1
|
Siddiqui N, Sharma A, Kesharwani A, Anurag, Parihar VK. Exploring role of natural compounds in molecular alterations associated with brain ageing: A perspective towards nutrition for ageing brain. Ageing Res Rev 2024; 97:102282. [PMID: 38548242 DOI: 10.1016/j.arr.2024.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Aging refers to complete deterioration of physiological integrity and function. By midcentury, adults over 60 years of age and children under 15 years will begin to outnumber people in working age. This shift will bring multiple global challenges for economy, health, and society. Eventually, aging is a natural process playing a vital function in growth and development during pediatric stage, maturation during adult stage, and functional depletion. Tissues experience negative consequences with enhanced genomic instability, deregulated nutrient sensing, mitochondrial dysfunction, and decline in performance on cognitive tasks. As brain ages, its volume decreases, neurons & glia get inflamed, vasculature becomes less developed, blood pressure increases with a risk of stroke, ischemia, and cognitive deficits. Diminished cellular functions leads to progressive reduction in functional and emotional capacity with higher possibility of disease and finally death. This review overviews cellular as well as molecular aspects of aging, biological pathway related to accelerated brain aging, and strategies minimizing cognitive aging. Age-related changes include altered bioenergetics, decreased neuroplasticity and flexibility, aberrant neural activity, deregulated Ca2+ homeostasis in neurons, buildup of reactive oxygen species, and neuro-inflammation. Unprecedented progress has been achieved in recent studies, particularly in terms of how herbal or natural substances affect genetic pathways and biological functions that have been preserved through evolution. Herein, the present work provides an overview of ageing and age-related disorders and explore the molecular mechanisms that underlie therapeutic effects of herbal and natural chemicals on neuropathological signs of brain aging.
Collapse
Affiliation(s)
- Nazia Siddiqui
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India.
| | - Anuradha Kesharwani
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India
| | - Anurag
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India
| | - Vipan Kumar Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| |
Collapse
|
2
|
Ban N, Shinojima A, Negishi K, Kurihara T. Drusen in AMD from the Perspective of Cholesterol Metabolism and Hypoxic Response. J Clin Med 2024; 13:2608. [PMID: 38731137 PMCID: PMC11084323 DOI: 10.3390/jcm13092608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Drusen are one of the most characteristic pathologies of precursor lesion of age-related macular degeneration (AMD). Drusen comprise a yellowish white substance that accumulates typically under the retinal pigment epithelium (RPE), and their constituents are lipids, complement, amyloid, crystallin, and others. In the past, many researchers have focused on drusen and tried to elucidate the pathophysiology of AMD because they believed that disease progression from early AMD to advanced AMD might be based on drusen or drusen might cause AMD. In fact, it is well established that drusen are the hallmark of precursor lesion of AMD and a major risk factor for AMD progression mainly based on their size and number. However, the existence of advanced AMD without drusen has long been recognized. For example, polypoidal choroidal vasculopathy (PCV), which comprises the majority of AMD cases in Asians, often lacks drusen. Thus, there is the possibility that drusen might be no more than a biomarker of AMD and not a cause of AMD. Now is the time to reconsider the relationship between AMD and drusen. In this review, we focus on early AMD pathogenesis based on basic research from the perspective of cholesterol metabolism and hypoxic response in the retina, and we discuss the role of drusen.
Collapse
Affiliation(s)
- Norimitsu Ban
- Laboratory of Aging and Retinal Biology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
| | - Ari Shinojima
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
3
|
Chen S, Pan Z, Liu M, Guo L, Jiang X, He G. Recent Advances on Small-Molecule Inhibitors of Lipocalin-like Proteins. J Med Chem 2024; 67:5144-5167. [PMID: 38525852 DOI: 10.1021/acs.jmedchem.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Lipid transfer proteins (LTPs) are crucial players in nonvesicular lipid trafficking. LTPs sharing a lipocalin lipid transfer domain (lipocalin-like proteins) have a wide range of biological functions, such as regulating immune responses and cell proliferation, differentiation, and death as well as participating in the pathogenesis of inflammatory, metabolic, and neurological disorders and cancer. Therefore, the development of small-molecule inhibitors targeting these LTPs is important and has potential clinical applications. Herein, we summarize the structure and function of lipocalin-like proteins, mainly including retinol-binding proteins, lipocalins, and fatty acid-binding proteins and discuss the recent advances on small-molecule inhibitors for these protein families and their applications in disease treatment. The findings of our Perspective can provide guidance for the development of inhibitors of these LTPs and highlight the challenges that might be faced during the procedures.
Collapse
Affiliation(s)
- Siliang Chen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaoping Pan
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingxia Liu
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linghong Guo
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
5
|
Guo J, Chen S, Zhang Y, Liu J, Jiang L, Hu L, Yao K, Yu Y, Chen X. Cholesterol metabolism: physiological regulation and diseases. MedComm (Beijing) 2024; 5:e476. [PMID: 38405060 PMCID: PMC10893558 DOI: 10.1002/mco2.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
Cholesterol homeostasis is crucial for cellular and systemic function. The disorder of cholesterol metabolism not only accelerates the onset of cardiovascular disease (CVD) but is also the fundamental cause of other ailments. The regulation of cholesterol metabolism in the human is an extremely complex process. Due to the dynamic balance between cholesterol synthesis, intake, efflux and storage, cholesterol metabolism generally remains secure. Disruption of any of these links is likely to have adverse effects on the body. At present, increasing evidence suggests that abnormal cholesterol metabolism is closely related to various systemic diseases. However, the exact mechanism by which cholesterol metabolism contributes to disease pathogenesis remains unclear, and there are still unknown factors. In this review, we outline the metabolic process of cholesterol in the human body, especially reverse cholesterol transport (RCT). Then, we discuss separately the impact of abnormal cholesterol metabolism on common diseases and potential therapeutic targets for each disease, including CVD, tumors, neurological diseases, and immune system diseases. At the end of this review, we focus on the effect of cholesterol metabolism on eye diseases. In short, we hope to provide more new ideas for the pathogenesis and treatment of diseases from the perspective of cholesterol.
Collapse
Affiliation(s)
- Jiarui Guo
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Silong Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ying Zhang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Jinxia Liu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Luyang Jiang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Lidan Hu
- National Clinical Research Center for Child HealthThe Children's HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ke Yao
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Yibo Yu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Xiangjun Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| |
Collapse
|
6
|
Farjood F, Manos JD, Wang Y, Williams AL, Zhao C, Borden S, Alam N, Prusky G, Temple S, Stern JH, Boles NC. Identifying biomarkers of heterogeneity and transplantation efficacy in retinal pigment epithelial cells. J Exp Med 2023; 220:e20230913. [PMID: 37728563 PMCID: PMC10510736 DOI: 10.1084/jem.20230913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Transplantation of retinal pigment epithelial (RPE) cells holds great promise for patients with retinal degenerative diseases, such as age-related macular degeneration. In-depth characterization of RPE cell product identity and critical quality attributes are needed to enhance efficacy and safety of replacement therapy strategies. Here, we characterized an adult RPE stem cell-derived (RPESC-RPE) cell product using bulk and single-cell RNA sequencing (scRNA-seq), assessing functional cell integration in vitro into a mature RPE monolayer and in vivo efficacy by vision rescue in the Royal College of Surgeons rats. scRNA-seq revealed several distinct subpopulations in the RPESC-RPE product, some with progenitor markers. We identified RPE clusters expressing genes associated with in vivo efficacy and increased cell integration capability. Gene expression analysis revealed lncRNA (TREX) as a predictive marker of in vivo efficacy. TREX knockdown decreased cell integration while overexpression increased integration in vitro and improved vision rescue in the RCS rats.
Collapse
Affiliation(s)
| | | | - Yue Wang
- Neural Stem Cell Institute, Rensselaer, NY, USA
| | | | | | | | - Nazia Alam
- Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY, USA
| | - Glen Prusky
- Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY, USA
| | | | | | | |
Collapse
|
7
|
Lieffrig SA, Gyimesi G, Mao Y, Finnemann SC. Clearance phagocytosis by the retinal pigment epithelial during photoreceptor outer segment renewal: Molecular mechanisms and relation to retinal inflammation. Immunol Rev 2023; 319:81-99. [PMID: 37555340 PMCID: PMC10615845 DOI: 10.1111/imr.13264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Mammalian photoreceptor outer segment renewal is a highly coordinated process that hinges on timed cell signaling between photoreceptor neurons and the adjacent retinal pigment epithelial (RPE). It is a strictly rhythmic, synchronized process that underlies in part circadian regulation. We highlight findings from recently developed methods that quantify distinct phases of outer segment renewal in retinal tissue. At light onset, outer segments expose the conserved "eat-me" signal phosphatidylserine exclusively at their distal, most aged tip. A coordinated two-receptor efferocytosis process follows, in which ligands bridge outer segment phosphatidylserine with the RPE receptors αvβ5 integrin, inducing cytosolic signaling toward Rac1 and focal adhesion kinase/MERTK, and with MERTK directly, additionally inhibiting RhoA/ROCK and thus enabling F-actin dynamics favoring outer segment fragment engulfment. Photoreceptors and RPE persist for life with each RPE cell in the eye servicing dozens of overlying photoreceptors. Thus, RPE cells phagocytose more often and process more material than any other cell type. Mutant mice with impaired outer segment renewal largely retain functional photoreceptors and retinal integrity. However, when anti-inflammatory signaling in the RPE via MERTK or the related TYRO3 is lacking, catastrophic inflammation leads to immune cell infiltration that swiftly destroys the retina causing blindness.
Collapse
Affiliation(s)
- Stephanie A. Lieffrig
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| | - Gavin Gyimesi
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| | | | - Silvia C. Finnemann
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| |
Collapse
|
8
|
Shome I, Thathapudi NC, Aramati BMR, Kowtharapu BS, Jangamreddy JR. Stages, pathogenesis, clinical management and advancements in therapies of age-related macular degeneration. Int Ophthalmol 2023; 43:3891-3909. [PMID: 37347455 DOI: 10.1007/s10792-023-02767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Age-related macular degeneration (AMD) is a retinal degenerative disorder prevalent in the elderly population, which leads to the loss of central vision. The disease progression can be managed, if not prevented, either by blocking neovascularization ("wet" form of AMD) or by preserving retinal pigment epithelium and photoreceptor cells ("dry" form of AMD). Although current therapeutic modalities are moderately successful in delaying the progression and management of the disease, advances over the past years in regenerative medicine using iPSC, embryonic stem cells, advanced materials (including nanomaterials) and organ bio-printing show great prospects in restoring vision and efficient management of either forms of AMD. This review focuses on the molecular mechanism of the disease, model systems (both cellular and animal) used in studying AMD, the list of various regenerative therapies and the current treatments available. The article also highlights on the recent clinical trials using regenerative therapies and management of the disease.
