1
|
Li S, Tan Y, Liu S, Li C. Preventive potential of chitosan self-assembled coconut residue dietary fiber in hyperlipidemia: Mechanistic insights into gut microbiota and short-chain fatty acids. J Food Sci 2024; 89:9968-9984. [PMID: 39503303 DOI: 10.1111/1750-3841.17513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
Hyperlipidemia is a metabolic disorder resulted from unhealthy dietary and lifestyle habits. Its pathogenesis is possibly linked to gut microbiota dysbiosis. This study investigates the preventive effects of chitosan self-assembled coconut residue dietary fiber (CRFSC) on hyperlipidemia induced by a high-fat diet (HFD) and gut microbiota. CRFSC resulted in a significant weight loss of 7.9% in HFD rats and had a preventive effect on all four lipid parameter abnormalities. HFD supplemented with oat group resulted in a weight loss of 3.8% in HFD rats and had no preventive effect on low-density lipoprotein cholesterol (LDL-C) abnormalities. Prevention was achieved not only through the modulation of gut microbiota composition and the increase of short-chain fatty acids (SCFAs) levels, but also through the activation of superoxide dismutase enzyme and the inhibition of malondialdehyde accumulation, all of which are the factors leading to the controlling of lipid abnormalities and oxidative damage. The prevention of lipid parameters by chitosan self-assembled coconut residue dietary fiber (CRFSC) may be attributed to its richness in chitosan and insoluble dietary fiber, as well as its ability to enrich beneficial bacteria such as Akkermansia, Roseburia, and Ruminococcus. Correlation analysis demonstrated that key bacterial species producing SCFAs, which are rich in the CRFSC diet, had a positive impact on controlling hyperlipidemia. Hence, consumption of a CRFSC diet could serve as an effective strategy for preventing and controlling the development of hyperlipidemia due to its potential ability to regulate gut microbiota and SCFAs. PRACTICAL APPLICATION: This study showed that dietary fiber from coconut residue after chitosan self-assembly had preventive effects on overweight, dyslipidemia, and oxidative damage in rats. In addition, CRFSC also increased the content of short-chain fatty acids in the gut. And improve gut health by affecting gut microbiota. This finding suggests that CRFSC can be used as a dietary strategy to prevent hyperlipidemia and has practical significance in developing new healthy foods.
Collapse
Affiliation(s)
- Shuxian Li
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yaoyao Tan
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Sixin Liu
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou, China
| |
Collapse
|
2
|
An Y, Wang C, Wang Z, Kong F, Liu H, Jiang M, Liu T, Zhang S, Du K, Yin L, Jiao P, Li Y, Fan B, Zhou C, Wang M, Sun H, Lei J, Zhao S, Gong Y. Tight junction protein LSR is a host defense factor against SARS-CoV-2 infection in the small intestine. EMBO J 2024; 43:6124-6151. [PMID: 39443717 PMCID: PMC11612383 DOI: 10.1038/s44318-024-00281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
The identification of host factors with antiviral potential is important for developing effective prevention and therapeutic strategies against SARS-CoV-2 infection. Here, by using immortalized cell lines, intestinal organoids, ex vivo intestinal tissues and humanized ACE2 mouse model as proof-of-principle systems, we have identified lipolysis-stimulated lipoprotein receptor (LSR) as a crucial host defense factor against SARS-CoV-2 infection in the small intestine. Loss of endogenous LSR enhances ACE2-dependent infection by SARS-CoV-2 Spike (S) protein-pseudotyped virus and authentic SARS-CoV-2 virus, and exogenous administration of LSR protects against viral infection. Mechanistically, LSR interacts with ACE2 both in cis and in trans, preventing its binding to S protein, and thus inhibiting viral entry and S protein-mediated cell-cell fusion. Finally, a small LSR-derived peptide blocks S protein binding to the ACE2 receptor in vitro. These results identify both a previously unknown function for LSR in antiviral host defense against SARS-CoV-2, with potential implications for peptide-based pan-variant therapeutic interventions.
Collapse
Affiliation(s)
- Yanan An
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Chao Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ziqi Wang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Feng Kong
- Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, Shandong, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hao Liu
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Min Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| | - Ti Liu
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Shu Zhang
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Kaige Du
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Liang Yin
- Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, Shandong, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peng Jiao
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ying Li
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Baozhen Fan
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingxia Wang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Hui Sun
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Jie Lei
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China.
| | - Shengtian Zhao
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, Shandong, China.
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Yongfeng Gong
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China.
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China.
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China.
| |
Collapse
|
3
|
Otálora-Otálora BA, Payán-Gómez C, López-Rivera JJ, Pedroza-Aconcha NB, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Global transcriptomic network analysis of the crosstalk between microbiota and cancer-related cells in the oral-gut-lung axis. Front Cell Infect Microbiol 2024; 14:1425388. [PMID: 39228892 PMCID: PMC11368877 DOI: 10.3389/fcimb.2024.1425388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
Background The diagnosis and treatment of lung, colon, and gastric cancer through the histologic characteristics and genomic biomarkers have not had a strong impact on the mortality rates of the top three global causes of death by cancer. Methods Twenty-five transcriptomic analyses (10 lung cancer, 10 gastric cancer, and 5 colon cancer datasets) followed our own bioinformatic pipeline based on the utilization of specialized libraries from the R language and DAVID´s gene enrichment analyses to identify a regulatory metafirm network of transcription factors and target genes common in every type of cancer, with experimental evidence that supports its relationship with the unlocking of cell phenotypic plasticity for the acquisition of the hallmarks of cancer during the tumoral process. The network's regulatory functional and signaling pathways might depend on the constant crosstalk with the microbiome network established in the oral-gut-lung axis. Results The global transcriptomic network analysis highlighted the impact of transcription factors (SOX4, TCF3, TEAD4, ETV4, and FOXM1) that might be related to stem cell programming and cancer progression through the regulation of the expression of genes, such as cancer-cell membrane receptors, that interact with several microorganisms, including human T-cell leukemia virus 1 (HTLV-1), the human papilloma virus (HPV), the Epstein-Barr virus (EBV), and SARS-CoV-2. These interactions can trigger the MAPK, non-canonical WNT, and IFN signaling pathways, which regulate key transcription factor overexpression during the establishment and progression of lung, colon, and gastric cancer, respectively, along with the formation of the microbiome network. Conclusion The global transcriptomic network analysis highlights the important interaction between key transcription factors in lung, colon, and gastric cancer, which regulates the expression of cancer-cell membrane receptors for the interaction with the microbiome network during the tumorigenic process.
Collapse
Affiliation(s)
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá, Colombia
| | | | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá, Colombia
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá, Colombia
| | | |
Collapse
|
4
|
Yi M, Toribio AJ, Salem YM, Alexander M, Ferrey A, Swentek L, Tantisattamo E, Ichii H. Nrf2 Signaling Pathway as a Key to Treatment for Diabetic Dyslipidemia and Atherosclerosis. Int J Mol Sci 2024; 25:5831. [PMID: 38892018 PMCID: PMC11172493 DOI: 10.3390/ijms25115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic endocrine disorder that affects more than 20 million people in the United States. DM-related complications affect multiple organ systems and are a significant cause of morbidity and mortality among people with DM. Of the numerous acute and chronic complications, atherosclerosis due to diabetic dyslipidemia is a condition that can lead to many life-threatening diseases, such as stroke, coronary artery disease, and myocardial infarction. The nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway is an emerging antioxidative pathway and a promising target for the treatment of DM and its complications. This review aims to explore the Nrf2 pathway's role in combating diabetic dyslipidemia. We will explore risk factors for diabetic dyslipidemia at a cellular level and aim to elucidate how the Nrf2 pathway becomes a potential therapeutic target for DM-related atherosclerosis.
Collapse
Affiliation(s)
- Michelle Yi
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Arvin John Toribio
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Yusuf Muhammad Salem
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Antoney Ferrey
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Lourdes Swentek
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Ekamol Tantisattamo
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Hirohito Ichii
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| |
Collapse
|
5
|
Yi M, Cruz Cisneros L, Cho EJ, Alexander M, Kimelman FA, Swentek L, Ferrey A, Tantisattamo E, Ichii H. Nrf2 Pathway and Oxidative Stress as a Common Target for Treatment of Diabetes and Its Comorbidities. Int J Mol Sci 2024; 25:821. [PMID: 38255895 PMCID: PMC10815857 DOI: 10.3390/ijms25020821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes is a chronic disease that induces many comorbidities, including cardiovascular disease, nephropathy, and liver damage. Many mechanisms have been suggested as to how diabetes leads to these comorbidities, of which increased oxidative stress in diabetic patients has been strongly implicated. Limited knowledge of antioxidative antidiabetic drugs and substances that can address diabetic comorbidities through the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway calls for detailed investigation. This review will describe how diabetes increases oxidative stress, the general impact of that oxidative stress, and how oxidative stress primarily contributes to diabetic comorbidities. It will also address how treatments for diabetes, especially focusing on their effects on the Nrf2 antioxidative pathway, have been shown to similarly affect the Nrf2 pathway of the heart, kidney, and liver systems. This review demonstrates that the Nrf2 pathway is a common pathogenic component of diabetes and its associated comorbidities, potentially identifying this pathway as a target to guide future treatments.
Collapse
Affiliation(s)
- Michelle Yi
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Leslie Cruz Cisneros
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Eric J. Cho
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Francesca A. Kimelman
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Lourdes Swentek
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Antoney Ferrey
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Ekamol Tantisattamo
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Hirohito Ichii
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| |
Collapse
|
6
|
Tzouanas CN, Sherman MS, Shay JE, Rubin AJ, Mead BE, Dao TT, Butzlaff T, Mana MD, Kolb KE, Walesky C, Pepe-Mooney BJ, Smith CJ, Prakadan SM, Ramseier ML, Tong EY, Joung J, Chi F, McMahon-Skates T, Winston CL, Jeong WJ, Aney KJ, Chen E, Nissim S, Zhang F, Deshpande V, Lauer GM, Yilmaz ÖH, Goessling W, Shalek AK. Chronic metabolic stress drives developmental programs and loss of tissue functions in non-transformed liver that mirror tumor states and stratify survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569407. [PMID: 38077056 PMCID: PMC10705501 DOI: 10.1101/2023.11.30.569407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Under chronic stress, cells must balance competing demands between cellular survival and tissue function. In metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD/NASH), hepatocytes cooperate with structural and immune cells to perform crucial metabolic, synthetic, and detoxification functions despite nutrient imbalances. While prior work has emphasized stress-induced drivers of cell death, the dynamic adaptations of surviving cells and their functional repercussions remain unclear. Namely, we do not know which pathways and programs define cellular responses, what regulatory factors mediate (mal)adaptations, and how this aberrant activity connects to tissue-scale dysfunction and long-term disease outcomes. Here, by applying longitudinal single-cell multi -omics to a mouse model of chronic metabolic stress and extending to human cohorts, we show that stress drives survival-linked tradeoffs and metabolic rewiring, manifesting as shifts towards development-associated states in non-transformed hepatocytes with accompanying decreases in their professional functionality. Diet-induced adaptations occur significantly prior to tumorigenesis but parallel tumorigenesis-induced phenotypes and predict worsened human cancer survival. Through the development of a multi -omic computational gene regulatory inference framework and human in vitro and mouse in vivo genetic perturbations, we validate transcriptional (RELB, SOX4) and metabolic (HMGCS2) mediators that co-regulate and couple the balance between developmental state and hepatocyte functional identity programming. Our work defines cellular features of liver adaptation to chronic stress as well as their links to long-term disease outcomes and cancer hallmarks, unifying diverse axes of cellular dysfunction around core causal mechanisms.
