1
|
Tiku V, Fakih Z, Tatsuta T, Jung M, Rapaport D, Dimmer KS. Characterization of the putative yeast mitochondrial triacylglycerol lipase Tgl2. J Biol Chem 2025:108217. [PMID: 39863106 DOI: 10.1016/j.jbc.2025.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Mitochondria derive the majority of their lipids from other organelles through contact sites. These lipids, primarily phosphoglycerolipids, are the main components of mitochondrial membranes. In the cell, neutral lipids like triacylglycerides (TAGs) are stored in lipid droplets, playing an important role in maintaining cellular health. Enzymes like lipases mobilize these TAGs according to cellular needs. Neutral lipids have not yet been reported to play an important role in mitochondria so the presence of a putative TAG lipase - Tgl2, in yeast mitochondria is surprising. Moreover, TGL2 and MCP2, a high-copy suppressor for ERMES deficient cells, display genetic interactions suggesting a potential link of both proteins to lipid metabolism. In this study, we characterize in detail Tgl2. We show that Tgl2 forms dimers through intermolecular disulfide bridges and a cysteine-dependent high molecular weight complex. Furthermore, we could identify the lipase motif and catalytic triad of Tgl2 through in silico comparison with other lipases. Mutating each of the three catalytically active residues resulted in variants that failed to rescue the growth phenotype of mcp2Δ tgl2Δ double deletion strain supporting the assumption that these residues are indeed essential for the protein's function. Additionally, we discovered that the catalytically active aspartate residue (D259) is important for protein stability. Steady state level analyses with unstable variants of Tgl2 led to the identification of Yme1 as the protease responsible for its quality control. Finally, we provide evidence that the overall increase in TAGs in cells lacking Mcp2 and Tgl2 originates from the mitochondria. Collectively, our study provides new insights into a key player in mitochondrial lipid homeostasis.
Collapse
Affiliation(s)
- Vitasta Tiku
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Zacharias Fakih
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | | | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
McGee CC, Bandyopadhyay T, McCracken CN, Talib E, Patterson CE, Outten CE. Cysteine import via the high-affinity GSH transporter Hgt1 rescues GSH auxotrophy in yeast. J Biol Chem 2024; 301:108131. [PMID: 39716489 PMCID: PMC11786745 DOI: 10.1016/j.jbc.2024.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024] Open
Abstract
Glutathione (GSH) is an abundant thiol-containing tripeptide that functions in redox homeostasis, protein folding, and iron (Fe) metabolism. In Saccharomyces cerevisiae, GSH depletion leads to increased sensitivity to oxidants and other toxic compounds, disruption of iron-sulfur (Fe-S) cluster biogenesis, and eventually cell death. GSH pools are supplied by intracellular biosynthesis and GSH import from the extracellular environment. Consequently, in GSH-depleted growth media, deletion of the gene encoding the first enzyme in the GSH biosynthetic pathway (GSH1) is lethal in yeast. At the other extreme, GSH overaccumulation via overexpression of the high-affinity GSH transporter Hgt1 is also toxic to cells, leading to reductive stress. Here, we engineered a yeast strain that combines gsh1 deletion with HGT1 overexpression to study the cellular effects of oscillating between GSH-deplete and -replete conditions. Surprisingly, we find that constitutive expression of HGT1 in gsh1Δ cells rescues the GSH auxotrophy of this strain. We also show that addition of cysteine or cysteine derivatives to the growth media is required for this rescue. GSH limitation in yeast causes intracellular Fe overload because of disruption of an Fe-S cluster-dependent pathway that regulates the activity of the low Fe-sensing transcription factors Aft1 and Aft2. Analysis of Fe regulation and other Fe-S cluster-dependent pathways reveals that HGT1 overexpression partially alleviates the Fe starvation-like response of gsh1Δ cells. Taken together, these results suggest that HGT1 overexpression facilitates import of cysteine or cysteine derivatives that allow limited Fe-S cluster biogenesis to sustain cell growth in the absence of GSH.
Collapse
Affiliation(s)
- Crystal C McGee
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Tirthankar Bandyopadhyay
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Cailin N McCracken
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Evan Talib
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Courtney E Patterson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Caryn E Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
3
|
Guo Q, Yang YX, Li DX, Ji XJ, Wu N, Wang YT, Ye C, Shi TQ. Advances in multi-enzyme co-localization strategies for the construction of microbial cell factory. Biotechnol Adv 2024; 77:108453. [PMID: 39278372 DOI: 10.1016/j.biotechadv.2024.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Biomanufacturing, driven by technologies such as synthetic biology, offers significant potential to advance the bioeconomy and promote sustainable development. It is anticipated to transform traditional manufacturing and become a key industry in future strategies. Cell factories are the core of biomanufacturing. The advancement of synthetic biology and growing market demand have led to the production of a greater variety of natural products and increasingly complex metabolic pathways. However, this progress also presents challenges, notably the conflict between natural product production and chassis cell growth. This conflict results in low productivity and yield, adverse side effects, metabolic imbalances, and growth retardation. Enzyme co-localization strategies have emerged as a promising solution. This article reviews recent progress and applications of these strategies in constructing cell factories for efficient natural product production. It comprehensively describes the applications of enzyme-based compartmentalization, metabolic pathway-based compartmentalization, and synthetic organelle-based compartmentalization in improving product titers. The article also explores future research directions and the prospects of combining multiple strategies with advanced technologies.
Collapse
Affiliation(s)
- Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yu-Xin Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Dong-Xun Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Na Wu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| |
Collapse
|
4
|
Pall AE, Bond S, Bailey DK, Stoj CS, Deschamps I, Huggins P, Parsons J, Bradbury MJ, Kosman DJ, Stemmler TL. ATH434, a promising iron-targeting compound for treating iron regulation disorders. Metallomics 2024; 16:mfae044. [PMID: 39317669 DOI: 10.1093/mtomcs/mfae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024]
Abstract
Cytotoxic accumulation of loosely bound mitochondrial Fe2+ is a hallmark of Friedreich's Ataxia (FA), a rare and fatal neuromuscular disorder with limited therapeutic options. There are no clinically approved medications targeting excess Fe2+ associated with FA or the neurological disorders Parkinson's disease and Multiple System Atrophy. Traditional iron-chelating drugs clinically approved for systemic iron overload that target ferritin-stored Fe3+ for urinary excretion demonstrated limited efficacy in FA and exacerbated ataxia. Poor treatment outcomes reflect inadequate binding to excess toxic Fe2+ or exceptionally high affinities (i.e. ≤10-31) for non-pathologic Fe3+ that disrupts intrinsic iron homeostasis. To understand previous treatment failures and identify beneficial factors for Fe2+-targeted therapeutics, we compared traditional Fe3+ chelators deferiprone (DFP) and deferasirox (DFX) with additional iron-binding compounds including ATH434, DMOG, and IOX3. ATH434 and DFX had moderate Fe2+ binding affinities (Kd's of 1-4 µM), similar to endogenous iron chaperones, while the remaining had weaker divalent metal interactions. These compounds had low/moderate affinities for Fe3+(0.46-9.59 µM) relative to DFX and DFP. While all compounds coordinated iron using molecular oxygen and/or nitrogen ligands, thermodynamic analyses suggest ATH434 completes Fe2+ coordination using H2O. ATH434 significantly stabilized bound Fe2+ from ligand-induced autooxidation, reducing reactive oxygen species (ROS) production, whereas DFP and DFX promoted production. The comparable affinity of ATH434 for Fe2+ and Fe3+ position it to sequester excess Fe2+ and facilitate drug-to-protein iron metal exchange, mimicking natural endogenous iron binding proteins, at a reduced risk of autooxidation-induced ROS generation or perturbation of cellular iron stores.
Collapse
Affiliation(s)
- Ashley E Pall
- De partment of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Silas Bond
- Alterity Therapeutics Limited, Melbourne, 3000, Australia
| | - Danielle K Bailey
- Department of Biochemistry, University of Buffalo, Buffalo, NY14203, USA
| | - Christopher S Stoj
- Department of Biochemistry, Chemistry and Physics, Niagara University, Lewiston, NY 14109, USA
| | - Isabel Deschamps
- Department of Biochemistry, Chemistry and Physics, Niagara University, Lewiston, NY 14109, USA
| | - Penny Huggins
- Alterity Therapeutics Limited, Melbourne, 3000, Australia
| | - Jack Parsons
- Alterity Therapeutics Limited, Melbourne, 3000, Australia
| | | | - Daniel J Kosman
- Department of Biochemistry, University of Buffalo, Buffalo, NY14203, USA
| | - Timothy L Stemmler
- De partment of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Landoni JC, Kleele T, Winter J, Stepp W, Manley S. Mitochondrial Structure, Dynamics, and Physiology: Light Microscopy to Disentangle the Network. Annu Rev Cell Dev Biol 2024; 40:219-240. [PMID: 38976811 DOI: 10.1146/annurev-cellbio-111822-114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.
Collapse
Affiliation(s)
- Juan C Landoni
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Tatjana Kleele
- Institute of Biochemistry, Swiss Federal Institute of Technology Zürich (ETH), Zürich, Switzerland;
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Julius Winter
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Willi Stepp
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Suliana Manley
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| |
Collapse
|
6
|
Gallero S, Persson KW, Henríquez-Olguín C. Unresolved questions in the regulation of skeletal muscle insulin action by reactive oxygen species. FEBS Lett 2024; 598:2145-2159. [PMID: 38803005 DOI: 10.1002/1873-3468.14937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Reactive oxygen species (ROS) are well-established signaling molecules implicated in a wide range of cellular processes, including both oxidative stress and intracellular redox signaling. In the context of insulin action within its target tissues, ROS have been reported to exert both positive and negative regulatory effects. However, the precise molecular mechanisms underlying this duality remain unclear. This Review examines the complex role of ROS in insulin action, with a particular focus on skeletal muscle. We aim to address three critical aspects: (a) the proposed intracellular pro-oxidative redox shift elicited by insulin, (b) the evidence supporting that redox-sensitive cysteine modifications impact insulin signaling and action, and (c) cellular mechanisms underlying how ROS can paradoxically act as both enhancers and inhibitors of insulin action. This Review underscores the urgent need for more systematic research to identify specific reactive species, redox targets, and the physiological significance of redox signaling in maintaining insulin action and metabolic health, with a particular emphasis on human skeletal muscle.