Collapse
Affiliation(s)
- Ishita Shome
- UR Advanced Therapeutics Private Limited, ASPIRE-BioNest, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Neethi C Thathapudi
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Department of Ophthalmology and Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada
| | - Bindu Madhav Reddy Aramati
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Bhavani S Kowtharapu
- UR Advanced Therapeutics Private Limited, ASPIRE-BioNest, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jaganmohan R Jangamreddy
- UR Advanced Therapeutics Private Limited, ASPIRE-BioNest, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
9
|
Zhang Q, Autterson G, Miller JML. Improved Lipofuscin Models and Quantification of Outer Segment Phagocytosis Capacity in Highly Polarized Human Retinal Pigment Epithelial Cultures. J Vis Exp 2023:10.3791/65242. [PMID: 37125790 PMCID: PMC10306344 DOI: 10.3791/65242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The daily phagocytosis of photoreceptor outer segments by the retinal pigment epithelium (RPE) contributes to the accumulation of an intracellular aging pigment termed lipofuscin. The toxicity of lipofuscin is well established in Stargardt's disease, the most common inherited retinal degeneration, but is more controversial in age-related macular degeneration (AMD), the leading cause of irreversible blindness in the developed world. Determining lipofuscin toxicity in humans has been difficult, and animal models of Stargardt's have limited toxicity. Thus, in vitro models that mimic human RPE in vivo are needed to better understand lipofuscin generation, clearance, and toxicity. The majority of cell culture lipofuscin models to date have been in cell lines or have involved feeding RPE a single component of the complex lipofuscin mixture rather than fragments/tips of the entire photoreceptor outer segment, which generates a more complete and physiologic lipofuscin model. Described here is a method to induce the accumulation of lipofuscin-like material (termed undigestible autofluorescence material, or UAM) in highly differentiated primary human pre-natal RPE (hfRPE) and induced pluripotent stem cell (iPSC) derived RPE. UAM accumulated in cultures by repeated feedings of ultraviolet light-treated OS fragments taken up by the RPE via phagocytosis. The key ways that UAM approximates and differs from lipofuscin in vivo are also discussed. Accompanying this model of lipofuscin-like accumulation, imaging methods to distinguish the broad autofluorescence spectrum of UAM granules from concurrent antibody staining are introduced. Finally, to assess the impact of UAM on RPE phagocytosis capacity, a new method for quantifying outer segment fragment/tips uptake and breakdown has been introduced. Termed "Total Consumptive Capacity", this method overcomes potential misinterpretations of RPE phagocytosis capacity inherent in classic outer segment "pulse-chase" assays. The models and techniques introduced here can be used to study lipofuscin generation and clearance pathways and putative toxicity.
Collapse
Affiliation(s)
- Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor
| | | | - Jason M L Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor;
| |
Collapse
|
10
|
Vedula P, Fina ME, Bell BA, Nikonov SS, Kashina A, Dong DW. β -actin is essential for structural integrity and physiological function of the retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534392. [PMID: 37034790 PMCID: PMC10081178 DOI: 10.1101/2023.03.27.534392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lack of non-muscle β -actin gene (Actb) leads to early embryonic lethality in mice, however mice with β - to γ -actin replacement develop normally and show no detectable phenotypes at young age. Here we investigated the effect of this replacement in the retina. During aging, these mice have accelerated de-generation of retinal structure and function, including elongated microvilli and defective mitochondria of retinal pigment epithelium (RPE), abnormally bulging photoreceptor outer segments (OS) accompanied by reduced transducin concentration and light sensitivity, and accumulation of autofluorescent microglia cells in the subretinal space between RPE and OS. These defects are accompanied by changes in the F-actin binding of several key actin interacting partners, including ezrin, myosin, talin, and vinculin known to play central roles in modulating actin cytoskeleton and cell adhesion and mediating the phagocytosis of OS. Our data show that β -actin protein is essential for maintaining normal retinal structure and function.
Collapse
|
11
|
Vanoni EM, Nandrot EF. The Retinal Pigment Epithelium: Cells That Know the Beat! ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:539-545. [PMID: 37440084 DOI: 10.1007/978-3-031-27681-1_79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The retinal pigment epithelium (RPE) ensures different functions crucial for photoreceptor survival, and thus for vision, such as photoreceptor outer segments (POS) phagocytosis and retinal adhesion. Both follow a circadian rhythm with an activity peak occurring respectively 1.5-2 and 3.5 h after light onset. Interestingly, we showed that two rodent models, β5-/- and Prpf31+/- mice, display distinct alterations in both functions leading to different phenotypes. Indeed, the phagocytic peak totally disappears in β5 knockout mice but is attenuated and shifted in Prpf31+/- mice. Conversely, the retinal adhesion peak only attenuated in β5-/- mice is lost in Prpf31+/- mice. These distinct alterations have different consequences on retinal homeostasis proportional to the observed defects: β5-/- mice progressively lose vision and accumulate RPE lipofuscin deposits, while Prpf31+/- mice develop RPE metabolic dysfunctions and gradual structural modifications indicative of cellular stress. Hence, animal models are useful to understand the importance of the proper regulation of these functions.
Collapse
Affiliation(s)
- Elora M Vanoni
- Therapeutics Department, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Emeline F Nandrot
- Therapeutics Department, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| |
Collapse
|
12
|
Moran AL, Fehilly JD, Floss Jones D, Collery R, Kennedy BN. Regulation of the rhythmic diversity of daily photoreceptor outer segment phagocytosis in vivo. FASEB J 2022; 36:e22556. [PMID: 36165194 PMCID: PMC9828801 DOI: 10.1096/fj.202200990rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
Outer segment phagocytosis (OSP) is a highly-regulated, biological process wherein photoreceptor outer segment (OS) tips are cyclically phagocytosed by the adjacent retinal pigment epithelium (RPE) cells. Often an overlooked retinal process, rhythmic OSP ensures the maintenance of healthy photoreceptors and vision. Daily, the photoreceptors renew OS at their base and the most distal, and likely oldest, OS tips, are phagocytosed by the RPE, preventing the accumulation of photo-oxidative compounds by breaking down phagocytosed OS tips and recycling useful components to the photoreceptors. Light changes often coincide with an escalation of OSP and within hours the phagosomes formed in each RPE cell are resolved. In the last two decades, individual molecular regulators were elucidated. Some of the molecular machinery used by RPE cells for OSP is highly similar to mechanisms used by other phagocytic cells for the clearance of apoptotic cells. Consequently, in the RPE, many molecular regulators of retinal phagocytosis have been elucidated. However, there is still a knowledge gap regarding the key regulators of physiological OSP in vivo between endogenous photoreceptors and the RPE. Understanding the regulation of OSP is of significant clinical interest as age-related macular degeneration (AMD) and inherited retinal diseases (IRD) are linked with altered OSP. Here, we review the in vivo timing of OSP peaks in selected species and focus on the reported in vivo environmental and molecular regulators of OSP.
Collapse
Affiliation(s)
- Ailis L. Moran
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| | - John D. Fehilly
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| | - Daniel Floss Jones
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| | - Ross Collery
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWisconsinUSA,Department of Ophthalmology and Visual SciencesMedical College of Wisconsin Eye InstituteMilwaukeeWisconsinUSA
| | - Breandán N. Kennedy
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| |
Collapse
|
13
|
Bhattacharya S, Yin J, Huo W, Chaum E. Modeling of mitochondrial bioenergetics and autophagy impairment in MELAS-mutant iPSC-derived retinal pigment epithelial cells. Stem Cell Res Ther 2022; 13:260. [PMID: 35715869 PMCID: PMC9205099 DOI: 10.1186/s13287-022-02937-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage in the retinal pigment epithelium (RPE) have been implicated in the pathogenesis of age-related macular degeneration (AMD). However, a deeper understanding is required to determine the contribution of mitochondrial dysfunction and impaired mitochondrial autophagy (mitophagy) to RPE damage and AMD pathobiology. In this study, we model the impact of a prototypical systemic mitochondrial defect, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), in RPE health and homeostasis as an in vitro model for impaired mitochondrial bioenergetics. Methods We used induced pluripotent stem cells (iPSCs) derived from skin biopsies of MELAS patients (m.3243A > G tRNA leu mutation) with different levels of mtDNA heteroplasmy and differentiated them into RPE cells. Mitochondrial depletion of ARPE-19 cells (p0 cells) was also performed using 50 ng/mL ethidium bromide (EtBr) and 50 mg/ml uridine. Cell fusion of the human platelets with the p0 cells performed using polyethylene glycol (PEG)/suspension essential medium (SMEM) mixture to generate platelet/RPE “cybrids.” Confocal microscopy, FLowSight Imaging cytometry, and Seahorse XF Mito Stress test were used to analyze mitochondrial function. Western Blotting was used to analyze expression of autophagy and mitophagy proteins. Results We found that MELAS iPSC-derived RPE cells exhibited key characteristics of native RPE. We observed heteroplasmy-dependent impairment of mitochondrial bioenergetics and reliance on glycolysis for generating energy in the MELAS iPSC-derived RPE. The degree of heteroplasmy was directly associated with increased activation of signal transducer and activator of transcription 3 (STAT3), reduced adenosine monophosphate-activated protein kinase α (AMPKα) activation, and decreased autophagic activity. In addition, impaired autophagy was associated with aberrant lysosomal function, and failure of mitochondrial recycling. The mitochondria-depleted p0 cells replicated the effects on autophagy impairment and aberrant STAT3/AMPKα signaling and showed reduced mitochondrial respiration, demonstrating phenotypic similarities between p0 and MELAS iPSC-derived RPE cells. Conclusions Our studies demonstrate that the MELAS iPSC-derived disease models are powerful tools for dissecting the molecular mechanisms by which mitochondrial DNA alterations influence RPE function in aging and macular degeneration, and for testing novel therapeutics in patients harboring the MELAS genotype. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02937-6.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA
| | - Jinggang Yin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA
| | - Weihong Huo
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA
| | - Edward Chaum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|
14
|
Koster C, van den Hurk KT, ten Brink JB, Lewallen CF, Stanzel BV, Bharti K, Bergen AA. Sodium-Iodate Injection Can Replicate Retinal Degenerative Disease Stages in Pigmented Mice and Rats: Non-Invasive Follow-Up Using OCT and ERG. Int J Mol Sci 2022; 23:ijms23062918. [PMID: 35328338 PMCID: PMC8953416 DOI: 10.3390/ijms23062918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: The lack of suitable animal models for (dry) age-related macular degeneration (AMD) has hampered therapeutic research into the disease, so far. In this study, pigmented rats and mice were systematically injected with various doses of sodium iodate (SI). After injection, the retinal structure and visual function were non-invasively characterized over time to obtain in-depth data on the suitability of these models for studying experimental therapies for retinal degenerative diseases, such as dry AMD. Methods: SI was injected into the tail vein (i.v.) using a series of doses (0–70 mg/kg) in adolescent C57BL/6J mice and Brown Norway rats. The retinal structure and function were assessed non-invasively at baseline (day 1) and at several time points (1–3, 5, and 10-weeks) post-injection by scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), and electroretinography (ERG). Results: After the SI injection, retinal degeneration in mice and rats yielded similar results. The lowest dose (10 mg/kg) resulted in non-detectable structural or functional effects. An injection with 20 mg/kg SI did not result in an evident retinal degeneration as judged from the OCT data. In contrast, the ERG responses were temporarily decreased but returned to baseline within two-weeks. Higher doses (30, 40, 50, and 70 mg/kg) resulted in moderate to severe structural RPE and retinal injury and decreased the ERG amplitudes, indicating visual impairment in both mice and rat strains. Conclusions: After the SI injections, we observed dose-dependent structural and functional pathological effects on the retinal pigment epithelium (RPE) and retina in the pigmented mouse and rat strains that were used in this study. Similar effects were observed in both species. In particular, a dose of 30 mg/kg seems to be suitable for future studies on developing experimental therapies. These relatively easily induced non-inherited models may serve as useful tools for evaluating novel therapies for RPE-related retinal degenerations, such as AMD.
