particular its involvement in metabolic syndromes and cancer. Finally we will briefly examine several novel directions in the development of PTP1B pharmacological inhibitors.
Collapse
|
25
|
Bettaieb A, Bakke J, Nagata N, Matsuo K, Xi Y, Liu S, AbouBechara D, Melhem R, Stanhope K, Cummings B, Graham J, Bremer A, Zhang S, Lyssiotis CA, Zhang ZY, Cantley LC, Havel PJ, Haj FG. Protein tyrosine phosphatase 1B regulates pyruvate kinase M2 tyrosine phosphorylation. J Biol Chem 2013; 288:17360-71. [PMID: 23640882 PMCID: PMC3682537 DOI: 10.1074/jbc.m112.441469] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/24/2013] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and adiposity and is a drug target for the treatment of obesity and diabetes. Here we identify pyruvate kinase M2 (PKM2) as a novel PTP1B substrate in adipocytes. PTP1B deficiency leads to increased PKM2 total tyrosine and Tyr(105) phosphorylation in cultured adipocytes and in vivo. Substrate trapping and mutagenesis studies identify PKM2 Tyr-105 and Tyr-148 as key sites that mediate PTP1B-PKM2 interaction. In addition, in vitro analyses illustrate a direct effect of Tyr-105 phosphorylation on PKM2 activity in adipocytes. Importantly, PTP1B pharmacological inhibition increased PKM2 Tyr-105 phosphorylation and decreased PKM2 activity. Moreover, PKM2 Tyr-105 phosphorylation is regulated nutritionally, decreasing in adipose tissue depots after high-fat feeding. Further, decreased PKM2 Tyr-105 phosphorylation correlates with the development of glucose intolerance and insulin resistance in rodents, non-human primates, and humans. Together, these findings identify PKM2 as a novel substrate of PTP1B and provide new insights into the regulation of adipose PKM2 activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kimber Stanhope
- From the Nutrition Department and
- Department of Molecular Biosciences, University of California Davis, Davis, California 95616
| | - Bethany Cummings
- From the Nutrition Department and
- Department of Molecular Biosciences, University of California Davis, Davis, California 95616
| | - James Graham
- From the Nutrition Department and
- Department of Molecular Biosciences, University of California Davis, Davis, California 95616
| | - Andrew Bremer
- the Department of Pediatrics, Vanderbilt University, Nashville, Tennessee 37232
| | - Sheng Zhang
- the Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana 46202
| | - Costas A. Lyssiotis
- the Beth Israel Deaconess Medical Center, Department of Medicine, and
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Zhong-Yin Zhang
- the Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana 46202
| | - Lewis C. Cantley
- the Beth Israel Deaconess Medical Center, Department of Medicine, and
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Peter J. Havel
- From the Nutrition Department and
- Department of Molecular Biosciences, University of California Davis, Davis, California 95616
| | - Fawaz G. Haj
- From the Nutrition Department and
- the Department of Internal Medicine and
- Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817
| |
Collapse
|
26
|
MacGrath SM, Koleske AJ. Cortactin in cell migration and cancer at a glance. J Cell Sci 2013; 125:1621-6. [PMID: 22566665 DOI: 10.1242/jcs.093781] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Stacey M MacGrath
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
27
|
Kelley LC, Weed SA. Cortactin is a substrate of activated Cdc42-associated kinase 1 (ACK1) during ligand-induced epidermal growth factor receptor downregulation. PLoS One 2012; 7:e44363. [PMID: 22952966 PMCID: PMC3431376 DOI: 10.1371/journal.pone.0044363] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/06/2012] [Indexed: 12/11/2022] Open
Abstract
Background Epidermal growth factor receptor (EGFR) internalization following ligand binding controls EGFR downstream pathway signaling activity. Internalized EGFR is poly-ubiquitinated by Cbl to promote lysosome-mediated degradation and signal downregulation. ACK1 is a non-receptor tyrosine kinase that interacts with ubiquitinated EGFR to facilitate EGFR degradation. Dynamic reorganization of the cortical actin cytoskeleton controlled by the actin related protein (Arp)2/3 complex is important in regulating EGFR endocytosis and vesicle trafficking. How ACK1-mediated EGFR internalization cooperates with Arp2/3-based actin dynamics during EGFR downregulation is unclear. Methodology/Principal Findings Here we show that ACK1 directly binds and phosphorylates the Arp2/3 regulatory protein cortactin, potentially