1
|
Fukuhara H, Yumoto K, Sako M, Kajikawa M, Ose T, Kawamura M, Yoda M, Chen S, Ito Y, Takeda S, Mwaba M, Wang J, Hashiguchi T, Kamishikiryo J, Maita N, Kitatsuji C, Takeda M, Kuroki K, Maenaka K. Glycan-shielded homodimer structure and dynamical features of the canine distemper virus hemagglutinin relevant for viral entry and efficient vaccination. eLife 2024; 12:RP88929. [PMID: 39046448 PMCID: PMC11268888 DOI: 10.7554/elife.88929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Canine distemper virus (CDV) belongs to morbillivirus, including measles virus (MeV) and rinderpest virus, which causes serious immunological and neurological disorders in carnivores, including dogs and rhesus monkeys, as recently reported, but their vaccines are highly effective. The attachment glycoprotein hemagglutinin (CDV-H) at the CDV surface utilizes signaling lymphocyte activation molecule (SLAM) and Nectin-4 (also called poliovirus-receptor-like-4; PVRL4) as entry receptors. Although fusion models have been proposed, the molecular mechanism of morbillivirus fusion entry is poorly understood. Here, we determined the crystal structure of the globular head domain of CDV-H vaccine strain at 3.2 Å resolution, revealing that CDV-H exhibits a highly tilted homodimeric form with a six-bladed β-propeller fold. While the predicted Nectin-4-binding site is well conserved with that of MeV-H, that of SLAM is similar but partially different, which is expected to contribute to host specificity. Five N-linked sugars covered a broad area of the CDV-H surface to expose receptor-binding sites only, supporting the effective production of neutralizing antibodies. These features are common to MeV-H, although the glycosylation sites are completely different. Furthermore, real-time observation using high-speed atomic force microscopy revealed highly mobile features of the CDV-H dimeric head via the connector region. These results suggest that sugar-shielded tilted homodimeric structure and dynamic conformational changes are common characteristics of morbilliviruses and ensure effective fusion entry and vaccination.
Collapse
Affiliation(s)
- Hideo Fukuhara
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
- Division of Pathogen Structure, Research Center for Zoonosis Control, Hokkaido UniversitySapporoJapan
| | - Kohei Yumoto
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Miyuki Sako
- Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Mizuho Kajikawa
- Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Toyoyuki Ose
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Mihiro Kawamura
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Mei Yoda
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Surui Chen
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Yuri Ito
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Shin Takeda
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Mwila Mwaba
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Jiaqi Wang
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Takao Hashiguchi
- Department of Virology, Faculty of Medicine, Kyushu UniversityFukuokaJapan
| | - Jun Kamishikiryo
- Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Nobuo Maita
- Institute for Enzyme Research, University of TokushimaTokushimaJapan
| | - Chihiro Kitatsuji
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of TokyoTokyoJapan
| | - Kimiko Kuroki
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
- Division of Pathogen Structure, Research Center for Zoonosis Control, Hokkaido UniversitySapporoJapan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido UniversitySapporoJapan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido UniversitySapporoJapan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencySaitamaJapan
| |
Collapse
|
2
|
Structure and supramolecular organization of the canine distemper virus attachment glycoprotein. Proc Natl Acad Sci U S A 2023; 120:e2208866120. [PMID: 36716368 PMCID: PMC9963377 DOI: 10.1073/pnas.2208866120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Canine distemper virus (CDV) is an enveloped RNA morbillivirus that triggers respiratory, enteric, and high incidence of severe neurological disorders. CDV induces devastating outbreaks in wild and endangered animals as well as in domestic dogs in countries associated with suboptimal vaccination programs. The receptor-binding tetrameric attachment (H)-protein is part of the morbilliviral cell entry machinery. Here, we present the cryo-electron microscopy (cryo-EM) structure and supramolecular organization of the tetrameric CDV H-protein ectodomain. The structure reveals that the morbilliviral H-protein is composed of three main domains: stalk, neck, and heads. The most unexpected feature was the inherent asymmetric architecture of the CDV H-tetramer being shaped by the neck, which folds into an almost 90° bent conformation with respect to the stalk. Consequently, two non-contacting receptor-binding H-head dimers, which are also tilted toward each other, are located on one side of an intertwined four helical bundle stalk domain. Positioning of the four protomer polypeptide chains within the neck domain is guided by a glycine residue (G158), which forms a hinge point exclusively in two protomer polypeptide chains. Molecular dynamics simulations validated the stability of the asymmetric structure under near physiological conditions and molecular docking showed that two receptor-binding sites are fully accessible. Thus, this spatial organization of the CDV H-tetramer would allow for concomitant protein interactions with the stalk and head domains without steric clashes. In summary, the structure of the CDV H-protein ectodomain provides new insights into the morbilliviral cell entry system and offers a blueprint for next-generation structure-based antiviral drug discovery.
Collapse
|
3
|
Bi Z, Wang W, Xia X. Structure and function of a novel lineage-specific neutralizing epitope on H protein of canine distemper virus. Front Microbiol 2023; 13:1088243. [PMID: 36713169 PMCID: PMC9875009 DOI: 10.3389/fmicb.2022.1088243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Canine distemper virus (CDV) infects many sensitive species worldwide and its host range is expanding. The hemagglutinin (H) protein, the major neutralizing target, binds to cellular receptors and subsequently triggers fusion for initial viral infection. So it's necessary to clarify the precise neutralizing epitopes of H protein and extend the knowledge of mechanisms of virus neutralization. In this study, a neutralizing monoclonal antibody (mAb) 2D12 against CDV H protein, which had different reactivity with different CDV strains, was generated and characterized. A series of truncated H proteins were screened to define the minimal linear epitope 238DIEREFD244 recognized by 2D12. Further investigation revealed that the epitope was highly conserved in America-1 vaccine lineage of CDV strains, but different substitutions in the epitope appeared in CDV strains of the other lineages and two substitutions (D238Y and R241G) caused the change of antigenicity. Thus, the epitope represents a novel lineage-specific neutralizing target on H protein of CDV for differentiation of America-1 vaccine lineage and the other lineages of CDV strains. The epitope was identified to localize at the surface of H protein in two different positions in a three-dimensional (3D) structure, but not at the position of the receptor-binding site (RBS), so the mAb 2D12 that recognized the epitope did not inhibit binding of H protein to the receptor. But mAb 2D12 interfered with the H-F interaction for inhibiting membrane fusion, suggesting that the mAb plays key roles for formation of H-F protein oligomeric structure. Our data will contribute to the understanding of the structure, function, and antigenicity of CDV H protein and mechanisms of virus neutralization.
Collapse
Affiliation(s)
- Zhenwei Bi
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China,*Correspondence: Zhenwei Bi,
| | - Wenjie Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingxia Xia
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
4
|
Frost JR, Shaikh S, Severini A. Exploring the Mumps Virus Glycoproteins: A Review. Viruses 2022; 14:v14061335. [PMID: 35746805 PMCID: PMC9229384 DOI: 10.3390/v14061335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
The resurgence of mumps in vaccinated adult populations has raised concerns about possible waning vaccine immunity or a potential lack of protection to the circulating strain. A number of individual studies have investigated if there are amino acid variations between the circulating wild-type strains and vaccine strains. In these studies, the HN and F mumps surface glycoproteins have been of interest, because of their role in viral infection, and because the HN protein is the target of neutralizing antibodies. Here, we summarize the single nucleotide variants and their potential effect that have been identified between mumps genotypes in the HN and F proteins.
Collapse
Affiliation(s)
- Jasmine Rae Frost
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (J.R.F.); (S.S.)
| | - Saba Shaikh
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (J.R.F.); (S.S.)
| | - Alberto Severini
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (J.R.F.); (S.S.)
- JC Wilt Infectious Diseases Research Centre, NMLB, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
- Correspondence: ; Tel.: +1-204-789-6022; Fax: +1-204-318-2222
| |
Collapse
|
5
|
Unique Tropism and Entry Mechanism of Mumps Virus. Viruses 2021; 13:v13091746. [PMID: 34578327 PMCID: PMC8471308 DOI: 10.3390/v13091746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Mumps virus (MuV) is an important human pathogen that causes parotitis, orchitis, oophoritis, meningitis, encephalitis, and sensorineural hearing loss. Although mumps is a vaccine-preventable disease, sporadic outbreaks have occurred worldwide, even in highly vaccinated populations. MuV not only causes systemic infection but also has a unique tropism to glandular tissues and the central nervous system. In general, tropism can be defined by multiple factors in the viral life cycle, including its entry, interaction with host factors, and host-cell immune responses. Although the underlying mechanisms of MuV tropism remain to be fully understood, recent studies on virus-host interactions have provided insights into viral pathogenesis. This review was aimed at summarizing the entry process of MuV by focusing on the glycan receptors, particularly the recently identified receptors with a trisaccharide core motif, and their interactions with the viral attachment proteins. Here, we describe the receptor structures, their distribution in the human body, and the recently identified host factors for MuV and analyze their relationship with MuV tropism.
Collapse
|
6
|
Wong JJ, Chen Z, Chung JK, Groves JT, Jardetzky TS. EphrinB2 clustering by Nipah virus G is required to activate and trap F intermediates at supported lipid bilayer-cell interfaces. SCIENCE ADVANCES 2021; 7:eabe1235. [PMID: 33571127 PMCID: PMC7840137 DOI: 10.1126/sciadv.abe1235] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Paramyxovirus membrane fusion requires an attachment protein that binds to a host cell receptor and a fusion protein that merges the viral and host membranes. For Nipah virus (NiV), the G attachment protein binds ephrinB2/B3 receptors and activates F-mediated fusion. To visualize dynamic events of these proteins at the membrane interface, we reconstituted NiV fusion activation by overlaying F- and G-expressing cells onto ephrinB2-functionalized supported lipid bilayers and used TIRF microscopy to follow F, G, and ephrinB2. We found that G and ephrinB2 form clusters and that oligomerization of ephrinB2 is necessary for F activation. Single-molecule tracking of F particles revealed accumulation of an immobilized intermediate upon activation. We found no evidence for stable F-G protein complexes before or after activation. These observations lead to a revised model for NiV fusion activation and provide a foundation for investigating other multicomponent viral fusion systems.