Collapse
Affiliation(s)
- Céline Koster
- Department of Human Genetics, Section Ophthalmogenetics, Amsterdam University Medical Centers (AUMC), University of Amsterdam (UvA), Location AMC, Meibergdreef, 1105 AZ Amsterdam, The Netherlands; (C.K.); (K.T.v.d.H.); (J.B.t.B.)
| | - Koen T. van den Hurk
- Department of Human Genetics, Section Ophthalmogenetics, Amsterdam University Medical Centers (AUMC), University of Amsterdam (UvA), Location AMC, Meibergdreef, 1105 AZ Amsterdam, The Netherlands; (C.K.); (K.T.v.d.H.); (J.B.t.B.)
| | - Jacoline B. ten Brink
- Department of Human Genetics, Section Ophthalmogenetics, Amsterdam University Medical Centers (AUMC), University of Amsterdam (UvA), Location AMC, Meibergdreef, 1105 AZ Amsterdam, The Netherlands; (C.K.); (K.T.v.d.H.); (J.B.t.B.)
| | - Colby F. Lewallen
- Georgia Institute of Technology, G.W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, USA;
| | - Boris V. Stanzel
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, 66280 Sulzbach/Saar, Germany;
- Department of Ophthalmology, University of Bonn, 53113 Bonn, Germany
| | - Kapil Bharti
- Ocular and Stem Cell Research Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Arthur A. Bergen
- Department of Human Genetics, Section Ophthalmogenetics, Amsterdam University Medical Centers (AUMC), University of Amsterdam (UvA), Location AMC, Meibergdreef, 1105 AZ Amsterdam, The Netherlands; (C.K.); (K.T.v.d.H.); (J.B.t.B.)
- Department of Ophthalmology, AUMC, UvA, Location AMC, Meibergdreef, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
15
|
Diagnostic Markers and Molecular Dysregulation Mechanisms in the Retinal Pigmented Epithelium and Retina of Age-Related Macular Degeneration. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3787567. [PMID: 35186229 PMCID: PMC8853811 DOI: 10.1155/2022/3787567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 11/18/2022]
Abstract
Age-related macular degeneration (AMD) is a chronic and progressive macular degeneration disease, which can also lead to serious visual loss. In our research, we aim to efficiently identify biomarkers relevant for AMD diagnosis. We collected the gene expression data of retinal segmented epithelium (RPE) and retina tissues of GSE29801 and GSE135092 and performed differential expression analysis. The differentially expressed genes (DEGs) related to the RPE and retina in the two sets of data were identified and enriched by intersection analysis. A PPI network was constructed for intersection genes, and the top 20 genes with the largest connectivity in the network were selected as candidate genes. The LASSO model was used to identify key genes from candidate genes, and the nomogram and ROC curve were used to evaluate the diagnostic ability of key genes. We identified 464 intersection genes associated with RPE and 509 intersection genes associated with retina. The TGF-beta signaling pathway was enriched by RPE-related DEGs, while oxidative phosphorylation was enriched by retina-related DEGs. Among the candidate genes of RPE, the LASSO model identified 7 key genes. MAPK1 and LUM can predict the clinical diagnosis of AMD. Among the candidate genes of retina, the LASSO model identified four key genes. PTPN11 has the highest predictive diagnostic value. The results suggest that the imbalance mechanism of RPE in AMD may be related to the TGF-beta signaling pathway, and the imbalance mechanism of the retina may be related to oxidative phosphorylation. MAPK1 and LUM are potential diagnostic markers of RPE, and PTPN11 is a potential diagnostic marker of the retina. Also, our results provide a theoretical basis for better understanding the molecular mechanisms of AMD onset and treatment in the future.
Collapse
|
16
|
Olchawa MM, Herrnreiter AM, Skumatz CMB, Krzysztynska-Kuleta OI, Mokrzynski KT, Burke JM, Sarna TJ. The Inhibitory Effect of Blue Light on Phagocytic Activity by ARPE-19 Cells. Photochem Photobiol 2022; 98:1110-1121. [PMID: 35067943 DOI: 10.1111/php.13596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
Chronic exposure of the retina to short wavelength visible light is a risk factor in pathogenesis of age-related macular degeneration. The proper functioning and survival of photoreceptors depends on efficient phagocytosis of photoreceptor outer segments (POS) by retinal pigment epithelium. The purpose of this study was to analyze the phagocytic activity of blue light-treated ARPE-19 cells, and to examine whether the observed effects could be related to altered levels of POS phagocytosis receptor proteins and/or to oxidation of cellular proteins and lipids. POS phagocytosis was measured by flow cytometry. Phagocytosis receptor proteins αv and β5 integrin subunits and Mer tyrosine kinase (MerTK) were quantified by western blotting. The intact functional heterodimer αvβ5 was quantified by immunoprecipitation followed by immunoblotting. Cellular protein and lipid hydroperoxides were analyzed by coumarin boronic acid probe and iodometric assay, respectively. Cell irradiation induced reversible inhibition of specific phagocytosis and transient reductions in phagocytosis receptor proteins. Full recovery of functional heterodimer was apparent. Significant photooxidation of cellular proteins and lipids was observed. The results indicate that transient inhibition of specific phagocytosis by blue light could be related to the reduction in phagocytosis receptor proteins. Such changes may arise from oxidative modifications of cell phagocytic machinery components.
Collapse
Affiliation(s)
- Magdalena M Olchawa
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.,Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Anja M Herrnreiter
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Christine M B Skumatz
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Ophthalmology and Visual Sciences, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Olga I Krzysztynska-Kuleta
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Krystian T Mokrzynski
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Janice M Burke
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Emeritus Professor of Ophthalmology
| | - Tadeusz J Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| |
Collapse
|
17
|
Molday RS, Garces FA, Scortecci JF, Molday LL. Structure and function of ABCA4 and its role in the visual cycle and Stargardt macular degeneration. Prog Retin Eye Res 2021; 89:101036. [PMID: 34954332 DOI: 10.1016/j.preteyeres.2021.101036] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada; Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, B.C., Canada.
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
18
|
Shinojima A, Lee D, Tsubota K, Negishi K, Kurihara T. Retinal Diseases Regulated by Hypoxia-Basic and Clinical Perspectives: A Comprehensive Review. J Clin Med 2021; 10:jcm10235496. [PMID: 34884197 PMCID: PMC8658588 DOI: 10.3390/jcm10235496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, the number of patients with age-related macular degeneration (AMD) is increasing worldwide along with increased life expectancy. Currently, the standard treatment for wet-AMD is intravitreal injection of anti-vascular endothelial growth factor (VEGF) drugs. The upstream of VEGF is hypoxia-inducible factor (HIF), a master regulator of hypoxia-responsive genes responsive to acute and chronic hypoxia. HIF activation induces various pathological pro-angiogenic gene expressions including VEGF under retinal hypoxia, ultimately leading to the development of ocular ischemic neovascular diseases. In this regard, HIF is considered as a promising therapeutic target in ocular ischemic diseases. In clinical ophthalmology, abnormal hypofluorescent areas have been detected in the late-phase of indocyanine green angiography, which are thought to be lipid deposits at the level of Bruch’s membrane to choriocapillaris in vitreoretinal diseases. These deposits may interfere with the oxygen and nutrients that should be supplied to the retinal pigment epithelium, and that HIF/VEGF is highly suspected to be expressed in the hypoxic retinal pigment epithelium, leading to neovascularization. In this review, we comprehensively summarize pathophysiology of AMD-related ocular diseases with the HIF/VEGF pathway from basic and clinic researches with recent findings.
Collapse
Affiliation(s)
- Ari Shinojima
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (D.L.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (K.T.); (K.N.)
| | - Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (D.L.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (K.T.); (K.N.)
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (K.T.); (K.N.)
- Tsubota Laboratory, Inc., Tokyo 160-0016, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (K.T.); (K.N.)
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (D.L.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (K.T.); (K.N.)
- Correspondence: ; Tel.: +81-3-5313-4132; Fax: +81-3-5363-3274
| |
Collapse
|
19
|
Zhang D, Mihai DM, Washington I. Vitamin A cycle byproducts explain retinal damage and molecular changes thought to initiate retinal degeneration. Biol Open 2021; 10:273577. [PMID: 34842275 PMCID: PMC8649638 DOI: 10.1242/bio.058600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/03/2021] [Indexed: 01/24/2023] Open
Abstract
In the most prevalent retinal diseases, including Stargardt disease and age-related macular degeneration (AMD), byproducts of vitamin A form in the retina abnormally during the vitamin A cycle. Despite evidence of their toxicity, whether these vitamin A cycle byproducts contribute to retinal disease, are symptoms, beneficial, or benign has been debated. We delivered a representative vitamin A byproduct, A2E, to the rat's retina and monitored electrophysiological, histological, proteomic, and transcriptomic changes. We show that the vitamin A cycle byproduct is sufficient alone to damage the RPE, photoreceptor inner and outer segments, and the outer plexiform layer, cause the formation of sub-retinal debris, alter transcription and protein synthesis, and diminish retinal function. The presented data are consistent with the theory that the formation of vitamin A byproducts during the vitamin A cycle is neither benign nor beneficial but may be sufficient alone to cause the most prevalent forms of retinal disease. Retarding the formation of vitamin A byproducts could potentially address the root cause of several retinal diseases to eliminate the threat of irreversible blindness for millions of people. Summary: During the vitamin A cycle, byproducts of vitamin A form in the eye. Using a rat model, we show that the byproducts alone can explain several retinal derangements observed in the prodromal phase of human retinal disease. Retarding the formation of these byproducts may address the root cause of the most prevalent retinal diseases.
Collapse
Affiliation(s)
- Dan Zhang
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Doina M Mihai
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Ilyas Washington
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA.,biOOrg3.14, Buffalo, WY 82834, USA
| |
Collapse
|
20
|
Cronin T, Croyal M, Provost N, Ducloyer JB, Mendes-Madeira A, Libeau L, Morival C, Toublanc E, Audrain C, Isiegas C, Pichard V, Adjali O. Effect of retinol dehydrogenase gene transfer in a novel rat model of Stargardt disease. FASEB J 2021; 35:e21934. [PMID: 34599778 DOI: 10.1096/fj.202002525rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 11/11/2022]
Abstract
Dysfunction of the ATPase-binding Cassette Transporter protein (ABCA4) can lead to early onset macular degeneration, in particular to Stargardt disease. To enable translational research into this form of blindness, we evaluated the effect of Cas9-induced disruptions of the ABCA4 gene to potentially generate new transgenic rat models of the disease. We show that deletion of the short exon preceding the second nucleotide-binding domain is sufficient to drastically knock down protein levels and results in accumulation of retinoid dimers similar to that associated with Stargardt disease. Overexpression of the retinol dehydrogenase enzymes RDH8 and RDH12 can to a limited extent offset the increase in the bisretinoid levels in the Abca4Ex42-/ - KO rats possibly by restricting the time window in which retinal can dimerize before being reduced to retinol. However, in vivo imaging shows that overexpression of RDH8 can induce retinal degeneration. This may be due to the depletion in the outer segment of the cofactor NADPH, needed for RDH function. The translational potential of RDH therapy as well as other Stargardt disease therapies can be tested using the Abca4 knockdown rat model.