Collapse
Affiliation(s)
- Constantine N. Tzouanas
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These authors contributed equally
| | - Marc S. Sherman
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- These authors contributed equally
| | - Jessica E.S. Shay
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Adam J. Rubin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin E. Mead
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler T. Dao
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Titus Butzlaff
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Miyeko D. Mana
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kellie E. Kolb
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chad Walesky
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian J. Pepe-Mooney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Colton J. Smith
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sanjay M. Prakadan
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle L. Ramseier
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evelyn Y. Tong
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Joung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Fangtao Chi
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Thomas McMahon-Skates
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolyn L. Winston
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Woo-Jeong Jeong
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine J. Aney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ethan Chen
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sahar Nissim
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Georg M. Lauer
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ömer H. Yilmaz
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
- These senior authors contributed equally
| | - Wolfram Goessling
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA, USA
- These senior authors contributed equally
| | - Alex K. Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These senior authors contributed equally
| |
Collapse
|
7
|
Hanse M, Akbar S, Layeghkhavidaki H, Yen FT. Garcinia cambogia Extract Increased Hepatic Levels of Lipolysis-Stimulated Lipoprotein Receptor and Lipids in Mice on Normal Diet. Int J Mol Sci 2023; 24:16298. [PMID: 38003494 PMCID: PMC10671705 DOI: 10.3390/ijms242216298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Garcinia cambogia extract (GCE) is a popular weight-loss supplement that also lowers plasma triglyceride (TG) levels. We hypothesized that GCE-mediated inhibition of ATP citrate lyase and thereby hepatic TG production could lead to compensatory mechanisms, including increased hepatic TG uptake via lipoprotein receptors. GCE (20 mg/day) administered 40 days orally to female C57BL/6Rj mice on a standard chow diet led to a decrease in both plasma fasting and post-prandial TG-rich lipoprotein levels, but with no significant change in body weight gain. Lipolysis stimulated lipoprotein receptor (LSR) protein levels, but not those of LDL-receptor, were increased as compared to controls. Mouse Hepa1-6 cells treated with the GCE active ingredient, hydroxycitrate, also led to increased LSR protein levels. Hepatic total cholesterol, TG, and muscle TG contents were higher in GCE-treated animals as compared to controls, whereas adipose TG levels were unchanged. LSR and LDL-receptor protein levels were correlated with liver total cholesterol, but only LDL-receptor was associated with liver TG. These results show that GCE treatment in mice on a standard chow diet led to significantly increased liver and muscle lipids, with no significant change in adipose tissue TG levels, which should be considered in the long-term use of GCE.
Collapse
Affiliation(s)
- Marine Hanse
- EA 4422 Lipidomix Laboratory, University of Lorraine, 54505 Nancy, France
| | - Samina Akbar
- EA 4422 Lipidomix Laboratory, University of Lorraine, 54505 Nancy, France
- Quality of Diet and Aging Team, UR 3998 Animal and Functionality of Animal Products Laboratory, University of Lorraine, 54505 Nancy, France
| | - Hamed Layeghkhavidaki
- Quality of Diet and Aging Team, UR 3998 Animal and Functionality of Animal Products Laboratory, University of Lorraine, 54505 Nancy, France
| | - Frances T. Yen
- EA 4422 Lipidomix Laboratory, University of Lorraine, 54505 Nancy, France
- Quality of Diet and Aging Team, UR 3998 Animal and Functionality of Animal Products Laboratory, University of Lorraine, 54505 Nancy, France
| |
Collapse
|
8
|
Zhao H, Li M, Zhu Q, Liu A, Bi J, Quan Z, Luo X, Zheng Y, Yang N, Yue X, Cao X. Label-free quantitative proteomic analysis of milk fat globule membrane proteins in porcine colostrum and mature milk. Food Chem 2023; 426:136447. [PMID: 37301041 DOI: 10.1016/j.foodchem.2023.136447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
Milk fat globule membrane (MFGM) proteins are nutritional components with various biological functions. This study aimed to analyze and compare MFGM proteins in porcine colostrum (PC) and porcine mature milk (PM), via label-free quantitative proteomics. In total, 3917 and 3966 MFGM proteins were identified in PC and PM milk, respectively. A total of 3807 common MFGM proteins were found in both groups, including 303 significant differentially expressed MFGM proteins. Gene Ontology (GO) analysis revealed that the differentially expressed MFGM proteins were mainly related to the cellular process, cell, and binding. The dominant pathway of the differentially expressed MFGM proteins was related to the phagosome according to Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. These results reveal crucial insights into the functional diversity of MFGM proteins in porcine milk during lactation and provide theoretical guidance for the development of MFGM proteins in the future.
Collapse
Affiliation(s)
- Huiwen Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Qing Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Aicheng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Jiayang Bi
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Zhizhong Quan
- Liaoning Complete Biotechnology Co., Ltd., Tieling 112600, China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Ning Yang
- Liaoning Complete Biotechnology Co., Ltd., Tieling 112600, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China.
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China.
| |
Collapse
|
9
|
Kohno T, Kojima T. Atypical Macropinocytosis Contributes to Malignant Progression: A Review of Recent Evidence in Endometrioid Endometrial Cancer Cells. Cancers (Basel) 2022; 14:cancers14205056. [PMID: 36291839 PMCID: PMC9599675 DOI: 10.3390/cancers14205056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary A novel type of macropinocytosis has been identified as a trigger for the malignant progression of endometrial cancer. Transiently reducing epithelial barrier homeostasis leads to macropinocytosis by splitting between adjacent cells in endometrioid endometrial cancer. Macropinocytosis causes morphological changes in well-differentiated to poorly differentiated cancer cells. Inhibition of macropinocytosis promotes a persistent dormant state in the intrinsic KRAS-mutated cancer cell line Sawano. This review focuses on the mechanisms of atypical macropinocytosis and its effects on cellular function, and it describes the physiological processes involved in inducing resting conditions in endometrioid endometrial cancer cells. Abstract Macropinocytosis is an essential mechanism for the non-specific uptake of extracellular fluids and solutes. In recent years, additional functions have been identified in macropinocytosis, such as the intracellular introduction pathway of drugs, bacterial and viral infection pathways, and nutritional supplement pathway of cancer cells. However, little is known about the changes in cell function after macropinocytosis. Recently, it has been reported that macropinocytosis is essential for endometrial cancer cells to initiate malignant progression in a dormant state. Macropinocytosis is formed by a temporary split of adjacent bicellular junctions of epithelial sheets, rather than from the apical surface or basal membrane, as a result of the transient reduction of tight junction homeostasis. This novel type of macropinocytosis has been suggested to be associated with the malignant pathology of endometriosis and endometrioid endometrial carcinoma. This review outlines the induction of malignant progression of endometrial cancer cells by macropinocytosis based on a new mechanism and the potential preventive mechanism of its malignant progression.
Collapse
|
10
|
Lipolysis-Stimulated Lipoprotein Receptor Acts as Sensor to Regulate ApoE Release in Astrocytes. Int J Mol Sci 2022; 23:ijms23158630. [PMID: 35955777 PMCID: PMC9368974 DOI: 10.3390/ijms23158630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Astroglia play an important role, providing de novo synthesized cholesterol to neurons in the form of ApoE-lipidated particles; disruption of this process can increase the risk of Alzheimer’s disease. We recently reported that glia-specific suppression of the lipolysis-stimulated lipoprotein receptor (LSR) gene leads to Alzheimer’s disease-like memory deficits. Since LSR is an Apo-E lipoprotein receptor, our objective of this study was to determine the effect of LSR expression modulation on cholesterol and ApoE output in mouse astrocytes expressing human ApoE3. qPCR analysis showed that siRNA-mediated lsr knockdown significantly increased expression of the genes involved in cholesterol synthesis, secretion, and metabolism. Analysis of media and lipoprotein fractions showed increased cholesterol and lipidated ApoE output in HDL-like particles. Further, lsr expression could be upregulated when astrocytes were incubated 5 days in media containing high levels (two-fold) of lipoprotein, or after 8 h treatment with 1 µM LXR agonist T0901317 in lipoprotein-deficient media. In both conditions of increased lsr expression, the ApoE output was repressed or unchanged despite increased abca1 mRNA levels and cholesterol production. We conclude that LSR acts as a sensor of lipoprotein content in the medium and repressor of ApoE release, while ABCA1 drives cholesterol efflux, thereby potentially affecting cholesterol load, ApoE lipidation, and limiting cholesterol trafficking towards the neuron.
Collapse
|
11
|
Chandra R, Aryal DK, Douros JD, Shahid R, Davis SJ, Campbell JE, Ilkayeya O, White PJ, Rodriguez R, Newgard CB, Wetsel WC, Liddle RA. Ildr1 gene deletion protects against diet-induced obesity and hyperglycemia. PLoS One 2022; 17:e0270329. [PMID: 35749484 PMCID: PMC9231709 DOI: 10.1371/journal.pone.0270329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Immunoglobulin-like Domain-Containing Receptor 1 (ILDR1) is expressed on nutrient sensing cholecystokinin-positive enteroendocrine cells of the gastrointestinal tract and it has the unique ability to induce fat-mediated CCK secretion. However, the role of ILDR1 in CCK-mediated regulation of satiety is unknown. In this study, we examined the effects of ILDR1 on food intake and metabolic activity using mice with genetically-deleted Ildr1. Methods The expression of ILDR1 in murine tissues and the measurement of adipocyte cell size were evaluated by light and fluorescence confocal microscopy. The effects of Ildr1 deletion on mouse metabolism were quantitated using CLAMS chambers and by targeted metabolomics assays of multiple tissues. Hormone levels were measured by ELISA. The effects of Ildr1 gene deletion on glucose and insulin levels were determined using in vivo oral glucose tolerance, meal tolerance, and insulin tolerance tests, as well as ex vivo islet perifusion. Results ILDR1 is expressed in a wide range of tissues. Analysis of metabolic data revealed that although Ildr1-/- mice consumed more food than wild-type littermates, they gained less weight on a high fat diet and exhibited increased metabolic activity. Adipocytes in Ildr1-/- mice were significantly smaller than in wild-type mice fed either low or high fat diets. ILDR1 was expressed in both alpha and beta cells of pancreatic islets. Based on oral glucose and mixed meal tolerance tests, Ildr1-/- mice were more effective at lowering post-prandial glucose levels, had improved insulin sensitivity, and glucose-regulated insulin secretion was enhanced in mice lacking ILDR1. Conclusion Ildr1 loss significantly modified metabolic activity in these mutant mice. While Ildr1 gene deletion increased high fat food intake, it reduced weight gain and improved glucose tolerance. These findings indicate that ILDR1 modulates metabolic responses to feeding in mice.
Collapse
Affiliation(s)
- Rashmi Chandra
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (RC); (RAL)
| | - Dipendra K. Aryal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jonathan D. Douros
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
| | - Rafiq Shahid
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Supriya J. Davis
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
- Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Jonathan E. Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
| | - Olga Ilkayeya
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, North Carolina, United States of America
| | - Phillip J. White
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, North Carolina, United States of America
| | - Ramona Rodriguez
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University, Durham, North Carolina, United States of America
| | - Christopher B. Newgard
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, North Carolina, United States of America
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Rodger A. Liddle
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Veterans Affairs Medical Center, Durham, North Carolina, United States of America
- * E-mail: (RC); (RAL)
| |
Collapse
|
12
|
Nagase Y, Hiramatsu K, Funauchi M, Shiomi M, Masuda T, Kakuda M, Nakagawa S, Miyoshi A, Matsuzaki S, Kobayashi E, Kimura T, Serada S, Ueda Y, Naka T, Kimura T. Anti-lipolysis-stimulated lipoprotein receptor monoclonal antibody as a novel therapeutic agent for endometrial cancer. BMC Cancer 2022; 22:679. [PMID: 35729527 PMCID: PMC9210735 DOI: 10.1186/s12885-022-09789-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/16/2022] [Indexed: 12/29/2022] Open
Abstract
Background Endometrial cancer (EC) is a common gynecologic malignancy and patients with advanced and recurrent EC have a poor prognosis. Although chemotherapy is administered for those patients, the efficacy of current chemotherapy is limited. Therefore, it is necessary to develop novel therapeutic agents for EC. In this study, we focused on lipolysis-stimulated lipoprotein receptor (LSR), a membrane protein highly expressed in EC cells, and developed a chimeric chicken–mouse anti-LSR monoclonal antibody (mAb). This study investigated the antitumor effect of an anti-LSR mAb and the function of LSR in EC. Methods We examined the expression of LSR in 228 patients with EC using immunohistochemistry and divided them into two groups: high-LSR (n = 153) and low-LSR groups (n = 75). We developed a novel anti-LSR mAb and assessed its antitumor activity in an EC cell xenograft mouse model. Pathway enrichment analysis was performed using protein expression data of EC samples. LSR-knockdown EC cell lines (HEC1 and HEC116) were generated by transfected with small interfering RNA and used for assays in vitro. Results High expression of LSR was associated with poor overall survival (hazard ratio: 3.53, 95% confidence interval: 1.35–9.24, p = 0.01), advanced stage disease (p = 0.045), deep myometrial invasion (p = 0.045), and distant metastasis (p < 0.01). In EC with deep myometrial invasion, matrix metalloproteinase (MMP) 2 was highly expressed along with LSR. Anti-LSR mAb significantly inhibited the tumor growth in EC cell xenograft mouse model (tumor volume, 407.1 mm3versus 726.3 mm3, p = 0.019). Pathway enrichment analysis identified the mitogen-activated protein kinase (MAPK) pathway as a signaling pathway associated with LSR expression. Anti-LSR mAb suppressed the activity of MAPK in vivo. In vitro assays using EC cell lines demonstrated that LSR regulated cell proliferation, invasion, and migration through MAPK signaling, particularly MEK/ERK signaling and membrane-type 1 MMP (MT1-MMP) and MMP2. Moreover, ERK1/2-knockdown suppressed cell proliferation, invasion, migration, and the expression of MT1-MMP and MMP2. Conclusions Our results suggest that LSR contributes to tumor growth, invasion, metastasis, and poor prognosis of EC through MAPK signaling. Anti-LSR mAb is a potential therapeutic agent for EC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09789-6.