Collapse
Affiliation(s)
- Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Kaspar W Persson
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Carlos Henríquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
7
|
Lin H, Wang L, Jiang X, Wang J. Glutathione dynamics in subcellular compartments and implications for drug development. Curr Opin Chem Biol 2024; 81:102505. [PMID: 39053236 PMCID: PMC11722958 DOI: 10.1016/j.cbpa.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.
Collapse
Affiliation(s)
- Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lingfei Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiqian Jiang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Masanta S, Wiesyk A, Panja C, Pilch S, Ciesla J, Sipko M, De A, Enkhbaatar T, Maslanka R, Skoneczna A, Kucharczyk R. Fmp40 ampylase regulates cell survival upon oxidative stress by controlling Prx1 and Trx3 oxidation. Redox Biol 2024; 73:103201. [PMID: 38795545 PMCID: PMC11140801 DOI: 10.1016/j.redox.2024.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024] Open
Abstract
Reactive oxygen species (ROS), play important roles in cellular signaling, nonetheless are toxic at higher concentrations. Cells have many interconnected, overlapped or backup systems to neutralize ROS, but their regulatory mechanisms remain poorly understood. Here, we reveal an essential role for mitochondrial AMPylase Fmp40 from budding yeast in regulating the redox states of the mitochondrial 1-Cys peroxiredoxin Prx1, which is the only protein shown to neutralize H2O2 with the oxidation of the mitochondrial glutathione and the thioredoxin Trx3, directly involved in the reduction of Prx1. Deletion of FMP40 impacts a cellular response to H2O2 treatment that leads to programmed cell death (PCD) induction and an adaptive response involving up or down regulation of genes encoding, among others the catalase Cta1, PCD inducing factor Aif1, and mitochondrial redoxins Trx3 and Grx2. This ultimately perturbs the reduced glutathione and NADPH cellular pools. We further demonstrated that Fmp40 AMPylates Prx1, Trx3, and Grx2 in vitro and interacts with Trx3 in vivo. AMPylation of the threonine residue 66 in Trx3 is essential for this protein's proper endogenous level and its precursor forms' maturation under oxidative stress conditions. Additionally, we showed the Grx2 involvement in the reduction of Trx3 in vivo. Taken together, Fmp40, through control of the reduction of mitochondrial redoxins, regulates the hydrogen peroxide, GSH and NADPH signaling influencing the yeast cell survival.
Collapse
Affiliation(s)
- Suchismita Masanta
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Aneta Wiesyk
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Sylwia Pilch
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Jaroslaw Ciesla
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Marta Sipko
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Abhipsita De
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland.
| |
Collapse
|
9
|
Zhan J, Zeng D, Xiao X, Fang Z, Huang T, Zhao B, Zhu Q, Liu C, Jiang B, Zhou X, Li C, He L, Yang D, Liu M, Zhang X. Real-Time Observation of Conformational Changes and Translocation of Endogenous Cytochrome c within Intact Mitochondria. J Am Chem Soc 2024; 146:4455-4466. [PMID: 38335066 DOI: 10.1021/jacs.3c10216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Cytochrome c (cyt c) is a multifunctional protein with varying conformations. However, the conformation of cyt c in its native environment, mitochondria, is still unclear. Here, we applied NMR spectroscopy to investigate the conformation and location of endogenous cyt c within intact mitochondria at natural isotopic abundance, mainly using widespread methyl groups as probes. By monitoring time-dependent chemical shift perturbations, we observed that most cyt c is located in the inner mitochondrial membrane and partially unfolded, which is distinct from its native conformation in solution. When suffering oxidative stress, cyt c underwent oxidative modifications due to increasing reactive oxygen species (ROS), weakening electrostatic interactions with the membrane, and gradually translocating into the inner membrane spaces of mitochondria. Meanwhile, the lethality of oxidatively modified cyt c to cells was reduced compared with normal cyt c. Our findings significantly improve the understanding of the molecular mechanisms underlying the regulation of ROS by cyt c in mitochondria. Moreover, it highlights the potential of NMR to monitor high-concentration molecules at a natural isotopic abundance within intact cells or organelles.
Collapse
Affiliation(s)
- Jianhua Zhan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Danyun Zeng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiong Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhongpei Fang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tao Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Beibei Zhao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qinjun Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Caixiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, People's Republic of China
- Optics Valley Laboratory, Wuhan 430074, People's Republic of China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, People's Republic of China
- Optics Valley Laboratory, Wuhan 430074, People's Republic of China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, People's Republic of China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, People's Republic of China
- Optics Valley Laboratory, Wuhan 430074, People's Republic of China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, People's Republic of China
- Optics Valley Laboratory, Wuhan 430074, People's Republic of China
| |
Collapse
|
10
|
Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol 2024; 25:13-33. [PMID: 37714962 DOI: 10.1038/s41580-023-00645-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
Several different reactive oxygen species (ROS) are generated in vivo. They have roles in the development of certain human diseases whilst also performing physiological functions. ROS are counterbalanced by an antioxidant defence network, which functions to modulate ROS levels to allow their physiological roles whilst minimizing the oxidative damage they cause that can contribute to disease development. This Review describes the mechanisms of action of antioxidants synthesized in vivo, antioxidants derived from the human diet and synthetic antioxidants developed as therapeutic agents, with a focus on the gaps in our current knowledge and the approaches needed to close them. The Review also explores the reasons behind the successes and failures of antioxidants in treating or preventing human disease. Antioxidants may have special roles in the gastrointestinal tract, and many lifestyle features known to promote health (especially diet, exercise and the control of blood glucose and cholesterol levels) may be acting, at least in part, by antioxidant mechanisms. Certain reactive sulfur species may be important antioxidants but more accurate determinations of their concentrations in vivo are needed to help assess their contributions.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Henriquez-Olguin C, Meneses-Valdes R, Kritsiligkou P, Fuentes-Lemus E. From workout to molecular switches: How does skeletal muscle produce, sense, and transduce subcellular redox signals? Free Radic Biol Med 2023; 209:355-365. [PMID: 37923089 DOI: 10.1016/j.freeradbiomed.2023.10.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Skeletal muscle is crucial for maintaining human health and overall quality of life. Acute exercise introduces a multifaceted intracellular stress, with numerous post-translational modifications believed to underpin the health benefits of sustained exercise training. Reactive oxygen species (ROS) are posited to serve as second messengers, triggering cytoprotective adaptations such as the upregulation of enzymatic scavenger systems. However, a significant knowledge gap exists between the generation of oxidants in muscle and the exact mechanisms driving muscle adaptations. This review delves into the current research on subcellular redox biochemistry and its role in the physiological adaptations to exercise. We propose that the subcellular regulation of specific redox modifications is key to ensuring specificity in the intracellular response.
Collapse
Affiliation(s)
- Carlos Henriquez-Olguin
- The August Krogh Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark; Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile.
| | - Roberto Meneses-Valdes
- The August Krogh Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark
| | | | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark
| |
Collapse
|
12
|
Zannini F, Herrmann JM, Couturier J, Rouhier N. Oxidation of Arabidopsis thaliana COX19 Using the Combined Action of ERV1 and Glutathione. Antioxidants (Basel) 2023; 12:1949. [PMID: 38001802 PMCID: PMC10669224 DOI: 10.3390/antiox12111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Protein import and oxidative folding within the intermembrane space (IMS) of mitochondria relies on the MIA40-ERV1 couple. The MIA40 oxidoreductase usually performs substrate recognition and oxidation and is then regenerated by the FAD-dependent oxidase ERV1. In most eukaryotes, both proteins are essential; however, MIA40 is dispensable in Arabidopsis thaliana. Previous complementation experiments have studied yeast mia40 mutants expressing a redox inactive, but import-competent versions of yeast Mia40 using A. thaliana ERV1 (AtERV1) suggest that AtERV1 catalyzes the oxidation of MIA40 substrates. We assessed the ability of both yeast and Arabidopsis MIA40 and ERV1 recombinant proteins to oxidize the apo-cytochrome reductase CCMH and the cytochrome c oxidase assembly protein COX19, a typical MIA40 substrate, in the presence or absence of glutathione, using in vitro cysteine alkylation and cytochrome c reduction assays. The presence of glutathione used at a physiological concentration and redox potential was sufficient to support the oxidation of COX19 by AtERV1, providing a likely explanation for why MIA40 is not essential for the import and oxidative folding of IMS-located proteins in Arabidopsis. The results point to fundamental biochemical differences between Arabidopsis and yeast ERV1 in catalyzing protein oxidation.
Collapse
Affiliation(s)
- Flavien Zannini
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (F.Z.); (J.C.)
| | - Johannes M. Herrmann
- Cell Biology, University of Kaiserslautern, RPTU, 67663 Kaiserslautern, Germany;
| | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (F.Z.); (J.C.)
| | - Nicolas Rouhier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (F.Z.); (J.C.)
| |
Collapse
|
13
|
Kong X, Wu Y, Yu W, Liu Y, Li J, Du G, Lv X, Liu L. Efficient Synthesis of Limonene in Saccharomyces cerevisiae Using Combinatorial Metabolic Engineering Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7752-7764. [PMID: 37189018 DOI: 10.1021/acs.jafc.3c02076] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Limonene is a volatile monoterpene compound that is widely used in food additives, pharmaceutical products, fragrances, and toiletries. We herein attempted to perform efficient biosynthesis of limonene in Saccharomyces cerevisiae using systematic metabolic engineering strategies. First, we conducted de novo synthesis of limonene in S. cerevisiae and achieved a titer of 46.96 mg/L. Next, by dynamic inhibition of the competitive bypass of key metabolic branches regulated by ERG20 and optimization of the copy number of tLimS, a greater proportion of the metabolic flow was directed toward limonene synthesis, achieving a titer of 640.87 mg/L. Subsequently, we enhanced the acetyl-CoA and NADPH supply, which increased the limonene titer to 1097.43 mg/L. Then, we reconstructed the limonene synthesis pathway in the mitochondria. Dual regulation of cytoplasmic and mitochondrial metabolism further increased the limonene titer to 1586 mg/L. After optimization of the process of fed-batch fermentation, the limonene titer reached 2.63 g/L, the highest ever reported in S. cerevisiae.
