1
|
Toprak U, İnak E, Nauen R. Lipid Metabolism as a Target Site in Pest Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39466572 DOI: 10.1007/5584_2024_822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Lipid metabolism is essential to insect life as insects use lipids for their development, reproduction, flight, diapause, and a wide range of other functions. The central organ for insect lipid metabolism is the fat body, which is analogous to mammalian adipose tissue and liver, albeit less structured. Various other systems including the midgut, brain, and neural organs also contribute functionally to insect lipid metabolism. Lipid metabolism is under the control of core lipogenic [e.g. acetyl-CoA-carboxylase (ACC), fatty acid synthase (FAS), perilipin 2 (LSD2)], and lipolytic (lipases, perilipin 1) enzymes that are primarily expressed in the fat body, as well as hormones [insulin-like peptides (ILP), adipokinetic hormone (AKH)], transcription factors (SREBPs, foxO, and CREB), secondary messengers (calcium) and post-translational modifications (phosphorylation). Essential roles of the fat body, together with the fact that proper coordination of lipid metabolism is critical for insects, render lipid metabolism an attractive target site in pest control. In the current chapter, we focus on pest control tactics that target insect lipid metabolism. Various classes of traditional chemical insecticides [e.g. organophosphates, pyrethroids, neonicotinoids, and chitin synthesis inhibitors (Sects. 2.1 and 2.2)] have been shown to interfere with lipid metabolism, albeit it is not their primary site of action. However, the discovery of "lipid biosynthesis inhibitors", tetronic and tetramic acid derivatives commonly known as ketoenols (Sect. 2.3), was a milestone in applied entomology as they directly target lipid biosynthesis, particularly in sucking pests. Spirodiclofen, spiromesifen, and spirotetramat targeting ACC act against various insect and mite pests, while spiropidion and spidoxamat have been introduced to the market only recently. Efforts have concentrated on the development of chemical alternatives, such as hormone agonists and antagonists (Sect. 2.4), dsRNA-based pesticides that depend on RNA interference, which have great potential in pest control (Sect. 2.5) and other eco-friendly alternatives (Sect. 2.6).
Collapse
Affiliation(s)
- Umut Toprak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey.
| | - Emre İnak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Monheim, Germany.
| |
Collapse
|
2
|
Zhong W, Chen C, Tan S, He X, Wen X, Wang S, Tocher DR, Waiho K, Chen C. Identification and Functional Characterization of the FATP1 Gene from Mud Crab, Scylla paramamosain. Animals (Basel) 2024; 14:2969. [PMID: 39457899 PMCID: PMC11506284 DOI: 10.3390/ani14202969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
In mammals, fatty acid transport protein 1 (FATP1) plays important roles in cellular uptake and activation of long-chain fatty acid (LCFA), especially in processes of transportation, oxidation and triacylglycerol synthesis. However, the role of FATP1 in invertebrates, especially decapod crustaceans, is still poorly understood. In this study, the cDNA of a FATP1 gene from a decapod crustacean, mud crab Scylla paramamosain, was cloned and functionally characterized. The FATP1 gene encoded a polypeptide consisting of 643 amino acids that exhibits all the typical features of the FATP family and shares high homology with the other FATP orthologs of crustaceans. The relative mRNA expression levels of FATP1 were observed to be higher in metabolically active tissues such as hepatopancreas, stomach and gill than in other crab parts. Knockdown of the FATP1 mRNA in vivo significantly reduced triacylglycerols and total lipid levels in the hepatopancreas, accompanied by an increase in the expression of genes related to fatty acid transportation, allocation and hydrolysis, including long-chain acyl-CoA synthetase 3/4 (ACSL3/4) and carnitine palmitoyl transferase 1 (CPT1), and a decrease in the expression of genes related to fatty acid synthesis such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) in the hepatopancreas. Furthermore, increased dietary n-3 long-chain polyunsaturated fatty acid (LC-PUFA) levels resulted in the up-regulation of the FATP1 expression in the hepatopancreas, accompanied by an increase in LC-PUFA content, especially eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), in both polar (PLs) and neutral lipids (NLs) in the hepatopancreas and muscles of crabs. These findings suggested that the FATP1 gene identified in S. paramamosain might play important roles in regulating long-chain fatty acid metabolism and deposition in crustaceans.