Collapse
Affiliation(s)
- Yoshikazu Nagase
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kosuke Hiramatsu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masashi Funauchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Division of Clinical Immunology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan.,Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Iwate, Japan.,Department of Clinical Immunology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Mayu Shiomi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsuo Masuda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mamoru Kakuda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Nakagawa
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ai Miyoshi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinya Matsuzaki
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Gynecology, Osaka International Cancer Institute, Osaka, Japan
| | - Eiji Kobayashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihiro Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Serada
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Iwate, Japan.,Department of Clinical Immunology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Yutaka Ueda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tetsuji Naka
- Division of Clinical Immunology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan.,Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Iwate, Japan.,Department of Clinical Immunology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
13
|
Pujar M, Vastrad B, Kavatagimath S, Vastrad C, Kotturshetti S. Identification of candidate biomarkers and pathways associated with type 1 diabetes mellitus using bioinformatics analysis. Sci Rep 2022; 12:9157. [PMID: 35650387 PMCID: PMC9160069 DOI: 10.1038/s41598-022-13291-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a metabolic disorder for which the underlying molecular mechanisms remain largely unclear. This investigation aimed to elucidate essential candidate genes and pathways in T1DM by integrated bioinformatics analysis. In this study, differentially expressed genes (DEGs) were analyzed using DESeq2 of R package from GSE162689 of the Gene Expression Omnibus (GEO). Gene ontology (GO) enrichment analysis, REACTOME pathway enrichment analysis, and construction and analysis of protein–protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network, and validation of hub genes were performed. A total of 952 DEGs (477 up regulated and 475 down regulated genes) were identified in T1DM. GO and REACTOME enrichment result results showed that DEGs mainly enriched in multicellular organism development, detection of stimulus, diseases of signal transduction by growth factor receptors and second messengers, and olfactory signaling pathway. The top hub genes such as MYC, EGFR, LNX1, YBX1, HSP90AA1, ESR1, FN1, TK1, ANLN and SMAD9 were screened out as the critical genes among the DEGs from the PPI network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network. Receiver operating characteristic curve (ROC) analysis confirmed that these genes were significantly associated with T1DM. In conclusion, the identified DEGs, particularly the hub genes, strengthen the understanding of the advancement and progression of T1DM, and certain genes might be used as candidate target molecules to diagnose, monitor and treat T1DM.
Collapse
Affiliation(s)
- Madhu Pujar
- Department of Pediatrics, J J M Medical College, Davangere, Karnataka, 577004, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, Karnataka, 582101, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi, Karnataka, 590010, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| | - Shivakumar Kotturshetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India
| |
Collapse
|
14
|
VEGF-A-related genetic variants protect against Alzheimer's disease. Aging (Albany NY) 2022; 14:2524-2536. [PMID: 35347084 PMCID: PMC9004571 DOI: 10.18632/aging.203984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
The Apolipoprotein E (APOE) genotype has been shown to be the strongest genetic risk factor for Alzheimer’s disease (AD). Moreover, both the lipolysis-stimulated lipoprotein receptor (LSR) and the vascular endothelial growth factor A (VEGF-A) are involved in the development of AD. The aim of the study was to develop a prediction model for AD including single nucleotide polymorphisms (SNP) of APOE, LSR and VEGF-A-related variants. The population consisted of 323 individuals (143 AD cases and 180 controls). Genotyping was performed for: the APOE common polymorphism (rs429358 and rs7412), two LSR variants (rs34259399 and rs916147) and 10 VEGF-A-related SNPs (rs6921438, rs7043199, rs6993770, rs2375981, rs34528081, rs4782371, rs2639990, rs10761741, rs114694170, rs1740073), previously identified as genetic determinants of VEGF-A levels in GWAS studies. The prediction model included direct and epistatic interaction effects, age and sex and was developed using the elastic net machine learning methodology. An optimal model including the direct effect of the APOE e4 allele, age and eight epistatic interactions between APOE and LSR, APOE and VEGF-A-related variants was developed with an accuracy of 72%. Two epistatic interactions (rs7043199*rs6993770 and rs2375981*rs34528081) were the strongest protective factors against AD together with the absence of ε4 APOE allele. Based on pathway analysis, the involved variants and related genes are implicated in neurological diseases. In conclusion, this study demonstrated links between APOE, LSR and VEGF-A-related variants and the development of AD and proposed a model of nine genetic variants which appears to strongly influence the risk for AD.
Collapse
|
15
|
El Hajj A, Herzine A, Calcagno G, Désor F, Djelti F, Bombail V, Denis I, Oster T, Malaplate C, Vigier M, Kaminski S, Pauron L, Corbier C, Yen FT, Lanhers MC, Claudepierre T. Targeted Suppression of Lipoprotein Receptor LSR in Astrocytes Leads to Olfactory and Memory Deficits in Mice. Int J Mol Sci 2022; 23:ijms23042049. [PMID: 35216163 PMCID: PMC8878779 DOI: 10.3390/ijms23042049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 12/25/2022] Open
Abstract
Perturbations of cholesterol metabolism have been linked to neurodegenerative diseases. Glia–neuron crosstalk is essential to achieve a tight regulation of brain cholesterol trafficking. Adequate cholesterol supply from glia via apolipoprotein E-containing lipoproteins ensures neuronal development and function. The lipolysis-stimulated lipoprotein receptor (LSR), plays an important role in brain cholesterol homeostasis. Aged heterozygote Lsr+/− mice show altered brain cholesterol distribution and increased susceptibility to amyloid stress. Since LSR expression is higher in astroglia as compared to neurons, we sought to determine if astroglial LSR deficiency could lead to cognitive defects similar to those of Alzheimer’s disease (AD). Cre recombinase was activated in adult Glast-CreERT/lsrfl/fl mice by tamoxifen to induce astroglial Lsr deletion. Behavioral phenotyping of young and old astroglial Lsr KO animals revealed hyperactivity during the nocturnal period, deficits in olfactory function affecting social memory and causing possible apathy, as well as visual memory and short-term working memory problems, and deficits similar to those reported in neurodegenerative diseases, such as AD. Furthermore, GFAP staining revealed astroglial activation in the olfactory bulb. Therefore, astroglial LSR is important for working, spatial, and social memory related to sensory input, and represents a novel pathway for the study of brain aging and neurodegeneration.
Collapse
Affiliation(s)
- Aseel El Hajj
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
- Correspondence: (A.E.H.); (T.C.); Tel.: +33-(0)4-8110-6500 (A.E.H.); +33-(0)3-7274-4152 (T.C.)
| | - Ameziane Herzine
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Gaetano Calcagno
- UR 7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (G.C.); (S.K.)
| | - Frédéric Désor
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Fathia Djelti
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Vincent Bombail
- UMR 914, Physiology of Nutrition and Feeding Behaviour, INRAE-Agroparistech-Université Paris-Saclay, 78352 Jouy-en-Josas, France; (V.B.); (I.D.)
| | - Isabelle Denis
- UMR 914, Physiology of Nutrition and Feeding Behaviour, INRAE-Agroparistech-Université Paris-Saclay, 78352 Jouy-en-Josas, France; (V.B.); (I.D.)
| | - Thierry Oster
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Catherine Malaplate
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Maxime Vigier
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Sandra Kaminski
- UR 7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (G.C.); (S.K.)
| | - Lynn Pauron
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Catherine Corbier
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Frances T. Yen
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Marie-Claire Lanhers
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Thomas Claudepierre
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
- Correspondence: (A.E.H.); (T.C.); Tel.: +33-(0)4-8110-6500 (A.E.H.); +33-(0)3-7274-4152 (T.C.)
| |
Collapse
|
16
|
Elsheikh AM, M Roshdy T, Hassan SA, A Hussein M, M Fayed A. Resveratrol: A Potential Protector Against Benzo[a]pyrene- Induced Lung Toxicity. Pak J Biol Sci 2022; 25:78-89. [PMID: 35001578 DOI: 10.3923/pjbs.2022.78.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
<b>Background and Objective:</b> Benzo[a]pyrene (B[a]P), a major component of lipophilic pollutants then can be translated to diffluent substances. The aim of t he present article was to investigate protective activity of resveratrol against lung toxicity induced by B[a]P. Material and Methods: Male Sprague-Dawley rats were randomly assigned to 6 groups (6 animals/group): 3 negative control groups, control positive, B[a]P (20 mg kg<sup></sup><sup>1</sup> b.wt., resveratrol (50 mg kg<sup></sup><sup>1</sup> b.wt.)-B[a]P and vitamin C (1 g kg<sup></sup><sup>1</sup> b.wt.)-B[a]P groups. <b>Results:</b> The daily oral administration of the resveratrol (50 mg kg<sup></sup><sup>1</sup> b.wt.) and vitamin C (1 g kg<sup></sup><sup>1</sup> b.wt.) for 30 days to rats treated with B[a]P (20 mg kg<sup></sup><sup>1</sup> b.wt.) resulted in a significant improve plasma cholesterol, triglyceride and HDL-C as well as serum TNF-α, TBARS, IL-2,IL-6, haptoglobin, histamine, IgA, Ig E,Ig G and Ig M in B[a]P treated rats. On the other hand oral administration of resveratrol elevated the SOD, GPx and GR gene expression in lung rats treated with B[a]P. Furthermore, resveratrol and vitamin C nearly normalized these effects in lung histoarchitecture. <b>Conclusion:</b> The obtained biochemical, molecular biology and histological results of this study proved the lung protective activity of resveratrol against B[a]P induced lung toxicity in rats.
Collapse
|
17
|
Nagahama M, Kobayashi K, Takehara M. Cathepsin Release from Lysosomes Promotes Endocytosis of Clostridium perfringens Iota-Toxin. Toxins (Basel) 2021; 13:toxins13100721. [PMID: 34679014 PMCID: PMC8537257 DOI: 10.3390/toxins13100721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Iota-toxin from Clostridium perfringens type E is a binary toxin composed of two independent proteins: actin-ADP-ribosylating enzyme component, iota-a (Ia), and binding component, iota-b (Ib). Ib binds to target cell receptors and mediates the internalization of Ia into the cytoplasm. Extracellular lysosomal enzyme acid sphingomyelinase (ASMase) was previously shown to facilitate the internalization of iota-toxin. In this study, we investigated how lysosomal cathepsin promotes the internalization of iota-toxin into target cells. Cysteine protease inhibitor E64 prevented the cytotoxicity caused by iota-toxin, but aspartate protease inhibitor pepstatin-A and serine protease inhibitor AEBSF did not. Knockdown of lysosomal cysteine protease cathepsins B and L decreased the toxin-induced cytotoxicity. E64 suppressed the Ib-induced ASMase activity in extracellular fluid, showing that the proteases play a role in ASMase activation. These results indicate that cathepsin B and L facilitate entry of iota-toxin via activation of ASMase.