providing a direct link to Arp2/3-based actin dynamics during EGFR degradation. Co-immunoprecipitation analysis indicates that the cortactin SH3 domain is responsible for binding to ACK1. In vitro kinase assays demonstrate that ACK1 phosphorylates cortactin on key tyrosine residues that create docking sites for adaptor proteins responsible for enhancing Arp2/3 nucleation. Analysis with phosphorylation-specific antibodies determined that EGFR-induced cortactin tyrosine phosphorylation is diminished coincident with EGFR degradation, whereas ERK1/2 cortactin phosphorylation utilized in promoting activation of the Arp2/3 regulator N-WASp is sustained during EGFR downregulation. Cortactin and ACK1 localize to internalized vesicles containing EGF bound to EGFR visualized by confocal microscopy. RNA interference and rescue studies indicate that ACK1 and the cortactin SH3 domain are essential for ligand-mediated EGFR internalization. Conclusions/Significance Cortactin is a direct binding partner and novel substrate of ACK1. Tyrosine phosphorylation of cortactin by ACK1 creates an additional means to amplify Arp2/3 dynamics through N-WASp activation, potentially contributing to the overall necessary tensile and/or propulsive forces utilized during EGFR endocytic internalization and trafficking involved in receptor degradation.
Collapse
Affiliation(s)
- Laura C. Kelley
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Scott A. Weed
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Labbé DP, Hardy S, Tremblay ML. Protein tyrosine phosphatases in cancer: friends and foes! PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:253-306. [PMID: 22340721 DOI: 10.1016/b978-0-12-396456-4.00009-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tyrosine phosphorylation of proteins serves as an exquisite switch in controlling several key oncogenic signaling pathways involved in cell proliferation, apoptosis, migration, and invasion. Since protein tyrosine phosphatases (PTPs) counteract protein kinases by removing phosphate moieties on target proteins, one may intuitively think that PTPs would act as tumor suppressors. Indeed, one of the most described PTPs, namely, the phosphatase and tensin homolog (PTEN), is a tumor suppressor. However, a growing body of evidence suggests that PTPs can also function as potent oncoproteins. In this chapter, we provide a broad historical overview of the PTPs, their mechanism of action, and posttranslational modifications. Then, we focus on the dual properties of classical PTPs (receptor and nonreceptor) and dual-specificity phosphatases in cancer and summarize the current knowledge of the signaling pathways regulated by key PTPs in human cancer. In conclusion, we present our perspective on the potential of these PTPs to serve as therapeutic targets in cancer.
Collapse
Affiliation(s)
- David P Labbé
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
29
|
Kozlov IA, Thomsen ER, Munchel SE, Villegas P, Capek P, Gower AJ, Pond SJK, Chudin E, Chee MS. A highly scalable peptide-based assay system for proteomics. PLoS One 2012; 7:e37441. [PMID: 22701568 PMCID: PMC3373263 DOI: 10.1371/journal.pone.0037441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/19/2012] [Indexed: 11/18/2022] Open
Abstract
We report a scalable and cost-effective technology for generating and screening high-complexity customizable peptide sets. The peptides are made as peptide-cDNA fusions by in vitro transcription/translation from pools of DNA templates generated by microarray-based synthesis. This approach enables large custom sets of peptides to be designed in silico, manufactured cost-effectively in parallel, and assayed efficiently in a multiplexed fashion. The utility of our peptide-cDNA fusion pools was demonstrated in two activity-based assays designed to discover protease and kinase substrates. In the protease assay, cleaved peptide substrates were separated from uncleaved and identified by digital sequencing of their cognate cDNAs. We screened the 3,011 amino acid HCV proteome for susceptibility to cleavage by the HCV NS3/4A protease and identified all 3 known trans cleavage sites with high specificity. In the kinase assay, peptide substrates phosphorylated by tyrosine kinases were captured and identified by sequencing of their cDNAs. We screened a pool of 3,243 peptides against Abl kinase and showed that phosphorylation events detected were specific and consistent with the known substrate preferences of Abl kinase. Our approach is scalable and adaptable to other protein-based assays.