Collapse
Affiliation(s)
- Joyce J Wong
- Department of Structural Biology, Stanford University, Stanford, CA, USA
| | - Zhongwen Chen
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jean K Chung
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
| | | |
Collapse
|
7
|
Third Helical Domain of the Nipah Virus Fusion Glycoprotein Modulates both Early and Late Steps in the Membrane Fusion Cascade. J Virol 2020; 94:JVI.00644-20. [PMID: 32669342 DOI: 10.1128/jvi.00644-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/08/2020] [Indexed: 01/21/2023] Open
Abstract
Medically important paramyxoviruses, such as measles, mumps, parainfluenza, Nipah, and Hendra viruses, infect host cells by directing fusion of the viral and cellular plasma membranes. Upon infection, paramyxoviruses cause a second type of membrane fusion, cell-cell fusion (syncytium formation), which is linked to pathogenicity. Host cell receptor binding causes conformational changes in the attachment glycoprotein (HN, H, or G) that trigger a conformational cascade in the fusion (F) glycoprotein that mediates membrane fusion. F, a class I fusion protein, contains the archetypal heptad repeat regions 1 (HR1) and 2 (HR2). It is well established that binding of HR1 and HR2 is key to fusing viral and cellular membranes. In this study, we uncovered a novel fusion-modulatory role of a third structurally conserved helical region (HR3) in F. Based on its location within the F structure, and structural differences between its prefusion and postfusion conformations, we hypothesized that the HR3 modulates triggering of the F conformational cascade (still requiring G). We used the deadly Nipah virus (NiV) as an important paramyxoviral model to perform alanine scan mutagenesis and a series of multidisciplinary structural/functional analyses that dissect the various states of the membrane fusion cascade. Remarkably, we found that specific residues within the HR3 modulate not only early F-triggering but also late extensive fusion pore expansion steps in the membrane fusion cascade. Our results characterize these novel fusion-modulatory roles of the F HR3, improving our understanding of the membrane fusion process for NiV and likely for the related Henipavirus genus and possibly Paramyxoviridae family members.IMPORTANCE The Paramyxoviridae family includes important human and animal pathogens, such as measles, mumps, and parainfluenza viruses and the deadly henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviruses infect the respiratory tract and the central nervous system (CNS) and can be highly infectious. Most paramyxoviruses have a limited host range. However, the biosafety level 4 NiV and HeV are highly pathogenic and have a wide mammalian host range. Nipah viral infections result in acute respiratory syndrome and severe encephalitis in humans, leading to 40 to 100% mortality rates. The lack of licensed vaccines or therapeutic approaches against NiV and other important paramyxoviruses underscores the need to understand viral entry mechanisms. In this study, we uncovered a novel role of a third helical region (HR3) of the NiV fusion glycoprotein in the membrane fusion process that leads to viral entry. This discovery sets HR3 as a new candidate target for antiviral strategies for NiV and likely for related viruses.
Collapse
|
8
|
Branttie JM, Dutch RE. Parainfluenza virus 5 fusion protein maintains pre-fusion stability but not fusogenic activity following mutation of a transmembrane leucine/isoleucine domain. J Gen Virol 2020; 101:467-472. [PMID: 32100701 DOI: 10.1099/jgv.0.001399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The paramyxoviruses Hendra virus (HeV) and parainfluenza virus 5 (PIV5) require the fusion (F) protein to efficiently infect cells. For fusion to occur, F undergoes dramatic, essentially irreversible conformational changes to merge the viral and cell membranes into a continuous bilayer. Recently, a transmembrane (TM) domain leucine/isoleucine (L/I) zipper was shown to be critical in maintaining the expression, stability and pre-fusion conformation of HeV F, allowing for fine-tuned timing of membrane fusion. To analyse the effect of the TM domain L/I zipper in another paramyxovirus, we created alanine mutations to the TM domain of PIV5 F, a paramyxovirus model system. Our data show that while the PIV5 F TM L/I zipper does not significantly affect total expression and only modestly affects surface expression and pre-fusion stability, it is critical for fusogenic activity. These results suggest that the roles of TM L/I zipper motifs differ among members of the family Paramyxoviridae.
Collapse
Affiliation(s)
- Jean Mawuena Branttie
- Department of Molecular and Cellular Biochemistry, College of Medicine University of Kentucky Biomedical Biological Sciences Research Bldg, 741 South Limestone Street, Lexington, KY, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, College of Medicine University of Kentucky Biomedical Biological Sciences Research Bldg, 741 South Limestone Street, Lexington, KY, USA
| |
Collapse
|
9
|
Tizzano MA, Sguazza GH, Picotto LD, Echeverría MG, Pecoraro MR. The cloning of the virus envelope glycoprotein F of canine distemper virus expressed in Pichia pastoris. Microb Pathog 2020; 142:104094. [PMID: 32092361 DOI: 10.1016/j.micpath.2020.104094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 11/16/2022]
Abstract
Canine distemper virus (CDV) is a pathogen which affects members of the Canidae family, causing an acute, often fatal, systemic disease. CDV is an RNA virus of the family Paramyxoviridae that contains two envelope glycoproteins: F and HA. In this study, we focused on the envelope glycoprotein F as the main target for neutralizing antibodies produced after infection or vaccination. The complete coding region of the protein (60 kDa) was expressed in the methylotrophic yeast Pichia pastoris, obtained in a recombinant form and secreted to the culture medium. Later, to analyze its immunogenicity, the protein was combined with an oily adjuvant and used to inoculate mice. The results provide evidence supporting a potential application of this recombinant protein as a subunit vaccine.
Collapse
Affiliation(s)
- M A Tizzano
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, Buenos Aires, Argentina
| | - G H Sguazza
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, Buenos Aires, Argentina
| | - L D Picotto
- CONICET CCT-La Plata, Argentina; Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, Buenos Aires, Argentina
| | - M G Echeverría
- CONICET CCT-La Plata, Argentina; Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, Buenos Aires, Argentina.
| | - M R Pecoraro
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, Buenos Aires, Argentina
| |
Collapse
|
10
|
Disruption of the Dimer-Dimer Interaction of the Mumps Virus Attachment Protein Head Domain, Aided by an Anion Located at the Interface, Compromises Membrane Fusion Triggering. J Virol 2020; 94:JVI.01732-19. [PMID: 31619562 DOI: 10.1128/jvi.01732-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Mumps virus (MuV), an enveloped negative-strand RNA virus belonging to the family Paramyxoviridae, enters the host cell through membrane fusion mediated by two viral envelope proteins, an attachment protein hemagglutinin-neuraminidase (MuV-HN) and a fusion (F) protein. However, how the binding of MuV-HN to glycan receptors triggers membrane fusion is not well understood. The crystal structure of the MuV-HN head domain forms a tetramer (dimer of dimers) like other paramyxovirus attachment proteins. In the structure, a sulfate ion (SO4 2-) was found at the interface between two dimers, which may be replaced by a hydrogen phosphate ion (HPO4 2-) under physiological conditions. The anion is captured by the side chain of a positively charged arginine residue at position 139 of one monomer each from both dimers. Substitution of alanine or lysine for arginine at this position compromised the fusion support activity of MuV-HN without affecting its cell surface expression, glycan-receptor binding, and interaction with the F protein. Furthermore, the substitution appeared to affect the tetramer formation of the head domain as revealed by blue native-PAGE analysis. These results, together with our previous similar findings with the measles virus attachment protein head domain, suggest that the dimer-dimer interaction within the tetramer may play an important role in triggering membrane fusion during paramyxovirus entry.IMPORTANCE Despite the use of effective live vaccines, mumps outbreaks still occur worldwide. Mumps virus (MuV) infection typically causes flu-like symptoms and parotid gland swelling but sometimes leads to orchitis, oophoritis, and neurological complications, such as meningitis, encephalitis, and deafness. MuV enters the host cell through membrane fusion mediated by two viral proteins, a receptor-binding attachment protein, and a fusion protein, but its detailed mechanism is not fully understood. In this study, we show that the tetramer (dimer of dimers) formation of the MuV attachment protein head domain is supported by an anion located at the interface between two dimers and that the dimer-dimer interaction plays an important role in triggering the activation of the fusion protein and causing membrane fusion. These results not only further our understanding of MuV entry but provide useful information about a possible target for antiviral drugs.
Collapse
|
11
|
Muñoz-Alía MA, Russell SJ. Probing Morbillivirus Antisera Neutralization Using Functional Chimerism between Measles Virus and Canine Distemper Virus Envelope Glycoproteins. Viruses 2019; 11:E688. [PMID: 31357579 PMCID: PMC6722617 DOI: 10.3390/v11080688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Measles virus (MeV) is monotypic. Live virus challenge provokes a broadly protective humoral immune response that neutralizes all known measles genotypes. The two surface glycoproteins, H and F, mediate virus attachment and entry, respectively, and neutralizing antibodies to H are considered the main correlate of protection. Herein, we made improvements to the MeV reverse genetics system and generated a panel of recombinant MeVs in which the globular head domain or stalk region of the H glycoprotein or the entire F protein, or both, were substituted with the corresponding protein domains from canine distemper virus (CDV), a closely related morbillivirus that resists neutralization by measles-immune sera. The viruses were tested for sensitivity to human or guinea pig neutralizing anti-MeV antisera and to ferret anti-CDV antisera. Virus neutralization was mediated by antibodies to both H and F proteins, with H being immunodominant in the case of MeV and F being so in the case of CDV. Additionally, the globular head domains of both MeV and CDV H proteins were immunodominant over their stalk regions. These data shed further light on the factors constraining the evolution of new morbillivirus serotypes.