Collapse
Affiliation(s)
- Xiao Kong
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yaokang Wu
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenwen Yu
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Food Laboratory of Zhongyuan, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
14
|
Lee S, Lee SB, Sung N, Xu WW, Chang C, Kim HE, Catic A, Tsai FTF. Structural basis of impaired disaggregase function in the oxidation-sensitive SKD3 mutant causing 3-methylglutaconic aciduria. Nat Commun 2023; 14:2028. [PMID: 37041140 PMCID: PMC10090083 DOI: 10.1038/s41467-023-37657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/23/2023] [Indexed: 04/13/2023] Open
Abstract
Mitochondria are critical to cellular and organismal health. To prevent damage, mitochondria have evolved protein quality control machines to survey and maintain the mitochondrial proteome. SKD3, also known as CLPB, is a ring-forming, ATP-fueled protein disaggregase essential for preserving mitochondrial integrity and structure. SKD3 deficiency causes 3-methylglutaconic aciduria type VII (MGCA7) and early death in infants, while mutations in the ATPase domain impair protein disaggregation with the observed loss-of-function correlating with disease severity. How mutations in the non-catalytic N-domain cause disease is unknown. Here, we show that the disease-associated N-domain mutation, Y272C, forms an intramolecular disulfide bond with Cys267 and severely impairs SKD3Y272C function under oxidizing conditions and in living cells. While Cys267 and Tyr272 are found in all SKD3 isoforms, isoform-1 features an additional α-helix that may compete with substrate-binding as suggested by crystal structure analyses and in silico modeling, underscoring the importance of the N-domain to SKD3 function.
Collapse
Affiliation(s)
- Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sang Bum Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nuri Sung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wendy W Xu
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX, 77030, USA
- Louisiana State University Health New Orleans School of Medicine, New Orleans, LA, 70112, USA
| | - Changsoo Chang
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Hyun-Eui Kim
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andre Catic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Francis T F Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Kisty EA, Falco JA, Weerapana E. Redox proteomics combined with proximity labeling enables monitoring of localized cysteine oxidation in cells. Cell Chem Biol 2023; 30:321-336.e6. [PMID: 36889310 PMCID: PMC10069010 DOI: 10.1016/j.chembiol.2023.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/06/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
Reactive oxygen species (ROS) can modulate protein function through cysteine oxidation. Identifying protein targets of ROS can provide insight into uncharacterized ROS-regulated pathways. Several redox-proteomic workflows, such as oxidative isotope-coded affinity tags (OxICAT), exist to identify sites of cysteine oxidation. However, determining ROS targets localized within subcellular compartments and ROS hotspots remains challenging with existing workflows. Here, we present a chemoproteomic platform, PL-OxICAT, which combines proximity labeling (PL) with OxICAT to monitor localized cysteine oxidation events. We show that TurboID-based PL-OxICAT can monitor cysteine oxidation events within subcellular compartments such as the mitochondrial matrix and intermembrane space. Furthermore, we use ascorbate peroxidase (APEX)-based PL-OxICAT to monitor oxidation events within ROS hotspots by using endogenous ROS as the source of peroxide for APEX activation. Together, these platforms further hone our ability to monitor cysteine oxidation events within specific subcellular locations and ROS hotspots and provide a deeper understanding of the protein targets of endogenous and exogenous ROS.
Collapse
Affiliation(s)
- Eleni A Kisty
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Julia A Falco
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
16
|
Wongkittichote P, Chhay C, Zerafati-Jahromi G, Weisenberg JL, Mian A, Jensen LT, Grange DK. Novel LIAS variants in a patient with epilepsy and profound developmental disabilities. Mol Genet Metab 2023; 138:107373. [PMID: 36680912 DOI: 10.1016/j.ymgme.2023.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Multiple mitochondrial enzymes employ lipoic acid as a coenzyme. Pathogenic variants in LIAS, encoding lipoic acid synthase (LIAS), are associated with autosomal recessive LIAS-related disorder (OMIM# 614462). This disorder is characterized by infantile-onset hypotonia, profound psychomotor delay, epileptic encephalopathy, nonketotic hyperglycinemia, and lactic acidosis. We present the case of a 20-year-old female who experienced developmental deficits at the age of 6 months and began to have seizures at 3 years of age. Exome sequencing revealed compound heterozygous novel variants in LIAS, designated c.277delC (p.Leu93Ter) and c.542A > T (p.Asp181Val). The p.Leu93Ter variant is predicted to cause loss of function due to the severe truncation of the encoded protein. To examine the p.Asp181Val variant, functional analysis was performed using Baker's yeast (Saccharomyces cerevisiae) lacking LIP5, the homologue of human LIAS. Wild-type LIAS promoted oxidative growth of the lip5∆ yeast strain. In contrast, lip5∆ yeast expressing p.Asp181Val exhibited poor growth, similar to known pathogenic variants, p.Asp215Glu and p.Met310Thr. Our work has expanded the phenotypic and genotypic spectrum of LIAS-related disorder and established the use of the yeast model as a system for functional study of novel missense variants in LIAS.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chanseyha Chhay
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Gazelle Zerafati-Jahromi
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Judith L Weisenberg
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Ali Mian
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Laran T Jensen
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St Louis, MO, USA.
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
17
|
Liang Q, Zhang Y, Zhang H, Wu S, Gong W, Perrett S. Reversible Redox-Dependent Conformational Switch of the C-Terminal α-Helical Lid of Human Hsp70 Observed by In-Cell NMR. ACS Chem Biol 2023; 18:176-183. [PMID: 36524733 DOI: 10.1021/acschembio.2c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutathionylation of human stress-inducible Hsp70 (hHsp70) under oxidative stress conditions has been suggested to act as an on/off switch of hHsp70 chaperone activity and thus transfer redox signals to hHsp70 clients through a change in conformation. The mechanism of this switch involves unfolding of the C-terminal α-helical lid, SBDα, upon glutathionylation, which then binds to and blocks the hHsp70 substrate-binding site. This process is reversible and redox-regulated and has been demonstrated for purified protein in solution. Here, we found that this redox-regulated reversible process also occurs in the cellular environment. Using Escherichia coli as a model system, in-cell NMR data clearly indicate that hHsp70 SBDα undergoes a conformational transition from ordered to disordered after diamide stimulation. The disordered SBDα could spontaneously recover back to the helix bundle conformation over time. This oxidative-stress induced process also occurred in cell lysate, with a similar unfolding rate as in cells, but the refolding rate was significantly slower in cell lysate. Increased temperature accelerates this process. Under heat stress alone, unfolding of the SBDα could not be detected in cells. Our in-cell NMR results provide direct support for the molecular switch model of hHsp70 redox regulation and also demonstrate the power of in-cell NMR for real-time study of protein structures during biological processes in living cells.
Collapse
Affiliation(s)
- Qihui Liang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yiying Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Weibin Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
18
|
Lindahl PA, Vali SW. Mössbauer-based molecular-level decomposition of the Saccharomyces cerevisiae ironome, and preliminary characterization of isolated nuclei. Metallomics 2022; 14:mfac080. [PMID: 36214417 PMCID: PMC9624242 DOI: 10.1093/mtomcs/mfac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
One hundred proteins in Saccharomyces cerevisiae are known to contain iron. These proteins are found mainly in mitochondria, cytosol, nuclei, endoplasmic reticula, and vacuoles. Cells also contain non-proteinaceous low-molecular-mass labile iron pools (LFePs). How each molecular iron species interacts on the cellular or systems' level is underdeveloped as doing so would require considering the entire iron content of the cell-the ironome. In this paper, Mössbauer (MB) spectroscopy was used to probe the ironome of yeast. MB spectra of whole cells and isolated organelles were predicted by summing the spectral contribution of each iron-containing species in the cell. Simulations required input from published proteomics and microscopy data, as well as from previous spectroscopic and redox characterization of individual iron-containing proteins. Composite simulations were compared to experimentally determined spectra. Simulated MB spectra of non-proteinaceous iron pools in the cell were assumed to account for major differences between simulated and experimental spectra of whole cells and isolated mitochondria and vacuoles. Nuclei were predicted to contain ∼30 μM iron, mostly in the form of [Fe4S4] clusters. This was experimentally confirmed by isolating nuclei from 57Fe-enriched cells and obtaining the first MB spectra of the organelle. This study provides the first semi-quantitative estimate of all concentrations of iron-containing proteins and non-proteinaceous species in yeast, as well as a novel approach to spectroscopically characterizing LFePs.
Collapse
Affiliation(s)
- Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX, USA
| | - Shaik Waseem Vali
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| |
Collapse
|
19
|
Thosapornvichai T, Huangteerakul C, Jensen AN, Jensen LT. Mitochondrial dysfunction from malathion and chlorpyrifos exposure is associated with degeneration of GABAergic neurons in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104000. [PMID: 36252730 DOI: 10.1016/j.etap.2022.104000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/01/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Toxicity resulting from off-target effects, beyond acetylcholine esterase inhibition, for the commonly used organophosphate (OP) insecticides chlorpyrifos (CPS) and malathion (MA) was investigated using Saccharomyces cerevisiae and Caenorhabditis elegans model systems. Mitochondrial damage and dysfunction were observed in yeast following exposure to CPS and MA, suggesting this organelle is a major target. In the C. elegans model, the mitochondrial unfolded protein response pathway showed the most robust induction from CPS and MA treatment among stress responses examined. GABAergic neurodegeneration was observed with CPS and MA exposure. Impaired movement observed in C. elegans exposed to CPS and MA may be the result of motor neuron damage. Our analysis suggests that stress from CPS and MA results in mitochondrial dysfunction, with GABAergic neurons sensitized to these effects. These findings may aid in the understanding of toxicity from CPS and MA from high concentration exposure leading to insecticide poisoning.
Collapse
Affiliation(s)
| | | | | | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok Thailand.
| |
Collapse
|
20
|
Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2022; 179:339-362. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Insulin resistance is one of the earliest pathological features of a suite of diseases including type 2 diabetes collectively referred to as metabolic syndrome. There is a growing body of evidence from both pre-clinical studies and human cohorts indicating that reactive oxygen species, such as the superoxide radical anion and hydrogen peroxide are key players in the development of insulin resistance. Here we review the evidence linking mitochondrial reactive oxygen species generated within mitochondria with insulin resistance in adipose tissue and skeletal muscle, two major insulin sensitive tissues. We outline the relevant mitochondria-derived reactive species, how the mitochondrial redox state is regulated, and methodologies available to measure mitochondrial reactive oxygen species. Importantly, we highlight key experimental issues to be considered when studying the role of mitochondrial reactive oxygen species in insulin resistance. Evaluating the available literature on both mitochondrial reactive oxygen species/redox state and insulin resistance in a variety of biological systems, we conclude that the weight of evidence suggests a likely role for mitochondrial reactive oxygen species in the etiology of insulin resistance in adipose tissue and skeletal muscle. However, major limitations in the methods used to study reactive oxygen species in insulin resistance as well as the lack of data linking mitochondrial reactive oxygen species and cytosolic insulin signaling pathways are significant obstacles in proving the mechanistic link between these two processes. We provide a framework to guide future studies to provide stronger mechanistic information on the link between mitochondrial reactive oxygen species and insulin resistance as understanding the source, localization, nature, and quantity of mitochondrial reactive oxygen species, their targets and downstream signaling pathways may pave the way for important new therapeutic strategies.