Collapse
|
18
|
Buas MF, Drescher CW, Urban N, Li CI, Bettcher L, Hait NC, Moysich KB, Odunsi K, Raftery D, Yan L. Quantitative global lipidomics analysis of patients with ovarian cancer versus benign adnexal mass. Sci Rep 2021; 11:18156. [PMID: 34518593 PMCID: PMC8438087 DOI: 10.1038/s41598-021-97433-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022] Open
Abstract
Altered lipid metabolism has emerged as an important feature of ovarian cancer (OC), yet the translational potential of lipid metabolites to aid in diagnosis and triage remains unproven. We conducted a multi-level interrogation of lipid metabolic phenotypes in patients with adnexal masses, integrating quantitative lipidomics profiling of plasma and ascites with publicly-available tumor transcriptome data. Using Sciex Lipidyzer, we assessed concentrations of > 500 plasma lipids in two patient cohorts-(i) a pilot set of 100 women with OC (50) or benign tumor (50), and (ii) an independent set of 118 women with malignant (60) or benign (58) adnexal mass. 249 lipid species and several lipid classes were significantly reduced in cases versus controls in both cohorts (FDR < 0.05). 23 metabolites-triacylglycerols, phosphatidylcholines, cholesterol esters-were validated at Bonferroni significance (P < 9.16 × 10-5). Certain lipids exhibited greater alterations in early- (diacylglycerols) or late-stage (lysophospholipids) cases, and multiple lipids in plasma and ascites were positively correlated. Lipoprotein receptor gene expression differed markedly in OC versus benign tumors. Importantly, several plasma lipid species, such as DAG(16:1/18:1), improved the accuracy of CA125 in differentiating early-stage OC cases from benign controls, and conferred a 15-20% increase in specificity at 90% sensitivity in multivariate models adjusted for age and BMI. This study provides novel insight into systemic and local lipid metabolic differences between OC and benign disease, further implicating altered lipid uptake in OC biology, and advancing plasma lipid metabolites as a complementary class of circulating biomarkers for OC diagnosis and triage.
Collapse
Affiliation(s)
- Matthew F Buas
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | - Charles W Drescher
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA, 98109, USA
| | - Nicole Urban
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA, 98109, USA
| | - Christopher I Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA, 98109, USA
| | - Lisa Bettcher
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington School of Medicine, 850 Republican Street, Seattle, WA, 98109, USA
| | - Nitai C Hait
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Daniel Raftery
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA, 98109, USA
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington School of Medicine, 850 Republican Street, Seattle, WA, 98109, USA
| | - Li Yan
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
19
|
Leclerc D, Jelinek J, Christensen KE, Issa JPJ, Rozen R. High folic acid intake increases methylation-dependent expression of Lsr and dysregulates hepatic cholesterol homeostasis. J Nutr Biochem 2020; 88:108554. [PMID: 33220403 DOI: 10.1016/j.jnutbio.2020.108554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Food fortification with folic acid and increased use of vitamin supplements have raised concerns about high folic acid intake. We previously showed that high folic acid intake was associated with hepatic degeneration, decreased levels of methylenetetrahydrofolate reductase (MTHFR), lower methylation potential, and perturbations of lipid metabolism. MTHFR synthesizes the folate derivative for methylation reactions. In this study, we assessed the possibility that high folic acid diets, fed to wild-type and Mthfr+/- mice, could alter DNA methylation and/or deregulate hepatic cholesterol homeostasis. Digital restriction enzyme analysis of methylation in liver revealed DNA hypomethylation of a CpG in the lipolysis-stimulated lipoprotein receptor (Lsr) gene, which is involved in hepatic uptake of cholesterol. Pyrosequencing confirmed this methylation change and identified hypomethylation of several neighboring CpG dinucleotides. Lsr expression was increased and correlated negatively with DNA methylation and plasma cholesterol. A putative binding site for E2F1 was identified. ChIP-qPCR confirmed reduced E2F1 binding when methylation at this site was altered, suggesting that it could be involved in increasing Lsr expression. Expression of genes in cholesterol synthesis, transport or turnover (Abcg5, Abcg8, Abcc2, Cyp46a1, and Hmgcs1) was perturbed by high folic acid intake. We also observed increased hepatic cholesterol and increased expression of genes such as Sirt1, which might be involved in a rescue response to restore cholesterol homeostasis. Our work suggests that high folic acid consumption disturbs cholesterol homeostasis in liver. This finding may have particular relevance for MTHFR-deficient individuals, who represent ~10% of many populations.
Collapse
Affiliation(s)
- Daniel Leclerc
- Departments of Human Genetics and Pediatrics, McGill University, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Karen E Christensen
- Departments of Human Genetics and Pediatrics, McGill University, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Rima Rozen
- Departments of Human Genetics and Pediatrics, McGill University, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
20
|
Ma N, Zhou J. Functions of Endothelial Cilia in the Regulation of Vascular Barriers. Front Cell Dev Biol 2020; 8:626. [PMID: 32733899 PMCID: PMC7363763 DOI: 10.3389/fcell.2020.00626] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The vascular barrier between blood and tissues is a highly selective structure that is essential to maintain tissue homeostasis. Defects in the vascular barrier lead to a variety of cardiovascular diseases. The maintenance of vascular barriers is largely dependent on endothelial cells, but the precise mechanisms remain elusive. Recent studies reveal that primary cilia, microtubule-based structures that protrude from the surface of endothelial cells, play a critical role in the regulation of vascular barriers. Herein, we discuss recent advances on ciliary functions in the vascular barrier and suggest that ciliary signaling pathways might be targeted to modulate the vascular barrier.
Collapse
Affiliation(s)
- Nan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
21
|
González-Mariscal L, Miranda J, Gallego-Gutiérrez H, Cano-Cortina M, Amaya E. Relationship between apical junction proteins, gene expression and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183278. [PMID: 32240623 DOI: 10.1016/j.bbamem.2020.183278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
The apical junctional complex (AJC) is a cell-cell adhesion system present at the upper portion of the lateral membrane of epithelial cells integrated by the tight junction (TJ) and the adherens junction (AJ). This complex is crucial to initiate and stabilize cell-cell adhesion, to regulate the paracellular transit of ions and molecules and to maintain cell polarity. Moreover, we now consider the AJC as a hub of signal transduction that regulates cell-cell adhesion, gene transcription and cell proliferation and differentiation. The molecular components of the AJC are multiple and diverse and depending on the cellular context some of the proteins in this complex act as tumor suppressors or as promoters of cell transformation, migration and metastasis outgrowth. Here, we describe these new roles played by TJ and AJ proteins and their potential use in cancer diagnostics and as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Helios Gallego-Gutiérrez
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Misael Cano-Cortina
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Elida Amaya
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
22
|
Tang X, Zhou Y, Liu Y, Zhang W, Liu C, Yan C. Potentiation of cancerous progression by LISCH7 via direct stimulation of TGFB1 transcription in triple-negative breast cancer. J Cell Biochem 2020; 121:4642-4653. [PMID: 32048750 DOI: 10.1002/jcb.29679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
As an aggressive breast cancer (BCa) subtype, triple-negative breast cancer (TNBC) responses poorly to chemotherapy and endocrine therapy, and usually has a worse prognosis. This is largely due to the lack of specific therapeutic targets, laying claim to an imperious demand to clarify the key signaling pathways potentiating TNBC progression. Herein, we report that expression levels of the liver-specific bHLH-Zip transcription factor (LISCH7), a recently identified key player in cancerous progression, preferentially enriched in TNBC in comparison with other BCa subtypes, and this upregulation was observed to be correlated to a poor survival outcome in patients with TNBC. Ablation of LISCH7 in TNBC cells impaired cell proliferation, reduced cell invasiveness, and enhanced sensitivity to the first-line chemotherapeutic drug docetaxel at both in vitro and in vivo levels. Importantly, concurrent induction of TGFB1, the gene encoding transforming growth factor-β1 (TGF-β1), an essential multipluripotent regulator of TNBC, was accompanied with these alterations in cancerous properties. We further showed that LISCH7 could directly bind to the TGFB1 promoter and stimulate TGFB1 transcription in TNBC cells. The recruitment of LISCH7 onto the TGFB1 chromatin and transactivation of TGFB1 were substantially augmented by treatment with the exogenous TGF-β1 in a time- and dose-dependent manner. Collectively, these findings suggest that LISCH7 and TGF-β1 form a reciprocal positive regulatory loop and cooperatively regulate cancerous progression in TNBC cells. Thus, simultaneous inhibition of both LISCH7 and TGF-β1 signaling may represent a more effective approach to counteract advanced TNBC.
Collapse
Affiliation(s)
- Xiaojiang Tang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuhui Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chao Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Changyou Yan
- Compositive Sector, Health and Family Planning Commission of Chengcheng County, Weinan, China
| |
Collapse
|
23
|
Xie T, Stathopoulou MG, Akbar S, Oster T, Siest G, Yen FT, Visvikis-Siest S. Effect of LSR polymorphism on blood lipid levels and age-specific epistatic interaction with the APOE common polymorphism. Clin Genet 2019; 93:846-852. [PMID: 29178324 DOI: 10.1111/cge.13181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 12/28/2022]
Abstract
The lipolysis stimulated lipoprotein receptor (LSR) is an apolipoprotein (Apo) B and ApoE receptor that participates in the removal of triglyceride-rich lipoproteins during the postprandial phase. LSR gene is located upstream of APOE, an important risk factor for cardiovascular disease (CVD). Since the APOE common polymorphism significantly affects the variability of lipid metabolism, this study aimed to determine the potential impact of a functional SNP rs916147 in LSR gene on lipid traits in healthy subjects and to investigate potential epistatic interaction between LSR and APOE. Unrelated healthy adults (N = 432) and children (N = 328, <18 years old) from the STANISLAS Family Study were used. Age-specific epistasis was observed between APOE and LSR, reversing the protective effect of APOE ε2 allele on cholesterol, ApoE and low-density lipoprotein levels (β: .114, P: .777 × 10-8 , β: .125, P: .639 × 10-3 , β: .059, P: .531 × 10-3 , respectively). This interaction was verified in an independent adult population (n = 1744). These results highlight the importance of the LSR polymorphism and reveal the existence of complex molecular links between LSR and ApoE for the regulation of lipid levels, revealing potential new pathways of interest in type III hyperlipidemia and its involvement in CVD pathology.
Collapse
Affiliation(s)
- T Xie
- UMR INSERM, Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire (IGE-PCV), Université de Lorraine, Nancy, France
| | - M G Stathopoulou
- UMR INSERM, Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire (IGE-PCV), Université de Lorraine, Nancy, France
| | - S Akbar
- UMR INSERM, Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire (IGE-PCV), Université de Lorraine, Nancy, France.,EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - T Oster
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - G Siest
- UMR INSERM, Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire (IGE-PCV), Université de Lorraine, Nancy, France
| | - F T Yen
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - S Visvikis-Siest
- UMR INSERM, Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire (IGE-PCV), Université de Lorraine, Nancy, France.,Department of Internal Medicine and Geriatrics, CHU Nancy-Brabois, Nancy, France
| |
Collapse
|
24
|
Kohno T, Konno T, Kojima T. Role of Tricellular Tight Junction Protein Lipolysis-Stimulated Lipoprotein Receptor (LSR) in Cancer Cells. Int J Mol Sci 2019; 20:E3555. [PMID: 31330820 PMCID: PMC6679224 DOI: 10.3390/ijms20143555] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Maintaining a robust epithelial barrier requires the accumulation of tight junction proteins, LSR/angulin-1 and tricellulin, at the tricellular contacts. Alterations in the localization of these proteins temporarily cause epithelial barrier dysfunction, which is closely associated with not only physiological differentiation but also cancer progression and metastasis. In normal human endometrial tissues, the endometrial cells undergo repeated proliferation and differentiation under physiological conditions. Recent observations have revealed that the localization and expression of LSR/angulin-1 and tricellulin are altered in a menstrual cycle-dependent manner. Moreover, it has been shown that endometrial cancer progression affects these alterations. This review highlights the differences in the localization and expression of tight junction proteins in normal endometrial cells and endometrial cancers and how they cause functional changes in cells.
Collapse
Affiliation(s)
- Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo 060-8556, Japan.
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| |
Collapse
|
25
|
Lee Y, Hu S, Park YK, Lee JY. Health Benefits of Carotenoids: A Role of Carotenoids in the Prevention of Non-Alcoholic Fatty Liver Disease. Prev Nutr Food Sci 2019; 24:103-113. [PMID: 31328113 PMCID: PMC6615349 DOI: 10.3746/pnf.2019.24.2.103] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases with a prevalence of ~25% worldwide. NAFLD includes simple hepatic steatosis, non-alcoholic steatohepatitis, fibrosis, and cirrhosis, which can further progress to hepatocellular carcinoma. Therefore, effective strategies for the prevention of NAFLD are needed. The pathogenesis of NAFLD is complicated due to diverse injury insults, such as fat accumulation, oxidative stress, inflammation, lipotoxicity, and apoptosis, which may act synergistically. Studies have shown that carotenoids, a natural group of isoprenoid pigments, prevent the development of NAFLD by exerting antioxidant, lipid-lowering, anti-inflammatory, anti-fibrotic, and insulin-sensitizing properties. This review summarizes the protective action of carotenoids, with primary focuses on astaxanthin, lycopene, β-carotene, β-cryptoxanthin, lutein, fucoxanthin, and crocetin, against the development and progression of NAFLD.