Collapse
Affiliation(s)
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Nipah and Hendra Virus Glycoproteins Induce Comparable Homologous but Distinct Heterologous Fusion Phenotypes. J Virol 2019; 93:JVI.00577-19. [PMID: 30971473 DOI: 10.1128/jvi.00577-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 02/02/2023] Open
Abstract
Nipah and Hendra viruses (NiV and HeV) exhibit high lethality in humans and are biosafety level 4 (BSL-4) paramyxoviruses in the growing genus Henipavirus The attachment (G) and fusion (F) envelope glycoproteins are both required for viral entry into cells and for cell-cell fusion, which is pathognomonic of henipaviral infections. Here, we compared the fusogenic capacities between homologous and heterologous pairs of NiV and HeV glycoproteins. Importantly, to accurately measure their fusogenic capacities, as these depend on glycoprotein cell surface expression (CSE) levels, we inserted identical extracellular tags to both fusion (FLAG tags) or both attachment (hemagglutinin [HA] tags) glycoproteins. Importantly, these tags were placed in extracellular sites where they did not affect glycoprotein expression or function. NiV and HeV glycoproteins induced comparable levels of homologous HEK293T cell-cell fusion. Surprisingly, however, while the heterologous NiV F/HeV G (NF/HG) combination yielded a hypofusogenic phenotype, the heterologous HeV F/NiV G (HF/NG) combination yielded a hyperfusogenic phenotype. Pseudotyped viral entry levels primarily corroborated the fusogenic phenotypes of the glycoprotein pairs analyzed. Furthermore, we constructed G and F chimeras that allowed us to map the overall regions in G and F that contributed to these hyperfusogenic or hypofusogenic phenotypes. Importantly, the fusogenic phenotypes of the glycoprotein combinations negatively correlated with the avidities of F-G interactions, supporting the F/G dissociation model of henipavirus-induced membrane fusion, even in the context of heterologous glycoprotein pairs.IMPORTANCE The NiV and HeV henipaviruses are BSL-4 pathogens transmitted from bats. NiV and HeV often lead to human death and animal diseases. The formation of multinucleated cells (syncytia) is a hallmark of henipaviral infections and is caused by fusion of cells coordinated by interactions of the viral attachment (G) and fusion (F) glycoproteins. We found via various assays that viral entry and syncytium formation depend on the viral origin of the glycoproteins, with HeV F and NiV G promoting higher membrane fusion levels than their counterparts. This is important knowledge, since both viruses use the same bat vector species and potential coinfections of these or subsequent hosts may alter the outcome of disease.
Collapse
|
13
|
Rendon-Marin S, da Fontoura Budaszewski R, Canal CW, Ruiz-Saenz J. Tropism and molecular pathogenesis of canine distemper virus. Virol J 2019; 16:30. [PMID: 30845967 PMCID: PMC6407191 DOI: 10.1186/s12985-019-1136-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/25/2019] [Indexed: 11/10/2022] Open
Abstract
Background Canine distemper virus (CDV), currently termed Canine morbillivirus, is an extremely contagious disease that affects dogs. It is identified as a multiple cell tropism pathogen, and its host range includes a vast array of species. As a member of Mononegavirales, CDV has a negative, single-stranded RNA genome, which encodes eight proteins. Main body Regarding the molecular pathogenesis, the hemagglutinin protein (H) plays a crucial role both in the antigenic recognition and the viral interaction with SLAM and nectin-4, the host cells’ receptors. These cellular receptors have been studied widely as CDV receptors in vitro in different cellular models. The SLAM receptor is located in lymphoid cells; therefore, the infection of these cells by CDV leads to immunosuppression, the severity of which can lead to variability in the clinical disease with the potential of secondary bacterial infection, up to and including the development of neurological signs in its later stage. Conclusion Improving the understanding of the CDV molecules implicated in the determination of infection, especially the H protein, can help to enhance the biochemical comprehension of the difference between a wide range of CDV variants, their tropism, and different steps in viral infection. The regions of interaction between the viral proteins and the identified host cell receptors have been elucidated to facilitate this understanding. Hence, this review describes the significant molecular and cellular characteristics of CDV that contribute to viral pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12985-019-1136-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Renata da Fontoura Budaszewski
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cláudio Wageck Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.
| |
Collapse
|
14
|
Regulatory Role of the Morbillivirus Attachment Protein Head-to-Stalk Linker Module in Membrane Fusion Triggering. J Virol 2018; 92:JVI.00679-18. [PMID: 29997204 DOI: 10.1128/jvi.00679-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
Morbillivirus (e.g., measles virus [MeV] and canine distemper virus [CDV]) host cell entry is coordinated by two interacting envelope glycoproteins, namely, an attachment (H) protein and a fusion (F) protein. The ectodomain of H proteins consists of stalk, connector, and head domains that assemble into functional noncovalent dimer-of-dimers. The role of the C-terminal module of the H-stalk domain (termed linker) and the connector, although putatively able to assume flexible structures and allow receptor-induced structural rearrangements, remains largely unexplored. Here, we carried out a nonconservative mutagenesis scan analysis of the MeV and CDV H-linker/connector domains. Our data demonstrated that replacing isoleucine 146 in H-linker (H-I146) with any charged amino acids prevented virus-mediated membrane fusion activity, despite proper trafficking of the mutants to the cell surface and preserved binding efficiency to the SLAM/CD150 receptor. Nondenaturing electrophoresis revealed that these charged amino acid changes led to the formation of irregular covalent H tetramers rather than functional dimer-of-dimers formed when isoleucine or other hydrophobic amino acids were present at residue position 146. Remarkably, we next demonstrated that covalent H tetramerization per se was not the only mechanism preventing F activation. Indeed, the neutral glycine mutant (H-I146G), which exhibited strong covalent tetramerization propensity, maintained limited fusion promotion activity. Conversely, charged H-I146 mutants, which additionally carried alanine substitution of natural cysteines (H-C139A and H-C154A) and thus were unable to form covalently linked tetramers, were fusion activation defective. Our data suggest a dual regulatory role of the hydrophobic residue at position 146 of the morbillivirus head-to-stalk H-linker module: securing the assembly of productive dimer-of-dimers and contributing to receptor-induced F-triggering activity.IMPORTANCE MeV and CDV remain important human and animal pathogens. Development of antivirals may significantly support current global vaccination campaigns. Cell entry is orchestrated by two interacting glycoproteins (H and F). The current hypothesis postulates that tetrameric H ectodomains (composed of stalk, connector, and head domains) undergo receptor-induced rearrangements to productively trigger F; these conformational changes may be regulated by the H-stalk C-terminal module (linker) and the following connector domain. Mutagenesis scan analysis of both microdomains revealed that replacing amino acid 146 in the H-linker region with nonhydrophobic residues produced covalent H tetramers which were compromised in triggering membrane fusion activity. However, these mutant proteins retained their ability to traffic to the cell surface and to bind to the virus receptor. These data suggest that the morbillivirus linker module contributes to the folding of functional pre-F-triggering H tetramers. Furthermore, such structures might be critical to convert receptor engagement into F activation.
Collapse
|
15
|
Hicks SN, Chaiwatpongsakorn S, Costello HM, McLellan JS, Ray W, Peeples ME. Five Residues in the Apical Loop of the Respiratory Syncytial Virus Fusion Protein F 2 Subunit Are Critical for Its Fusion Activity. J Virol 2018; 92:e00621-18. [PMID: 29743373 PMCID: PMC6052300 DOI: 10.1128/jvi.00621-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/07/2018] [Indexed: 11/20/2022] Open
Abstract
The respiratory syncytial virus (RSV) fusion (F) protein is a trimeric, membrane-anchored glycoprotein capable of mediating both virus-target cell membrane fusion to initiate infection and cell-cell fusion, even in the absence of the attachment glycoprotein. The F protein is initially expressed in a precursor form, whose functional capabilities are activated by proteolysis at two sites between the F1 and F2 subunits. This cleavage results in expression of the metastable and high-energy prefusion conformation. To mediate fusion, the F protein is triggered by an unknown stimulus, causing the F1 subunit to refold dramatically while F2 changes minimally. Hypothesizing that the most likely site for interaction with a target cell component would be the top, or apex, of the protein, we determined the importance of the residues in the apical loop of F2 by alanine scanning mutagenesis analysis. Five residues were not important, two were of intermediate importance, and all four lysines and one isoleucine were essential. Alanine replacement did not result in the loss of the pre-F conformation for any of these mutants. Each of the four lysines required its specific charge for fusion function. Alanine replacement of the three essential lysines on the ascent to the apex hindered fusion following a forced fusion event, suggesting that these residues are involved in refolding. Alanine mutations at Ile64, also on the ascent to the apex, and Lys75 did not prevent fusion following forced triggering, suggesting that these residues are not involved in refolding and may instead be involved in the natural triggering of the F protein.IMPORTANCE RSV infects virtually every child by the age of 3 years, causing nearly 33 million acute lower respiratory tract infections (ALRI) worldwide each year in children younger than 5 years of age (H. Nair et al., Lancet 375:1545-1555, 2010). RSV is also the second leading cause of respiratory system-related death in the elderly (A. R. Falsey and E. E. Walsh, Drugs Aging 22:577-587, 2005; A. R. Falsey, P. A. Hennessey, M. A. Formica, C. Cox, and E. E. Walsh, N Engl J Med 352:1749-1759, 2005). The monoclonal antibody palivizumab is approved for prophylactic use in some at-risk infants, but healthy infants remain unprotected. Furthermore, its expense limits its use primarily to developed countries. No vaccine or effective small-molecule drug is approved for preventing disease or treating infection (H. M. Costello, W. Ray, S. Chaiwatpongsakorn, and M. E. Peeples, Infect Disord Drug Targets, 12:110-128, 2012). The essential residues identified in the apical domain of F2 are adjacent to the apical portion of F1, which, upon triggering, refolds into a long heptad repeat A (HRA) structure with the fusion peptide at its N terminus. These essential residues in F2 are likely involved in triggering and/or refolding of the F protein and, as such, may be ideal targets for antiviral drug development.
Collapse
Affiliation(s)
- Stephanie N Hicks
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Supranee Chaiwatpongsakorn
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Heather M Costello
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - William Ray
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mark E Peeples
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
16
|
Quantitative investigation of the direct interaction between Hemagglutinin and fusion proteins of Peste des petits ruminant virus using surface Plasmon resonance. Virol J 2018; 15:21. [PMID: 29357882 PMCID: PMC5778702 DOI: 10.1186/s12985-018-0933-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/15/2018] [Indexed: 11/30/2022] Open
Abstract
Background The specific and dynamic interaction between the hemagglutinin (H) and fusion (F) proteins of morbilliviruses is a prerequisite for the conformational rearrangements and membrane fusion during infection process. The two heptad repeat regions (HRA and HRB) of F protein are both important for the triggering of F protein. Methods In this study, the direct interactions of Peste des petits ruminants virus (PPRV) H with F, HRA and HRB were quantitatively evaluated using biosensor surface plasmon resonance (SPR). Results The binding affinities of immobilized pCMV-HA-H (HA-H) interacted with proteins pCMV-HA-F (HA-F) and pCMV-HA-HRB (HA-HRB) (KD = 1.91 × 10− 8 M and 2.60 × 10− 7 M, respectively) reacted an order of magnitude more strongly than that of pCMV-HA-HRA (HA-HRA) and pCMV-HA-Tp IGFR-LD (HA) (KD = 1.08 × 10− 4 M and 1.43 × 10− 4 M, respectively). Conclusions The differences of the binding affinities suggested that HRB is involved in functionally important intermolecular interaction in the fusion process.