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David E James
- Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
21
|
The Role of COA6 in the Mitochondrial Copper Delivery Pathway to Cytochrome c Oxidase. Biomolecules 2022; 12:biom12010125. [PMID: 35053273 PMCID: PMC8773535 DOI: 10.3390/biom12010125] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Copper is essential for the stability and activity of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain. Copper is bound to COX1 and COX2, two core subunits of CcO, forming the CuB and CuA sites, respectively. Biogenesis of these two copper sites of CcO occurs separately and requires a number of evolutionarily conserved proteins that form the mitochondrial copper delivery pathway. Pathogenic mutations in some of the proteins of the copper delivery pathway, such as SCO1, SCO2, and COA6, have been shown to cause fatal infantile human disorders, highlighting the biomedical significance of understanding copper delivery mechanisms to CcO. While two decades of studies have provided a clearer picture regarding the biochemical roles of SCO1 and SCO2 proteins, some discrepancy exists regarding the function of COA6, the new member of this pathway. Initial genetic and biochemical studies have linked COA6 with copper delivery to COX2 and follow-up structural and functional studies have shown that it is specifically required for the biogenesis of the CuA site by acting as a disulfide reductase of SCO and COX2 proteins. Its role as a copper metallochaperone has also been proposed. Here, we critically review the recent literature regarding the molecular function of COA6 in CuA biogenesis.
Collapse
|
22
|
Iovine JC, Claypool SM, Alder NN. Mitochondrial compartmentalization: emerging themes in structure and function. Trends Biochem Sci 2021; 46:902-917. [PMID: 34244035 PMCID: PMC11008732 DOI: 10.1016/j.tibs.2021.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/27/2022]
Abstract
Within cellular structures, compartmentalization is the concept of spatial segregation of macromolecules, metabolites, and biochemical pathways. Therefore, this concept bridges organellar structure and function. Mitochondria are morphologically complex, partitioned into several subcompartments by a topologically elaborate two-membrane system. They are also dynamically polymorphic, undergoing morphogenesis events with an extent and frequency that is only now being appreciated. Thus, mitochondrial compartmentalization is something that must be considered both spatially and temporally. Here, we review new developments in how mitochondrial structure is established and regulated, the factors that underpin the distribution of lipids and proteins, and how they spatially demarcate locations of myriad mitochondrial processes. Consistent with its pre-eminence, disturbed mitochondrial compartmentalization contributes to the dysfunction associated with heritable and aging-related diseases.
Collapse
Affiliation(s)
- Joseph C Iovine
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Steven M Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
23
|
Zhu ZT, Du MM, Gao B, Tao XY, Zhao M, Ren YH, Wang FQ, Wei DZ. Metabolic compartmentalization in yeast mitochondria: Burden and solution for squalene overproduction. Metab Eng 2021; 68:232-245. [PMID: 34710614 DOI: 10.1016/j.ymben.2021.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
Harnessing mitochondria is considered as a promising method for biosynthesis of terpenes due to the adequate supply of acetyl-CoA and redox equivalents in mitochondria. However, mitochondrial engineering often causes serious metabolic burden indicated by poor cell growth. Here, we systematically analyzed the metabolic burden caused by the compartmentalization of the MVA pathway in yeast mitochondria for squalene synthesis. The phosphorylated intermediates of the MVA pathway, especially mevalonate-5-P and mevalonate-5-PP, conferred serious toxicity within mitochondria, which significantly compromised its possible advantages for squalene synthesis and was difficult to be significantly improved by routine pathway optimization. These phosphorylated intermediates were converted into ATP analogues, which strongly inhibited ATP-related cell function, such as mitochondrial oxidative respiration. Fortunately, the introduction of a partial MVA pathway from acetyl-CoA to mevalonate in mitochondria as well as the augmentation of the synthesis of mevalonate in cytosol could significantly promote the growth of yeasts. Accordingly, a combinatorial strategy of cytoplasmic and mitochondrial engineering was proposed to alleviate the metabolic burden caused by the compartmentalized MVA pathway in mitochondria and improve cell growth. The strategy also displayed the superimposed effect of cytoplasmic engineering and mitochondrial engineering on squalene production. Through a two-stage fermentation process, the squalene titer reached 21.1 g/L with a specific squalene titer of 437.1 mg/g dcw, which was the highest at present. This provides new insight into the production of squalene and other terpenes in yeasts based on the advantages of mitochondrial engineering.
Collapse
Affiliation(s)
- Zhan-Tao Zhu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Meng-Meng Du
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xin-Yi Tao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ming Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yu-Hong Ren
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
24
|
Duran L, López JM, Avalos JL. ¡Viva la mitochondria!: harnessing yeast mitochondria for chemical production. FEMS Yeast Res 2021; 20:5863938. [PMID: 32592388 DOI: 10.1093/femsyr/foaa037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
The mitochondria, often referred to as the powerhouse of the cell, offer a unique physicochemical environment enriched with a distinct set of enzymes, metabolites and cofactors ready to be exploited for metabolic engineering. In this review, we discuss how the mitochondrion has been engineered in the traditional sense of metabolic engineering or completely bypassed for chemical production. We then describe the more recent approach of harnessing the mitochondria to compartmentalize engineered metabolic pathways, including for the production of alcohols, terpenoids, sterols, organic acids and other valuable products. We explain the different mechanisms by which mitochondrial compartmentalization benefits engineered metabolic pathways to boost chemical production. Finally, we discuss the key challenges that need to be overcome to expand the applicability of mitochondrial engineering and reach the full potential of this emerging field.
Collapse
Affiliation(s)
- Lisset Duran
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - José Montaño López
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - José L Avalos
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
- Princeton Environmental Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
25
|
Secilmis M, Altun HY, Pilic J, Erdogan YC, Cokluk Z, Ata BN, Sevimli G, Zaki AG, Yigit EN, Öztürk G, Malli R, Eroglu E. A Co-Culture-Based Multiparametric Imaging Technique to Dissect Local H 2O 2 Signals with Targeted HyPer7. BIOSENSORS 2021; 11:338. [PMID: 34562927 PMCID: PMC8466187 DOI: 10.3390/bios11090338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/19/2023]
Abstract
Multispectral live-cell imaging is an informative approach that permits detecting biological processes simultaneously in the spatial and temporal domain by exploiting spectrally distinct biosensors. However, the combination of fluorescent biosensors with distinct spectral properties such as different sensitivities, and dynamic ranges can undermine accurate co-imaging of the same analyte in different subcellular locales. We advanced a single-color multiparametric imaging method, which allows simultaneous detection of hydrogen peroxide (H2O2) in multiple cell locales (nucleus, cytosol, mitochondria) using the H2O2 biosensor HyPer7. Co-culturing of endothelial cells stably expressing differentially targeted HyPer7 biosensors paved the way for co-imaging compartmentalized H2O2 signals simultaneously in neighboring cells in a single experimental setup. We termed this approach COMPARE IT, which is an acronym for co-culture-based multiparametric imaging technique. Employing this approach, we detected lower H2O2 levels in mitochondria of endothelial cells compared to the cell nucleus and cytosol under basal conditions. Upon administering exogenous H2O2, the cytosolic and nuclear-targeted probes displayed similarly slow and moderate HyPer7 responses, whereas the mitochondria-targeted HyPer7 signal plateaued faster and reached higher amplitudes. Our results indicate striking differences in mitochondrial H2O2 accumulation of endothelial cells. Here, we present the method's potential as a practicable and informative multiparametric live-cell imaging technique.
Collapse
Affiliation(s)
- Melike Secilmis
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
| | - Hamza Yusuf Altun
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
| | - Johannes Pilic
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria;
| | - Yusuf Ceyhun Erdogan
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria;
| | - Zeynep Cokluk
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
| | - Busra Nur Ata
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
| | - Gulsah Sevimli
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
| | - Asal Ghaffari Zaki
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
| | - Esra Nur Yigit
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey; (E.N.Y.); (G.Ö.)
- Department of Biotechnology, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Gürkan Öztürk
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey; (E.N.Y.); (G.Ö.)
- Physiology Department, International School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria;
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Emrah Eroglu
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria;
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey; (E.N.Y.); (G.Ö.)
- Nanotechnology Research and Application Center, Sabanci University, 34956 Istanbul, Turkey
| |
Collapse
|
26
|
Zhang D, Dailey OR, Simon DJ, Roca-Datzer K, Jami-Alahmadi Y, Hennen MS, Wohlschlegel JA, Koehler CM, Dabir DV. Aim32 is a dual-localized 2Fe-2S mitochondrial protein that functions in redox quality control. J Biol Chem 2021; 297:101135. [PMID: 34461091 PMCID: PMC8482512 DOI: 10.1016/j.jbc.2021.101135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Yeast is a facultative anaerobe and uses diverse electron acceptors to maintain redox-regulated import of cysteine-rich precursors via the mitochondrial intermembrane space assembly (MIA) pathway. With the growing diversity of substrates utilizing the MIA pathway, understanding the capacity of the intermembrane space (IMS) to handle different types of stress is crucial. We used MS to identify additional proteins that interacted with the sulfhydryl oxidase Erv1 of the MIA pathway. Altered inheritance of mitochondria 32 (Aim32), a thioredoxin-like [2Fe-2S] ferredoxin protein, was identified as an Erv1-binding protein. Detailed localization studies showed that Aim32 resided in both the mitochondrial matrix and IMS. Aim32 interacted with additional proteins including redox protein Osm1 and protein import components Tim17, Tim23, and Tim22. Deletion of Aim32 or mutation of conserved cysteine residues that coordinate the Fe-S center in Aim32 resulted in an increased accumulation of proteins with aberrant disulfide linkages. In addition, the steady-state level of assembled TIM22, TIM23, and Oxa1 protein import complexes was decreased. Aim32 also bound to several mitochondrial proteins under nonreducing conditions, suggesting a function in maintaining the redox status of proteins by potentially targeting cysteine residues that may be sensitive to oxidation. Finally, Aim32 was essential for growth in conditions of stress such as elevated temperature and hydroxyurea, and under anaerobic conditions. These studies suggest that the Fe-S protein Aim32 has a potential role in general redox homeostasis in the matrix and IMS. Thus, Aim32 may be poised as a sensor or regulator in quality control for a broad range of mitochondrial proteins.