Collapse
Affiliation(s)
- T Cronin
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | | | - N Provost
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - J B Ducloyer
- Department of Ophthalmology, University Hospital of Nantes, CHU de Nantes, Nantes, France
| | - A Mendes-Madeira
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - L Libeau
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - C Morival
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - E Toublanc
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - C Audrain
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - C Isiegas
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - V Pichard
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - O Adjali
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| |
Collapse
|
21
|
Boyer NP, Thompson DA, Koutalos Y. Relative Contributions of All-Trans and 11-Cis Retinal to Formation of Lipofuscin and A2E Accumulating in Mouse Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 33523199 PMCID: PMC7862733 DOI: 10.1167/iovs.62.2.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Bis-retinoids are a major component of lipofuscin that accumulates in the retinal pigment epithelium (RPE) in aging and age-related macular degeneration (AMD). Although bis-retinoids are known to originate from retinaldehydes required for the light response of photoreceptor cells, the relative contributions of the chromophore, 11-cis retinal, and photoisomerization product, all-trans retinal, are unknown. In photoreceptor outer segments, all-trans retinal, but not 11-cis retinal, is reduced by retinol dehydrogenase 8 (RDH8). Using Rdh8−/− mice, we evaluated the contribution of increased all-trans retinal to the formation and stability of RPE lipofuscin. Methods Rdh8−/− mice were reared in cyclic-light or darkness for up to 6 months, with selected light-reared cohorts switched to dark-rearing for the final 1 to 8 weeks. The bis-retinoid A2E was measured from chloroform-methanol extracts of RPE-choroid using HPLC-UV/VIS spectroscopy. Lipofuscin fluorescence was measured from whole flattened eyecups (excitation, 488 nm; emission, 565–725 nm). Results Cyclic-light-reared Rdh8−/− mice accumulated A2E and RPE lipofuscin approximately 1.5 times and approximately 2 times faster, respectively, than dark-reared mice. Moving Rdh8−/− mice from cyclic-light to darkness resulted in A2E levels less than expected to have accumulated before the move. Conclusions Our findings establish that elevated levels of all-trans retinal present in cyclic-light-reared Rdh8−/− mice, which remain low in wild-type mice, contribute only modestly to RPE lipofuscin formation and accumulation. Furthermore, decreases in A2E levels occurring after moving cyclic-light-reared Rdh8−/− mice to darkness are consistent with processing of A2E within the RPE and the existence of a mechanism that could be a therapeutic target for controlling A2E cytotoxicity.
Collapse
Affiliation(s)
- Nicholas P Boyer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Debra A Thompson
- Department of Ophthalmology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States.,Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan, United States
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
22
|
Sethna S, Scott PA, Giese APJ, Duncan T, Jian X, Riazuddin S, Randazzo PA, Redmond TM, Bernstein SL, Riazuddin S, Ahmed ZM. CIB2 regulates mTORC1 signaling and is essential for autophagy and visual function. Nat Commun 2021; 12:3906. [PMID: 34162842 PMCID: PMC8222345 DOI: 10.1038/s41467-021-24056-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial neurodegenerative disorder. Although molecular mechanisms remain elusive, deficits in autophagy have been associated with AMD. Here we show that deficiency of calcium and integrin binding protein 2 (CIB2) in mice, leads to age-related pathologies, including sub-retinal pigment epithelium (RPE) deposits, marked accumulation of drusen markers APOE, C3, Aβ, and esterified cholesterol, and impaired visual function, which can be rescued using exogenous retinoids. Cib2 mutant mice exhibit reduced lysosomal capacity and autophagic clearance, and increased mTORC1 signaling-a negative regulator of autophagy. We observe concordant molecular deficits in dry-AMD RPE/choroid post-mortem human tissues. Mechanistically, CIB2 negatively regulates mTORC1 by preferentially binding to 'nucleotide empty' or inactive GDP-loaded Rheb. Upregulated mTORC1 signaling has been implicated in lymphangioleiomyomatosis (LAM) cancer. Over-expressing CIB2 in LAM patient-derived fibroblasts downregulates hyperactive mTORC1 signaling. Thus, our findings have significant implications for treatment of AMD and other mTORC1 hyperactivity-associated disorders.
Collapse
Affiliation(s)
- Saumil Sethna
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick A Scott
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Arnaud P J Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheikh Riazuddin
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven L Bernstein
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Carrella S, Massa F, Indrieri A. The Role of MicroRNAs in Mitochondria-Mediated Eye Diseases. Front Cell Dev Biol 2021; 9:653522. [PMID: 34222230 PMCID: PMC8249810 DOI: 10.3389/fcell.2021.653522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
The retina is among the most metabolically active tissues with high-energy demands. The peculiar distribution of mitochondria in cells of retinal layers is necessary to assure the appropriate energy supply for the transmission of the light signal. Photoreceptor cells (PRs), retinal pigment epithelium (RPE), and retinal ganglion cells (RGCs) present a great concentration of mitochondria, which makes them particularly sensitive to mitochondrial dysfunction. To date, visual loss has been extensively correlated to defective mitochondrial functions. Many mitochondrial diseases (MDs) show indeed neuro-ophthalmic manifestations, including retinal and optic nerve phenotypes. Moreover, abnormal mitochondrial functions are frequently found in the most common retinal pathologies, i.e., glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR), that share clinical similarities with the hereditary primary MDs. MicroRNAs (miRNAs) are established as key regulators of several developmental, physiological, and pathological processes. Dysregulated miRNA expression profiles in retinal degeneration models and in patients underline the potentiality of miRNA modulation as a possible gene/mutation-independent strategy in retinal diseases and highlight their promising role as disease predictive or prognostic biomarkers. In this review, we will summarize the current knowledge about the participation of miRNAs in both rare and common mitochondria-mediated eye diseases. Definitely, given the involvement of miRNAs in retina pathologies and therapy as well as their use as molecular biomarkers, they represent a determining target for clinical applications.
Collapse
Affiliation(s)
| | - Filomena Massa
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| |
Collapse
|
24
|
Meleppat RK, Ronning KE, Karlen SJ, Kothandath KK, Burns ME, Pugh EN, Zawadzki RJ. In Situ Morphologic and Spectral Characterization of Retinal Pigment Epithelium Organelles in Mice Using Multicolor Confocal Fluorescence Imaging. Invest Ophthalmol Vis Sci 2021; 61:1. [PMID: 33137194 PMCID: PMC7645167 DOI: 10.1167/iovs.61.13.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose To investigate the major organelles of the retinal pigment epithelium (RPE) in wild-type (WT, control) mice and their changes in pigmented Abca4 knockout (Abca4−/−) mice with in situ morphologic, spatial, and spectral characterization of live ex vivo flat-mounted RPE using multicolor confocal fluorescence microscopy (MCFM). Methods In situ imaging of RPE flat-mounts of agouti Abca4−/− (129S4), agouti WT (129S1/SvlmJ) controls, and B6 albino mice (C57BL/6J-Tyrc-Brd) was performed with a Nikon A1 confocal microscope. High-resolution confocal image z-stacks of the RPE cell mosaic were acquired with four different excitation wavelengths (405 nm, 488 nm, 561 nm, and 640 nm). The autofluorescence images of RPE, including voxel-by-voxel emission spectra, were acquired and processed with Nikon NIS-AR Elements software. Results The 3-dimensional multicolor confocal images provided a detailed visualization of the RPE cell mosaic, including its melanosomes and lipofuscin granules, and their varying characteristics in the different mice strains. The autofluorescence spectra, spatial distribution, and morphologic features of melanosomes and lipofuscin granules were measured. Increased numbers of lipofuscin and reduced numbers of melanosomes were observed in the RPE of Abca4−/− mice relative to controls. Conclusions A detailed assessment of the RPE autofluorescent granules and their changes ex vivo was possible with MCFM. For all excitation wavelengths, autofluorescence from the RPE cells was predominantly contributed by lipofuscin granules, while melanosomes were found to be essentially nonfluorescent. The red shift of the emission peak confirmed the presence of multiple chromophores within lipofuscin granules. The elevated autofluorescence levels in Abca4−/− mice correlated well with the increased number of lipofuscin granules.
Collapse
Affiliation(s)
- Ratheesh K Meleppat
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| | - Kaitryn E Ronning
- Center for Neuroscience, University of California Davis, Davis, California, United States
| | - Sarah J Karlen
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| | - Karuna K Kothandath
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| | - Marie E Burns
- Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States.,Center for Neuroscience, University of California Davis, Davis, California, United States.,Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| | - Edward N Pugh
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| | - Robert J Zawadzki
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| |
Collapse
|
25
|
Lu ZG, May A, Dinh B, Lin V, Su F, Tran C, Adivikolanu H, Ehlen R, Che B, Wang ZH, Shaw DH, Borooah S, Shaw PX. The interplay of oxidative stress and ARMS2-HTRA1 genetic risk in neovascular AMD. ACTA ACUST UNITED AC 2021; 5. [PMID: 34017939 PMCID: PMC8133762 DOI: 10.20517/2574-1209.2020.48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in adults over 60 years old globally. There are two forms of advanced AMD: “dry” and “wet”. Dry AMD is characterized by geographic atrophy of the retinal pigment epithelium and overlying photoreceptors in the macular region; whereas wet AMD is characterized by vascular penetrance from the choroid into the retina, known as choroidal neovascularization (CNV). Both phenotypes eventually lead to loss of central vision. The pathogenesis of AMD involves the interplay of genetic polymorphisms and environmental risk factors, many of which elevate retinal oxidative stress. Excess reactive oxygen species react with cellular macromolecules, forming oxidation-modified byproducts that elicit chronic inflammation and promote CNV. Additionally, genome-wide association studies have identified several genetic variants in the age-related maculopathy susceptibility 2/high-temperature requirement A serine peptidase 1 (ARMS2-HTRA1) locus associated with the progression of late-stage AMD, especially the wet subtype. In this review, we will focus on the interplay of oxidative stress and HTRA1 in drusen deposition, chronic inflammation, and chronic angiogenesis. We aim to present a multifactorial model of wet AMD progression, supporting HTRA1 as a novel therapeutic target upstream of vascular endothelial growth factor (VEGF), the conventional target in AMD therapeutics. By inhibiting HTRA1’s proteolytic activity, we can reduce pro-angiogenic signaling and prevent proteolytic breakdown of the blood-retina barrier. The anti-HTRA1 approach offers a promising alternative treatment option to wet AMD, complementary to anti-VEGF therapy.
Collapse
Affiliation(s)
- Zhi-Gang Lu
- Department of Neurology, First People's Hospital of Jingmen, Jingchu University of Technology, Jingmen 448000, Hubei, China.,Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam May
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian Dinh
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Lin
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fei Su
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christina Tran
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Harini Adivikolanu
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rachael Ehlen
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Briana Che
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhi-Hao Wang
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel H Shaw
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Westview High School, San Diego, CA 92131, USA
| | - Shyamanga Borooah
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peter X Shaw
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Nagai N, Kawashima H, Toda E, Homma K, Osada H, Guzman NA, Shibata S, Uchiyama Y, Okano H, Tsubota K, Ozawa Y. Renin-angiotensin system impairs macrophage lipid metabolism to promote age-related macular degeneration in mouse models. Commun Biol 2020; 3:767. [PMID: 33299105 PMCID: PMC7725839 DOI: 10.1038/s42003-020-01483-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome, a condition involving obesity and hypertension, increases the risk of aging-associated diseases such as age-related macular degeneration (AMD). Here, we demonstrated that high-fat diet (HFD)-fed mice accumulated oxidized low-density lipoprotein (ox-LDL) in macrophages through the renin–angiotensin system (RAS). The ox-LDL-loaded macrophages were responsible for visual impairment in HFD mice along with a disorder of the retinal pigment epithelium (RPE), which is required for photoreceptor outer segment renewal. RAS repressed ELAVL1, which reduced PPARγ, impeding ABCA1 induction to levels that are sufficient to excrete overloaded cholesterol within the macrophages. The ox-LDL-loaded macrophages expressed inflammatory cytokines and attacked the RPE. An antihypertensive drug, angiotensin II type 1 receptor (AT1R) blocker, resolved the decompensation of lipid metabolism in the macrophages and reversed the RPE condition and visual function in HFD mice. AT1R signaling could be a future therapeutic target for macrophage-associated aging diseases, such as AMD. Nagai et al. show that mice fed high-fat diet (HFD) accumulate oxidized low-density lipoprotein in macrophages through the renin–angiotensin system, which impairs visual function. They find that angiotensin II type 1 receptor (AT1R) improves the visual function of HFD mice, suggesting AT1R signaling as a potential therapeutic target for age-related macular degeneration.