Collapse
Affiliation(s)
- Igor A Kozlov
- Prognosys Biosciences Inc., La Jolla, California, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rajadurai CV, Havrylov S, Zaoui K, Vaillancourt R, Stuible M, Naujokas M, Zuo D, Tremblay ML, Park M. Met receptor tyrosine kinase signals through a cortactin-Gab1 scaffold complex, to mediate invadopodia. J Cell Sci 2012; 125:2940-53. [PMID: 22366451 PMCID: PMC3434810 DOI: 10.1242/jcs.100834] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invasive carcinoma cells form actin-rich matrix-degrading protrusions called invadopodia. These structures resemble podosomes produced by some normal cells and play a crucial role in extracellular matrix remodeling. In cancer, formation of invadopodia is strongly associated with invasive potential. Although deregulated signals from the receptor tyrosine kinase Met (also known as hepatocyte growth factor are linked to cancer metastasis and poor prognosis, its role in invadopodia formation is not known. Here we show that stimulation of breast cancer cells with the ligand for Met, hepatocyte growth factor, promotes invadopodia formation, and in aggressive gastric tumor cells where Met is amplified, invadopodia formation is dependent on Met activity. Using both GRB2-associated-binding protein 1 (Gab1)-null fibroblasts and specific knockdown of Gab1 in tumor cells we show that Met-mediated invadopodia formation and cell invasion requires the scaffold protein Gab1. By a structure–function approach, we demonstrate that two proline-rich motifs (P4/5) within Gab1 are essential for invadopodia formation. We identify the actin regulatory protein, cortactin, as a direct interaction partner for Gab1 and show that a Gab1–cortactin interaction is dependent on the SH3 domain of cortactin and the integrity of the P4/5 region of Gab1. Both cortactin and Gab1 localize to invadopodia rosettes in Met-transformed cells and the specific uncoupling of cortactin from Gab1 abrogates invadopodia biogenesis and cell invasion downstream from the Met receptor tyrosine kinase. Met localizes to invadopodia along with cortactin and promotes phosphorylation of cortactin. These findings provide insights into the molecular mechanisms of invadopodia formation and identify Gab1 as a scaffold protein involved in this process.
Collapse
Affiliation(s)
- Charles V Rajadurai
- Department of Biochemistry, McGill University, Montréal Québec H3A 1Y6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Podocyte Protein, Nephrin, Is a Substrate of Protein Tyrosine Phosphatase 1B. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:376543. [PMID: 22013520 PMCID: PMC3195428 DOI: 10.1155/2011/376543] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/15/2011] [Accepted: 08/14/2011] [Indexed: 12/02/2022]
Abstract
Glomerular podocytes are critical for the barrier function of the glomerulus in the kidney and their dysfunction causes protein leakage into the urine (proteinuria). Nephrin is a key podocyte protein, which regulates the actin cytoskeleton via tyrosine phosphorylation of its cytoplasmic domain. Here we report that two protein tyrosine phosphatases, PTP1B and PTP-PEST negatively regulate nephrin tyrosine phosphorylation. PTP1B directly binds to and dephosphorylates nephrin, while the action of PTP-PEST is indirect. The two phosphatases are also upregulated in the glomerulus in the rat model of puromycin aminonucleoside nephrosis. Both overexpression and inhibition of PTP1B deranged the actin cytoskeleton in cultured mouse podocytes. Thus, protein tyrosine phosphatases may affect podocyte function via regulating nephrin tyrosine phosphorylation.