Collapse
Affiliation(s)
- Danyun Zhang
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
| | - Owen R Dailey
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Daniel J Simon
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Kamilah Roca-Datzer
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | | | - Mikayla S Hennen
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | | | - Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Deepa V Dabir
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA.
| |
Collapse
|
27
|
Cornelissen T, Spinazzi M, Martin S, Imberechts D, Vangheluwe P, Bird M, De Strooper B, Vandenberghe W. CHCHD2 harboring Parkinson's disease-linked T61I mutation precipitates inside mitochondria and induces precipitation of wild-type CHCHD2. Hum Mol Genet 2021; 29:1096-1106. [PMID: 32068847 DOI: 10.1093/hmg/ddaa028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/25/2022] Open
Abstract
The T61I mutation in coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2), a protein residing in the mitochondrial intermembrane space (IMS), causes an autosomal dominant form of Parkinson's disease (PD), but the underlying pathogenic mechanisms are not well understood. Here, we compared the subcellular localization and solubility of wild-type (WT) and T61I mutant CHCHD2 in human cells. We found that mitochondrial targeting of both WT and T61I CHCHD2 depended on the four cysteine residues in the C-terminal coiled-coil-helix-coiled-coil-helix (CHCH) domain but not on the N-terminal predicted mitochondrial targeting sequence. The T61I mutation did not interfere with mitochondrial targeting of the mutant protein but induced its precipitation in the IMS. Moreover, T61I CHCHD2 induced increased mitochondrial production of reactive oxygen species and apoptosis, which was prevented by treatment with anti-oxidants. Retention of T61I CHCHD2 in the cytosol through mutation of the cysteine residues in the CHCH domain prevented its precipitation as well as its apoptosis-inducing effect. Importantly, T61I CHCHD2 potently impaired the solubility of WT CHCHD2. In conclusion, our data show that the T61I mutation renders mutant CHCHD2 insoluble inside mitochondria, suggesting loss of function of the mutant protein. In addition, T61I CHCHD2 exerts a dominant-negative effect on the solubility of WT CHCHD2, explaining the dominant inheritance of this form of PD.
Collapse
Affiliation(s)
- Tom Cornelissen
- Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Marco Spinazzi
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Department of Neurology, Neuromuscular Referral Center, University Hospital of Angers, 49933 Angers, France
| | - Shaun Martin
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Dorien Imberechts
- Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Matthew Bird
- Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Wim Vandenberghe
- Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
28
|
Friedlander JE, Shen N, Zeng A, Korm S, Feng H. Failure to Guard: Mitochondrial Protein Quality Control in Cancer. Int J Mol Sci 2021; 22:ijms22158306. [PMID: 34361072 PMCID: PMC8348654 DOI: 10.3390/ijms22158306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are energetic and dynamic organelles with a crucial role in bioenergetics, metabolism, and signaling. Mitochondrial proteins, encoded by both nuclear and mitochondrial DNA, must be properly regulated to ensure proteostasis. Mitochondrial protein quality control (MPQC) serves as a critical surveillance system, employing different pathways and regulators as cellular guardians to ensure mitochondrial protein quality and quantity. In this review, we describe key pathways and players in MPQC, such as mitochondrial protein translocation-associated degradation, mitochondrial stress responses, chaperones, and proteases, and how they work together to safeguard mitochondrial health and integrity. Deregulated MPQC leads to proteotoxicity and dysfunctional mitochondria, which contributes to numerous human diseases, including cancer. We discuss how alterations in MPQC components are linked to tumorigenesis, whether they act as drivers, suppressors, or both. Finally, we summarize recent advances that seek to target these alterations for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Joseph E. Friedlander
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Ning Shen
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aozhuo Zeng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Sovannarith Korm
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Hui Feng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-617-358-4688; Fax: +1-617-358-1599
| |
Collapse
|
29
|
Dong C, Shi Z, Huang L, Zhao H, Xu Z, Lian J. Cloning and characterization of a panel of mitochondrial targeting sequences for compartmentalization engineering in Saccharomyces cerevisiae. Biotechnol Bioeng 2021; 118:4269-4277. [PMID: 34273106 DOI: 10.1002/bit.27896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/10/2022]
Abstract
Mitochondrion is generally considered as the most promising subcellular organelle for compartmentalization engineering. Much progress has been made in reconstituting whole metabolic pathways in the mitochondria of yeast to harness the precursor pools (i.e., pyruvate and acetyl-CoA), bypass competing pathways, and minimize transportation limitations. However, only a few mitochondrial targeting sequences (MTSs) have been characterized (i.e., MTS of COX4), limiting the application of compartmentalization engineering for multigene biosynthetic pathways in the mitochondria of yeast. In the present study, based on the mitochondrial proteome, a total of 20 MTSs were cloned and the efficiency of these MTSs in targeting heterologous proteins, including the Escherichia coli FabI and enhanced green fluorescence protein (EGFP) into the mitochondria was evaluated by growth complementation and confocal microscopy. After systematic characterization, six of the well-performed MTSs were chosen for the colocalization of complete biosynthetic pathways into the mitochondria. As proof of concept, the full α-santalene biosynthetic pathway consisting of 10 expression cassettes capable of converting acetyl-coA to α-santalene was compartmentalized into the mitochondria, leading to a 3.7-fold improvement in the production of α-santalene. The newly characterized MTSs should contribute to the expanded metabolic engineering and synthetic biology toolbox for yeast mitochondrial compartmentalization engineering.
Collapse
Affiliation(s)
- Chang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Zhuwei Shi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
30
|
The Mia40/CHCHD4 Oxidative Folding System: Redox Regulation and Signaling in the Mitochondrial Intermembrane Space. Antioxidants (Basel) 2021; 10:antiox10040592. [PMID: 33921425 PMCID: PMC8069373 DOI: 10.3390/antiox10040592] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are critical for several cellular functions as they control metabolism, cell physiology, and cell death. The mitochondrial proteome consists of around 1500 proteins, the vast majority of which (about 99% of them) are encoded by nuclear genes, with only 13 polypeptides in human cells encoded by mitochondrial DNA. Therefore, it is critical for all the mitochondrial proteins that are nuclear-encoded to be targeted precisely and sorted specifically to their site of action inside mitochondria. These processes of targeting and sorting are catalysed by protein translocases that operate in each one of the mitochondrial sub-compartments. The main protein import pathway for the intermembrane space (IMS) recognises proteins that are cysteine-rich, and it is the only import pathway that chemically modifies the imported precursors by introducing disulphide bonds to them. In this manner, the precursors are trapped in the IMS in a folded state. The key component of this pathway is Mia40 (called CHCHD4 in human cells), which itself contains cysteine motifs and is subject to redox regulation. In this review, we detail the basic components of the MIA pathway and the disulphide relay mechanism that underpins the electron transfer reaction along the oxidative folding mechanism. Then, we discuss the key protein modulators of this pathway and how they are interlinked to the small redox-active molecules that critically affect the redox state in the IMS. We present also evidence that the mitochondrial redox processes that are linked to iron–sulfur clusters biogenesis and calcium homeostasis coalesce in the IMS at the MIA machinery. The fact that the MIA machinery and several of its interactors and substrates are linked to a variety of common human diseases connected to mitochondrial dysfunction highlight the potential of redox processes in the IMS as a promising new target for developing new treatments for some of the most complex and devastating human diseases.
Collapse
|
31
|
Chin MY, Espinosa JA, Pohan G, Markossian S, Arkin MR. Reimagining dots and dashes: Visualizing structure and function of organelles for high-content imaging analysis. Cell Chem Biol 2021; 28:320-337. [PMID: 33600764 PMCID: PMC7995685 DOI: 10.1016/j.chembiol.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Organelles are responsible for biochemical and cellular processes that sustain life and their dysfunction causes diseases from cancer to neurodegeneration. While researchers are continuing to appreciate new roles of organelles in disease, the rapid development of specifically targeted fluorescent probes that report on the structure and function of organelles will be critical to accelerate drug discovery. Here, we highlight four organelles that collectively exemplify the progression of phenotypic discovery, starting with mitochondria, where many functional probes have been described, then continuing with lysosomes and Golgi and concluding with nascently described membraneless organelles. We introduce emerging probe designs to explore organelle-specific morphology and dynamics and highlight recent case studies using high-content analysis to stimulate further development of probes and approaches for organellar high-throughput screening.
Collapse
Affiliation(s)
- Marcus Y Chin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Jether Amos Espinosa
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Grace Pohan
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Sarine Markossian
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
32
|
Yocum HC, Pham A, Da Silva NA. Successful Enzyme Colocalization Strategies in Yeast for Increased Synthesis of Non-native Products. Front Bioeng Biotechnol 2021; 9:606795. [PMID: 33634084 PMCID: PMC7901933 DOI: 10.3389/fbioe.2021.606795] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Yeast cell factories, particularly Saccharomyces cerevisiae, have proven valuable for the synthesis of non-native compounds, ranging from commodity chemicals to complex natural products. One significant challenge has been ensuring sufficient carbon flux to the desired product. Traditionally, this has been addressed by strategies involving "pushing" and "pulling" the carbon flux toward the products by overexpression while "blocking" competing pathways via downregulation or gene deletion. Colocalization of enzymes is an alternate and complementary metabolic engineering strategy to control flux and increase pathway efficiency toward the synthesis of non-native products. Spatially controlling the pathway enzymes of interest, and thus positioning them in close proximity, increases the likelihood of reaction along that pathway. This mini-review focuses on the recent developments and applications of colocalization strategies, including enzyme scaffolding, construction of synthetic organelles, and organelle targeting, in both S. cerevisiae and non-conventional yeast hosts. Challenges with these techniques and future directions will also be discussed.