Collapse
Affiliation(s)
- Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Siqi Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.,Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
26
|
Stiles BG. Clostridial Binary Toxins: Basic Understandings that Include Cell Surface Binding and an Internal "Coup de Grâce". Curr Top Microbiol Immunol 2019; 406:135-162. [PMID: 27380267 DOI: 10.1007/82_2016_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium species can make a remarkable number of different protein toxins, causing many diverse diseases in humans and animals. The binary toxins of Clostridium botulinum, C. difficile, C. perfringens, and C. spiroforme are one group of enteric-acting toxins that attack the actin cytoskeleton of various cell types. These enterotoxins consist of A (enzymatic) and B (cell binding/membrane translocation) components that assemble on the targeted cell surface or in solution, forming a multimeric complex. Once translocated into the cytosol via endosomal trafficking and acidification, the A component dismantles the filamentous actin-based cytoskeleton via mono-ADP-ribosylation of globular actin. Knowledge of cell surface receptors and how these usurped, host-derived molecules facilitate intoxication can lead to novel ways of defending against these clostridial binary toxins. A molecular-based understanding of the various steps involved in toxin internalization can also unveil therapeutic intervention points that stop the intoxication process. Furthermore, using these bacterial proteins as medicinal shuttle systems into cells provides intriguing possibilities in the future. The pertinent past and state-of-the-art present, regarding clostridial binary toxins, will be evident in this chapter.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, Chambersburg, PA, 17201, USA.
| |
Collapse
|
27
|
El Hajj A, Yen FT, Oster T, Malaplate C, Pauron L, Corbier C, Lanhers MC, Claudepierre T. Age-related changes in regiospecific expression of Lipolysis Stimulated Receptor (LSR) in mice brain. PLoS One 2019; 14:e0218812. [PMID: 31233547 PMCID: PMC6590887 DOI: 10.1371/journal.pone.0218812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/10/2019] [Indexed: 11/18/2022] Open
Abstract
The regulation of cholesterol, an essential brain lipid, ensures proper neuronal development and function, as demonstrated by links between perturbations of cholesterol metabolism and neurodegenerative diseases, including Alzheimer’s disease. The central nervous system (CNS) acquires cholesterol via de novo synthesis, where glial cells provide cholesterol to neurons. Both lipoproteins and lipoprotein receptors are key elements in this intercellular transport, where the latter recognize, bind and endocytose cholesterol containing glia-produced lipoproteins. CNS lipoprotein receptors are like those in the periphery, among which include the ApoB, E binding lipolysis stimulated lipoprotein receptor (LSR). LSR is a multimeric protein complex that has multiple isoforms including α and α’, which are seen as a doublet at 68 kDa, and β at 56 kDa. While complete inactivation of murine lsr gene is embryonic lethal, studies on lsr +/- mice revealed altered brain cholesterol distribution and cognitive functions. In the present study, LSR profiling in different CNS regions revealed regiospecific expression of LSR at both RNA and protein levels. At the RNA level, the hippocampus, hypothalamus, cerebellum, and olfactory bulb, all showed high levels of total lsr compared to whole brain tissues, whereas at the protein level, only the hypothalamus, olfactory bulb, and retina showed the highest levels of total LSR. Interestingly, major regional changes in LSR expression were observed in aged mice which suggests changes in cholesterol homeostasis in specific structures in the aging brain. Immunocytostaining of primary cultures of mature murine neurons and glial cells isolated from different CNS regions showed that LSR is expressed in both neurons and glial cells. However, lsr RNA expression in the cerebellum was predominantly higher in glial cells, which was confirmed by the immunocytostaining profile of cerebellar neurons and glia. Based on this observation, we would propose that LSR in glial cells may play a key role in glia-neuron cross talk, particularly in the feedback control of cholesterol synthesis to avoid cholesterol overload in neurons and to maintain proper functioning of the brain throughout life.
Collapse
Affiliation(s)
- Aseel El Hajj
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
| | - Frances T. Yen
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
- * E-mail: (TC); (FTY)
| | - Thierry Oster
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
| | - Catherine Malaplate
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
| | - Lynn Pauron
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
| | - Catherine Corbier
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
| | - Marie-Claire Lanhers
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
| | - Thomas Claudepierre
- Qualivie, UR AFPA laboratory, ENSAIA, University of Lorraine, Vandoeuvre-les-Nancy, Lorraine, France
- * E-mail: (TC); (FTY)
| |
Collapse
|
28
|
Nagahama M, Takehara M, Kobayashi K. Interaction of Clostridium perfringens Iota Toxin and Lipolysis-Stimulated Lipoprotein Receptor (LSR). Toxins (Basel) 2018; 10:toxins10100405. [PMID: 30297616 PMCID: PMC6215307 DOI: 10.3390/toxins10100405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023] Open
Abstract
Iota toxin produced by Clostridium perfringens is a binary, actin ADP-ribosylating toxin that is organized into the enzymatically active component Ia and the binding component Ib. Lipolysis-stimulated lipoprotein receptor (LSR) has been identified as a cellular receptor of Ib. Here, we investigated the functional interaction between Ib and LSR, where siRNA for LSR blocked the toxin-mediated cytotoxicity and the binding of Ib. The addition of Ib to LSR-green fluorescence protein (GFP)-transfected cells at 4 °C resulted in colocalization with LSR and Ib on the cell surface. Upon transfer of the cells from 4 °C to 37 °C, LSR and Ib were internalized and observed in cytoplasmic vesicles. When the cells were incubated with Ib at 37 °C and fractionated using the Triton-insoluble membrane, Ib oligomer was localized in insoluble factions that fulfilled the criteria of lipid rafts, and LSR was clustered in lipid rafts. To examine the interaction between N-terminal extracellular region of LSR and Ib, we constructed a series of LSR N-terminal deletions. Ten amino acids residues can be deleted from this end without any reduction of Ib binding. However, deletion of 15 N-terminal residues drastically reduces its ability to bind Ib. These results demonstrate that Ib binds to the LSR N-terminal 10 to 15 residues and endocytoses into trafficking endosomes together with LSR.
Collapse
Affiliation(s)
- Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| |
Collapse
|
29
|
Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018; 275:273-295. [PMID: 29980055 DOI: 10.1016/j.atherosclerosis.2018.06.881] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
During their metabolism, all lipoproteins undergo endocytosis, either to be degraded intracellularly, for example in hepatocytes or macrophages, or to be re-secreted, for example in the course of transcytosis by endothelial cells. Moreover, there are several examples of internalized lipoproteins sequestered intracellularly, possibly to exert intracellular functions, for example the cytolysis of trypanosoma. Endocytosis and the subsequent intracellular itinerary of lipoproteins hence are key areas for understanding the regulation of plasma lipid levels as well as the biological functions of lipoproteins. Indeed, the identification of the low-density lipoprotein (LDL)-receptor and the unraveling of its transcriptional regulation led to the elucidation of familial hypercholesterolemia as well as to the development of statins, the most successful therapeutics for lowering of cholesterol levels and risk of atherosclerotic cardiovascular diseases. Novel limiting factors of intracellular trafficking of LDL and the LDL receptor continue to be discovered and to provide drug targets such as PCSK9. Surprisingly, the receptors mediating endocytosis of high-density lipoproteins or lipoprotein(a) are still a matter of controversy or even new discovery. Finally, the receptors and mechanisms, which mediate the uptake of lipoproteins into non-degrading intracellular itineraries for re-secretion (transcytosis, retroendocytosis), storage, or execution of intracellular functions, are largely unknown.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
30
|
Xie T, Akbar S, Stathopoulou MG, Oster T, Masson C, Yen FT, Visvikis-Siest S. Epistatic interaction of apolipoprotein E and lipolysis-stimulated lipoprotein receptor genetic variants is associated with Alzheimer's disease. Neurobiol Aging 2018; 69:292.e1-292.e5. [PMID: 29858039 DOI: 10.1016/j.neurobiolaging.2018.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 01/19/2023]
Abstract
The ε4 allele of the apolipoprotein E (APOE) gene common polymorphism is the strongest genetic risk factor for Alzheimer's disease (AD). Human APOE gene is located on chromosome 19q13.1, a region linked to AD that also includes the LSR gene, which encodes the lipolysis-stimulated lipoprotein receptor (LSR). As an APOE receptor, LSR is involved in the regulation of lipid homeostasis in both periphery and brain. This study aimed to determine the potential interactions between 2 LSR genetic variants, rs34259399 and rs916147, and the APOE common polymorphism in 142 AD subjects (mean age: 73.16 ± 8.50 years) and 63 controls (mean age: 70.41 ± 8.49 years). A significant epistatic interaction was observed between APOE and both LSR variants, rs34259399 (beta = -0.95; p = 2 × 10-5) and rs916147 (beta = -0.83; p = 6.8 × 10-3). Interestingly, the interaction of LSR polymorphisms with APOE non-ε4 alleles increased AD risk. This indicates the existence of complex molecular interactions between these 2 neighboring genes involved in the pathogenesis of AD, which merits further investigation.
Collapse
Affiliation(s)
- Ting Xie
- UMR INSERM U1122; Université de Lorraine, Inserm, IGE-PCV, Nancy, France
| | - Samina Akbar
- UMR INSERM U1122; Université de Lorraine, Inserm, IGE-PCV, Nancy, France
| | | | - Thierry Oster
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, 2 ave de la Forêt de Haye, Vandœuvre-lès-Nancy, France
| | - Christine Masson
- UMR INSERM U1122; Université de Lorraine, Inserm, IGE-PCV, Nancy, France
| | - Frances T Yen
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, 2 ave de la Forêt de Haye, Vandœuvre-lès-Nancy, France
| | - Sophie Visvikis-Siest
- UMR INSERM U1122; Université de Lorraine, Inserm, IGE-PCV, Nancy, France; Department of Internal Medicine and Geriatrics, CHU Nancy-Brabois, Nancy, France.
| |
Collapse
|
31
|
Hecht I, Toporik A, Podojil JR, Vaknin I, Cojocaru G, Oren A, Aizman E, Liang SC, Leung L, Dicken Y, Novik A, Marbach-Bar N, Elmesmari A, Tange C, Gilmour A, McIntyre D, Kurowska-Stolarska M, McNamee K, Leitner J, Greenwald S, Dassa L, Levine Z, Steinberger P, Williams RO, Miller SD, McInnes IB, Neria E, Rotman G. ILDR2 Is a Novel B7-like Protein That Negatively Regulates T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:2025-2037. [PMID: 29431694 PMCID: PMC6860365 DOI: 10.4049/jimmunol.1700325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
Abstract
The B7-like protein family members play critical immunomodulatory roles and constitute attractive targets for the development of novel therapies for human diseases. We identified Ig-like domain-containing receptor (ILDR)2 as a novel B7-like protein with robust T cell inhibitory activity, expressed in immune cells and in immune-privileged and inflamed tissues. A fusion protein, consisting of ILDR2 extracellular domain with an Fc fragment, that binds to a putative counterpart on activated T cells showed a beneficial effect in the collagen-induced arthritis model and abrogated the production of proinflammatory cytokines and chemokines in autologous synovial-like cocultures of macrophages and cytokine-stimulated T cells. Collectively, these findings point to ILDR2 as a novel negative regulator for T cells, with potential roles in the development of immune-related diseases, including autoimmunity and cancer.