Collapse
|
32
|
Matsuo T, Miyata Y, Watanabe SI, Ohba K, Hayashi T, Kanda S, Sakai H. Pathologic significance and prognostic value of phosphorylated cortactin expression in patients with sarcomatoid renal cell carcinoma. Urology 2011; 78:476.e9-15. [PMID: 21696810 DOI: 10.1016/j.urology.2011.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/03/2011] [Accepted: 03/11/2011] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To clarify the clinical and prognostic significance of cortactin and phosphorylated cortactin in patients with sarcomatoid renal cell carcinoma (SRCC). METHODS We retrospectively reviewed the data from 31 patients with SRCC and 33 with conventional renal cell carcinoma matched for clinicopathologic features. The immunoreactive score for cortactin, pY421 cortactin, and pY466 cortactin were measured using immunohistochemistry. The relationships between each immunoreactive score and the clinicopathologic features and survival were investigated. RESULTS The immunoreactive score of p421 cortactin, but not that of cortactin and pY466 cortactin, was significantly greater in SRCC than in conventional renal cell carcinoma (P < .001). The expression of pY421 cortactin in SRCC correlated with the pT stage and metastasis (P < .001). The expression of pY466 cortactin showed a similar trend with pT stage (P = .043) but not with metastasis. Although both of pY421 cortactin and pY466 cortactin were identified as useful predictors for survival in univariate analyses, only pY421 cortactin expression was considered an independent predictor in patients with SRCC (odds ratio 4.53, 95% confidence interval 1.07-19.12, P = .040) in the multivariate analysis model, including pT stage and metastasis. CONCLUSIONS Our results have demonstrated that phosphorylation of cortactin is a key process in malignant aggressiveness, and its expression is a useful predictor of cause-specific survival and could be a useful potential therapeutic target in patients with SRCC.
Collapse
Affiliation(s)
- Tomohiro Matsuo
- Department of Nephro-urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Kirkbride KC, Sung BH, Sinha S, Weaver AM. Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adh Migr 2011; 5:187-98. [PMID: 21258212 DOI: 10.4161/cam.5.2.14773] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Branched actin assembly is critical for a variety of cellular processes that underlie cell motility and invasion, including cellular protrusion formation and membrane trafficking. Activation of branched actin assembly occurs at various subcellular locations via site-specific activation of distinct WASp family proteins and the Arp2/3 complex. A key branched actin regulator that promotes cell motility and links signaling, cytoskeletal and membrane trafficking proteins is the Src kinase substrate and Arp2/3 binding protein cortactin. Due to its frequent overexpression in advanced, invasive cancers and its general role in regulating branched actin assembly at multiple cellular locations, cortactin has been the subject of intense study. Recent studies suggest that cortactin has a complex role in cellular migration and invasion, promoting both on-site actin polymerization and modulation of autocrine secretion. Diverse cellular activities may derive from the interaction of cortactin with site-specific binding partners.
Collapse
Affiliation(s)
- Kellye C Kirkbride
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
34
|
Ren L, Chen X, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, Chan R, Iorio C, Zhou X, Neel BG, Pei D. Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP-1, and SHP-2. Biochemistry 2011; 50:2339-56. [PMID: 21291263 DOI: 10.1021/bi1014453] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We determined the substrate specificities of the protein tyrosine phosphatases (PTPs) PTP1B, RPTPα, SHP-1, and SHP-2 by on-bead screening of combinatorial peptide libraries and solution-phase kinetic analysis of individually synthesized phosphotyrosyl (pY) peptides. These PTPs exhibit different levels of sequence specificity and catalytic efficiency. The catalytic domain of RPTPα has very weak sequence specificity and is approximately 2 orders of magnitude less active than the other three PTPs. The PTP1B catalytic domain has modest preference for acidic residues on both sides of pY, is highly active toward multiply phosphorylated peptides, but disfavors basic residues at any position, a Gly at the pY-1 position, or a Pro at the pY+1 position. By contrast, SHP-1 and SHP-2 share similar but much narrower substrate specificities, with a strong preference for acidic and aromatic hydrophobic amino acids on both sides of the pY residue. An efficient SHP-1/2 substrate generally contains two or more acidic residues on the N-terminal side and one or more acidic residues on the C-terminal side of pY but no basic residues. Subtle differences exist between SHP-1 and SHP-2 in that SHP-1 has a stronger preference for acidic residues at the pY-1 and pY+1 positions and the two SHPs prefer acidic residues at different positions N-terminal to pY. A survey of the known protein substrates of PTP1B, SHP-1, and SHP-2 shows an excellent agreement between the in vivo dephosphorylation pattern and the in vitro specificity profiles derived from library screening. These results suggest that different PTPs have distinct sequence specificity profiles and the intrinsic activity/specificity of the PTP domain is an important determinant of the enzyme's in vivo substrate specificity.