Collapse
Affiliation(s)
- Norihiro Nagai
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hirohiko Kawashima
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Kohei Homma
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hideto Osada
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Naymel A Guzman
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan. .,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan. .,Department of Ophthalmology, St. Luke's International Hospital, 9-1 Akashi-Cho, Chuo-Ku, Tokyo, 104-8560, Japan. .,St. Luke's International University, 9-1 Akashi-Cho, Tokyo, 104-8560, Japan.
| |
Collapse
|
27
|
Possible A2E Mutagenic Effects on RPE Mitochondrial DNA from Innovative RNA-Seq Bioinformatics Pipeline. Antioxidants (Basel) 2020; 9:antiox9111158. [PMID: 33233726 PMCID: PMC7699917 DOI: 10.3390/antiox9111158] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 01/10/2023] Open
Abstract
Mitochondria are subject to continuous oxidative stress stimuli that, over time, can impair their genome and lead to several pathologies, like retinal degenerations. Our main purpose was the identification of mtDNA variants that might be induced by intense oxidative stress determined by N-retinylidene-N-retinylethanolamine (A2E), together with molecular pathways involving the genes carrying them, possibly linked to retinal degeneration. We performed a variant analysis comparison between transcriptome profiles of human retinal pigment epithelial (RPE) cells exposed to A2E and untreated ones, hypothesizing that it might act as a mutagenic compound towards mtDNA. To optimize analysis, we proposed an integrated approach that foresaw the complementary use of the most recent algorithms applied to mtDNA data, characterized by a mixed output coming from several tools and databases. An increased number of variants emerged following treatment. Variants mainly occurred within mtDNA coding sequences, corresponding with either the polypeptide-encoding genes or the RNA. Time-dependent impairments foresaw the involvement of all oxidative phosphorylation complexes, suggesting a serious damage to adenosine triphosphate (ATP) biosynthesis, that can result in cell death. The obtained results could be incorporated into clinical diagnostic settings, as they are hypothesized to modulate the phenotypic expression of mtDNA pathogenic variants, drastically improving the field of precision molecular medicine.
Collapse
|
28
|
Kaarniranta K, Uusitalo H, Blasiak J, Felszeghy S, Kannan R, Kauppinen A, Salminen A, Sinha D, Ferrington D. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Prog Retin Eye Res 2020; 79:100858. [PMID: 32298788 PMCID: PMC7650008 DOI: 10.1016/j.preteyeres.2020.100858] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
Oxidative stress-induced damage to the retinal pigment epithelium (RPE) is considered to be a key factor in age-related macular degeneration (AMD) pathology. RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. The ubiquitin-proteasome and the lysosomal/autophagy pathways are the two major proteolytic systems to remove damaged proteins and organelles. There is increasing evidence that proteostasis is disturbed in RPE as evidenced by lysosomal lipofuscin and extracellular drusen accumulation in AMD. Nuclear factor-erythroid 2-related factor-2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) are master transcription factors in the regulation of antioxidant enzymes, clearance systems, and biogenesis of mitochondria. The precise cause of RPE degeneration and the onset and progression of AMD are not fully understood. However, mitochondria dysfunction, increased reactive oxygen species (ROS) production, and mitochondrial DNA (mtDNA) damage are observed together with increased protein aggregation and inflammation in AMD. In contrast, functional mitochondria prevent RPE cells damage and suppress inflammation. Here, we will discuss the role of mitochondria in RPE degeneration and AMD pathology focused on mtDNA damage and repair, autophagy/mitophagy signaling, and regulation of inflammation. Mitochondria are putative therapeutic targets to prevent or treat AMD.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Hannu Uusitalo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland and Tays Eye Centre, Tampere University Hospital, P.O.Box 2000, 33521 Tampere, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Szabolcs Felszeghy
- Department of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA, 90033, USA
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Debasish Sinha
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, PA 15224, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Room M035 Robert and Clarice Smith Bldg, 400 N Broadway, Baltimore, MD, 21287, USA
| | - Deborah Ferrington
- Department of Ophthalmology and Visual Neurosciences, 2001 6th St SE, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
29
|
Nita M, Grzybowski A. Interplay between reactive oxygen species and autophagy in the course of age-related macular degeneration. EXCLI JOURNAL 2020; 19:1353-1371. [PMID: 33192217 PMCID: PMC7658465 DOI: 10.17179/excli2020-2915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
Abstract
Pathological biomolecules such as lipofuscin, methylglyoxal-modified proteins (the major precursors of advanced glycationend products), misfolding protein deposits and dysfunctional mitochondria are source of oxidative stress and act as strong autophagic stimulators in age-related macular degeneration. Disturbed autophagy accelerates progression of the disease, since it leads to retinal cells' death and activates inflammation by the interplay with the NLRP3 inflammasome complex. Vascular dysfunction and hypoxia, as well as circulating autoantibodies against autophagy regulators (anti-S100A9, anti-ANXA5, and anti-HSPA8, A9 and B4) compromise an autophagy-mediated mechanism as well. Metformin, the autophagic stimulator, may act as a senostatic drug to inhibit the senescent phenotype in the age-related macular degeneration. PGC-1α , Sirt1 and AMPK represent new therapeutic targets for interventions in this disease.
Collapse
Affiliation(s)
- Malgorzata Nita
- Domestic and Specialized Medicine Centre "Dilmed" Katowice, Poland
| | - Andrzej Grzybowski
- Department of Ophthalmolgy, Medical Faculty, University of Warmia and Mazury, Olsztyn, Poland.,Institute for Research in Ophthalmology, Poznań, Poland
| |
Collapse
|
30
|
Kelly UL, Grigsby D, Cady MA, Landowski M, Skiba NP, Liu J, Remaley AT, Klingeborn M, Bowes Rickman C. High-density lipoproteins are a potential therapeutic target for age-related macular degeneration. J Biol Chem 2020; 295:13601-13616. [PMID: 32737203 PMCID: PMC7521644 DOI: 10.1074/jbc.ra119.012305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 07/22/2020] [Indexed: 02/02/2023] Open
Abstract
Strong evidence suggests that dysregulated lipid metabolism involving dysfunction of the retinal pigmented epithelium (RPE) underlies the pathogenesis of age-related macular degeneration (AMD), the leading cause of irreversible blindness in the elderly. A hallmark of AMD is the overproduction of lipid- and protein-rich extracellular deposits that accumulate in the extracellular matrix (Bruch's membrane (BrM)) adjacent to the RPE. We analyzed apolipoprotein A-1 (ApoA-1)-containing lipoproteins isolated from BrM of elderly human donor eyes and found a unique proteome, distinct from high-density lipoprotein (HDL) isolated from donor plasma of the same individuals. The most striking difference is higher concentrations of ApoB and ApoE, which bind to glycosaminoglycans. We hypothesize that this interaction promotes lipoprotein deposition onto BrM glycosaminoglycans, initiating downstream effects that contribute to RPE dysfunction/death. We tested this hypothesis using two potential therapeutic strategies to alter the lipoprotein/protein profile of these extracellular deposits. First, we used short heparan sulfate oligosaccharides to remove lipoproteins already deposited in both the extracellular matrix of RPE cells and aged donor BrM tissue. Second, an ApoA-1 mimetic, 5A peptide, was demonstrated to modulate the composition and concentration of apolipoproteins secreted from primary porcine RPE cells. Significantly, in a mouse model of AMD, this 5A peptide altered the proteomic profile of circulating HDL and ameliorated some of the potentially harmful changes to the protein composition resulting from the high-fat, high-cholesterol diet in this model. Together, these results suggest that targeting HDL interactions with BrM represents a new strategy to slow AMD progression in humans.
Collapse
Affiliation(s)
- Una L Kelly
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Daniel Grigsby
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Martha A Cady
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael Landowski
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
31
|
Tien PT, Lin HJ, Tsai YY, Lim YP, Chen CS, Chang CY, Lin CJ, Chen JJY, Wu SM, Huang YJ, Wan L. Perfluorooctanoic acid in indoor particulate matter triggers oxidative stress and inflammation in corneal and retinal cells. Sci Rep 2020; 10:15702. [PMID: 32973190 PMCID: PMC7518444 DOI: 10.1038/s41598-020-72600-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/03/2020] [Indexed: 11/18/2022] Open
Abstract
To investigate the particle size distribution of particulate matter and the concentration of specific perfluorinated compounds in indoor dust samples from several locations. Then, we used cell-based assays to investigate the effect of perfluorinated compounds on human corneal epithelial (HCEpiC), endothelial cells (HCEC) and retinal pigment epithelial cells (RPE). Indoor dust samples were collected at five different locations and PM50–10, PM10–2.5, and PM2.5–1 were fractionized. The presence and levels of 8:2 fluorotelomer alcohol, 10:2 fluorotelomer alcohol, and perfluorooctanoic acid were detected by gas chromatography–mass spectrometry. The effect of perfluorooctanoic acid on the activation of reactive oxygen species, transepithelial resistance as well as the expression of interleukin (IL)-6 and IL-8 were determined. The basolateral media of human corneal epithelial or human corneal endothelial cells were used to treat human corneal endothelial or retinal pigment epithelial cells, respectively to indicate the potential of ocular surface inflammation may result in retinal inflammation. Among perfluorinated compounds, only perfluorooctanoic acid was detected in all indoor dust samples. Perfluorooctanoic acid had the highest concentration among all perfluorinated compounds in the samples. Exposure to perfluorooctanoic acid impaired tight junction sealing and increased the levels of reactive oxygen species in human corneal epithelial cells. In human corneal epithelial cells, secretion of IL-6 and IL-8 in both apical and basolateral media was promoted significantly by perfluorooctanoic acid treatment. Stimulation with the basolateral media from perfluorooctanoic acid-treated human corneal epithelial cells induced inflammation in human corneal endothelial cells. The treatment of retinal pigment epithelial cells with the basolateral media from stimulated human corneal endothelial cells also elicited the secretion of proinflammatory cytokines. The results indicate that perfluorooctanoic acid exposure impaired the tight junction of corneal cells and caused inflammatory reactions in the retina. Exposure of the cornea to perfluorooctanoic acid contained in particulate matter might induce oxidative stress and inflammation in the retina and represent a risk factor for age-related macular degeneration.