Collapse
Affiliation(s)
| | | | - Joseph R Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | | | | | - Anat Oren
- Compugen Ltd., Holon 5885849, Israel
| | | | | | - Ling Leung
- Compugen USA Inc., South San Francisco, CA 94080
| | | | | | | | - Aziza Elmesmari
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Clare Tange
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Ashley Gilmour
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Donna McIntyre
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Kay McNamee
- Kennedy Institute, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard O Williams
- Kennedy Institute, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | | | |
Collapse
|
32
|
Aktories K, Papatheodorou P, Schwan C. Binary Clostridium difficile toxin (CDT) - A virulence factor disturbing the cytoskeleton. Anaerobe 2018. [PMID: 29524654 DOI: 10.1016/j.anaerobe.2018.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium difficile infection causes antibiotics-associated diarrhea and pseudomembranous colitis. Major virulence factors of C. difficile are the Rho-glucosylating toxins TcdA and TcdB. In addition, many, so-called hypervirulent C. difficile strains produce the binary actin-ADP-ribosylating toxin CDT. CDT causes depolymerization of F-actin and rearrangement of the actin cytoskeleton. Thereby, many cellular functions, which depend on actin, are altered. CDT disturbs the dynamic balance between actin and microtubules in target cells. The toxin increases microtubule polymerization and induces the formation of microtubule-based protrusions at the plasma membrane of target cells. Moreover, CDT causes a redistribution of vesicles from the basolateral side to the apical side, where extracellular matrix proteins are released. These processes may increase the adherence of clostridia to target cells. Here, we review the effects of the action of CDT on the actin cytoskeleton and on the microtubule system.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, 79104 Freiburg, Germany.
| | - Panagiotis Papatheodorou
- Faculty of Natural Sciences, University of Ulm, 89081 Ulm, Germany; Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| |
Collapse
|
33
|
Podojil JR, Hecht I, Chiang MY, Vaknin I, Barbiro I, Novik A, Neria E, Rotman G, Miller SD. ILDR2-Fc Is a Novel Regulator of Immune Homeostasis and Inducer of Antigen-Specific Immune Tolerance. THE JOURNAL OF IMMUNOLOGY 2018; 200:2013-2024. [PMID: 29431690 DOI: 10.4049/jimmunol.1700326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
ILDR2 is a member of the Ig superfamily, which is implicated in tricellular tight junctions, and has a putative role in pancreatic islet health and survival. We recently found a novel role for ILDR2 in delivering inhibitory signals to T cells. In this article, we show that short-term treatment with ILDR2-Fc results in long-term durable beneficial effects in the relapsing-remitting experimental autoimmune encephalomyelitis and NOD type 1 diabetes models. ILDR2-Fc also promotes transplant engraftment in a minor mismatch bone marrow transplantation model. ILDR2-Fc displays a unique mode of action, combining immunomodulation, regulation of immune homeostasis, and re-establishment of Ag-specific immune tolerance via regulatory T cell induction. These findings support the potential of ILDR-Fc to provide a promising therapeutic approach for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Microbiology-Immunology, Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | | | - Ming-Yi Chiang
- Department of Microbiology-Immunology, Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | | | | | | | | | | | - Stephen D Miller
- Department of Microbiology-Immunology, Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| |
Collapse
|
34
|
Abstract
Clostridium difficile is the cause of antibiotics-associated diarrhea and pseudomembranous colitis. The pathogen produces three protein toxins: C. difficile toxins A (TcdA) and B (TcdB), and C. difficile transferase toxin (CDT). The single-chain toxins TcdA and TcdB are the main virulence factors. They bind to cell membrane receptors and are internalized. The N-terminal glucosyltransferase and autoprotease domains of the toxins translocate from low-pH endosomes into the cytosol. After activation by inositol hexakisphosphate (InsP6), the autoprotease cleaves and releases the glucosyltransferase domain into the cytosol, where GTP-binding proteins of the Rho/Ras family are mono-O-glucosylated and, thereby, inactivated. Inactivation of Rho proteins disturbs the organization of the cytoskeleton and affects multiple Rho-dependent cellular processes, including loss of epithelial barrier functions, induction of apoptosis, and inflammation. CDT, the third C. difficile toxin, is a binary actin-ADP-ribosylating toxin that causes depolymerization of actin, thereby inducing formation of the microtubule-based protrusions. Recent progress in understanding of the toxins' actions include insights into the toxin structures, their interaction with host cells, and functional consequences of their actions.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Thomas Jank
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| |
Collapse
|
35
|
Kohno T, Kikuchi S, Ninomiya T, Kojima T. The bicellular tensile force sorts the localization of LSRs in bicellular and tricellular junctions. Ann N Y Acad Sci 2017; 1397:185-194. [PMID: 28493278 DOI: 10.1111/nyas.13362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 11/27/2022]
Abstract
Lipolysis-stimulated lipoprotein receptors (LSRs) localize to tricellular tight junctions. Recent studies have shown that changes in the localization and expression profiles of LSRs are associated with malignancy of endometrial carcinomas, although the precise mechanisms by which malignant progression induces changes in the localization of LSRs are still unknown. In this study, we found that changes in cell tension correlated with alterations in the junctional localization of LSRs in endometrial cancer Sawano cells. At high cell densities, myosin phosphatase target subunit 1 (MYPT1) localized to bicellular junctions, whereas activated myosin regulatory light chain 2 (MRLC2) was dislocated from these regions, suggesting that circumferential tensile forces decreased at high cell densities. Under these conditions, LSRs localized to tricellular junctions. In contrast, a phosphorylated form of MRLC2 localized to bicellular regions, while MYPT1 was excluded from these regions, suggesting that tensile forces formed along the circumferential edge at low cell densities. It is noteworthy that, when cells were cultured under these conditions, LSRs localized to bicellular regions. Upon treatment with a myosin inhibitor, LSR localization in bicellular junctions decreased at low cell densities. Overall, our results indicate that the modulation of cellular tension was involved in the translocation of LSRs from bicellular to tricellular tight junctions.
Collapse
Affiliation(s)
- Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University, Sapporo, Japan
| | | | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
36
|
Reaves DK, Hoadley KA, Fagan-Solis KD, Jima DD, Bereman M, Thorpe L, Hicks J, McDonald D, Troester MA, Perou CM, Fleming JM. Nuclear Localized LSR: A Novel Regulator of Breast Cancer Behavior and Tumorigenesis. Mol Cancer Res 2017; 15:165-178. [PMID: 27856957 PMCID: PMC5290211 DOI: 10.1158/1541-7786.mcr-16-0085-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/28/2016] [Accepted: 10/23/2016] [Indexed: 01/17/2023]
Abstract
Lipolysis-stimulated lipoprotein receptor (LSR) has been found in the plasma membrane and is believed to function in lipoprotein endocytosis and tight junctions. Given the impact of cellular metabolism and junction signaling pathways on tumor phenotypes and patient outcome, it is important to understand how LSR cellular localization mediates its functions. We conducted localization studies, evaluated DNA binding, and examined the effects of nuclear LSR in cells, xenografts, and clinical specimens. We found LSR within the membrane, cytoplasm, and the nucleus of breast cancer cells representing multiple intrinsic subtypes. Chromatin immunoprecipitation (ChIP) showed direct binding of LSR to DNA, and sequence analysis identified putative functional motifs and post-translational modifications of the LSR protein. While neither overexpression of transcript variants, nor pharmacologic manipulation of post-translational modification significantly altered localization, inhibition of nuclear export enhanced nuclear localization, suggesting a mechanism for nuclear retention. Coimmunoprecipitation and proximal ligation assays indicated LSR-pericentrin interactions, presenting potential mechanisms for nuclear-localized LSR. The clinical significance of LSR was evaluated using data from over 1,100 primary breast tumors, which showed high LSR levels in basal-like tumors and tumors from African-Americans. In tumors histosections, nuclear localization was significantly associated with poor outcomes. Finally, in vivo xenograft studies revealed that basal-like breast cancer cells that overexpress LSR exhibited both membrane and nuclear localization, and developed tumors with 100% penetrance, while control cells lacking LSR developed no tumors. These results show that nuclear LSR alters gene expression and may promote aggressive cancer phenotypes. IMPLICATIONS LSR functions in the promotion of aggressive breast cancer phenotypes and poor patient outcome via differential subcellular localization to alter cell signaling, bioenergetics, and gene expression. Mol Cancer Res; 15(2); 165-78. ©2016 AACR.
Collapse
Affiliation(s)
- Denise K Reaves
- Department of Biology, North Carolina Central University, Durham, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Katerina D Fagan-Solis
- Department of Biology, North Carolina Central University, Durham, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dereje D Jima
- Center for Human Health and the Environment, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina
| | - Michael Bereman
- Center for Human Health and the Environment, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina
| | - Lynnelle Thorpe
- Department of Biology, North Carolina Central University, Durham, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jyla Hicks
- Department of Biology, North Carolina Central University, Durham, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David McDonald
- Department of Biology, North Carolina Central University, Durham, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Melissa A Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Jodie M Fleming
- Department of Biology, North Carolina Central University, Durham, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Human Health and the Environment, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
37
|
Akbar S, Pinçon A, Lanhers MC, Claudepierre T, Corbier C, Gregory-Pauron L, Malaplate-Armand C, Visvikis A, Oster T, Yen FT. Expression profile of hepatic genes related to lipid homeostasis in LSR heterozygous mice contributes to their increased response to high-fat diet. Physiol Genomics 2016; 48:928-935. [PMID: 27789735 DOI: 10.1152/physiolgenomics.00077.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/19/2016] [Indexed: 12/30/2022] Open
Abstract
Perturbations of lipid homeostasis manifest as dyslipidemias and obesity, which are significant risk factors for atherosclerosis and diabetes. Lipoprotein receptors in the liver are key players in the regulation of lipid homeostasis, among which the hepatic lipolysis stimulated lipoprotein receptor, LSR, was recently shown to play an important role in the removal of lipoproteins from the circulation during the postprandial phase. Since heterozygous LSR+/- mice demonstrate moderate dyslipidemia and develop higher body weight gain in response to high-fat diet compared with littermate LSR+/+ controls, we questioned if LSR heterozygosity could affect genes related to hepatic lipid metabolism. A target-specific qPCR array for 84 genes related to lipid metabolism was performed on mRNA isolated from livers of 6 mo old female LSR+/- mice and LSR+/+ littermates following a 6 wk period on a standard (STD) or high-fat diet (60% kcal, HFD). Of the 84 genes studied, 32 were significantly downregulated in STD-LSR+/- mice compared with STD-LSR+/+, a majority of which were PPARα target genes involved in lipid metabolism and transport, and insulin and adipokine-signaling pathways. Of these 32 genes, 80% were also modified in HFD-LSR+/+, suggesting that STD-LSR+/- mice demonstrated a predisposition towards a "high-fat"-like profile, which could reflect dysregulation of liver lipid homeostasis. Since similar profiles of genes were affected by either LSR heterozygosity or by high-fat diet, this would suggest that LSR is a key receptor in regulating hepatic lipid homeostasis, and whose downregulation combined with a Western-type diet may increase predisposition to diet-induced obesity.
Collapse
Affiliation(s)
- Samina Akbar
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Anthony Pinçon
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Marie-Claire Lanhers
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Thomas Claudepierre
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Catherine Corbier
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Lynn Gregory-Pauron
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | - Athanase Visvikis
- UMR 7365 CNRS IMOPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Thierry Oster
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Frances T Yen
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France; .,INSERM, Nancy, France; and
| |
Collapse
|
38
|
Chow BW, Gu C. The molecular constituents of the blood-brain barrier. Trends Neurosci 2016; 38:598-608. [PMID: 26442694 DOI: 10.1016/j.tins.2015.08.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) maintains the optimal microenvironment in the central nervous system (CNS) for proper brain function. The BBB comprises specialized CNS endothelial cells with fundamental molecular properties essential for the function and integrity of the BBB. The restrictive nature of the BBB hinders the delivery of therapeutics for many neurological disorders. In addition, recent evidence shows that BBB dysfunction can precede or hasten the progression of several neurological diseases. Despite the physiological significance of the BBB in health and disease, major discoveries of the molecular regulators of BBB formation and function have occurred only recently. This review highlights recent findings describing the molecular determinants and core cellular pathways that confer BBB properties on CNS endothelial cells.
Collapse
Affiliation(s)
- Brian Wai Chow
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MN 02115, USA
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MN 02115, USA.
| |
Collapse
|
39
|
Human apolipoprotein E allele and docosahexaenoic acid intake modulate peripheral cholesterol homeostasis in mice. J Nutr Biochem 2016; 34:83-8. [PMID: 27239755 DOI: 10.1016/j.jnutbio.2016.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 11/22/2022]
Abstract
Carrying at least one apolipoprotein E ε4 allele (E4+) is the main genetic risk factor for Alzheimer's disease (AD). Epidemiological studies support that consuming fatty fish rich in docosahexaenoic acid (DHA; 22:6ω3) is protective against development of AD. However, this protective effect seems not to hold in E4+. The involvement of APOE genotype on the relationship between DHA intake and cognitive decline could be mediated through cholesterol. Many studies show a link between cholesterol metabolism and AD progression. In this study, we investigated whether cholesterol metabolism is improved in E3+ and E4+ mice consuming a diet rich in DHA. Plasma cholesterol was 36% lower in E4+ mice compared to E3+ mice fed the control diet (P=.02), and in the liver, there was a significant genotype effect where cholesterol levels were 18% lower in E4+ mice than E3+ mice. The low-density lipoprotein receptor was overexpressed in the liver of E4+ mice. Plasma cholesterol levels were 33% lower after the DHA diet (P=.02) in E3+ mice only, and there was a significant diet effect where cholesterol level was 67% lower in the liver of mice fed DHA. Mice fed the DHA diet also had 62% less lipolysis stimulated lipoprotein receptor expression in the liver compared to mice fed the control diet (P<.0001), but there was no genotype effect. These findings suggest that plasma and liver cholesterol homeostasis and the receptors regulating uptake of cholesterol in the liver are modulated differently and independently by APOE allele and DHA intake.