Collapse
Affiliation(s)
- Lige Ren
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Stuible M, Tremblay ML. In control at the ER: PTP1B and the down-regulation of RTKs by dephosphorylation and endocytosis. Trends Cell Biol 2010; 20:672-9. [DOI: 10.1016/j.tcb.2010.08.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/10/2010] [Accepted: 08/25/2010] [Indexed: 01/26/2023]
|
36
|
Kelley LC, Ammer AG, Hayes KE, Martin KH, Machida K, Jia L, Mayer BJ, Weed SA. Oncogenic Src requires a wild-type counterpart to regulate invadopodia maturation. J Cell Sci 2010; 123:3923-32. [PMID: 20980387 DOI: 10.1242/jcs.075200] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The proto-oncogene Src tyrosine kinase (Src) is overexpressed in human cancers and is currently a target of anti-invasive therapies. Activation of Src is an essential catalyst of invadopodia production. Invadopodia are cellular structures that mediate extracellular matrix (ECM) proteolysis, allowing invasive cell types to breach confining tissue barriers. Invadopodia assembly and maturation is a multistep process, first requiring the targeting of actin-associated proteins to form pre-invadopodia, which subsequently mature by recruitment and activation of matrix metalloproteases (MMPs) that facilitate ECM degradation. We demonstrate that active, oncogenic Src alleles require the presence of a wild-type counterpart to induce ECM degradation at invadopodia sites. In addition, we identify the phosphorylation of the invadopodia regulatory protein cortactin as an important mediator of invadopodia maturation downstream of wild-type Src. Distinct phosphotyrosine-based protein-binding profiles in cells forming pre-invadopodia and mature invadopodia were identified by SH2-domain array analysis. These results indicate that although elevated Src kinase activity is required to target actin-associated proteins to pre-invadopodia, regulated Src activity is required for invadopodia maturation and matrix degradation activity. Our findings describe a previously unappreciated role for proto-oncogenic Src in enabling the invasive activity of constitutively active Src alleles.
Collapse
Affiliation(s)
- Laura C Kelley
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Stuible M, Abella JV, Feldhammer M, Nossov M, Sangwan V, Blagoev B, Park M, Tremblay ML. PTP1B targets the endosomal sorting machinery: dephosphorylation of regulatory sites on the endosomal sorting complex required for transport component STAM2. J Biol Chem 2010; 285:23899-907. [PMID: 20504764 DOI: 10.1074/jbc.m110.115295] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dephosphorylation and endocytic down-regulation are distinct processes that together control the signaling output of a variety of receptor tyrosine kinases (RTKs). PTP1B can directly dephosphorylate several RTKs, but it can also promote activation of downstream pathways through largely unknown mechanisms. These positive signaling functions likely contribute to the tumor-promoting effect of PTP1B in mouse cancer models. Here, we have identified STAM2, an endosomal protein involved in sorting activated RTKs for lysosomal degradation, as a substrate of PTP1B. PTP1B interacts with STAM2 at defined phosphotyrosine sites, and knockdown of PTP1B expression augments STAM2 phosphorylation. Intriguingly, manipulating the expression and phosphorylation state of STAM2 did not have a general effect on epidermal growth factor (EGF)-induced EGF receptor trafficking, degradation, or signaling. Instead, phosphorylated STAM2 specifically suppressed Akt activation, and a phosphorylation-deficient STAM2 mutant displayed prolonged localization on endosomes following EGF stimulation. These results reveal a novel link between the dephosphorylation and endocytic machinery and suggest that PTP1B can affect RTK signaling in a previously unrecognized manner.