Collapse
Affiliation(s)
- Peng-Tai Tien
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Yi-Yu Tsai
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih Sheng Chen
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.,Division of Chinese Medicine, Asia University Hospital, Taichung, Taiwan
| | - Ching-Yao Chang
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chao-Jen Lin
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jamie Jiin-Yi Chen
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan
| | - Shan-Mei Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Yuh-Jeen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan. .,Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Lei Wan
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan. .,Department of Biotechnology, Asia University, Taichung, Taiwan. .,Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
32
|
Cioffi CL, Muthuraman P, Raja A, Varadi A, Racz B, Petrukhin K. Discovery of Bispecific Antagonists of Retinol Binding Protein 4 That Stabilize Transthyretin Tetramers: Scaffolding Hopping, Optimization, and Preclinical Pharmacological Evaluation as a Potential Therapy for Two Common Age-Related Comorbidities. J Med Chem 2020; 63:11054-11084. [DOI: 10.1021/acs.jmedchem.0c00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Christopher L. Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Parthasarathy Muthuraman
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Arun Raja
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Andras Varadi
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Boglarka Racz
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Konstantin Petrukhin
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| |
Collapse
|
33
|
A Re-Appraisal of Pathogenic Mechanisms Bridging Wet and Dry Age-Related Macular Degeneration Leads to Reconsider a Role for Phytochemicals. Int J Mol Sci 2020; 21:ijms21155563. [PMID: 32756487 PMCID: PMC7432893 DOI: 10.3390/ijms21155563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
Which pathogenic mechanisms underlie age-related macular degeneration (AMD)? Are they different for dry and wet variants, or do they stem from common metabolic alterations? Where shall we look for altered metabolism? Is it the inner choroid, or is it rather the choroid–retinal border? Again, since cell-clearing pathways are crucial to degrade altered proteins, which metabolic system is likely to be the most implicated, and in which cell type? Here we describe the unique clearing activity of the retinal pigment epithelium (RPE) and the relevant role of its autophagy machinery in removing altered debris, thus centering the RPE in the pathogenesis of AMD. The cell-clearing systems within the RPE may act as a kernel to regulate the redox homeostasis and the traffic of multiple proteins and organelles toward either the choroid border or the outer segments of photoreceptors. This is expected to cope with the polarity of various domains within RPE cells, with each one owning a specific metabolic activity. A defective clearance machinery may trigger unconventional solutions to avoid intracellular substrates’ accumulation through unconventional secretions. These components may be deposited between the RPE and Bruch’s membrane, thus generating the drusen, which remains the classic hallmark of AMD. These deposits may rather represent a witness of an abnormal RPE metabolism than a real pathogenic component. The empowerment of cell clearance, antioxidant, anti-inflammatory, and anti-angiogenic activity of the RPE by specific phytochemicals is here discussed.
Collapse
|
34
|
Jaadane I, Villalpando Rodriguez G, Boulenguez P, Carré S, Dassieni I, Lebon C, Chahory S, Behar-Cohen F, Martinsons C, Torriglia A. Retinal phototoxicity and the evaluation of the blue light hazard of a new solid-state lighting technology. Sci Rep 2020; 10:6733. [PMID: 32317708 PMCID: PMC7174369 DOI: 10.1038/s41598-020-63442-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/28/2020] [Indexed: 11/08/2022] Open
Abstract
Exposure Limit Values (ELV) for artificial lighting were defined in order to prevent light-induced damage to the retina. The evaluation of the lighting devices include the correction of their spectra by the B(λ) function or blue light hazard function, representing the relative spectral sensitivity of the human eye to the blue light. This weighting function peaks between 435 and 440 nm. In this study we evaluate a new generation of light emitting diode (LED), the GaN-on-GaN (gallium nitride on gallium nitride) LED, that present an emission peak in the purple part of the spectrum. Wistar rats were exposed to GaN-on-GaN and conventional diodes at different retinal doses (from 2.2 to 0.5 J/cm2). We show that GaN-on-GaN diodes are more toxic than conventional LED for the rat neural retina and the rat retinal pigment epithelium, indicating that the BLH (blue light hazard) weighting is not adapted to this type of diodes. One of the reasons of this increased toxicity is the effects of shorter wavelengths on mitochondria polarization. We also show that the threshold of phototoxic retinal dose in the rat (fixed at 11 J/cm2, BLH weighted) is overestimated, suggesting that the values used for regulations, calculated in primates using the same methods than in rats, should be revised.
Collapse
Affiliation(s)
- Imene Jaadane
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
- ENVA, Ecole Nationale Vétérinaire d'Alfort, Unité d'ophtalmologie, Maisons-Alfort, France
| | - Gloria Villalpando Rodriguez
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Pierre Boulenguez
- CSTB, Centre Scientifique et Technique du Bâtiment, Division Eclairage et électromagnétisme, Saint Martin d'Heres, France
| | - Samuel Carré
- CSTB, Centre Scientifique et Technique du Bâtiment, Division Eclairage et électromagnétisme, Saint Martin d'Heres, France
| | - Irene Dassieni
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Cecile Lebon
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Sabine Chahory
- ENVA, Ecole Nationale Vétérinaire d'Alfort, Unité d'ophtalmologie, Maisons-Alfort, France
| | - Francine Behar-Cohen
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Christophe Martinsons
- CSTB, Centre Scientifique et Technique du Bâtiment, Division Eclairage et électromagnétisme, Saint Martin d'Heres, France
| | - Alicia Torriglia
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
35
|
Kim DH, Choi YR, Shim J, Choi YS, Kim YT, Kim MK, Kim MJ. Suppressive Effect of Arctium Lappa L. Leaves on Retinal Damage Against A2E-Induced ARPE-19 Cells and Mice. Molecules 2020; 25:molecules25071737. [PMID: 32283798 PMCID: PMC7180975 DOI: 10.3390/molecules25071737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of irreversible loss of vision with 80–90% of patients demonstrating dry type AMD. Dry AMD could possibly be prevented by polyphenol-rich medicinal foods by the inhibition of N-retinylidene-N-retinylethanolamine (A2E)-induced oxidative stress and cell damage. Arctium lappa L. (AL) leaves are medicinal and have antioxidant activity. The purpose of this study was to elucidate the protective effects of the extract of AL leaves (ALE) on dry AMD models, including in vitro A2E-induced damage in ARPE-19 cells, a human retinal pigment epithelial cell line, and in vivo light-induced retinal damage in BALB/c mice. According to the total phenolic contents (TPCs), total flavonoid contents (TFCs) and antioxidant activities, ALE was rich in polyphenols and had antioxidant efficacies on 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and 2′,7′-dichlorofluorescin diacetate (DCFDA) assays. The effects of ALE on A2E accumulation and A2E-induced cell death were also monitored. Despite continued exposure to A2E (10 μM), ALE attenuated A2E accumulation in APRE-19 cells with levels similar to lutein. A2E-induced cell death at high concentration (25 μM) was also suppressed by ALE by inhibiting the apoptotic signaling pathway. Furthermore, ALE could protect the outer nuclear layer (ONL) in the retina from light-induced AMD in BALB/c mice. In conclusion, ALE could be considered a potentially valuable medicinal food for dry AMD.
Collapse
Affiliation(s)
- Dong Hee Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (Y.R.C.); (J.S.); (Y.T.K.)
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju-si 54896, Korea;
| | - Yae Rim Choi
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (Y.R.C.); (J.S.); (Y.T.K.)
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Jaewon Shim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (Y.R.C.); (J.S.); (Y.T.K.)
| | - Yun-Sang Choi
- Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju 55365, Korea;
| | - Yun Tai Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (Y.R.C.); (J.S.); (Y.T.K.)
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Korea
| | - Mina Kyungmin Kim
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju-si 54896, Korea;
| | - Min Jung Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (Y.R.C.); (J.S.); (Y.T.K.)
- Correspondence: ; Tel.: +82-63-219-9380
| |
Collapse
|
36
|
Tao JX, Zhou WC, Zhu XG. Mitochondria as Potential Targets and Initiators of the Blue Light Hazard to the Retina. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6435364. [PMID: 31531186 PMCID: PMC6721470 DOI: 10.1155/2019/6435364] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/18/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
Abstract
Commercially available white light-emitting diodes (LEDs) have an intense emission in the range of blue light, which has raised a range of public concerns about their potential risks as retinal hazards. Distinct from other visible light components, blue light is characterized by short wavelength, high energy, and strong penetration that can reach the retina with relatively little loss in damage potential. Mitochondria are abundant in retinal tissues, giving them relatively high access to blue light, and chromophores, which are enriched in the retina, have many mitochondria able to absorb blue light and induce photochemical effects. Therefore, excessive exposure of the retina to blue light tends to cause ROS accumulation and oxidative stress, which affect the structure and function of the retinal mitochondria and trigger mitochondria-involved death signaling pathways. In this review, we highlight the essential roles of mitochondria in blue light-induced photochemical damage and programmed cell death in the retina, indicate directions for future research and preventive targets in terms of the blue light hazard to the retina, and suggest applying LED devices in a rational way to prevent the blue light hazard.
Collapse
Affiliation(s)
- Jin-Xin Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Clinical Medicine, The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wen-Chuan Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Clinical Medicine, The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Xin-Gen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
37
|
Pawlak AM, Olchawa M, Koscielniak A, Zadlo A, Broniec A, Oles T, Sarna TJ. Oxidized Lipids Decrease Phagocytic Activity of ARPE‐19 Cells In Vitro. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anna M. Pawlak
- Faculty of BiochemistryDepartment of Biophysics, Biophysics and BiotechnologyJagiellonian University30‐007 KrakowPoland
| | - Magdalena Olchawa
- Faculty of BiochemistryDepartment of Biophysics, Biophysics and BiotechnologyJagiellonian University30‐007 KrakowPoland
| | - Anna Koscielniak
- Faculty of BiochemistryDepartment of Biophysics, Biophysics and BiotechnologyJagiellonian University30‐007 KrakowPoland
- Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical EngineeringAGH‐University of Science and Technology30‐059 KrakówPoland
| | - Andrzej Zadlo
- Faculty of BiochemistryDepartment of Biophysics, Biophysics and BiotechnologyJagiellonian University30‐007 KrakowPoland
| | - Agnieszka Broniec
- Faculty of BiochemistryDepartment of Biophysics, Biophysics and BiotechnologyJagiellonian University30‐007 KrakowPoland
| | - Tomasz Oles
- Faculty of BiochemistryDepartment of Biophysics, Biophysics and BiotechnologyJagiellonian University30‐007 KrakowPoland
| | - Tadeusz J. Sarna
- Faculty of BiochemistryDepartment of Biophysics, Biophysics and BiotechnologyJagiellonian University30‐007 KrakowPoland
| |
Collapse
|
38
|
Olchawa M, Krzysztynska-Kuleta O, Duda M, Pawlak A, Pabisz P, Czuba-Pelech B, Sarna T. In vitro phototoxicity of rhodopsin photobleaching products in the retinal pigment epithelium (RPE). Free Radic Res 2019; 53:456-471. [DOI: 10.1080/10715762.2019.1603377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Magdalena Olchawa
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Olga Krzysztynska-Kuleta
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
- Laboratory of Imaging and Atomic Force Spectroscopy, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mariusz Duda
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
- Laboratory of Imaging and Atomic Force Spectroscopy, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Pawlak
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Pawel Pabisz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Barbara Czuba-Pelech
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Tadeusz Sarna
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| |
Collapse
|
39
|
Fatty acids and oxidized lipoproteins contribute to autophagy and innate immunity responses upon the degeneration of retinal pigment epithelium and development of age-related macular degeneration. Biochimie 2019; 159:49-54. [DOI: 10.1016/j.biochi.2018.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022]
|
40
|
Toxicity of blue led light and A2E is associated to mitochondrial dynamics impairment in ARPE-19 cells: implications for age-related macular degeneration. Arch Toxicol 2019; 93:1401-1415. [PMID: 30778631 DOI: 10.1007/s00204-019-02409-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/06/2019] [Indexed: 12/18/2022]
Abstract
Age-related macular degeneration (AMD) is a multifactorial retinal disease characterized by a progressive loss of central vision. Retinal pigment epithelium (RPE) degeneration is a critical event in AMD. It has been associated to A2E accumulation, which sensitizes RPE to blue light photodamage. Mitochondrial quality control mechanisms have evolved to ensure mitochondrial integrity and preserve cellular homeostasis. Particularly, mitochondrial dynamics involve the regulation of mitochondrial fission and fusion to preserve a healthy mitochondrial network. The present study aims to clarify the cellular and molecular mechanisms underlying photodamage-induced RPE cell death with particular focus on the involvement of defective mitochondrial dynamics. Light-emitting diodes irradiation (445 ± 18 nm; 4.43 mW/cm2) significantly reduced the viability of both unloaded and A2E-loaded human ARPE-19 cells and increased reactive oxygen species production. A2E along with blue light, triggered apoptosis measured by MC540/PI-flow cytometry and activated caspase-3. Blue light induced mitochondrial fusion/fission imbalance towards mitochondrial fragmentation in both non-loaded and A2E-loaded cells which correlated with the deregulation of mitochondria-shaping proteins level (OPA1, DRP1 and OMA1). To our knowledge, this is the first work reporting that photodamage causes mitochondrial dynamics deregulation in RPE cells. This process could possibly contribute to AMD pathology. Our findings suggest that the regulation of mitochondrial dynamics may be a valuable strategy for treating retinal degeneration diseases, such as AMD.