Collapse
|
40
|
Koska J, Yassine H, Trenchevska O, Sinari S, Schwenke DC, Yen FT, Billheimer D, Nelson RW, Nedelkov D, Reaven PD. Disialylated apolipoprotein C-III proteoform is associated with improved lipids in prediabetes and type 2 diabetes. J Lipid Res 2016; 57:894-905. [PMID: 26945091 DOI: 10.1194/jlr.p064816] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 11/20/2022] Open
Abstract
The apoC-III proteoform containing two sialic acid residues (apoC-III2) has different in vitro effects on lipid metabolism compared with asialylated (apoC-III0) or the most abundant monosialylated (apoC-III1) proteoforms. Cross-sectional and longitudinal associations between plasma apoC-III proteoforms (by mass spectrometric immunoassay) and plasma lipids were tested in two randomized clinical trials: ACT NOW, a study of pioglitazone in subjects with impaired glucose tolerance (n = 531), and RACED (n = 296), a study of intensive glycemic control and atherosclerosis in type 2 diabetes patients. At baseline, higher relative apoC-III2 and apoC-III2/apoC-III1 ratios were associated with lower triglycerides and total cholesterol in both cohorts, and with lower small dense LDL in the RACED. Longitudinally, changes in apoC-III2/apoC-III1 were inversely associated with changes in triglycerides in both cohorts, and with total and small dense LDL in the RACED. apoC-III2/apoC-III1 was also higher in patients treated with PPAR-γ agonists and was associated with reduced cardiovascular events in the RACED control group. Ex vivo studies of apoC-III complexes with higher apoC-III2/apoC-III1 showed attenuated inhibition of VLDL uptake by HepG2 cells and LPL-mediated lipolysis, providing possible functional explanations for the inverse association between a higher apoC-III2/apoC-III1 and hypertriglyceridemia, proatherogenic plasma lipid profiles, and cardiovascular risk.
Collapse
Affiliation(s)
- Juraj Koska
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ
| | | | | | | | | | - Frances T Yen
- Université de Lorraine, URAFPA, INSERM, Vandoeuvre-lès-Nancy, France
| | | | | | | | - Peter D Reaven
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ
| |
Collapse
|
41
|
Uno K, Yamada T, Ishigaki Y, Imai J, Hasegawa Y, Sawada S, Kaneko K, Ono H, Asano T, Oka Y, Katagiri H. A hepatic amino acid/mTOR/S6K-dependent signalling pathway modulates systemic lipid metabolism via neuronal signals. Nat Commun 2015; 6:7940. [PMID: 26268630 PMCID: PMC4557134 DOI: 10.1038/ncomms8940] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Metabolism is coordinated among tissues and organs via neuronal signals. Levels of circulating amino acids (AAs), which are elevated in obesity, activate the intracellular target of rapamycin complex-1 (mTORC1)/S6kinase (S6K) pathway in the liver. Here we demonstrate that hepatic AA/mTORC1/S6K signalling modulates systemic lipid metabolism via a mechanism involving neuronal inter-tissue communication. Hepatic expression of an AA transporter, SNAT2, activates the mTORC1/S6K pathway, and markedly elevates serum triglycerides (TGs), while downregulating adipose lipoprotein lipase (LPL). Hepatic Rheb or active-S6K expression have similar metabolic effects, whereas hepatic expression of dominant-negative-S6K inhibits TG elevation in SNAT2 mice. Denervation, pharmacological deafferentation and β-blocker administration suppress obesity-related hypertriglyceridemia with adipose LPL upregulation, suggesting that signals are transduced between liver and adipose tissue via a neuronal pathway consisting of afferent vagal and efferent sympathetic nerves. Thus, the neuronal mechanism uncovered here serves to coordinate amino acid and lipid levels and contributes to the development of obesity-related hypertriglyceridemia.
Collapse
Affiliation(s)
- Kenji Uno
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasushi Ishigaki
- Division of Diabetes and Metabolism, Iwate Medical University, Morioka 020-8505, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yutaka Hasegawa
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Shojiro Sawada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiraku Ono
- The Fourth Department of Internal Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, University of Hiroshima, Hiroshima 734-8553, Japan
| | - Yoshitomo Oka
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.,Japan Science and Technology Agency, CREST, Sendai 980-8575, Japan
| |
Collapse
|
42
|
Hemmasi S, Czulkies BA, Schorch B, Veit A, Aktories K, Papatheodorou P. Interaction of the Clostridium difficile Binary Toxin CDT and Its Host Cell Receptor, Lipolysis-stimulated Lipoprotein Receptor (LSR). J Biol Chem 2015; 290:14031-44. [PMID: 25882847 DOI: 10.1074/jbc.m115.650523] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Indexed: 12/17/2022] Open
Abstract
CDT (Clostridium difficile transferase) is a binary, actin ADP-ribosylating toxin frequently associated with hypervirulent strains of the human enteric pathogen C. difficile, the most serious cause of antibiotic-associated diarrhea and pseudomembranous colitis. CDT leads to the collapse of the actin cytoskeleton and, eventually, to cell death. Low doses of CDT result in the formation of microtubule-based protrusions on the cell surface that increase the adherence and colonization of C. difficile. The lipolysis-stimulated lipoprotein receptor (LSR) is the host cell receptor for CDT, and our aim was to gain a deeper insight into the interplay between both proteins. We show that CDT interacts with the extracellular, Ig-like domain of LSR with an affinity in the nanomolar range. We identified LSR splice variants in the colon carcinoma cell line HCT116 and disrupted the LSR gene in these cells by applying the CRISPR-Cas9 technology. LSR truncations ectopically expressed in LSR knock-out cells indicated that intracellular parts of LSR are not essential for plasma membrane targeting of the receptor and cellular uptake of CDT. By generating a series of N- and C-terminal truncations of the binding component of CDT (CDTb), we found that amino acids 757-866 of CDTb are sufficient for binding to LSR. With a transposon-based, random mutagenesis approach, we identified potential LSR-interacting epitopes in CDTb. This study increases our understanding about the interaction between CDT and its receptor LSR, which is key to the development of anti-toxin strategies for preventing cell entry of the toxin.
Collapse
Affiliation(s)
- Sarah Hemmasi
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Fakultät für Biologie
| | - Bernd A Czulkies
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Hermann Staudinger Graduate School
| | - Björn Schorch
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Fakultät für Biologie, the Spemann Graduate School of Biology and Medicine, and
| | - Antonia Veit
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie
| | - Klaus Aktories
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | |
Collapse
|
43
|
Sohet F, Lin C, Munji RN, Lee SY, Ruderisch N, Soung A, Arnold TD, Derugin N, Vexler ZS, Yen FT, Daneman R. LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation. ACTA ACUST UNITED AC 2015; 208:703-11. [PMID: 25753034 PMCID: PMC4362448 DOI: 10.1083/jcb.201410131] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lipolysis-stimulated lipoprotein receptor, a component of the paracellular barrier at tricellular junctions, is necessary for proper blood–brain barrier sealing during embryogenesis. The blood–brain barrier (BBB) is a term used to describe the unique properties of central nervous system (CNS) blood vessels. One important BBB property is the formation of a paracellular barrier made by tight junctions (TJs) between CNS endothelial cells (ECs). Here, we show that Lipolysis-stimulated lipoprotein receptor (LSR), a component of paracellular junctions at points in which three cell membranes meet, is greatly enriched in CNS ECs compared with ECs in other nonneural tissues. We demonstrate that LSR is specifically expressed at tricellular junctions and that its expression correlates with the onset of BBB formation during embryogenesis. We further demonstrate that the BBB does not seal during embryogenesis in Lsr knockout mice with a leakage to small molecules. Finally, in mouse models in which BBB was disrupted, including an experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and a middle cerebral artery occlusion (MCAO) model of stroke, LSR was down-regulated, linking loss of LSR and pathological BBB leakage.
Collapse
Affiliation(s)
- Fabien Sohet
- Department of Pharmacology and Department of Neuroscience, University of California, San Diego, La Jolla, CA 92093 Department of Pharmacology and Department of Neuroscience, University of California, San Diego, La Jolla, CA 92093
| | - Christina Lin
- Department of Anatomy, Department of Pediatrics, and Department of Neurology, University of California, San Francisco, San Francisco, CA 94143
| | - Roeben N Munji
- Department of Pharmacology and Department of Neuroscience, University of California, San Diego, La Jolla, CA 92093 Department of Pharmacology and Department of Neuroscience, University of California, San Diego, La Jolla, CA 92093
| | - Seo Yeon Lee
- Department of Anatomy, Department of Pediatrics, and Department of Neurology, University of California, San Francisco, San Francisco, CA 94143
| | - Nadine Ruderisch
- Department of Anatomy, Department of Pediatrics, and Department of Neurology, University of California, San Francisco, San Francisco, CA 94143
| | - Allison Soung
- Department of Pharmacology and Department of Neuroscience, University of California, San Diego, La Jolla, CA 92093 Department of Pharmacology and Department of Neuroscience, University of California, San Diego, La Jolla, CA 92093
| | - Thomas D Arnold
- Department of Anatomy, Department of Pediatrics, and Department of Neurology, University of California, San Francisco, San Francisco, CA 94143
| | - Nikita Derugin
- Department of Anatomy, Department of Pediatrics, and Department of Neurology, University of California, San Francisco, San Francisco, CA 94143
| | - Zinaida S Vexler
- Department of Anatomy, Department of Pediatrics, and Department of Neurology, University of California, San Francisco, San Francisco, CA 94143
| | - Frances T Yen
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (URAFPA), EA3998, Université de Lorraine, 54000 Nancy, France
| | - Richard Daneman
- Department of Pharmacology and Department of Neuroscience, University of California, San Diego, La Jolla, CA 92093 Department of Pharmacology and Department of Neuroscience, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
44
|
de Guia RM, Rose AJ, Sommerfeld A, Seibert O, Strzoda D, Zota A, Feuchter Y, Krones-Herzig A, Sijmonsma T, Kirilov M, Sticht C, Gretz N, Dallinga-Thie G, Diederichs S, Klöting N, Blüher M, Berriel Diaz M, Herzig S. microRNA-379 couples glucocorticoid hormones to dysfunctional lipid homeostasis. EMBO J 2014; 34:344-60. [PMID: 25510864 DOI: 10.15252/embj.201490464] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)-379/410 genomic cluster as a key component of GC/GR-driven metabolic dysfunction. Particularly, miR-379 was up-regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR-dependent manner. Hepatocyte-specific silencing of miR-379 substantially reduced circulating very-low-density lipoprotein (VLDL)-associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR-379 effects on key receptors in hepatic TG re-uptake. As hepatic miR-379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR-controlled miRNA cluster not only defines a novel layer of hormone-dependent metabolic control but also paves the way to alternative miRNA-based therapeutic approaches in metabolic dysfunction.