Collapse
Affiliation(s)
- Wenjie Zhong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Chuangsi Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Senyue Tan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Xianda He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Xiaobo Wen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Douglas R. Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu 21300, Malaysia;
| | - Cuiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| |
Collapse
|
3
|
Cedden D, Güney G, Toprak U. The integral role of de novo lipogenesis in the preparation for seasonal dormancy. Proc Natl Acad Sci U S A 2024; 121:e2406194121. [PMID: 38990942 PMCID: PMC11260141 DOI: 10.1073/pnas.2406194121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Animals can alter their body compositions in anticipation of dormancy to endure seasons with limited food availability. Accumulation of lipid reserves, mostly in the form of triglycerides (TAGs), is observed during the preparation for dormancy in diverse animals, including insects (diapause) and mammals (hibernation). However, the mechanisms involved in the regulation of lipid accumulation and the ecological consequences of failure to accumulate adequate lipid stores in preparation for animal dormancy remain understudied. In the broadest sense, lipid reserves can be accumulated in two ways: the animal either receives lipids directly from the environment or converts the sugars and amino acids present in food to fatty acids through de novo lipogenesis and then to TAGs. Here, we show that preparation for diapause in the Colorado potato beetle (Leptinotarsa decemlineata) involves orchestrated upregulation of genes involved in lipid metabolism with a transcript peak in 8- and 10-d-old diapause-destined insects. Regulation at the transcript abundance level was associated with the accumulation of substantial fat stores. Furthermore, the knockdown of de novo lipogenesis enzymes (ACCase and FAS-1) prolonged the preparatory phase, while the knockdown of fatty acid transportation genes shortened the preparatory phase. Our findings suggest a model in which the insects dynamically decide when to transition from the preparation phase into diapause, depending on the progress in lipid accumulation through de novo lipogenesis.
Collapse
Affiliation(s)
- Doga Cedden
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara06110, Türkiye
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen37077, Germany
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara06110, Türkiye
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen37077, Germany
| | - Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara06110, Türkiye
| |
Collapse
|
4
|
Qu C, Kang Z, Zhang B, Fang Y, Wang R, Li F, Zhao H, Luo C. Genome-Wide Identification and Expression Profiling of Candidate Sex Pheromone Biosynthesis Genes in the Fall Armyworm ( Spodoptera frugiperda). INSECTS 2022; 13:insects13121078. [PMID: 36554988 PMCID: PMC9783692 DOI: 10.3390/insects13121078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 05/17/2023]
Abstract
Spodoptera frugiperda is an agricultural pest causing substantial damage and losses to commercial crops. Sex pheromones are critical for successful mating in Lepidoptera and have been used for monitoring and control of many pest species. The sex pheromone of S. frugiperda is known, but the genes involved in its biosynthesis have not been identified. We systematically studied 99 candidate sex pheromone genes in the genome of S. frugiperda including 1 acetyl-CoA carboxylase (ACC), 11 fatty acid synthases (FASs), 17 desaturases (DESs), 4 fatty acid transport proteins (FATPs), 29 fatty acyl-CoA reductases (FARs), 17 acetyl-CoA acetyltransferases (ACTs), 5 acyl-CoA dehydrogenase (ACDs), 3 enoyl-CoA hydratases (ECHs), 3 hydroxyacyl-CoA dehydrogenases (HCDs), 6 ethyl-CoA thiolases (KCTs), and 3 acyl-CoA-binding proteins (ACBPs). Based on the comparative transcriptome results, we found 22 candidate sex pheromone biosynthesis genes predominately expressed in pheromone glands (PGs) than abdomens without PGs including SfruFAS4, SfruFATP3, SfruACD5, SfruKCT3, SfruDES2, SfruDES5, SfruDES11, SfruDES13, SfruFAR1, SfruFAR2, SfruFAR3, SfruFAR6, SfruFAR7, SfruFAR8, SfruFAR9, SfruFAR10, SfruFAR11, SfruFAR14, SfruFAR16, SfruFAR29, SfruACT6, and SfruACT10. A combination of phylogenetic and tissue-specific transcriptomic analyses indicated that SfruDES5, SfruDES11, SfruFAR2, SfruFAR3, and SfruFAR9 may be key genes involved in the sex pheromone synthesis of S. frugiperda. Our results could provide a theoretical basis for understanding the molecular mechanisms of sex pheromone biosynthesis in S. frugiperda, and also provide new targets for developing novel pest control methods based on disrupting sexual communication.