Collapse
|
17
|
Ha MN, Delpeut S, Noyce RS, Sisson G, Black KM, Lin LT, Bilimoria D, Plemper RK, Privé GG, Richardson CD. Mutations in the Fusion Protein of Measles Virus That Confer Resistance to the Membrane Fusion Inhibitors Carbobenzoxy-d-Phe-l-Phe-Gly and 4-Nitro-2-Phenylacetyl Amino-Benzamide. J Virol 2017; 91:e01026-17. [PMID: 28904193 PMCID: PMC5686717 DOI: 10.1128/jvi.01026-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/27/2017] [Indexed: 11/20/2022] Open
Abstract
The inhibitors carbobenzoxy (Z)-d-Phe-l-Phe-Gly (fusion inhibitor peptide [FIP]) and 4-nitro-2-phenylacetyl amino-benzamide (AS-48) have similar efficacies in blocking membrane fusion and syncytium formation mediated by measles virus (MeV). Other homologues, such as Z-d-Phe, are less effective but may act through the same mechanism. In an attempt to map the site of action of these inhibitors, we generated mutant viruses that were resistant to the inhibitory effects of Z-d-Phe-l-Phe-Gly. These 10 mutations were localized to the heptad repeat B (HRB) region of the fusion protein, and no changes were observed in the viral hemagglutinin, which is the receptor attachment protein. Mutations were validated in a luciferase-based membrane fusion assay, using transfected fusion and hemagglutinin expression plasmids or with syncytium-based assays in Vero, Vero-SLAM, and Vero-Nectin 4 cell lines. The changes I452T, D458N, D458G/V459A, N462K, N462H, G464E, and I483R conferred resistance to both FIP and AS-48 without compromising membrane fusion. The inhibitors did not block hemagglutinin protein-mediated binding to the target cell. Edmonston vaccine/laboratory and IC323 wild-type strains were equally affected by the inhibitors. Escape mutations were mapped upon a three-dimensional (3D) structure modeled from the published crystal structure of parainfluenzavirus 5 fusion protein. The most effective mutations were situated in a region located near the base of the globular head and its junction with the alpha-helical stalk of the prefusion protein. We hypothesize that the fusion inhibitors could interfere with the structural changes that occur between the prefusion and postfusion conformations of the fusion protein.IMPORTANCE Due to lapses in vaccination worldwide that have caused localized outbreaks, measles virus (MeV) has regained importance as a pathogen. Antiviral agents against measles virus are not commercially available but could be useful in conjunction with MeV eradication vaccine programs and as a safeguard in oncolytic viral therapy. Three decades ago, the small hydrophobic peptide Z-d-Phe-l-Phe-Gly (FIP) was shown to block MeV infections and syncytium formation in monkey kidney cell lines. The exact mechanism of its action has yet to be determined, but it does appear to have properties similar to those of another chemical inhibitor, AS-48, which appears to interfere with the conformational change in the viral F protein that is required to elicit membrane fusion. Escape mutations were used to map the site of action for FIP. Knowledge gained from these studies could help in the design of new inhibitors against morbilliviruses and provide additional knowledge concerning the mechanism of virus-mediated membrane fusion.
Collapse
Affiliation(s)
- Michael N Ha
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
| | - Sébastien Delpeut
- Department of Pediatrics, IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryan S Noyce
- Department of Pediatrics, IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Gary Sisson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Karen M Black
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Darius Bilimoria
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vertex Pharmaceuticals (Canada) Incorporated, Laval, Quebec, Canada
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Gilbert G Privé
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Richardson
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
18
|
Tahara M, Takeda M. [Measles Virus]. Uirusu 2017; 67:3-16. [PMID: 29593149 DOI: 10.2222/jsv.67.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Measles virus (MeV) is exceptionally contagious and still a major cause of death in child.However, recently significant progress towards the elimination of measles has been made through increased vaccination coverage of measles-containing vaccines. The hemagglutinin (H) protein of MeV interacts with a cellular receptor, and this interaction is the first step of infection. MeV uses two different receptors, signaling lymphocyte activation molecule (SLAM) and nectin-4 expressed on immune cells and epithelial cells, respectively. The interactions of MeV with these receptors nicely explain the immune suppressive and high contagious properties of MeV. Binding of the H protein to a receptor triggers conformational changes in the fusion (F) protein, inducing fusion between viral and host plasma membranes for entry. The stalk region of the H protein plays a key role in the F protein-triggering. Recent studies of the H protein epitopes have revealed that the receptor binding site of the H protein constitutes a major neutralizing epitope. The interaction with two proteinaceous receptors probably imposes strong functional constraints on this epitope for amino acid changes. This would be a reason why measles vaccines, which are derived from MV strains isolated more than 60 years ago, are still highly effective against all MV strains currently circulating.
Collapse
Affiliation(s)
- Maino Tahara
- Department of Virology III, National Institute of Infectious Diseases
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases
| |
Collapse
|
19
|
Multiple Strategies Reveal a Bidentate Interaction between the Nipah Virus Attachment and Fusion Glycoproteins. J Virol 2016; 90:10762-10773. [PMID: 27654290 DOI: 10.1128/jvi.01469-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/14/2016] [Indexed: 11/20/2022] Open
Abstract
The paramyxoviral family contains many medically important viruses, including measles virus, mumps virus, parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the deadly zoonotic henipaviruses Hendra and Nipah virus (NiV). To both enter host cells and spread from cell to cell within infected hosts, the vast majority of paramyxoviruses utilize two viral envelope glycoproteins: the attachment glycoprotein (G, H, or hemagglutinin-neuraminidase [HN]) and the fusion glycoprotein (F). Binding of G/H/HN to a host cell receptor triggers structural changes in G/H/HN that in turn trigger F to undergo a series of conformational changes that result in virus-cell (viral entry) or cell-cell (syncytium formation) membrane fusion. The actual regions of G/H/HN and F that interact during the membrane fusion process remain relatively unknown though it is generally thought that the paramyxoviral G/H/HN stalk region interacts with the F head region. Studies to determine such interactive regions have relied heavily on coimmunoprecipitation approaches, whose limitations include the use of detergents and the micelle-mediated association of proteins. Here, we developed a flow-cytometric strategy capable of detecting membrane protein-protein interactions by interchangeably using the full-length form of G and a soluble form of F, or vice versa. Using both coimmunoprecipitation and flow-cytometric strategies, we found a bidentate interaction between NiV G and F, where both the stalk and head regions of NiV G interact with F. This is a new structural-biological finding for the paramyxoviruses. Additionally, our studies disclosed regions of the NiV G and F glycoproteins dispensable for the G and F interactions. IMPORTANCE Nipah virus (NiV) is a zoonotic paramyxovirus that causes high mortality rates in humans, with no approved treatment or vaccine available for human use. Viral entry into host cells relies on two viral envelope glycoproteins: the attachment (G) and fusion (F) glycoproteins. Binding of G to the ephrinB2 or ephrinB3 cell receptors triggers conformational changes in G that in turn cause F to undergo conformational changes that result in virus-host cell membrane fusion and viral entry. It is currently unknown, however, which specific regions of G and F interact during membrane fusion. Past efforts to determine the interacting regions have relied mainly on coimmunoprecipitation, a technique with some pitfalls. We developed a flow-cytometric assay to study membrane protein-protein interactions, and using this assay we report a bidentate interaction whereby both the head and stalk regions of NiV G interact with NiV F, a new finding for the paramyxovirus family.
Collapse
|
20
|
Morbillivirus Experimental Animal Models: Measles Virus Pathogenesis Insights from Canine Distemper Virus. Viruses 2016; 8:v8100274. [PMID: 27727184 PMCID: PMC5086610 DOI: 10.3390/v8100274] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/19/2022] Open
Abstract
Morbilliviruses share considerable structural and functional similarities. Even though disease severity varies among the respective host species, the underlying pathogenesis and the clinical signs are comparable. Thus, insights gained with one morbillivirus often apply to the other members of the genus. Since the Canine distemper virus (CDV) causes severe and often lethal disease in dogs and ferrets, it is an attractive model to characterize morbillivirus pathogenesis mechanisms and to evaluate the efficacy of new prophylactic and therapeutic approaches. This review compares the cellular tropism, pathogenesis, mechanisms of persistence and immunosuppression of the Measles virus (MeV) and CDV. It then summarizes the contributions made by studies on the CDV in dogs and ferrets to our understanding of MeV pathogenesis and to vaccine and drugs development.
Collapse
|
21
|
Mutagenesis of Paramyxovirus Hemagglutinin-Neuraminidase Membrane-Proximal Stalk Region Influences Stability, Receptor Binding, and Neuraminidase Activity. J Virol 2016; 90:7778-88. [PMID: 27334593 DOI: 10.1128/jvi.00896-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/13/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Paramyxoviridae consist of a large family of enveloped, negative-sense, nonsegmented single-stranded RNA viruses that account for a significant number of human and animal diseases. The fusion process for nearly all paramyxoviruses involves the mixing of the host cell plasma membrane and the virus envelope in a pH-independent fashion. Fusion is orchestrated via the concerted action of two surface glycoproteins: an attachment protein called hemagglutinin-neuraminidase (HN [also called H or G depending on virus type and substrate]), which acts as a receptor binding protein, and a fusion (F) protein, which undergoes a major irreversible refolding process to merge the two membranes. Recent biochemical evidence suggests that receptor binding by HN is dispensable for cell-cell fusion. However, factors that influence the stability and/or conformation of the HN 4-helix bundle (4HB) stalk have not been studied. Here, we used oxidative cross-linking as well as functional assays to investigate the role of the structurally unresolved membrane-proximal stalk region (MPSR) (residues 37 to 58) of HN in the context of headless and full-length HN membrane fusion promotion. Our data suggest that the receptor binding head serves to stabilize the stalk to regulate fusion. Moreover, we found that the MPSR of HN modulates receptor binding and neuraminidase activity without a corresponding regulation of F triggering. IMPORTANCE Paramyxoviruses require two viral membrane glycoproteins, the attachment protein variously called HN, H, or G and the fusion protein (F), to couple host receptor recognition to virus-cell fusion. The HN protein has a globular head that is attached to a membrane-anchored flexible stalk of ∼80 residues and has three activities: receptor binding, neuraminidase, and fusion activation. In this report, we have identified the functional significance of the membrane-proximal stalk region (MPSR) (HN, residues 37 to 56) of the paramyxovirus parainfluenza virus (PIV5), a region of the HN stalk that has not had its structure determined by X-ray crystallography. Our data suggest that the MPSR influences receptor binding and neuraminidase activity via an indirect mechanism. Moreover, the receptor binding head group stabilizes the 4HB stalk as part of the general mechanism to fine-tune F-activation.