Collapse
Affiliation(s)
- Matthew Stuible
- Rosalind and Morris Goodman Cancer Centre and Departments of Biochemistry and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Oser M, Yamaguchi H, Mader CC, Bravo-Cordero JJ, Arias M, Chen X, Desmarais V, van Rheenen J, Koleske AJ, Condeelis J. Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. ACTA ACUST UNITED AC 2009; 186:571-87. [PMID: 19704022 PMCID: PMC2733743 DOI: 10.1083/jcb.200812176] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Invadopodia are matrix-degrading membrane protrusions in invasive carcinoma cells. The mechanisms regulating invadopodium assembly and maturation are not understood. We have dissected the stages of invadopodium assembly and maturation and show that invadopodia use cortactin phosphorylation as a master switch during these processes. In particular, cortactin phosphorylation was found to regulate cofilin and Arp2/3 complex–dependent actin polymerization. Cortactin directly binds cofilin and inhibits its severing activity. Cortactin phosphorylation is required to release this inhibition so cofilin can sever actin filaments to create barbed ends at invadopodia to support Arp2/3-dependent actin polymerization. After barbed end formation, cortactin is dephosphorylated, which blocks cofilin severing activity thereby stabilizing invadopodia. These findings identify novel mechanisms for actin polymerization in the invadopodia of metastatic carcinoma cells and define four distinct stages of invadopodium assembly and maturation consisting of invadopodium precursor formation, actin polymerization, stabilization, and matrix degradation.
Collapse
Affiliation(s)
- Matthew Oser
- Department of Anatomy and Structural Biology and 2 Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lessard L, Stuible M, Tremblay ML. The two faces of PTP1B in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:613-9. [PMID: 19782770 DOI: 10.1016/j.bbapap.2009.09.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/11/2009] [Accepted: 09/18/2009] [Indexed: 10/25/2022]
Abstract
PTP1B is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and is a promising drug target for type 2 diabetes and obesity. Accumulating evidence also indicates that PTP1B is involved in cancer, but contrasting findings suggest that it can exert both tumor suppressing and tumor promoting effects depending on the substrate involved and the cellular context. In this review, we will discuss the diverse mechanisms by which PTP1B may influence tumorigenesis as well as recent in vivo data on the impact of PTP1B deficiency in murine cancer models. Together, these results highlight not only the great potential of PTP1B inhibitors in cancer therapy but also the need for a better understanding of PTP1B function prior to use of these compounds in human patients.
Collapse
Affiliation(s)
- Laurent Lessard
- Goodman Cancer Centre and Department of Biochemistry, McGill University, 1160 Pine Avenue, Montréal, Québec, Canada H3G 0B1
| | | | | |
Collapse
|
40
|
Abstract
Protein tyrosine phosphatases (PTPs) are central players in many biological processes. In this issue, Barr et al. (2009) analyze 22 different PTP structures to define their common and unique features. This effort provides key insights into the regulation of PTP activity that could lead to the development of new therapeutics.
Collapse
Affiliation(s)
- Michel L Tremblay
- Goodman Cancer Centre, Biochemistry Department, Montreal, Quebec H3G 0B1, Canada.
| |
Collapse
|
41
|
Rajala RVS, Wiskur B, Tanito M, Callegan M, Rajala A. Diabetes reduces autophosphorylation of retinal insulin receptor and increases protein-tyrosine phosphatase-1B activity. Invest Ophthalmol Vis Sci 2008; 50:1033-40. [PMID: 19029027 DOI: 10.1167/iovs.08-2851] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Protein-tyrosine phosphatase-1B (PTP1B) has been implicated in the negative regulation of insulin signaling. The expression, activity, and functional role of PTP1B in the retina are unknown. In this study, the authors examined the relationship between the retinal insulin receptor (IR) and PTP1B in normal and diabetic mouse retinas. METHODS IR and PTP1B localization was examined by immunohistochemistry. The activation of IR was analyzed using specific antibodies against phosphotyrosine. PTP1B activity was determined in anti-PTP1B immunoprecipitates. Glutathione-S-transferase fusion proteins containing wild-type and catalytically inactive mutant PTP1B was used to study the interaction between IR and PTP1B. Anti-IR immunoprecipitates and the cytoplasmic domain of purified IR were incubated in the presence of ATP, and the autophosphorylation of IR with antiphosphotyrosine antibody was analyzed. RESULTS Immunohistochemical analysis