Collapse
Affiliation(s)
- Hannah C Yocum
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Anhuy Pham
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Nancy A Da Silva
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| |
Collapse
|
33
|
Huangteerakul C, Aung HM, Thosapornvichai T, Duangkaew M, Jensen AN, Sukrong S, Ingkaninan K, Jensen LT. Chemical-Genetic Interactions of Bacopa monnieri Constituents in Cells Deficient for the DNA Repair Endonuclease RAD1 Appear Linked to Vacuolar Disruption. Molecules 2021; 26:1207. [PMID: 33668176 PMCID: PMC7956252 DOI: 10.3390/molecules26051207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Colorectal cancer is a common cancer worldwide and reduced expression of the DNA repair endonuclease XPF (xeroderma pigmentosum complementation group F) is associated with colorectal cancer. Bacopa monnieri extracts were previously found to exhibit chemical-genetic synthetic lethal effects in a Saccharomyces cerevisiae model of colorectal cancer lacking Rad1p, a structural and functional homologue of human XPF. However, the mechanisms for B. monnieri extracts to limit proliferation and promote an apoptosis-like event in RAD1 deleted yeast was not elucidated. Our current analysis has revealed that B. monnieri extracts have the capacity to promote mutations in rad1∆ cells. In addition, the effects of B. monnieri extracts on rad1∆ yeast is linked to disruption of the vacuole, similar to the mammalian lysosome. The absence of RAD1 in yeast sensitizes cells to the effects of vacuole disruption and the release of proteases. The combined effect of increased DNA mutations and release of vacuolar contents appears to induce an apoptosis-like event that is dependent on the meta-caspase Yca1p. The toxicity of B. monnieri extracts is linked to sterol content, suggesting saponins may be involved in limiting the proliferation of yeast cells. Analysis of major constituents from B. monnieri identified a chemical-genetic interaction between bacopasaponin C and rad1∆ yeast. Bacopasaponin C may have potential as a drug candidate or serve as a model for the development of analogs for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Chananya Huangteerakul
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| | - Hsu Mon Aung
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| | - Thitipa Thosapornvichai
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| | - Marisa Duangkaew
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Amornrat Naranuntarat Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| | - Suchada Sukrong
- Research Unit of DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10400, Thailand;
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Laran T. Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| |
Collapse
|
34
|
Interactions of zinc- and redox-signaling pathways. Redox Biol 2021; 41:101916. [PMID: 33662875 PMCID: PMC7937829 DOI: 10.1016/j.redox.2021.101916] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc and cellular oxidants such as reactive oxygen species (ROS) each participate in a multitude of physiological functions. There is considerable overlap between the affected events, including signal transduction. While there is no obvious direct connection between zinc and ROS, mainly because the bivalent cation zinc does not change its oxidation state in biological systems, these are linked by their interaction with sulfur, forming the remarkable triad of zinc, ROS, and protein thiols. First, zinc binds to reduced thiols and can be released upon oxidation. Thereby, redox signals are translated into changes in the free zinc concentration, which can act as zinc signals. Second, zinc affects oxidation of thiols in several ways, directly as well as indirectly. A protein incorporating many of these interactions is metallothionein (MT), which is rich in cysteine and capable of binding up to seven zinc ions in its fully reduced state. Zinc binding is diminished after (partial) oxidation, while thiols show increased reactivity in the absence of bound metal ions. Adding still more complexity, the MT promoter is controlled by zinc (via metal regulatory transcription factor 1 (MTF-1)) as well as redox (via nuclear factor erythroid 2-related factor 2 (NRF2)). Many signaling cascades that are important for cell proliferation or apoptosis contain protein thiols, acting as centers for crosstalk between zinc- and redox-signaling. A prominent example for shared molecular targets for zinc and ROS are active site cysteine thiols in protein tyrosine phosphatases (PTP), their activity being downregulated by oxidation as well as zinc binding. Because zinc binding also protects PTP thiols form irreversible oxidation, there is a multi-faceted reciprocal interaction, illustrating that zinc- and redox-signaling are intricately linked on multiple levels.
Collapse
|
35
|
Sun SC, Huang HW, Lo YT, Chuang MC, Hsu YHH. Unraveling cardiolipin-induced conformational change of cytochrome c through H/D exchange mass spectrometry and quartz crystal microbalance. Sci Rep 2021; 11:1090. [PMID: 33441668 PMCID: PMC7806790 DOI: 10.1038/s41598-020-79905-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/04/2020] [Indexed: 11/21/2022] Open
Abstract
Cardiolipin (CL), a crucial component in inner mitochondrial membranes, interacts with cytochrome c (cyt c) to form a peroxidase complex for the catalysis of CL oxidation. Such interaction is pivotal to the mitochondrial regulation of apoptosis and is affected by the redox state of cyt c. In the present study, the redox-dependent interaction of cyt c with CL was investigated through amide hydrogen/deuterium exchange coupled with mass spectrometry (HDXMS) and quartz crystal microbalance with dissipation monitoring (QCM-D). Ferrous cyt c exhibited a more compact conformation compared with its ferric form, which was supported by the lower number of deuterons accumulated and the greater amplitude reduction on dissipation. Upon association with CL, ferrous cyt c resulted in a moderate increase in deuteration, whereas the ferric form caused a drastic increase of deuteration, which indicated that CL-bound ferric cyt c formed an extended conformation. These results were consistent with those of the frequency (f) − dissipation (D) experiments, which revealed that ferric cyt c yielded greater values of |ΔD/Δf| within the first minute. Further fragmentation analysis based on HDXMS indicated that the effect of CL binding was considerably different on ferric and ferrous cyt c in the C-helix and the Loop 9–24. In ferric cyt c, CL binding affected Met80 and destabilized His18 interaction with heme, which was not observed with ferrous cyt c. An interaction model was proposed to explain the aforementioned results.
Collapse
Affiliation(s)
- Sin-Cih Sun
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Hung-Wei Huang
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Yi-Ting Lo
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Min-Chieh Chuang
- Department of Chemistry, Tunghai University, Taichung, Taiwan. .,Department of Environmental Science and Engineering, Taichung, Taiwan.
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Taichung, Taiwan. .,Biological Science Center, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
36
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
37
|
Soma S, Morgada MN, Naik MT, Boulet A, Roesler AA, Dziuba N, Ghosh A, Yu Q, Lindahl PA, Ames JB, Leary SC, Vila AJ, Gohil VM. COA6 Is Structurally Tuned to Function as a Thiol-Disulfide Oxidoreductase in Copper Delivery to Mitochondrial Cytochrome c Oxidase. Cell Rep 2020; 29:4114-4126.e5. [PMID: 31851937 PMCID: PMC6946597 DOI: 10.1016/j.celrep.2019.11.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, cellular respiration is driven by mitochondrial cytochrome c oxidase (CcO), an enzyme complex that requires copper cofactors for its catalytic activity. Insertion of copper into its catalytically active subunits, including COX2, is a complex process that requires metallochaperones and redox proteins including SCO1, SCO2, and COA6, a recently discovered protein whose molecular function is unknown. To uncover the molecular mechanism by which COA6 and SCO proteins mediate copper delivery to COX2, we have solved the solution structure of COA6, which reveals a coiled-coil-helix-coiled-coil-helix domain typical of redox-active proteins found in the mitochondrial inter-membrane space. Accordingly, we demonstrate that COA6 can reduce the copper-coordinating disulfides of its client proteins, SCO1 and COX2, allowing for copper binding. Finally, our determination of the interaction surfaces and reduction potentials of COA6 and its client proteins provides a mechanism of how metallochaperone and disulfide reductase activities are coordinated to deliver copper to CcO. Soma et al. reports the solution structure of cytochrome c oxidase assembly factor COA6 and establishes that it functions as a thiol-disulfide oxidoreductase in a relay system that delivers copper to COX2, a copper-containing subunit of the mitochondrial cytochrome c oxidase.
Collapse
Affiliation(s)
- Shivatheja Soma
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Marcos N Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Área Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario (2000), Argentina
| | - Mandar T Naik
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Aren Boulet
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Anna A Roesler
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Nathaniel Dziuba
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Alok Ghosh
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Qinhong Yu
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Paul A Lindahl
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Área Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario (2000), Argentina
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
38
|
Duan J, Zhang T, Gaffrey MJ, Weitz KK, Moore RJ, Li X, Xian M, Thrall BD, Qian WJ. Stochiometric quantification of the thiol redox proteome of macrophages reveals subcellular compartmentalization and susceptibility to oxidative perturbations. Redox Biol 2020; 36:101649. [PMID: 32750668 PMCID: PMC7397701 DOI: 10.1016/j.redox.2020.101649] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/24/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Posttranslational modifications of protein cysteine thiols play a significant role in redox regulation and the pathogenesis of human diseases. Herein, we report the characterization of the cellular redox landscape in terms of quantitative, site-specific occupancies of both S-glutathionylation (SSG) and total reversible thiol oxidation (total oxidation) in RAW 264.7 macrophage cells under basal conditions. The occupancies of thiol modifications for ~4000 cysteine sites were quantified, revealing a mean site occupancy of 4.0% for SSG and 11.9% for total oxidation, respectively. Correlations between site occupancies and structural features such as pKa, relative residue surface accessibility, and hydrophobicity were observed. Proteome-wide site occupancy analysis revealed that the average occupancies of SSG and total oxidation in specific cellular compartments correlate well with the expected redox potentials of respective organelles in macrophages, consistent with the notion of redox compartmentalization. The lowest average occupancies were observed in more reducing organelles such as the mitochondria (non-membrane) and nucleus, while the highest average occupancies were found in more oxidizing organelles such as endoplasmic reticulum (ER) and lysosome. Furthermore, a pattern of subcellular susceptibility to redox changes was observed under oxidative stress induced by exposure to engineered metal oxide nanoparticles. Peroxisome, ER, and mitochondria (membrane) are the organelles which exhibit the most significant redox changes; while mitochondria (non-membrane) and Golgi were observed as the organelles being most resistant to oxidative stress. Finally, it was observed that Cys residues at enzymatic active sites generally had a higher level of occupancy compared to non-active Cys residues within the same proteins, suggesting site occupancy as a potential indicator of protein functional sites. The raw data are available via ProteomeXchange with identifier PXD019913.