Collapse
|
22
|
Abstract
The family Paramyxoviridae includes many viruses that significantly affect human and animal health. An essential step in the paramyxovirus life cycle is viral entry into host cells, mediated by virus-cell membrane fusion. Upon viral entry, infection results in expression of the paramyxoviral glycoproteins on the infected cell surface. This can lead to cell-cell fusion (syncytia formation), often linked to pathogenesis. Thus membrane fusion is essential for both viral entry and cell-cell fusion and an attractive target for therapeutic development. While there are important differences between viral-cell and cell-cell membrane fusion, many aspects are conserved. The paramyxoviruses generally utilize two envelope glycoproteins to orchestrate membrane fusion. Here, we discuss the roles of these glycoproteins in distinct steps of the membrane fusion process. These findings can offer insights into evolutionary relationships among Paramyxoviridae genera and offer future targets for prophylactic and therapeutic development.
Collapse
|
23
|
Measles Virus Fusion Protein: Structure, Function and Inhibition. Viruses 2016; 8:112. [PMID: 27110811 PMCID: PMC4848605 DOI: 10.3390/v8040112] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/26/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023] Open
Abstract
Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.
Collapse
|
24
|
Abstract
Peste des petits ruminants virus (PPRV) causes a severe contagious disease of sheep and goats and has spread extensively through the developing world. Because of its disproportionately large impact on the livelihoods of low-income livestock keepers, and the availability of effective vaccines and good diagnostics, the virus is being targeted for global control and eventual eradication. In this review we examine the origin of the virus and its current distribution, and the factors that have led international organizations to conclude that it is eradicable. We also review recent progress in the molecular and cellular biology of the virus and consider areas where further research is required to support the efforts being made by national, regional, and international bodies to tackle this growing threat.
Collapse
Affiliation(s)
- M D Baron
- The Pirbright Institute, Surrey, United Kingdom.
| | - A Diallo
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| | - R Lancelot
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| | - G Libeau
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| |
Collapse
|
25
|
A Structurally Unresolved Head Segment of Defined Length Favors Proper Measles Virus Hemagglutinin Tetramerization and Efficient Membrane Fusion Triggering. J Virol 2015; 90:68-75. [PMID: 26446605 DOI: 10.1128/jvi.02253-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/05/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Paramyxoviruses include several insidious and ubiquitous pathogens of humans and animals, with measles virus (MeV) being a prominent one. The MeV membrane fusion apparatus consists of a receptor binding protein (hemagglutinin [H]) tetramer and a fusion (F) protein trimer. Four globular MeV H heads are connected to a tetrameric stalk through flexible linkers. We sought here to characterize the function of a 17-residue H-head segment proximal to the stalk that was unresolved in all five MeV H-head crystal or cocrystal structures. In particular, we assessed whether its primary sequence and length are critical for proper protein oligomerization and intracellular transport or for membrane fusion triggering. Extensive alanine substitutions had no effect on fusion triggering, suggesting that sequence identity is not critical for this function. Excessive shortening of this segment reduced or completely abrogated fusion trigger function, while length compensation restored it. We then characterized the mechanism of function loss. Mutated H proteins were efficiently transported to the cell surface, but certain alterations enhancing linker flexibility resulted in accumulation of high-molecular-weight H oligomers. Some oligomers had reduced fusion trigger capacity, while others retained this function. Thus, length and rigidity of the unresolved head segment favor proper H tetramerization and counteract interactions between subunits from different tetramers. The structurally unresolved H-head segment, together with the top of the stalk, may act as a leash to provide the right degree of freedom for the heads of individual tetramers to adopt a triggering-permissive conformation while avoiding improper contacts with heads of neighboring tetramers. IMPORTANCE Understanding the molecular mechanism of membrane fusion triggering may allow development of new antiviral strategies. The fusion apparatus of paramyxoviruses consists of a receptor binding tetramer and a fusion protein trimer. Structural analyses of the receptor binding hemagglutinin-neuraminidases of certain paramyxoviruses suggest that fusion triggering is preceded by relocation of its head domains, facilitated by flexible linkers. Having noted a structurally unresolved 17-residue segment linking the globular heads to the tetrameric stalk of the measles virus hemagglutinin (H), we asked whether and how it may facilitate membrane fusion triggering. We conclude that, together with the top of the stalk, the flexible linker keeps H heads on a leash long enough to adopt a triggering-permissive conformation but short enough to limit roaming and improper contacts with heads of neighboring tetramers. All morbillivirus H-protein heads appear to be connected to their stalks through a "leash," suggesting a conserved triggering mechanism.
Collapse
|
26
|
Type II integral membrane protein, TM of J paramyxovirus promotes cell-to-cell fusion. Proc Natl Acad Sci U S A 2015; 112:12504-9. [PMID: 26392524 DOI: 10.1073/pnas.1509476112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paramyxoviruses include many important animal and human pathogens. Most paramyxoviruses have two integral membrane proteins: fusion protein (F) and attachment proteins hemagglutinin, hemagglutinin-neuraminidase, or glycoprotein (G), which are critical for viral entry into cells. J paramyxovirus (JPV) encodes four integral membrane proteins: F, G, SH, and transmembrane (TM). The function of TM is not known. In this work, we have generated a viable JPV lacking TM (JPV∆TM). JPV∆TM formed opaque plaques compared with JPV. Quantitative syncytia assays showed that JPV∆TM was defective in promoting cell-to-cell fusion (i.e., syncytia formation) compared with JPV. Furthermore, cells separately expressing F, G, TM, or F plus G did not form syncytia whereas cells expressing F plus TM formed some syncytia. However, syncytia formation was much greater with coexpression of F, G, and TM. Biochemical analysis indicates that F, G, and TM interact with each other. A small hydrophobic region in the TM ectodomain from amino acid residues 118 to 132, the hydrophobic loop (HL), was important for syncytial promotion, suggesting that the TM HL region plays a critical role in cell-to-cell fusion.
Collapse
|
27
|
Ader-Ebert N, Khosravi M, Herren M, Avila M, Alves L, Bringolf F, Örvell C, Langedijk JP, Zurbriggen A, Plemper RK, Plattet P. Sequential conformational changes in the morbillivirus attachment protein initiate the membrane fusion process. PLoS Pathog 2015; 11:e1004880. [PMID: 25946112 PMCID: PMC4422687 DOI: 10.1371/journal.ppat.1004880] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/14/2015] [Indexed: 11/18/2022] Open
Abstract
Despite large vaccination campaigns, measles virus (MeV) and canine distemper virus (CDV) cause major morbidity and mortality in humans and animals, respectively. The MeV and CDV cell entry system relies on two interacting envelope glycoproteins: the attachment protein (H), consisting of stalk and head domains, co-operates with the fusion protein (F) to mediate membrane fusion. However, how receptor-binding by the H-protein leads to F-triggering is not fully understood. Here, we report that an anti-CDV-H monoclonal antibody (mAb-1347), which targets the linear H-stalk segment 126-133, potently inhibits membrane fusion without interfering with H receptor-binding or F-interaction. Rather, mAb-1347 blocked the F-triggering function of H-proteins regardless of the presence or absence of the head domains. Remarkably, mAb-1347 binding to headless CDV H, as well as standard and engineered bioactive stalk-elongated CDV H-constructs treated with cells expressing the SLAM receptor, was enhanced. Despite proper cell surface expression, fusion promotion by most H-stalk mutants harboring alanine substitutions in the 126-138 "spacer" section was substantially impaired, consistent with deficient receptor-induced mAb-1347 binding enhancement. However, a previously reported F-triggering defective H-I98A variant still exhibited the receptor-induced "head-stalk" rearrangement. Collectively, our data spotlight a distinct mechanism for morbillivirus membrane fusion activation: prior to receptor contact, at least one of the morbillivirus H-head domains interacts with the membrane-distal "spacer" domain in the H-stalk, leaving the F-binding site located further membrane-proximal in the stalk fully accessible. This "head-to-spacer" interaction conformationally stabilizes H in an auto-repressed state, which enables intracellular H-stalk/F engagement while preventing the inherent H-stalk's bioactivity that may prematurely activate F. Receptor-contact disrupts the "head-to-spacer" interaction, which subsequently "unlocks" the stalk, allowing it to rearrange and trigger F. Overall, our study reveals essential mechanistic requirements governing the activation of the morbillivirus membrane fusion cascade and spotlights the H-stalk "spacer" microdomain as a possible drug target for antiviral therapy.
Collapse
Affiliation(s)
- Nadine Ader-Ebert
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mojtaba Khosravi
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Michael Herren
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mislay Avila
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lisa Alves
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Fanny Bringolf
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Claes Örvell
- Division of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Andreas Zurbriggen
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Philippe Plattet
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
28
|
Bose S, Jardetzky TS, Lamb RA. Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry. Virology 2015; 479-480:518-31. [PMID: 25771804 PMCID: PMC4424121 DOI: 10.1016/j.virol.2015.02.037] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/21/2015] [Accepted: 02/18/2015] [Indexed: 11/30/2022]
Abstract
The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insights into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. New structural and functional insights into paramyxovirus entry mechanisms. Current data on paramyxovirus glycoproteins suggest a core conserved entry mechanism. Diverse mechanisms preventing premature fusion activation exist in these viruses. Precise spacio-temporal interplay between paramyxovirus glycoproteins initiate entry.