of PTP1B shows that it is predominantly expressed in nonphotoreceptor layers of the retina, though it is clearly expressed in the inner segments of the rod photoreceptors. The IR is predominately expressed in rod inner segments. Biochemical analysis of rod outer segments indicates the presence of IR and PTP1B. Retinal IR exhibits a high level of basal autophosphorylation, and this autophosphorylation is reduced in diabetic mouse retinas. In vitro, PTP1B is able to dephosphorylate the autophosphorylated IR. Substrate mutant-trap results indicate a stable interaction between IR and PTP1B. Further, PTP1B activity was increased in diabetic mouse retinas. CONCLUSIONS These studies indicate that diabetes reduces the autophosphorylation of retinal IR and increased PTP1B activity. Further, PTP1B regulates the state of IR phosphorylation in the retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | | | |
Collapse
|
42
|
Ammer AG, Weed SA. Cortactin branches out: roles in regulating protrusive actin dynamics. ACTA ACUST UNITED AC 2008; 65:687-707. [PMID: 18615630 DOI: 10.1002/cm.20296] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since its discovery in the early 1990's, cortactin has emerged as a key signaling protein in many cellular processes, including cell adhesion, migration, endocytosis, and tumor invasion. While the list of cellular functions influenced by cortactin grows, the ability of cortactin to interact with and alter the cortical actin network is central to its role in regulating these processes. Recently, several advances have been made in our understanding of the interaction between actin and cortactin, providing insight into how these two proteins work together to provide a framework for normal and altered cellular function. This review examines how regulation of cortactin through post-translational modifications and interactions with multiple binding partners elicits changes in cortical actin cytoskeletal organization, impacting the regulation and formation of actin-rich motility structures.
Collapse
Affiliation(s)
- Amanda Gatesman Ammer
- Department of Neuroscience and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300, USA
| | | |
Collapse
|
43
|
Mertins P, Eberl HC, Renkawitz J, Olsen JV, Tremblay ML, Mann M, Ullrich A, Daub H. Investigation of protein-tyrosine phosphatase 1B function by quantitative proteomics. Mol Cell Proteomics 2008; 7:1763-77. [PMID: 18515860 DOI: 10.1074/mcp.m800196-mcp200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Because of their antagonistic catalytic functions, protein-tyrosine phosphatases (PTPs) and protein-tyrosine kinases act together to control phosphotyrosine-mediated signaling processes in mammalian cells. However, unlike for protein-tyrosine kinases, little is known about the cellular substrate specificity of many PTPs because of the lack of appropriate methods for the systematic and detailed analysis of cellular PTP function. Even for the most intensely studied, prototypic family member PTP1B many of its physiological functions cannot be explained by its known substrates. To gain better insights into cellular PTP1B function, we used quantitative MS to monitor alterations in the global tyrosine phosphorylation of PTP1B-deficient mouse embryonic fibroblasts in comparison with their wild-type counterparts. In total, we quantified 124 proteins containing 301 phosphotyrosine sites under basal, epidermal growth factor-, or platelet-derived growth factor-stimulated conditions. A subset of 18 proteins was found to harbor hyperphosphorylated phosphotyrosine sites in knock-out cells and was functionally linked to PTP1B. Among these proteins, regulators of cell motility and adhesion are overrepresented, such as cortactin, lipoma-preferred partner, ZO-1, or p120ctn. In addition, regulators of proliferation like p62DOK or p120RasGAP also showed increased cellular tyrosine phosphorylation. Physical interactions of these proteins with PTP1B were further demonstrated by using phosphatase-inactive substrate-trapping mutants in a parallel MS-based analysis. Our results correlate well with the described phenotype of PTP1B-deficient fibroblasts that is characterized by an increase in motility and reduced cell proliferation. The presented study provides a broad overview about phosphotyrosine signaling processes in mouse fibroblasts and, supported by the identification of various new potential substrate proteins, indicates a central role of PTP1B within cellular signaling networks. Importantly the MS-based strategies described here are entirely generic and can be used to address the poorly understood aspects of cellular PTP function.
Collapse
Affiliation(s)
- Philipp Mertins
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|