Collapse
Affiliation(s)
- Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Xiaolu Li
- Department of Biological Systems Engineering, Washington State University, Richland, WA, USA
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - Brian D Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
39
|
Lau AN, Li Z, Danai LV, Westermark AM, Darnell AM, Ferreira R, Gocheva V, Sivanand S, Lien EC, Sapp KM, Mayers JR, Biffi G, Chin CR, Davidson SM, Tuveson DA, Jacks T, Matheson NJ, Yilmaz O, Vander Heiden MG. Dissecting cell-type-specific metabolism in pancreatic ductal adenocarcinoma. eLife 2020; 9:56782. [PMID: 32648540 PMCID: PMC7406355 DOI: 10.7554/elife.56782] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Tumors are composed of many different cell types including cancer cells, fibroblasts, and immune cells. Dissecting functional metabolic differences between cell types within a mixed population can be challenging due to the rapid turnover of metabolites relative to the time needed to isolate cells. To overcome this challenge, we traced isotope-labeled nutrients into macromolecules that turn over more slowly than metabolites. This approach was used to assess differences between cancer cell and fibroblast metabolism in murine pancreatic cancer organoid-fibroblast co-cultures and tumors. Pancreatic cancer cells exhibited increased pyruvate carboxylation relative to fibroblasts, and this flux depended on both pyruvate carboxylase and malic enzyme 1 activity. Consequently, expression of both enzymes in cancer cells was necessary for organoid and tumor growth, demonstrating that dissecting the metabolism of specific cell populations within heterogeneous systems can identify dependencies that may not be evident from studying isolated cells in culture or bulk tissue. Tumors contain a mixture of many different types of cells, including cancer cells and non-cancer cells. The interactions between these two groups of cells affect how the cancer cells use nutrients, which, in turn, affects how fast these cells grow and divide. Furthermore, different cell types may use nutrients in diverse ways to make other molecules – known as metabolites – that the cell needs to survive. Fibroblasts are a subset of non-cancer cells that are typically found in tumors and can help them form. Separating fibroblasts from cancer cells in a tumor takes a lot longer than the chemical reactions in each cell of the tumor that produce and use up nutrients, also known as the cell’s metabolism. Therefore, measuring the levels of glucose (the sugar that is the main energy source for cells) and other metabolites in each tumor cell after separating them does not necessarily provide accurate information about the tumor cell’s metabolism. This makes it difficult to study how cancer cells and fibroblasts use nutrients differently. Lau et al. have developed a strategy to study the metabolism of cancer cells and fibroblasts in tumors. Mice with tumors in their pancreas were provided glucose that had been labelled using biochemical techniques. As expected, when the cell processed the glucose, the label was transferred into metabolites that got used up very quickly. But the label also became incorporated into larger, more stable molecules, such as proteins. Unlike the small metabolites, these larger molecules do not change in the time it takes to separate the cancer cells from the fibroblasts. Lau et al. sorted cells from whole pancreatic tumors and analyzed large, stable molecules that can incorporate the label from glucose in cancer cells and fibroblasts. The experiments showed that, in cancer cells, these molecules were more likely to have labeling patterns that are characteristic of two specific enzymes called pyruvate carboxylase and malic enzyme 1. This suggests that these enzymes are more active in cancer cells. Lau et al. also found that pancreatic cancer cells needed these two enzymes to metabolize glucose and to grow into large tumors. Pancreatic cancer is one of the most lethal cancers and current therapies offer limited benefit to many patients. Therefore, it is important to develop new drugs to treat this disease. Understanding how cancer cells and non-cancer cells in pancreatic tumors use nutrients differently is important for developing drugs that only target cancer cells.
Collapse
Affiliation(s)
- Allison N Lau
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States
| | - Zhaoqi Li
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States
| | - Laura V Danai
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, United States
| | - Anna M Westermark
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States
| | - Raphael Ferreira
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Vasilena Gocheva
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States
| | - Sharanya Sivanand
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States
| | - Evan C Lien
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States
| | - Kiera M Sapp
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States
| | - Jared R Mayers
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States
| | - Giulia Biffi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York, United States.,Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Christopher R Chin
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States
| | - Shawn M Davidson
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York, United States
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States
| | - Nicholas J Matheson
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Omer Yilmaz
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States.,Department of Pathology, Massachusetts General Hospital, Boston, United States
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| |
Collapse
|
40
|
Kloehn J, Harding CR, Soldati-Favre D. Supply and demand-heme synthesis, salvage and utilization by Apicomplexa. FEBS J 2020; 288:382-404. [PMID: 32530125 DOI: 10.1111/febs.15445] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023]
Abstract
The Apicomplexa phylum groups important human and animal pathogens that cause severe diseases, encompassing malaria, toxoplasmosis, and cryptosporidiosis. In common with most organisms, apicomplexans rely on heme as cofactor for several enzymes, including cytochromes of the electron transport chain. This heme derives from de novo synthesis and/or the development of uptake mechanisms to scavenge heme from their host. Recent studies have revealed that heme synthesis is essential for Toxoplasma gondii tachyzoites, as well as for the mosquito and liver stages of Plasmodium spp. In contrast, the erythrocytic stages of the malaria parasites rely on scavenging heme from the host red blood cell. The unusual heme synthesis pathway in Apicomplexa spans three cellular compartments and comprises enzymes of distinct ancestral origin, providing promising drug targets. Remarkably given the requirement for heme, T. gondii can tolerate the loss of several heme synthesis enzymes at a high fitness cost, while the ferrochelatase is essential for survival. These findings indicate that T. gondii is capable of salvaging heme precursors from its host. Furthermore, heme is implicated in the activation of the key antimalarial drug artemisinin. Recent findings established that a reduction in heme availability corresponds to decreased sensitivity to artemisinin in T. gondii and Plasmodium falciparum, providing insights into the possible development of combination therapies to tackle apicomplexan parasites. This review describes the microeconomics of heme in Apicomplexa, from supply, either from de novo synthesis or scavenging, to demand by metabolic pathways, including the electron transport chain.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Switzerland
| | - Clare R Harding
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, UK
| | | |
Collapse
|
41
|
Reina S, Pittalà MGG, Guarino F, Messina A, De Pinto V, Foti S, Saletti R. Cysteine Oxidations in Mitochondrial Membrane Proteins: The Case of VDAC Isoforms in Mammals. Front Cell Dev Biol 2020; 8:397. [PMID: 32582695 PMCID: PMC7287182 DOI: 10.3389/fcell.2020.00397] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cysteine residues are reactive amino acids that can undergo several modifications driven by redox reagents. Mitochondria are the source of an abundant production of radical species, and it is surprising that such a large availability of highly reactive chemicals is compatible with viable and active organelles, needed for the cell functions. In this work, we review the results highlighting the modifications of cysteines in the most abundant proteins of the outer mitochondrial membrane (OMM), that is, the voltage-dependent anion selective channel (VDAC) isoforms. This interesting protein family carries several cysteines exposed to the oxidative intermembrane space (IMS). Through mass spectrometry (MS) analysis, cysteine posttranslational modifications (PTMs) were precisely determined, and it was discovered that such cysteines can be subject to several oxidization degrees, ranging from the disulfide bridge to the most oxidized, the sulfonic acid, one. The large spectra of VDAC cysteine oxidations, which is unique for OMM proteins, indicate that they have both a regulative function and a buffering capacity able to counteract excess of mitochondrial reactive oxygen species (ROS) load. The consequence of these peculiar cysteine PTMs is discussed.
Collapse
Affiliation(s)
- Simona Reina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Maria Gaetana Giovanna Pittalà
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesca Guarino
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Vito De Pinto
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Foti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Rosaria Saletti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
42
|
Vessoni AT, Guerra CCC, Kajitani GS, Nascimento LLS, Garcia CCM. Cockayne Syndrome: The many challenges and approaches to understand a multifaceted disease. Genet Mol Biol 2020; 43:e20190085. [PMID: 32453336 PMCID: PMC7250278 DOI: 10.1590/1678-4685-gmb-2019-0085] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/15/2020] [Indexed: 01/04/2023] Open
Abstract
The striking and complex phenotype of Cockayne syndrome (CS) patients combines progeria-like features with developmental deficits. Since the establishment of the in vitro culture of skin fibroblasts derived from patients with CS in the 1970s, significant progress has been made in the understanding of the genetic alterations associated with the disease and their impact on molecular, cellular, and organismal functions. In this review, we provide a historic perspective on the research into CS by revisiting seminal papers in this field. We highlighted the great contributions of several researchers in the last decades, ranging from the cloning and characterization of CS genes to the molecular dissection of their roles in DNA repair, transcription, redox processes and metabolism control. We also provide a detailed description of all pathological mutations in genes ERCC6 and ERCC8 reported to date and their impact on CS-related proteins. Finally, we review the contributions (and limitations) of many genetic animal models to the study of CS and how cutting-edge technologies, such as cell reprogramming and state-of-the-art genome editing, are helping us to address unanswered questions.
Collapse
Affiliation(s)
| | - Camila Chaves Coelho Guerra
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| | - Gustavo Satoru Kajitani
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Livia Luz Souza Nascimento
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Camila Carrião Machado Garcia
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| |
Collapse
|
43
|
Pak VV, Ezeriņa D, Lyublinskaya OG, Pedre B, Tyurin-Kuzmin PA, Mishina NM, Thauvin M, Young D, Wahni K, Martínez Gache SA, Demidovich AD, Ermakova YG, Maslova YD, Shokhina AG, Eroglu E, Bilan DS, Bogeski I, Michel T, Vriz S, Messens J, Belousov VV. Ultrasensitive Genetically Encoded Indicator for Hydrogen Peroxide Identifies Roles for the Oxidant in Cell Migration and Mitochondrial Function. Cell Metab 2020; 31:642-653.e6. [PMID: 32130885 PMCID: PMC7088435 DOI: 10.1016/j.cmet.2020.02.003] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/18/2019] [Accepted: 02/07/2020] [Indexed: 11/19/2022]
Abstract
Hydrogen peroxide (H2O2) is a key redox intermediate generated within cells. Existing probes for H2O2 have not solved the problem of detection of the ultra-low concentrations of the oxidant: these reporters are not sensitive enough, or pH-dependent, or insufficiently bright, or not functional in mammalian cells, or have poor dynamic range. Here we present HyPer7, the first bright, pH-stable, ultrafast, and ultrasensitive ratiometric H2O2 probe. HyPer7 is fully functional in mammalian cells and in other higher eukaryotes. The probe consists of a circularly permuted GFP integrated into the ultrasensitive OxyR domain from Neisseria meningitidis. Using HyPer7, we were able to uncover the details of H2O2 diffusion from the mitochondrial matrix, to find a functional output of H2O2 gradients in polarized cells, and to prove the existence of H2O2 gradients in wounded tissue in vivo. Overall, HyPer7 is a probe of choice for real-time H2O2 imaging in various biological contexts.