Collapse
Affiliation(s)
- Sayantan Bose
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500, United States.
| | - Theodore S Jardetzky
- Department of Structural Biology and Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Robert A Lamb
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500, United States; Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208-3500, United States.
| |
Collapse
|
29
|
Measles virus glycoprotein complexes preassemble intracellularly and relax during transport to the cell surface in preparation for fusion. J Virol 2014; 89:1230-41. [PMID: 25392208 DOI: 10.1128/jvi.02754-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Measles virus (MeV), a morbillivirus within the paramyxovirus family, expresses two envelope glycoproteins. The attachment (H) protein mediates receptor binding, followed by triggering of the fusion (F) protein, which leads to merger of the viral envelope with target cell membranes. Receptor binding by members of related paramyxovirus genera rearranges the head domains of the attachment proteins, liberating an F-contact domain within the attachment protein helical stalk. However, morbillivirus glycoproteins first assemble intracellularly prior to receptor binding, raising the question of whether alternative protein-protein interfaces are involved or whether an entirely distinct triggering principle is employed. To test these possibilities, we generated headless H stem mutants of progressively shorter length. Conformationally restricted H stems remained capable of intracellular assembly with a standard F protein and a soluble MeV F mutant. Proteolytic maturation of F, but not the altered biochemical conditions at the cell surface, reduces the strength of glycoprotein interaction, readying the complexes for triggering. F mutants stabilized in the prefusion conformation interact with H intracellularly and at the cell surface, while destabilized F mutants interact only intracellularly, prior to F maturation. These results showcase an MeV entry machinery that functionally varies conserved motifs of the proposed paramyxovirus infection pathway. Intracellular and plasma membrane-resident MeV glycoprotein complexes employ the same protein-protein interface. F maturation prepares for complex separation after triggering, and the H head domains in prereceptor-bound conformation prevent premature stalk rearrangements and F activation. Intracellular preassembly affects MeV fusion profiles and may contribute to the high cell-to-cell fusion activity characteristic of the morbillivirus genus. IMPORTANCE Paramyxoviruses of the morbillivirus genus, such as measles, are highly contagious, major human and animal pathogens. MeV envelope glycoproteins preassemble intracellularly into tightly associated hetero-oligomers. To address whether preassembly reflects a unique measles virus entry strategy, we characterized the protein-protein interface of intracellular and surface-exposed fusion complexes and investigated the effect of the attachment protein head domains, glycoprotein maturation, and altered biochemical conditions at the cell surface on measles virus fusion complexes. Our results demonstrate that measles virus functionally varies conserved elements of the paramyxovirus entry pathway, providing a possible explanation for the high cell-to-cell fusion activity of morbilliviruses. Insight gained from these data affects the design of effective broad-spectrum paramyxovirus entry inhibitors.
Collapse
|
30
|
Canine distemper virus envelope protein interactions modulated by hydrophobic residues in the fusion protein globular head. J Virol 2014; 89:1445-51. [PMID: 25355896 DOI: 10.1128/jvi.01828-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Membrane fusion for morbillivirus cell entry relies on critical interactions between the viral fusion (F) and attachment (H) envelope glycoproteins. Through extensive mutagenesis of an F cavity recently proposed to contribute to F's interaction with the H protein, we identified two neighboring hydrophobic residues responsible for severe F-to-H binding and fusion-triggering deficiencies when they were mutated in combination. Since both residues reside on one side of the F cavity, the data suggest that H binds the F globular head domain sideways.
Collapse
|
31
|
Probing the functions of the paramyxovirus glycoproteins F and HN with a panel of synthetic antibodies. J Virol 2014; 88:11713-25. [PMID: 25122782 DOI: 10.1128/jvi.01707-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramyxoviruses are enveloped negative-strand RNA viruses that are significant human and animal pathogens. Most paramyxoviruses infect host cells via the concerted action of a tetrameric attachment protein (variously called HN, H, or G) that binds either sialic acid or protein receptors on target cells and a trimeric fusion protein (F) that merges the viral envelope with the plasma membrane at neutral pH. F initially folds to a metastable prefusion conformation that becomes activated via a cleavage event during cellular trafficking. Upon receptor binding, the attachment protein, which consists of a globular head anchored to the membrane via a helical tetrameric stalk, triggers a major conformation change in F which results in fusion of virus and host cell membranes. We recently proposed a model for F activation in which the attachment protein head domains move following receptor binding to expose HN stalk residues critical for triggering F. To test the model in the context of wild-type viral glycoproteins, we used a restricted-diversity combinatorial Fab library and phage display to rapidly generate synthetic antibodies (sAbs) against multiple domains of the paramyxovirus parainfluenza 5 (PIV5) pre- and postfusion F and HN. As predicted by the model, sAbs that bind to the critical F-triggering region of the HN stalk do not disrupt receptor binding or neuraminidase (NA) activity but are potent inhibitors of fusion. An inhibitory prefusion F-specific sAb recognized a quaternary antigenic site and may inhibit fusion by preventing F refolding or by blocking the F-HN interaction. Importance: The paramyxovirus family of negative-strand RNA viruses cause significant disease in humans and animals. The viruses bind to cells via their receptor binding protein and then enter cells by fusion of their envelope with the host cell plasma membrane, a process mediated by a metastable viral fusion (F) protein. To understand the steps in viral membrane fusion, a library of synthetic antibodies to F protein and the receptor binding protein was generated in bacteriophage. These antibodies bound to different regions of the F protein and the receptor binding protein, and the location of antibody binding affected different processes in viral entry into cells.
Collapse
|
32
|
Paramyxovirus glycoprotein incorporation, assembly and budding: a three way dance for infectious particle production. Viruses 2014; 6:3019-54. [PMID: 25105277 PMCID: PMC4147685 DOI: 10.3390/v6083019] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022] Open
Abstract
Paramyxoviruses are a family of negative sense RNA viruses whose members cause serious diseases in humans, such as measles virus, mumps virus and respiratory syncytial virus; and in animals, such as Newcastle disease virus and rinderpest virus. Paramyxovirus particles form by assembly of the viral matrix protein, the ribonucleoprotein complex and the surface glycoproteins at the plasma membrane of infected cells and subsequent viral budding. Two major glycoproteins expressed on the viral envelope, the attachment protein and the fusion protein, promote attachment of the virus to host cells and subsequent virus-cell membrane fusion. Incorporation of the surface glycoproteins into infectious progeny particles requires coordinated interplay between the three viral structural components, driven primarily by the matrix protein. In this review, we discuss recent progress in understanding the contributions of the matrix protein and glycoproteins in driving paramyxovirus assembly and budding while focusing on the viral protein interactions underlying this process and the intracellular trafficking pathways for targeting viral components to assembly sites. Differences in the mechanisms of particle production among the different family members will be highlighted throughout.
Collapse
|
33
|
Mateo M, Navaratnarajah CK, Cattaneo R. Structural basis of efficient contagion: measles variations on a theme by parainfluenza viruses. Curr Opin Virol 2014; 5:16-23. [PMID: 24492202 PMCID: PMC4028398 DOI: 10.1016/j.coviro.2014.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/26/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022]
Abstract
A quartet of attachment proteins and a trio of fusion protein subunits play the cell entry concert of parainfluenza viruses. While many of these viruses bind sialic acid to enter cells, wild type measles binds exclusively two tissue-specific proteins, the lymphatic receptor signaling lymphocytic activation molecule (SLAM), and the epithelial receptor nectin-4. SLAM binds near the stalk-head junction of the hemagglutinin. Nectin-4 binds a hydrophobic groove located between blades 4 and 5 of the hemagglutinin β-propeller head. The mutated vaccine strain hemagglutinin binds in addition the ubiquitous protein CD46, which explains attenuation. The measles virus entry concert has four movements. Andante misterioso: the virus takes over the immune system. Allegro con brio: it rapidly spreads in the upper airway's epithelia. 'Targeting' fugue: the versatile orchestra takes off. Presto furioso: the virus exits the host with thunder. Be careful: music is contagious.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/metabolism
- Humans
- Measles/genetics
- Measles/metabolism
- Measles/virology
- Measles virus/chemistry
- Measles virus/genetics
- Measles virus/metabolism
- Protein Binding
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Signaling Lymphocytic Activation Molecule Family Member 1
Collapse
Affiliation(s)
- Mathieu Mateo
- Department of Molecular Medicine, Mayo Clinic, and Virology and Gene Therapy Track, Mayo Graduate School, 200 First Street SW, Rochester, MN 55905, USA
| | - Chanakha K Navaratnarajah
- Department of Molecular Medicine, Mayo Clinic, and Virology and Gene Therapy Track, Mayo Graduate School, 200 First Street SW, Rochester, MN 55905, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, and Virology and Gene Therapy Track, Mayo Graduate School, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
34
|
Fourrier M, Lester K, Thoen E, Mikalsen A, Evensen Ø, Falk K, Collet B, McBeath A. Deletions in the highly polymorphic region (HPR) of infectious salmon anaemia virus HPR0 haemagglutinin-esterase enhance viral fusion and influence the interaction with the fusion protein. J Gen Virol 2014; 95:1015-1024. [PMID: 24486627 DOI: 10.1099/vir.0.061648-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Since the discovery of a non-virulent infectious salmon anaemia virus (ISAV) HPR0 variant, many studies have speculated on the functional role of deletions within the highly polymorphic region (HPR) of genomic segment 6, which codes for the haemagglutinin-esterase (HE) protein. To address this issue, mutant HE proteins with deletions in their HPR were generated from the Scottish HPR0 template (NWM10) and fusion-inducing activity was measured using lipid (octadecyl rhodamine B) and content mixing assays (firefly luciferase). Segment six HPR was found to have a strong influence on ISAV fusion, and deletions in this near-membrane region predominantly increased the fusion-inducing ability of the resulting HE proteins. The position and length of the HPR deletions were not significant factors, suggesting that they may affect fusion non-specifically. In comparison, the amino acid composition of the associated fusion (F) protein was a more crucial criterion. Antibody co-patching and confocal fluorescence demonstrated that the HE and F proteins were highly co-localized, forming defined clusters on the cell surface post-transfection. The binding of erythrocyte ghosts on the attachment protein caused a reduction in the percentage of co-localization, suggesting that ISAV fusion might be triggered through physical separation of the F and HE proteins. In this process, HPR deletion appeared to modulate and reduce the strength of interaction between the two glycoproteins, causing more F protein to be released and activated. This work provides a first insight into the mechanism of virulence acquisition through HPR deletion, with fusion enhancement acting as a major contributing factor.