Collapse
|
41
|
Bittencourt MG, Hassan M, Halim MS, Afridi R, Nguyen NV, Plaza C, Tran ANT, Ahmed MI, Nguyen QD, Sepah YJ. Blue light versus green light fundus autofluorescence in normal subjects and in patients with retinochoroidopathy secondary to retinal and uveitic diseases. J Ophthalmic Inflamm Infect 2019; 9:1. [PMID: 30617430 PMCID: PMC6325057 DOI: 10.1186/s12348-018-0167-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The aim of this study is to evaluate the differences in the fundus autofluorescence (FAF) signal between the blue light autofluorescence (BAF) from Spectralis® (Heidelberg, CA) and green light autofluorescence (GAF) 200TxTM (OPTOS, UK, in normal subjects and in patients with retinochoroidopathies (RC). METHODS In this prospective study, FAF was performed using BL (λ = 488 nm) and GL (λ = 532 nm) on normal subjects and patients with RC. The corresponding pairs of BAF and GAF images from both groups were analyzed using Photoshop. The strength of the FAF signal was measured on a gray scale, where optic disc was a standard to indicate absence of AF. In addition, gray values obtained from three identical points (foveal center, and points of hypo and hyper autofluorescence) in the corresponding BAF and GAF images of normal and RC subjects were divided by the optic disc value to calculate autofluorescence signal ratio (R). The R values at fovea (R1), hypoautofluorescent point (R2), and hyperautofluorescent point (R3) were compared between BAF and GAF modalities, in normal and in RC subjects separately. RESULTS One hundred six pairs (106 eyes) of FAF images analyzed (37 pairs: normal and 69 pairs: RC subjects). In normal subjects, the mean R1, R2, and R3 values for BAF were (1.5 ± 0.88, 1.23 ± 0.58, and 4.73 ± 2.85, respectively) and for GAF were (0.78 ± 0.20, 0.78 ± 0.20, and 1.62 ± 0.39, respectively). Similarly, in subjects with RC, the mean R1, R2, and R3 values for BAF were (1.68 ± 1.02, 1.66 ± 1.15, and 7.75 ± 6.82, respectively) and for GAF were (0.95 ± 0.59, 0.79 ± 0.45, and 2.50 ± 1.65, respectively). The mean difference in the R1, R2, and R3 ratios between BAF and GAF in normal and in RC subjects was statistically significant (p < 0.001). The strength of the correlation (r) between ratios for BAF and GAF was weak or not statistically significant in both normal and RC subjects (p > 0.05). CONCLUSION The distribution and intensity of the AF signal differ in BAF and GAF and cannot be used interchangeably. In BAF, optic disc signal is always weaker than in other areas, which was not true for GAF where optic disc signal was stronger than fovea and hypoautofluorescent point in both groups.
Collapse
Affiliation(s)
| | - Muhammad Hassan
- Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Muhammad Sohail Halim
- Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Rubbia Afridi
- Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Nam V Nguyen
- Ocular Imaging Research and Reading Center, Menlo Park, CA, USA.,Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Carlos Plaza
- Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Anh N T Tran
- Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | | | - Quan Dong Nguyen
- Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Yasir Jamal Sepah
- Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA.
| |
Collapse
|
42
|
Vo TA, Abedi S, Schneider K, Chwa M, Kenney MC. Effects of bevacizumab, ranibizumab, and aflibercept on phagocytic properties in human RPE cybrids with AMD versus normal mitochondria. Exp Eye Res 2018; 177:112-116. [PMID: 30071215 PMCID: PMC7105352 DOI: 10.1016/j.exer.2018.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/13/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE A critical biological function of retina pigment epithelium (RPE) cells is phagocytosis of photoreceptor outer segment (POS) disc membranes. Mitochondrial damage and dysfunction are associated with RPE cells of age-related macular degeneration (AMD) retinas. In this study, we use a transmitochondrial cybrid model to compare the phagocytic properties of RPE cells that contain AMD mitochondria versus age-matched normal mitochondria and their response to treatment with anti-vascular endothelial growth factor (VEGF) drugs: bevacizumab, ranibizumab, and aflibercept. METHODS Cybrids, which are cell lines with identical nuclei but mitochondria (mt) from different subjects, are created by fusing mtDNA depleted ARPE-19 cells with platelets from AMD or age-matched normal patients. AMD (n = 5) and normal (n = 5) cybrids were treated with 1 μm fluorescent latex beads (1.52 × 107 beads/mL) and either 2.09 μM of bevacizumab, 2.59 μM of ranibizumab, or 5.16 μM of aflibercept. These doses of anti-VEGF drugs are equivalent to intravitreal injections given to AMD patients with choroidal neovascularization. Flow cytometry was performed using the ImageStreamX Mark II to assess phagocytic bead-uptake. The average fold values for bead-uptake and SEM were calculated using GraphPad Prism software. RESULTS Normal cybrids showed decreased bead-uptake with a fold value of 0.65 ± 0.103 (p = 0.01) after treatment with bevacizumab, 0.80 ± 0.034 (p = 0.0003) with ranibizumab, and 0.81 ± 0.053 (p = 0.007) with aflibercept compared to the untreated normal cybrids (baseline fold of 1). The bevacizumab-treated, ranibizumab-treated, and aflibercept-treated AMD cybrids had decreased bead-uptake with a fold value of 0.71 ± 0.061 (p = 0.001), 0.70 ± 0.101 (p = 0.02), and 0.74 ± 0.125 (p = 0.07), respectively, compared to the untreated AMD cybrids (baseline fold of 1). CONCLUSIONS Our initial findings showed that when treated with bevacizumab and ranibizumab, both AMD cybrids and age-matched normal cybrids had a significant decrease in bead-uptake. A similar decrease in bead-uptake was found in normal cybrids treated with aflibercept and while the AMD values trended lower, they were not significant. This data suggests that anti-VEGF drugs can cause loss of phagocytic function.
Collapse
Affiliation(s)
- Thomas A Vo
- Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - Sina Abedi
- Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - Kevin Schneider
- Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - Marilyn Chwa
- Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - M Cristina Kenney
- Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
43
|
Light-induced generation and toxicity of docosahexaenoate-derived oxidation products in retinal pigmented epithelial cells. Exp Eye Res 2018; 181:325-345. [PMID: 30296412 DOI: 10.1016/j.exer.2018.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Oxidative cleavage of docosahexaenoate (DHA) in retinal pigmented epithelial (RPE) cells produces 4-hydroxy-7-oxohept-5-enoic acid (HOHA) esters of 2-lysophosphatidylcholine (PC). HOHA-PC spontaneously releases a membrane-permeant HOHA lactone that modifies primary amino groups of proteins and ethanolamine phospholipids to produce 2-(ω-carboxyethyl)pyrrole (CEP) derivatives. CEPs have significant pathological relevance to age-related macular degeneration (AMD) including activation of CEP-specific T-cells leading to inflammatory M1 polarization of macrophages in the retina involved in "dry AMD" and TLR2-dependent induction of angiogenesis that characterizes "wet AMD". RPE cells accumulate DHA from shed rod photoreceptor outer segments through phagocytosis and from plasma lipoproteins secreted by the liver through active uptake from the choriocapillaris. As a cell model of light-induced oxidative damage of DHA phospholipids in RPE cells, ARPE-19 cells were supplemented with DHA, with or without the lipofuscin fluorophore A2E. In this model, light exposure, in the absence of A2E, promoted the generation HOHA lactone-glutathione (GSH) adducts, depletion of intracellular GSH and a competing generation of CEPs. While DHA-rich RPE cells exhibit an inherent proclivity toward light-induced oxidative damage, photosensitization by A2E nearly doubled the amount of lipid oxidation and expanded the spectral range of photosensitivity to longer wavelengths. Exposure of ARPE-19 cells to 1 μM HOHA lactone for 24 h induced massive (50%) loss of lysosomal membrane integrity and caused loss of mitochondrial membrane potential. Using senescence-associated β-galactosidase (SA β-gal) staining that detects lysosomal β-galactosidase, we determined that exposure to HOHA lactone induces senescence in ARPE-19 cells. The present study shows that products of light-induced oxidative damage of DHA phospholipids in the absence of A2E can lead to RPE cell dysfunction. Therefore, their toxicity may be especially important in the early stages of AMD before RPE cells accumulate lipofuscin fluorophores.
Collapse
|
44
|
Maugeri A, Barchitta M, Mazzone MG, Giuliano F, Agodi A. Complement System and Age-Related Macular Degeneration: Implications of Gene-Environment Interaction for Preventive and Personalized Medicine. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7532507. [PMID: 30225264 PMCID: PMC6129329 DOI: 10.1155/2018/7532507] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD) is the most common cause of visual loss in developed countries, with a significant economic and social burden on public health. Although genome-wide and gene-candidate studies have been enabled to identify genetic variants in the complement system associated with AMD pathogenesis, the effect of gene-environment interaction is still under debate. In this review we provide an overview of the role of complement system and its genetic variants in AMD, summarizing the consequences of the interaction between genetic and environmental risk factors on AMD onset, progression, and therapeutic response. Finally, we discuss the perspectives of current evidence in the field of genomics driven personalized medicine and public health.
Collapse
Affiliation(s)
- Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Maria Grazia Mazzone
- SIFI SpA, Research and Development Department, Via Ercole Patti 36, 95025 Catania, Italy
| | - Francesco Giuliano
- SIFI SpA, Research and Development Department, Via Ercole Patti 36, 95025 Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| |
Collapse
|
45
|
Nakamura M, Yako T, Kuse Y, Inoue Y, Nishinaka A, Nakamura S, Shimazawa M, Hara H. Exposure to excessive blue LED light damages retinal pigment epithelium and photoreceptors of pigmented mice. Exp Eye Res 2018; 177:1-11. [PMID: 30040948 DOI: 10.1016/j.exer.2018.07.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/11/2018] [Accepted: 07/20/2018] [Indexed: 12/26/2022]
Abstract
To determine the characteristics of the damages of the retinal pigment epithelium (RPE) and photoreceptors of pigmented mice induced by exposure to blue light emitting diode (LED) light, and to determine the mechanisms causing the damages. Exposure to blue LED light for 3 days induced retinal damage, and the characteristics of the damage differed from that induced by white fluorescent light exposure. Ophthalmoscopy showed that blue LED exposure for 3 days induced white spots on the retina, and histological examinations showed materials accumulated at the IS/OS junction of the photoreceptors. The accumulated materials were stained by ionized calcium binding adapter molecule-1 (Iba-1), a marker for macrophages. The debris was also positive for periodic acid-Schiff (PAS). An enlarging the area of RPE was detected just after the blue LED exposure especially around the optic nerve, and this led to a secondary degeneration of the photoreceptors. Exposure of pigmented mice to 3 consecutive days of blue LED light will cause RPE and photoreceptor damage. The damage led to an accumulation of macrophages and drusen-like materials around the outer segments of the photoreceptors. This blue light exposed model may be useful for investigating the pathogenesis of non-exudative age-related macular degeneration.