Collapse
Affiliation(s)
- Valeriy V Pak
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Institute for Cardiovascular Physiology, Georg August University Göttingen, Göttingen 37073, Germany
| | - Daria Ezeriņa
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie - Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Olga G Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Brandán Pedre
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie - Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | | | - Natalie M Mishina
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris 75231, France; Sorbonne Université, Collège Doctoral, Paris 75005, France
| | - David Young
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie - Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie - Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Santiago Agustín Martínez Gache
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie - Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Alexandra D Demidovich
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Yulia G Ermakova
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Yulia D Maslova
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Arina G Shokhina
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Emrah Eroglu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dmitry S Bilan
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Ivan Bogeski
- Institute for Cardiovascular Physiology, Georg August University Göttingen, Göttingen 37073, Germany
| | - Thomas Michel
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris 75231, France; University Paris-Diderot, Paris 75006, France
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie - Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Vsevolod V Belousov
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; Institute for Cardiovascular Physiology, Georg August University Göttingen, Göttingen 37073, Germany; Federal Center for Cerebrovascular Pathology and Stroke, Moscow 117997, Russia.
| |
Collapse
|
44
|
Anzai I, Tokuda E, Handa S, Misawa H, Akiyama S, Furukawa Y. Oxidative misfolding of Cu/Zn-superoxide dismutase triggered by non-canonical intramolecular disulfide formation. Free Radic Biol Med 2020; 147:187-199. [PMID: 31863908 DOI: 10.1016/j.freeradbiomed.2019.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Misfolded Cu/Zn-superoxide dismutase (SOD1) is a pathological species in a subset of amyotrophic lateral sclerosis (ALS). Oxidative stress is known to increase in affected spinal cords of ALS and is thus considered to cause damages on SOD1 leading to the misfolding and aggregation. Despite this, it still remains elusive what triggers misfolding of SOD1 under oxidizing environment. Here, we show that a thiol group of Cys111 in SOD1 is oxidized to a sulfenic acid with hydrogen peroxide and reveal that further dissociation of the bound metal ions from the oxidized SOD1 allows another free Cys residue (Cys6) to nucleophilically attack the sulfenylated Cys111. As a result, an intra-molecular disulfide bond forms between Cys6 and Cys111. Such an abnormal SOD1 with the non-canonical disulfide bond was conformationally extended with significant cytotoxicity as well as high propensity to aggregate. Taken together, we propose a new model of SOD1 misfolding under oxidizing environment, in which formation of the non-canonical intramolecular disulfide bond plays a pivotal role.
Collapse
Affiliation(s)
- Itsuki Anzai
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Eiichi Tokuda
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Sumika Handa
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Shuji Akiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan; Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Yoshiaki Furukawa
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan.
| |
Collapse
|
45
|
Hepatic Mitochondrial Oxidative Metabolism and Lipogenesis Synergistically Adapt to Mediate Healthy Embryonic-to-Neonatal Transition in Chicken. Sci Rep 2019; 9:20167. [PMID: 31882889 PMCID: PMC6934531 DOI: 10.1038/s41598-019-56715-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/05/2019] [Indexed: 01/15/2023] Open
Abstract
During the normal embryonic-to-neonatal development, the chicken liver is subjected to intense lipid burden from high rates of yolk-lipid oxidation and also from the accumulation of the yolk-derived and newly synthesized lipids from carbohydrates. High rates of hepatic lipid oxidation and lipogenesis are also central features of non-alcoholic fatty liver disease (NAFLD) in both rodents and humans, but is associated with impaired insulin signaling, dysfunctional mitochondrial energetics and oxidative stress. However, these adverse effects are not apparent in the liver of embryonic and neonatal chicken, despite lipid burden. Utilizing comprehensive metabolic profiling, we identify that steady induction of hepatic mitochondrial tricarboxylic acid (TCA) cycle and lipogenesis are central features of embryonic-to-neonatal transition. More importantly, the induction of TCA cycle and lipogenesis occurred together with the downregulation of hepatic β-oxidation and ketogenesis in the neonatal chicken. This synergistic remodeling of hepatic metabolic networks blunted inflammatory onset, prevented accumulation of lipotoxic intermediates (ceramides and diacylglycerols) and reduced reactive oxygen species production during embryonic-to-neonatal development. This dynamic remodeling of hepatic mitochondrial oxidative flux and lipogenesis aids in the healthy embryonic-to-neonatal transition in chicken. This natural physiological system could help identify mechanisms regulating mitochondrial function and lipogenesis, with potential implications towards treatment of NAFLD.
Collapse
|
46
|
Lismont C, Koster J, Provost S, Baes M, Van Veldhoven PP, Waterham HR, Fransen M. Deciphering the potential involvement of PXMP2 and PEX11B in hydrogen peroxide permeation across the peroxisomal membrane reveals a role for PEX11B in protein sorting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182991. [DOI: 10.1016/j.bbamem.2019.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
|
47
|
Abstract
Copper is a redox-active transition metal ion required for the function of many essential human proteins. For biosynthesis of proteins coordinating copper, the metal may bind before, during or after folding of the polypeptide. If the metal binds to unfolded or partially folded structures of the protein, such coordination may modulate the folding reaction. The molecular understanding of how copper is incorporated into proteins requires descriptions of chemical, thermodynamic, kinetic and structural parameters involved in the formation of protein-metal complexes. Because free copper ions are toxic, living systems have elaborate copper-transport systems that include particular proteins that facilitate efficient and specific delivery of copper ions to target proteins. Therefore, these pathways become an integral part of copper protein folding in vivo. This review summarizes biophysical-molecular in vitro work assessing the role of copper in folding and stability of copper-binding proteins as well as protein-protein copper exchange reactions between human copper transport proteins. We also describe some recent findings about the participation of copper ions and copper proteins in protein misfolding and aggregation reactions in vitro.
Collapse
|
48
|
Mitochondrial Dysfunctions: A Thread Sewing Together Alzheimer's Disease, Diabetes, and Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7210892. [PMID: 31316720 PMCID: PMC6604285 DOI: 10.1155/2019/7210892] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/20/2019] [Accepted: 05/21/2019] [Indexed: 02/03/2023]
Abstract
Metabolic disorders are severe and chronic impairments of the health of many people and represent a challenge for the society as a whole that has to deal with an ever-increasing number of affected individuals. Among common metabolic disorders are Alzheimer's disease, obesity, and type 2 diabetes. These disorders do not have a univocal genetic cause but rather can result from the interaction of multiple genes, lifestyle, and environmental factors. Mitochondrial alterations have emerged as a feature common to all these disorders, underlining perhaps an impaired coordination between cellular needs and mitochondrial responses that could contribute to their development and/or progression.
Collapse
|
49
|
Lyu X, Zhao G, Ng KR, Mark R, Chen WN. Metabolic Engineering of Saccharomyces cerevisiae for De Novo Production of Kaempferol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5596-5606. [PMID: 30957490 DOI: 10.1021/acs.jafc.9b01329] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Kaempferol is a polyphenolic compound with various reported health benefits and thus harbors considerable potential for food-engineering applications. In this study, a high-yield kaempferol-producing cell factory was constructed by multiple strategies, including gene screening, elimination of the phenylethanol biosynthetic branch, optimizing the core flavonoid synthetic pathway, supplementation of precursor PEP/E4P, and mitochondrial engineering of F3H and FLS. A total of 86 mg/L of kaempferol was achieved in strain YL-4, to date the highest production titer in yeast. Furthermore, a coculture system and supplementation of surfactants were investigated, to relieve the metabolic burden as well as the low solubility/possible transport limitations of flavonoids, respectively. In the coculture system, the whole pathway was divided across two strains, resulting in 50% increased cell growth. Meanwhile, supplementation of Tween 80 in our engineered strains yielded 220 mg/L of naringenin and 200 mg/L of mixed flavonoids-among the highest production titer reported via de novo production in yeast.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Chemical and Biomedical Engineering, College of Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Guili Zhao
- School of Chemical and Biomedical Engineering, College of Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Kuan Rei Ng
- School of Chemical and Biomedical Engineering, College of Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Rita Mark
- School of Chemical and Biomedical Engineering, College of Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, College of Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| |
Collapse
|
50
|
Jensen LT, Phyu T, Jain A, Kaewwanna C, Jensen AN. Decreased accumulation of superoxide dismutase 2 within mitochondria in the yeast model of Shwachman-Diamond syndrome. J Cell Biochem 2019; 120:13867-13880. [PMID: 30938873 DOI: 10.1002/jcb.28660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022]
Abstract
Mutations in the human SBDS gene is the most common cause of Shwachman-Diamond syndrome (SDS). The SBDS protein participates in ribosome biogenesis; however, effects beyond reduced translation efficiency are thought to be involved in SDS progression. Impaired mitochondrial function has been reported for cells lacking either SBDS or Sdo1p, the Saccharomyces cerevisiae SBDS ortholog. To better understand how the loss of SBDS/Sdo1p leads to mitochondria damage, we utilized the S. cerevisiae model of SDS. Yeast deleted for SDO1 show increased oxidative damage to mitochondrial proteins and a marked decrease in protein levels and activity of mitochondrial superoxide dismutase 2 (Sod2p), a key enzyme involved in defense against oxidants. Immature forms of Sod2p are observed in sdo1∆ cells suggesting a defect in proteolysis of the presequence. Yeast deleted for CYM1, encoding a presequence protease, display a similar reduction in Sod2p activity as sdo1∆ cells, as well as elevated oxidative damage, to mitochondrial proteins. Sod2p protein levels and activity are largely restored in a por1∆ sdo1∆ strain, lacking the major mitochondrial voltage-dependent anion channel. Together these results indicate that mitochondrial insufficiency in sdo1∆ cells may be linked to the accumulation of immature presequence containing proteins and this effect is a consequence, at least in part, from loss of counter-regulation of Por1p by Sdo1p.
Collapse
Affiliation(s)
- Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - The Phyu
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ayushi Jain
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chonlada Kaewwanna
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|