Collapse
Affiliation(s)
- Mickael Fourrier
- Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - Katherine Lester
- Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - Even Thoen
- Norwegian Veterinary Institute, Oslo, Norway
| | - Aase Mikalsen
- Norwegian School of Veterinary Science, Oslo, Norway
| | | | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway
| | - Bertrand Collet
- Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - Alastair McBeath
- Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK
| |
Collapse
|
35
|
Fusion activation through attachment protein stalk domains indicates a conserved core mechanism of paramyxovirus entry into cells. J Virol 2014; 88:3925-41. [PMID: 24453369 DOI: 10.1128/jvi.03741-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Paramyxoviruses are a large family of membrane-enveloped negative-stranded RNA viruses causing important diseases in humans and animals. Two viral integral membrane glycoproteins (fusion [F] and attachment [HN, H, or G]) mediate a concerted process of host receptor recognition, followed by the fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. However, the sequence of events that closely links the timing of receptor recognition by HN, H, or G and the "triggering" interaction of the attachment protein with F is unclear. F activation results in F undergoing a series of irreversible conformational rearrangements to bring about membrane merger and virus entry. By extensive study of properties of multiple paramyxovirus HN proteins, we show that key features of F activation, including the F-activating regions of HN proteins, flexibility within this F-activating region, and changes in globular head-stalk interactions are highly conserved. These results, together with functionally active "headless" mumps and Newcastle disease virus HN proteins, provide insights into the F-triggering process. Based on these data and very recently published data for morbillivirus H and henipavirus G proteins, we extend our recently proposed "stalk exposure model" to other paramyxoviruses and propose an "induced fit" hypothesis for F-HN/H/G interactions as conserved core mechanisms of paramyxovirus-mediated membrane fusion. IMPORTANCE Paramyxoviruses are a large family of membrane-enveloped negative-stranded RNA viruses causing important diseases in humans and animals. Two viral integral membrane glycoproteins (fusion [F] and attachment [HN, H, or G]) mediate a concerted process of host receptor recognition, followed by the fusion of viral and cellular membranes. We describe here the molecular mechanism by which HN activates the F protein such that virus-cell fusion is controlled and occurs at the right time and the right place. We extend our recently proposed "stalk exposure model" first proposed for parainfluenza virus 5 to other paramyxoviruses and propose an "induced fit" hypothesis for F-HN/H/G interactions as conserved core mechanisms of paramyxovirus-mediated membrane fusion.
Collapse
|
36
|
Molecular determinants defining the triggering range of prefusion F complexes of canine distemper virus. J Virol 2013; 88:2951-66. [PMID: 24371057 DOI: 10.1128/jvi.03123-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The morbillivirus cell entry machinery consists of a fusion (F) protein trimer that refolds to mediate membrane fusion following receptor-induced conformational changes in its binding partner, the tetrameric attachment (H) protein. To identify molecular determinants that control F refolding, we generated F chimeras between measles virus (MeV) and canine distemper virus (CDV). We located a central pocket in the globular head domain of CDV F that regulates the stability of the metastable, prefusion conformational state of the F trimer. Most mutations introduced into this "pocket'" appeared to mediate a destabilizing effect, a phenotype associated with enhanced membrane fusion activity. Strikingly, under specific triggering conditions (i.e., variation of receptor type and H protein origin), some F mutants also exhibited resistance to a potent morbillivirus entry inhibitor, which is known to block F triggering by enhancing the stability of prefusion F trimers. Our data reveal that the molecular nature of the F stimulus and the intrinsic stability of metastable prefusion F both regulate the efficiency of F refolding and escape from small-molecule refolding blockers. IMPORTANCE With the aim to better characterize the thermodynamic basis of morbillivirus membrane fusion for cell entry and spread, we report here that the activation energy barrier of prefusion F trimers together with the molecular nature of the triggering "stimulus" (attachment protein and receptor types) define a "triggering range," which governs the initiation of the membrane fusion process. A central "pocket" microdomain in the globular F head contributes substantially to the regulation of the conformational stability of the prefusion complexes. The triggering range also defines the mechanism of viral escape from entry inhibitors and describes how the cellular environment can affect membrane fusion efficiency.
Collapse
|
37
|
Mutations in the parainfluenza virus 5 fusion protein reveal domains important for fusion triggering and metastability. J Virol 2013; 87:13520-31. [PMID: 24089572 DOI: 10.1128/jvi.02123-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Paramyxovirus membrane glycoproteins F (fusion protein) and HN, H, or G (attachment protein) are critical for virus entry, which occurs through fusion of viral and cellular envelopes. The F protein folds into a homotrimeric, metastable prefusion form that can be triggered by the attachment protein to undergo a series of structural rearrangements, ultimately folding into a stable postfusion form. In paramyxovirus-infected cells, the F protein is activated in the Golgi apparatus by cleavage adjacent to a hydrophobic fusion peptide that inserts into the target membrane, eventually bringing the membranes together by F refolding. However, it is not clear how the attachment protein, known as HN in parainfluenza virus 5 (PIV5), interacts with F and triggers F to initiate fusion. To understand the roles of various F protein domains in fusion triggering and metastability, single point mutations were introduced into the PIV5 F protein. By extensive study of F protein cleavage activation, surface expression, and energetics of fusion triggering, we found a role for an immunoglobulin-like (Ig-like) domain, where multiple hydrophobic residues on the PIV5 F protein may mediate F-HN interactions. Additionally, destabilizing mutations of PIV5 F that resulted in HN trigger-independent mutant F proteins were identified in a region along the border of F trimer subunits. The positions of the potential HN-interacting region and the region important for F stability in the lower part of the PIV5 F prefusion structure provide clues to the receptor-binding initiated, HN-mediated F trigger.
Collapse
|
38
|
A stabilized headless measles virus attachment protein stalk efficiently triggers membrane fusion. J Virol 2013; 87:11693-703. [PMID: 23966411 DOI: 10.1128/jvi.01945-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramyxovirus attachment and fusion (F) envelope glycoprotein complexes mediate membrane fusion required for viral entry. The measles virus (MeV) attachment (H) protein stalk domain is thought to directly engage F for fusion promotion. However, past attempts to generate truncated, fusion-triggering-competent H-stem constructs remained fruitless. In this study, we addressed the problem by testing the hypothesis that truncated MeV H stalks may require stabilizing oligomerization tags to maintain intracellular transport competence and F-triggering activity. We engineered H-stems of different lengths with added 4-helix bundle tetramerization domains and demonstrate restored cell surface expression, efficient interaction with F, and fusion promotion activity of these constructs. The stability of the 4-helix bundle tags and the relative orientations of the helical wheels of H-stems and oligomerization tags govern the kinetics of fusion promotion, revealing a balance between H stalk conformational stability and F-triggering activity. Recombinant MeV particles expressing a bioactive H-stem construct in the place of full-length H are viable, albeit severely growth impaired. Overall, we demonstrate that the MeV H stalk represents the effector domain for MeV F triggering. Fusion promotion appears linked to the conformational flexibility of the stalk, which must be tightly regulated in viral particles to ensure efficient virus entry. While the pathways toward assembly of functional fusion complexes may differ among diverse members of the paramyxovirus family, central elements of the triggering machinery emerge as highly conserved.
Collapse
|
39
|
Welch BD, Yuan P, Bose S, Kors CA, Lamb RA, Jardetzky TS. Structure of the parainfluenza virus 5 (PIV5) hemagglutinin-neuraminidase (HN) ectodomain. PLoS Pathog 2013; 9:e1003534. [PMID: 23950713 PMCID: PMC3738495 DOI: 10.1371/journal.ppat.1003534] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/18/2013] [Indexed: 01/07/2023] Open
Abstract
Paramyxoviruses cause a wide variety of human and animal diseases. They infect host cells using the coordinated action of two surface glycoproteins, the receptor binding protein (HN, H, or G) and the fusion protein (F). HN binds sialic acid on host cells (hemagglutinin activity) and hydrolyzes these receptors during viral egress (neuraminidase activity, NA). Additionally, receptor binding is thought to induce a conformational change in HN that subsequently triggers major refolding in homotypic F, resulting in fusion of virus and target cell membranes. HN is an oligomeric type II transmembrane protein with a short cytoplasmic domain and a large ectodomain comprising a long helical stalk and large globular head domain containing the enzymatic functions (NA domain). Extensive biochemical characterization has revealed that HN-stalk residues determine F specificity and activation. However, the F/HN interaction and the mechanisms whereby receptor binding regulates F activation are poorly defined. Recently, a structure of Newcastle disease virus (NDV) HN ectodomain revealed the heads (NA domains) in a "4-heads-down" conformation whereby two of the heads form a symmetrical interaction with two sides of the stalk. The interface includes stalk residues implicated in triggering F, and the heads sterically shield these residues from interaction with F (at least on two sides). Here we report the x-ray crystal structure of parainfluenza virus 5 (PIV5) HN ectodomain in a "2-heads-up/2-heads-down" conformation where two heads (covalent dimers) are in the "down position," forming a similar interface as observed in the NDV HN ectodomain structure, and two heads are in an "up position." The structure supports a model in which the heads of HN transition from down to up upon receptor binding thereby releasing steric constraints and facilitating the interaction between critical HN-stalk residues and F.
Collapse
Affiliation(s)
- Brett D. Welch
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Ping Yuan
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sayantan Bose
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Christopher A. Kors
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Robert A. Lamb
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (RAL); (TSJ)
| | - Theodore S. Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (RAL); (TSJ)
| |
Collapse
|
40
|
Hydrophobic and charged residues in the central segment of the measles virus hemagglutinin stalk mediate transmission of the fusion-triggering signal. J Virol 2013; 87:10401-4. [PMID: 23864629 DOI: 10.1128/jvi.01547-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pH-independent measles virus membrane fusion process begins when the attachment protein H binds to a receptor. Knowing that the central segment of the tetrameric H stalk transmits the signal to the fusion protein trimer, we investigated how. We document that exact conservation of most residues in the 92 through 99 segment is essential for function. In addition, hydrophobic and charged residues in the 104 through 125 segment, arranged with helical periodicity, are critical for F protein interactions and signal transmission.
Collapse
|
41
|
Abstract
Paramyxoviruses include major pathogens with significant global health and economic impact. This large family of enveloped RNA viruses infects cells by employing two surface glycoproteins that tightly cooperate to fuse their lipid envelopes with the target cell plasma membrane, an attachment and a fusion (F) protein. Membrane fusion is believed to depend on receptor-induced conformational changes within the attachment protein that lead to the activation and subsequent refolding of F. While structural and mechanistic studies have considerably advanced our insight into paramyxovirus cell adhesion and the structural basis of F refolding, how precisely the attachment protein links receptor engagement to F triggering remained poorly understood. Recent reports based on work with several paramyxovirus family members have transformed our understanding of the triggering mechanism of the membrane fusion machinery. Here, we review these recent findings, which (i) offer a broader mechanistic understanding of the paramyxovirus cell entry system, (ii) illuminate key similarities and differences between entry strategies of different paramyxovirus family members, and (iii) suggest new strategies for the development of novel therapeutics.