Collapse
Affiliation(s)
- Maho Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomohiro Yako
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshiki Kuse
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Inoue
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Anri Nishinaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
46
|
Lin YC, Horng LY, Sung HC, Wu RT. Sodium Iodate Disrupted the Mitochondrial-Lysosomal Axis in Cultured Retinal Pigment Epithelial Cells. J Ocul Pharmacol Ther 2018; 34:500-511. [PMID: 30020815 DOI: 10.1089/jop.2017.0073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Low doses of sodium iodate (NaIO3) impair visual function in experimental animals with selective damage to retinal pigment epithelium (RPE) and serve as a useful model to study diseases caused by RPE degeneration. Mitochondrial dysfunction and defective autophagy have been suggested to play important roles in normal aging as well as many neurodegenerative diseases. In this study, we examined whether NaIO3 treatment disrupted the mitochondrial-lysosomal axis in cultured RPE. METHODS The human RPE cell line, ARPE-19, was treated with low concentrations (≤500 μM) of NaIO3. The expression of proteins involved in the autophagic pathway and mitochondrial biogenesis was examined with Western blot. Intracellular acidic compartments and lipofuscinogenesis were evaluated by acridine orange staining and autofluorescence, respectively. Mitochondrial mass, mitochondrial membrane potential (MMP), and mitochondrial function were quantified by MitoTracker Green staining, tetramethylrhodamine methyl ester staining, and the MTT assay, respectively. Phagocytosis and the degradation of photoreceptor outer segments (POS) were assessed by fluorescence-based approaches and Western blot against rhodopsin. RESULTS Treatment with low concentrations of NaIO3 decreased cellular acidity, blocked autophagic flux, and resulted in increased lipofuscinogenesis in ARPE-19 cells. Despite increases in protein levels of Sirtuin 1 and PGC-1α, mitochondrial function was compromised, and this decrease was attributed to disrupted MMP. POS phagocytic activities decreased by 60% in NaIO3-treated cells, and the degradation of ingested POS was also impaired. Pretreatment and cotreatment with rapamycin partially rescued NaIO3-induced RPE dysfunction. CONCLUSIONS Low concentrations of NaIO3 disrupted the mitochondrial-lysosomal axis in RPE and led to impaired phagocytic activities and degradation capacities.
Collapse
Affiliation(s)
- Ying-Cheng Lin
- 1 Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University , Taipei, Taiwan .,2 Department of Ophthalmology, Yang-Ming branch, Taipei City Hospital , Taipei, Taiwan
| | - Lin-Yea Horng
- 1 Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University , Taipei, Taiwan .,3 Research Center for Drug Discovery, National Yang-Ming University , Taipei, Taiwan
| | - Hui-Ching Sung
- 3 Research Center for Drug Discovery, National Yang-Ming University , Taipei, Taiwan
| | - Rong-Tsun Wu
- 1 Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University , Taipei, Taiwan .,3 Research Center for Drug Discovery, National Yang-Ming University , Taipei, Taiwan .,4 Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung, Taiwan
| |
Collapse
|
47
|
Racz B, Varadi A, Kong J, Allikmets R, Pearson PG, Johnson G, Cioffi CL, Petrukhin K. A non-retinoid antagonist of retinol-binding protein 4 rescues phenotype in a model of Stargardt disease without inhibiting the visual cycle. J Biol Chem 2018; 293:11574-11588. [PMID: 29871924 DOI: 10.1074/jbc.ra118.002062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
A primary pathological defect in the heritable eye disorder Stargardt disease is excessive accumulation of cytotoxic lipofuscin bisretinoids in the retina. Age-dependent accumulation of lipofuscin in the retinal pigment epithelium (RPE) matches the age-dependent increase in the incidence of the atrophic (dry) form of age-related macular degeneration (AMD) and therefore may be one of several pathogenic factors contributing to AMD progression. Lipofuscin bisretinoid synthesis in the retina depends on the influx of serum retinol from the circulation into the RPE. Formation of the tertiary retinol-binding protein 4 (RBP4)-transthyretin-retinol complex in the serum is required for this influx. Herein, we report the pharmacological effects of the non-retinoid RBP4 antagonist, BPN-14136. BPN-14136 dosing in the Abca4-/- mouse model of increased lipofuscinogenesis significantly reduced serum RBP4 levels and inhibited bisretinoid synthesis, and this inhibition correlated with a partial reduction in visual cycle retinoids such as retinaldehydes serving as bisretinoid precursors. BPN-14136 administration at doses inducing maximal serum RBP4 reduction did not produce changes in the rate of the visual cycle, consistent with minimal changes in dark adaptation. Abca4-/- mice exhibited dysregulation of the complement system in the retina, and BPN-14136 administration normalized the retinal levels of proinflammatory complement cascade components such as complement factors D and H, C-reactive protein, and C3. We conclude that BPN-14136 has several beneficial characteristics, combining inhibition of bisretinoid synthesis and reduction in retinaldehydes with normalization of the retinal complement system. BPN-14136, or a similar compound, may be a promising drug candidate to manage Stargardt disease and dry AMD.
Collapse
Affiliation(s)
- Boglarka Racz
- Department of Ophthalmology, Columbia University, New York, New York 10032
| | - Andras Varadi
- Department of Ophthalmology, Columbia University, New York, New York 10032
| | - Jian Kong
- Department of Ophthalmology, Columbia University, New York, New York 10032
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York 10032; Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| | - Paul G Pearson
- Pearson Pharma Partners, Westlake Village, California 91361
| | | | - Christopher L Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208
| | | |
Collapse
|
48
|
Winiarczyk M, Kaarniranta K, Winiarczyk S, Adaszek Ł, Winiarczyk D, Mackiewicz J. Tear film proteome in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2018; 256:1127-1139. [PMID: 29696386 PMCID: PMC5956098 DOI: 10.1007/s00417-018-3984-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/18/2018] [Accepted: 04/09/2018] [Indexed: 01/05/2023] Open
Abstract
Purpose Age-related macular degeneration (AMD) is the main reason for blindness in elderly people in the developed countries. Current screening protocols have limitations in detecting the early signs of retinal degeneration. Therefore, it would be desirable to find novel biomarkers for early detection of AMD. Development of novel biomarkers would help in the prevention, diagnostics, and treatment of AMD. Proteomic analysis of tear film has shown promise in this research area. If an optimal set of biomarkers could be obtained from accessible body fluids, it would represent a reliable way to monitor disease progression and response to novel therapies. Methods Tear films were collected on Schirmer strips from a total of 22 patients (8 with wet AMD, 6 with dry AMD, and 8 control individuals). 2D electrophoresis was used to separate tear film proteins prior to their identification with matrix-assisted laser desorption/ionization time of flight spectrometer (MALDI-TOF/TOF) and matching with functional databases. Results A total of 342 proteins were identified. Most of them were previously described in various proteomic studies concerning AMD. Shootin-1, histatin-3, fidgetin-like protein 1, SRC kinase signaling inhibitor, Graves disease carrier protein, actin cytoplasmic 1, prolactin-inducible protein 1, and protein S100-A7A were upregulated in the tear film samples isolated from AMD patients and were not previously linked with this disease in any proteomic analysis. Conclusion The upregulated proteins supplement our current knowledge of AMD pathogenesis, providing evidence that certain specific proteins are expressed into the tear film in AMD. As far we are aware, this is the first study to have undertaken a comprehensive in-depth analysis of the human tear film proteome in AMD patients. Electronic supplementary material The online version of this article (10.1007/s00417-018-3984-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mateusz Winiarczyk
- Department of Vitreoretinal Surgery, Medical University of Lublin, Lublin, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Stanisław Winiarczyk
- Department of Epizootiology, University of Life Sciences of Lublin, Lublin, Poland
| | - Łukasz Adaszek
- Department of Epizootiology, University of Life Sciences of Lublin, Lublin, Poland
| | - Dagmara Winiarczyk
- Department of Epizootiology, University of Life Sciences of Lublin, Lublin, Poland
| | - Jerzy Mackiewicz
- Department of Vitreoretinal Surgery, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
49
|
Shin Y, Moiseyev G, Petrukhin K, Cioffi CL, Muthuraman P, Takahashi Y, Ma JX. A novel RPE65 inhibitor CU239 suppresses visual cycle and prevents retinal degeneration. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2420-2429. [PMID: 29684583 DOI: 10.1016/j.bbadis.2018.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/02/2018] [Accepted: 04/17/2018] [Indexed: 01/25/2023]
Abstract
The retinoid visual cycle is an ocular retinoid metabolism specifically dedicated to support vertebrate vision. The visual cycle serves not only to generate light-sensitive visual chromophore 11-cis-retinal, but also to clear toxic byproducts of normal visual cycle (i.e. all-trans-retinal and its condensation products) from the retina, ensuring both the visual function and the retinal health. Unfortunately, various conditions including genetic predisposition, environment and aging may attribute to a functional decline of the all-trans-retinal clearance. To combat all-trans-retinal mediated retinal degeneration, we sought to slow down the retinoid influx from the RPE by inhibiting the visual cycle with a small molecule. The present study describes identification of CU239, a novel non-retinoid inhibitor of RPE65, a key enzyme in the visual cycle. Our data demonstrated that CU239 selectively inhibited isomerase activity of RPE65, with IC50 of 6 μM. Further, our results indicated that CU239 inhibited RPE65 via competition with its substrate all-trans-retinyl ester. Mice with systemic injection of CU239 exhibited delayed chromophore regeneration after light bleach, and conferred a partial protection of the retina against injury from high intensity light. Taken together, CU239 is a potent visual cycle modulator and may have a therapeutic potential for retinal degeneration.
Collapse
Affiliation(s)
- Younghwa Shin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Gennadiy Moiseyev
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| | - Konstantin Petrukhin
- Department of Ophthalmology, Columbia University, New York, NY 10032, United States
| | - Christopher L Cioffi
- Departments of Basic & Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, United States
| | - Parthasarathy Muthuraman
- Departments of Basic & Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, United States
| | - Yusuke Takahashi
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United states
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| |
Collapse
|
50
|
Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells. Cell Death Dis 2018; 9:287. [PMID: 29459695 PMCID: PMC5833722 DOI: 10.1038/s41419-018-0331-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 11/23/2022]
Abstract
Aims Blue light is an identified risk factor for age-related macular degeneration (AMD). We investigated oxidative stress markers and mitochondrial changes in A2E-loaded retinal pigment epithelium cells under the blue–green part of the solar spectrum that reaches the retina to better understand the mechanisms underlying light-elicited toxicity. Results Primary retinal pigment epithelium cells were loaded with a retinal photosensitizer, AE2, to mimic aging. Using a custom-made illumination device that delivers 10 nm-wide light bands, we demonstrated that A2E-loaded RPE cells generated high levels of both hydrogen peroxide (H2O2) and superoxide anion (O2•−) when exposed to blue–violet light. In addition, they exhibited perinuclear clustering of mitochondria with a decrease of both their mitochondrial membrane potential and their respiratory activities. The increase of oxidative stress resulted in increased levels of the oxidized form of glutathione and decreased superoxide dismutase (SOD) and catalase activities. Furthermore, mRNA expression levels of the main antioxidant enzymes (SOD2, catalase, and GPX1) also decreased. Conclusions Using an innovative illumination device, we measured the precise action spectrum of the oxidative stress mechanisms on A2E-loaded retinal pigment epithelium cells. We defined 415–455 nm blue–violet light, within the solar spectrum reaching the retina, to be the spectral band that generates the highest amount of reactive oxygen species and produces the highest level of mitochondrial dysfunction, explaining its toxic effect. This study further highlights the need to filter these wavelengths from the eyes of AMD patients.
Collapse
|