Collapse
Affiliation(s)
- Roldan M de Guia
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany
| | - Adam J Rose
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany
| | - Anke Sommerfeld
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany
| | - Oksana Seibert
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany
| | - Daniela Strzoda
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany
| | - Annika Zota
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany
| | - Yvonne Feuchter
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany
| | - Anja Krones-Herzig
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany
| | - Tjeerd Sijmonsma
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany
| | - Milen Kirilov
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Klinikum Mannheim, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Klinikum Mannheim, Mannheim, Germany
| | | | - Sven Diederichs
- Helmholtz-University-Group Molecular RNA Biology and Cancer DKFZ, Heidelberg, Germany Institute of Pathology Heidelberg University, Heidelberg, Germany
| | - Nora Klöting
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Mauricio Berriel Diaz
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany
| | - Stephan Herzig
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany
| |
Collapse
|
45
|
Layeghkhavidaki H, Lanhers MC, Akbar S, Gregory-Pauron L, Oster T, Grova N, Appenzeller B, Jasniewski J, Feidt C, Corbier C, Yen FT. Inhibitory action of benzo[α]pyrene on hepatic lipoprotein receptors in vitro and on liver lipid homeostasis in mice. PLoS One 2014; 9:e102991. [PMID: 25054229 PMCID: PMC4108373 DOI: 10.1371/journal.pone.0102991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/25/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dyslipidemia associated with obesity often manifests as increased plasma LDL and triglyceride-rich lipoprotein levels suggesting changes in hepatic lipoprotein receptor status. Persistent organic pollutants have been recently postulated to contribute to the obesity etiology by increasing adipogenesis, but little information is available on their potential effect on hepatic lipoprotein metabolism. OBJECTIVE The objective of this study was to investigate the effect of the common environmental pollutant, benzo[α]pyrene (B[α]P) on two lipoprotein receptors, the LDL-receptor and the lipolysis-stimulated lipoprotein receptor (LSR) as well as the ATP-binding cassette transporter A1 (ABCA1) using cell and animal models. RESULTS LSR, LDL-receptor as well as ABCA1 protein levels were significantly decreased by 26-48% in Hepa1-6 cells incubated (<2 h) in the presence of B[α]P (≤1 µM). Real-time PCR analysis and lactacystin studies revealed that this effect was due primarily to increased proteasome, and not lysosomal-mediated degradation rather than decreased transcription. Furthermore, ligand blots revealed that lipoproteins exposed to 1 or 5 µM B[α]P displayed markedly decreased (42-86%) binding to LSR or LDL-receptor. B[α]P-treated (0.5 mg/kg/48 h, i.p. 15 days) C57BL/6J mice displayed higher weight gain, associated with significant increases in plasma cholesterol, triglycerides, and liver cholesterol content, and decreased hepatic LDL-receptor and ABCA1 levels. Furthermore, correlational analysis revealed that B[α]P abolished the positive association observed in control mice between the LSR and LDL-receptor. Interestingly, levels of other proteins involved in liver cholesterol metabolism, ATP-binding cassette transporter G1 and scavenger receptor-BI, were decreased, while those of acyl-CoA:cholesterol acyltransferase 1 and 2 were increased in B[α]P-treated mice. CONCLUSIONS B[α]P demonstrates inhibitory action on LSR and LDL-R, as well as ABCA1, which we propose leads to modified lipid status in B[α]P-treated mice, thus providing new insight into mechanisms underlying the involvement of pollutants in the disruption of lipid homeostasis, potentially contributing to dyslipidemia associated with obesity.
Collapse
Affiliation(s)
- Hamed Layeghkhavidaki
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
| | - Marie-Claire Lanhers
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
| | - Samina Akbar
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
| | - Lynn Gregory-Pauron
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
| | - Thierry Oster
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
| | - Nathalie Grova
- Laboratory of Analytical Human Biomonitoring, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Brice Appenzeller
- Laboratory of Analytical Human Biomonitoring, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Jordane Jasniewski
- Laboratoire d'Ingenérie des Biomolécules, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Cyril Feidt
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
| | - Catherine Corbier
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
| | - Frances T. Yen
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
- Institut National de la Santé et de la Recherche Médicale, Vandœuvre-lès-Nancy, France
| |
Collapse
|
46
|
Furuse M, Izumi Y, Oda Y, Higashi T, Iwamoto N. Molecular organization of tricellular tight junctions. Tissue Barriers 2014; 2:e28960. [PMID: 25097825 PMCID: PMC4117683 DOI: 10.4161/tisb.28960] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/19/2014] [Accepted: 04/21/2014] [Indexed: 01/22/2023] Open
Abstract
When the apicolateral border of epithelial cells is compared with a polygon, its sides correspond to the apical junctional complex, where cell adhesion molecules assemble from the plasma membranes of two adjacent cells. On the other hand, its vertices correspond to tricellular contacts, where the corners of three cells meet. Vertebrate tricellular contacts have specialized structures of tight junctions, termed tricellular tight junctions (tTJs). tTJs were identified by electron microscopic observations more than 40 years ago, but have been largely forgotten in epithelial cell biology since then. The identification of tricellulin and angulin family proteins as tTJ-associated membrane proteins has enabled us to study tTJs in terms of not only the paracellular barrier function but also unknown characteristics of epithelial cell corners via molecular biological approaches.
Collapse
Affiliation(s)
- Mikio Furuse
- Division of Cell Biology; Department of Physiology and Cell Biology; Kobe University Graduate School of Medicine; Kobe, Japan ; Division of Cerebral Structure; National Institute for Physiological Sciences; Okazaki, Aichi Japan
| | - Yasushi Izumi
- Division of Cell Biology; Department of Physiology and Cell Biology; Kobe University Graduate School of Medicine; Kobe, Japan
| | - Yukako Oda
- Division of Cell Biology; Department of Physiology and Cell Biology; Kobe University Graduate School of Medicine; Kobe, Japan
| | - Tomohito Higashi
- Division of Cell Biology; Department of Physiology and Cell Biology; Kobe University Graduate School of Medicine; Kobe, Japan
| | - Noriko Iwamoto
- Division of Cell Biology; Department of Physiology and Cell Biology; Kobe University Graduate School of Medicine; Kobe, Japan
| |
Collapse
|
47
|
Reaves DK, Fagan-Solis KD, Dunphy K, Oliver SD, Scott DW, Fleming JM. The role of lipolysis stimulated lipoprotein receptor in breast cancer and directing breast cancer cell behavior. PLoS One 2014; 9:e91747. [PMID: 24637461 PMCID: PMC3956714 DOI: 10.1371/journal.pone.0091747] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/14/2014] [Indexed: 01/23/2023] Open
Abstract
The claudin-low molecular subtype of breast cancer is of particular interest for clinically the majority of these tumors are poor prognosis, triple negative, invasive ductal carcinomas. Claudin-low tumors are characterized by cancer stem cell-like features and low expression of cell junction and adhesion proteins. Herein, we sought to define the role of lipolysis stimulated lipoprotein receptor (LSR) in breast cancer and cancer cell behavior as LSR was recently correlated with tumor-initiating features. We show that LSR was expressed in epithelium, endothelium, and stromal cells within the healthy breast tissue, as well as in tumor epithelium. In primary breast tumor bioposies, LSR expression was significantly correlated with invasive ductal carcinomas compared to invasive lobular carcinomas, as well as ERα positive tumors and breast cancer cell lines. LSR levels were significantly reduced in claudin-low breast cancer cell lines and functional studies illustrated that re-introduction of LSR into a claudin-low cell line suppressed the EMT phenotype and reduced individual cell migration. However, our data suggest that LSR may promote collective cell migration. Re-introduction of LSR in claudin-low breast cancer cell lines reestablished tight junction protein expression and correlated with transepithelial electrical resistance, thereby reverting claudin-low lines to other intrinsic molecular subtypes. Moreover, overexpression of LSR altered gene expression of pathways involved in transformation and tumorigenesis as well as enhanced proliferation and survival in anchorage independent conditions, highlighting that reestablishment of LSR signaling promotes aggressive/tumor initiating cell behaviors. Collectively, these data highlight a direct role for LSR in driving aggressive breast cancer behavior.
Collapse
Affiliation(s)
- Denise K. Reaves
- Department of Biology, North Carolina Central University, Durham, North Carolina, United States of America
| | - Katerina D. Fagan-Solis
- Department of Biology, North Carolina Central University, Durham, North Carolina, United States of America
| | - Karen Dunphy
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Shannon D. Oliver
- Department of Biology, North Carolina Central University, Durham, North Carolina, United States of America
| | - David W. Scott
- Department of Cell Physiology and Cell Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jodie M. Fleming
- Department of Biology, North Carolina Central University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
48
|
Gerding DN, Johnson S, Rupnik M, Aktories K. Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes 2014; 5:15-27. [PMID: 24253566 PMCID: PMC4049931 DOI: 10.4161/gmic.26854] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Binary toxin (CDT) is frequently observed in Clostridium difficile strains associated with increased severity of C. difficile infection (CDI). CDT belongs to the family of binary ADP-ribosylating toxins consisting of two separate toxin components: CDTa, the enzymatic ADP-ribosyltransferase which modifies actin, and CDTb which binds to host cells and translocates CDTa into the cytosol. CDTb is activated by serine proteases and binds to lipolysis stimulated lipoprotein receptor. ADP-ribosylation induces depolymerization of the actin cytoskeleton. Toxin-induced actin depolymerization also produces microtubule-based membrane protrusions which form a network on epithelial cells and increase bacterial adherence. Multiple clinical studies indicate an association between binary toxin genes in C. difficile and increased 30-d CDI mortality independent of PCR ribotype. Further studies including measures of binary toxin in stool, analyses of CDI mortality caused by CDT-producing strains, and examination of the relationship of CDT expression to TcdA and TcdB toxin variants and PCR ribotypes are needed.
Collapse
Affiliation(s)
- Dale N Gerding
- Loyola University Chicago Stritch School of Medicine; Hines Veterans Affairs Hospital; Hines, IL USA,Correspondence to: Dale N Gerding,
| | - Stuart Johnson
- Loyola University Chicago Stritch School of Medicine; Hines Veterans Affairs Hospital; Hines, IL USA
| | - Maja Rupnik
- Institute of Public Health Maribor; University of Maribor, Medical Faculty, and Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins; Ljubljana, Slovenia
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology; Albert-Ludwigs-University Freiburg; Freiburg, Germany
| |
Collapse
|
49
|
|
50
|
Foley EM, Gordts PLSM, Stanford KI, Gonzales JC, Lawrence R, Stoddard N, Esko JD. Hepatic remnant lipoprotein clearance by heparan sulfate proteoglycans and low-density lipoprotein receptors depend on dietary conditions in mice. Arterioscler Thromb Vasc Biol 2013; 33:2065-74. [PMID: 23846497 DOI: 10.1161/atvbaha.113.301637] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Chylomicron and very low-density lipoprotein remnants are cleared from the circulation in the liver by heparan sulfate proteoglycan (HSPG) receptors (syndecan-1), the low-density lipoprotein receptor (LDLR), and LDLR-related protein-1 (LRP1), but the relative contribution of each class of receptors under different dietary conditions remains unclear. APPROACH AND RESULTS Triglyceride-rich lipoprotein clearance was measured in AlbCre(+)Ndst1(f/f), Ldlr(-/-), and AlbCre(+)Lrp1(f/f) mice and mice containing combinations of these mutations. Triglyceride measurements in single and double mutant mice showed that HSPGs and LDLR dominate clearance under fasting conditions and postprandial conditions, but LRP1 contributes significantly when LDLR is absent. Mice lacking hepatic expression of all 3 receptors (AlbCre(+)Ndst1(f/f) Lrp1(f/f) Ldlr(-/-)) displayed dramatic hyperlipidemia (870 ± 270 mg triglyceride/dL; 1300 ± 350 mg of total cholesterol/dL) and exhibited persistent elevated postprandial triglyceride levels because of reduced hepatic clearance. Analysis of the particles accumulating in mutants showed that HSPGs preferentially clear a subset of small triglyceride-rich lipoproteins (≈ 20-40 nm diameter), whereas LDLR and LRP1 clear larger particles (≈ 40-60 nm diameter). Finally, we show that HSPGs play a major role in clearance of triglyceride-rich lipoproteins in mice fed normal chow or under postprandial conditions but seem to play a less significant role on a high-fat diet. CONCLUSIONS These data show that HSPGs, LDLR, and LRP1 clear distinct subsets of particles, that HSPGs work independently of LDLR and LRP1, and that HSPGs, LDLR, and LRP1 are the 3 major hepatic triglyceride-rich lipoprotein clearance receptors in mice.
Collapse
Affiliation(s)
- Erin M Foley
- Department of Cellular and Molecular Medicine University of California San Diego, La Jolla, California, USA.,Department of Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Philip L S M Gordts
- Department of Cellular and Molecular Medicine University of California San Diego, La Jolla, California, USA
| | - Kristin I Stanford
- Department of Cellular and Molecular Medicine University of California San Diego, La Jolla, California, USA
| | - Jon C Gonzales
- Department of Cellular and Molecular Medicine University of California San Diego, La Jolla, California, USA.,Department of Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine University of California San Diego, La Jolla, California, USA
| | - Nicole Stoddard
- Department of Cellular and Molecular Medicine University of California San Diego, La Jolla, California, USA.,Department of Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine University of California San Diego, La Jolla, California, USA.,Department of Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| |
Collapse
|