Collapse
|
42
|
Full conversion of the hemagglutinin-neuraminidase specificity of the parainfluenza virus 5 fusion protein by replacement of 21 amino acids in its head region with those of the simian virus 41 fusion protein. J Virol 2013; 87:8342-50. [PMID: 23698295 DOI: 10.1128/jvi.03549-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
For most parainfluenza viruses, a virus type-specific interaction between the hemagglutinin-neuraminidase (HN) and fusion (F) proteins is a prerequisite for mediating virus-cell fusion and cell-cell fusion. The molecular basis of this functional interaction is still obscure partly because it is unknown which region of the F protein is responsible for the physical interaction with the HN protein. Our previous cell-cell fusion assay using the chimeric F proteins of parainfluenza virus 5 (PIV5) and simian virus 41 (SV41) indicated that replacement of two domains in the head region of the PIV5 F protein with the SV41 F counterparts bestowed on the PIV5 F protein the ability to induce cell-cell fusion on coexpression with the SV41 HN protein while retaining its ability to induce fusion with the PIV5 HN protein. In the study presented here, we furthered the chimeric analysis of the F proteins of PIV5 and SV41, finding that the PIV5 F protein could be converted to an SV41 HN-specific chimeric F protein by replacing five domains in the head region with the SV41 F counterparts. The five SV41 F-protein-derived domains of this chimera were then divided into 16 segments; 9 out of 16 proved to be not involved in determining its specificity for the SV41 HN protein. Finally, mutational analyses of a chimeric F protein, which harbored seven SV41 F-protein-derived segments, revealed that replacement of at most 21 amino acids of the PIV5 F protein with the SV41 F-protein counterparts was enough to convert its HN protein specificity.
Collapse
|
43
|
Nakashima M, Shirogane Y, Hashiguchi T, Yanagi Y. Mutations in the putative dimer-dimer interfaces of the measles virus hemagglutinin head domain affect membrane fusion triggering. J Biol Chem 2013; 288:8085-8091. [PMID: 23362271 DOI: 10.1074/jbc.m112.427609] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Measles virus (MV), an enveloped RNA virus belonging to the Paramyxoviridae family, enters the cell through membrane fusion mediated by two viral envelope proteins, an attachment protein hemagglutinin (H) and a fusion (F) protein. The crystal structure of the receptor-binding head domain of MV-H bound to its cellular receptor revealed that the MV-H head domain forms a tetrameric assembly (dimer of dimers), which occurs in two forms (forms I and II). In this study, we show that mutations in the putative dimer-dimer interface of the head domain in either form inhibit the ability of MV-H to support membrane fusion, without greatly affecting its cell surface expression, receptor binding, and interaction with the F protein. Notably, some anti-MV-H neutralizing monoclonal antibodies are directed to the region around the dimer-dimer interface in form I rather than receptor-binding sites. These observations suggest that the dimer-dimer interactions of the MV-H head domain, especially that in form I, contribute to triggering membrane fusion, and that conformational shift of head domain tetramers plays a role in the process. Furthermore, our results indicate that although the stalk and transmembrane regions may be mainly responsible for the tetramer formation of MV-H, the head domain alone can form tetramers, albeit at a low efficiency.
Collapse
Affiliation(s)
- Mai Nakashima
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan; Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Yuta Shirogane
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan.
| | - Takao Hashiguchi
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, California 92037
| | - Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
44
|
Individual N-glycans added at intervals along the stalk of the Nipah virus G protein prevent fusion but do not block the interaction with the homologous F protein. J Virol 2013; 87:3119-29. [PMID: 23283956 DOI: 10.1128/jvi.03084-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The promotion of membrane fusion by most paramyxoviruses requires an interaction between the viral attachment and fusion (F) proteins to enable receptor binding by the former to trigger the activation of the latter for fusion. Numerous studies demonstrate that the F-interactive sites on the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) and measles virus (MV) hemagglutinin (H) proteins reside entirely within the stalk regions of those proteins. Indeed, stalk residues of NDV HN and MV H that likely mediate the F interaction have been identified. However, despite extensive efforts, the F-interactive site(s) on the Nipah virus (NiV) G attachment glycoprotein has not been identified. In this study, we have introduced individual N-linked glycosylation sites at several positions spaced at intervals along the stalk of the NiV G protein. Five of the seven introduced sites are utilized as established by a retardation of electrophoretic mobility. Despite surface expression, ephrinB2 binding, and oligomerization comparable to those of the wild-type protein, four of the five added N-glycans completely eliminate the ability of the G protein to complement the homologous F protein in the promotion of fusion. The most membrane-proximal added N-glycan reduces fusion by 80%. However, unlike similar NDV HN and MV H mutants, the NiV G glycosylation stalk mutants retain the ability to bind F, indicating that the fusion deficiency of these mutants is not due to prevention of the G-F interaction. These findings suggest that the G-F interaction is not mediated entirely by the stalk domain of G and may be more complex than that of HN/H-F.
Collapse
|
45
|
Abstract
The genus Morbillivirus includes measles virus, canine distemper virus and rinderpest virus. These are highly contagious and exhibit high mortality. These viruses have the attachment glycoprotein, hemagglutinin (H), at the virus surface, which bind to signaling lymphocyte activation molecule (SLAM) and Nectin 4 as receptors for the entry. However, the molecular mechanism for this entry has been limitedly understood. Here we summarize the current topics, (1) newly identified receptor, Nectin 4, (2) crystal structures of H-receptor complexes and (3) detail biochemical studies of the H-F communication for the entry. These provide insight on the mechanism of morbillivirus entry event and furthermore drug developments.
Collapse
Affiliation(s)
- Hideo Fukuhara
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University
| | | | | | | |
Collapse
|
46
|
|
47
|
Xu K, Chan YP, Rajashankar KR, Khetawat D, Yan L, Kolev MV, Broder CC, Nikolov DB. New insights into the Hendra virus attachment and entry process from structures of the virus G glycoprotein and its complex with Ephrin-B2. PLoS One 2012; 7:e48742. [PMID: 23144952 PMCID: PMC3489827 DOI: 10.1371/journal.pone.0048742] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/30/2012] [Indexed: 01/07/2023] Open
Abstract
Hendra virus and Nipah virus, comprising the genus Henipavirus, are recently emerged, highly pathogenic and often lethal zoonotic agents against which there are no approved therapeutics. Two surface glycoproteins, the attachment (G) and fusion (F), mediate host cell entry. The crystal structures of the Hendra G glycoprotein alone and in complex with the ephrin-B2 receptor reveal that henipavirus uses Tryptophan 122 on ephrin-B2/B3 as a "latch" to facilitate the G-receptor association. Structural-based mutagenesis of residues in the Hendra G glycoprotein at the receptor binding interface document their importance for viral attachments and entry, and suggest that the stability of the Hendra-G-ephrin attachment complex does not strongly correlate with the efficiency of viral entry. In addition, our data indicates that conformational rearrangements of the G glycoprotein head domain upon receptor binding may be the trigger leading to the activation of the viral F fusion glycoprotein during virus infection.
Collapse
Affiliation(s)
- Kai Xu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Yee-Peng Chan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Kanagalaghatta R. Rajashankar
- The Northeastern Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Dimple Khetawat
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Momchil V. Kolev
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
48
|
Wei Y, Feng K, Yao X, Cai H, Li J, Mirza AM, Iorio RM, Li J. Localization of a region in the fusion protein of avian metapneumovirus that modulates cell-cell fusion. J Virol 2012; 86:11800-14. [PMID: 22915815 PMCID: PMC3486300 DOI: 10.1128/jvi.00232-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 08/12/2012] [Indexed: 11/20/2022] Open
Abstract
The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented.
Collapse
Affiliation(s)
- Yongwei Wei
- Department of Food Science and Technology, College of Food, Agricultural and Environmental Sciences
| | - Kurtis Feng
- Department of Food Science and Technology, College of Food, Agricultural and Environmental Sciences
| | - Xiangjie Yao
- Department of Food Science and Technology, College of Food, Agricultural and Environmental Sciences
| | - Hui Cai
- Department of Food Science and Technology, College of Food, Agricultural and Environmental Sciences
| | - Junan Li
- Division of Environmental Health Sciences, College of Public Health
| | - Anne M. Mirza
- Department of Microbiology and Physiological Systems
| | - Ronald M. Iorio
- Department of Microbiology and Physiological Systems
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jianrong Li
- Department of Food Science and Technology, College of Food, Agricultural and Environmental Sciences
- Division of Environmental Health Sciences, College of Public Health
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
49
|
Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein. Proc Natl Acad Sci U S A 2012; 109:16672-7. [PMID: 23012473 PMCID: PMC3478641 DOI: 10.1073/pnas.1213802109] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by fusion of the viral envelope with the plasma membrane through the concerted action of the fusion (F) protein and the receptor binding protein hemagglutinin-neuraminidase. The F protein folds initially to form a trimeric metastable prefusion form that is triggered to undergo large-scale irreversible conformational changes to form the trimeric postfusion conformation. It is thought that F refolding couples the energy released with membrane fusion. The F protein is synthesized as a precursor (F0) that must be cleaved by a host protease to form a biologically active molecule, F1,F2. Cleavage of F protein is a prerequisite for fusion and virus infectivity. Cleavage creates a new N terminus on F1 that contains a hydrophobic region, known as the FP, which intercalates target membranes during F protein refolding. The crystal structure of the soluble ectodomain of the uncleaved form of PIV5 F is known; here we report the crystal structure of the cleavage-activated prefusion form of PIV5 F. The structure shows minimal movement of the residues adjacent to the protease cleavage site. Most of the hydrophobic FP residues are buried in the uncleaved F protein, and only F103 at the newly created N terminus becomes more solvent-accessible after cleavage. The conformational freedom of the charged arginine residues that compose the protease recognition site increases on cleavage of F protein.
Collapse
|
50
|
Abstract
Paramyxoviruses contain glycoprotein fusion machineries that mediate membrane merger for infection. The molecular framework and mechanistic principles governing receptor-induced triggering of the machinery remain unknown. Using measles virus (MeV) fusion complexes, we demonstrate that receptor binding to only one dimer of the tetrameric attachment protein (H) dimer-of-dimers induces fusion-protein (F) triggering; receptor binding and F triggering can be communicated across the dimer-dimer interface of H; and the physical integrity of the tetramer is maintained during fusion. The central MeV H ectodomain stalk region requires structural flexibility for activation of F, and alanine substitutions in this section, physical stress, or exposure of H to soluble ligands trigger conformational rearrangements in native H tetramers. Binding of soluble receptor to H is sufficient to initiate refolding of F, underscoring the physiological significance of this rearrangement of the H tetramer. These data outline a model of the triggering of the physiological MeV fusion machinery in which unilateral receptor binding to one dimer pair in the H tetramer is sufficient to induce a reorganization of H that affects the conformation of the central stalk section, severing interactions between H and the F trimer and activating refolding of F.
Collapse
|