Collapse
Affiliation(s)
- Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhiwei Kang
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Biyun Zhang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fengqi Li
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haipeng Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
- Correspondence: (H.Z.); (C.L.)
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: (H.Z.); (C.L.)
| |
Collapse
|
5
|
Fujii T, Kodama S, Ishikawa Y, Yamamoto M, Sakurai T, Fónagy A. Lipid droplets in the pheromone glands of bombycids: Effects of larval diet on their size and pheromone titer. JOURNAL OF INSECT PHYSIOLOGY 2022; 142:104440. [PMID: 36084745 DOI: 10.1016/j.jinsphys.2022.104440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
In addition to the blend ratio, the quantity of sex pheromone components secreted by female moths may affect the efficient attraction of conspecific males. The present study using the silkmoth Bombyx mori, which has bombykol as its pheromone component, demonstrated that pheromone titer, body weight, and lipid droplet (LD) diameter in the pheromone gland were affected by the larval diet. Although the artificial diet contained approximately 11-fold more total fatty acids than mulberry leaf, the pheromone titer in the group fed the artificial diet (group AD) was approximately 2-fold higher than that of the group fed mulberry (group M). The diameter of LDs, which store the pheromone-precursor fatty acyl, E10,Z12-16:Acyl, was also larger in the AD group. The relatively small increase in sex pheromone titer by feeding on a fatty-acid-rich diet may be partly attributable to the storage of excess precursors in the LDs. We detected LDs in the pheromone glands of Trilocha varians, the closest non-congener of B. mori available in Bombycidae. T. varians uses bombykal and bombykyl acetate as sex pheromone components, which are biosynthesized via the same precursor fatty acyl as that of B. mori. The presence of LDs in T. varians suggests that the storage and mobilization mechanisms of the pheromone precursor fatty acyl via LDs may be conserved in bombycids.
Collapse
Affiliation(s)
- Takeshi Fujii
- Faculty of Agriculture, Setsunan University, 45-1 Nagao-Togecho, Hirakata, Osaka 573-0101, Japan.
| | - Sayo Kodama
- Faculty of Agriculture, Setsunan University, 45-1 Nagao-Togecho, Hirakata, Osaka 573-0101, Japan
| | - Yukio Ishikawa
- Faculty of Agriculture, Setsunan University, 45-1 Nagao-Togecho, Hirakata, Osaka 573-0101, Japan
| | - Masanobu Yamamoto
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Takeshi Sakurai
- Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan
| | - Adrien Fónagy
- Zoology Department, Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránd Research Network (formerly affiliated to the Hungarian Academy of Sciences), Budapest 1022, Hungary
| |
Collapse
|
6
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
7
|
Wang QH, Gao X, Yu HS, Zhang Z, Yu QY. Exploring the Terminal Pathway of Sex Pheromone Biosynthesis and Metabolism in the Silkworm. INSECTS 2021; 12:insects12121062. [PMID: 34940150 PMCID: PMC8706005 DOI: 10.3390/insects12121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Insect sex pheromone biosynthesis has received widespread attention, while the terminal pathway related to aldehyde synthesis and metabolism is still poorly understood at a molecular level. Previous studies found that the silkworm, Bombyx mori (Lepidoptera, Bombycidae), has two pheromone compounds, bombykol and bombykal, with a ratio of 11:1, while its closest wild relative, B. mandarina, only uses bombykol as a pheromone. In this study, sex pheromone gland transcriptomes were compared between the domestic and wild silkworms. All the candidate gene families were identified. Then we used the differentially expressed information, tissue and developmental expression profiles, and phylogenetic analysis to identify the putative causal genes involved in the terminal pathway. Our findings provide insights into the aldehyde synthesis and metabolism pathways and evolutionary conservation in moths. Abstract Sex pheromones are vital to sexual communication and reproduction in insects. Although some key enzymes in pheromone production have been well studied, information on genes involved in the terminal pathway is limited. The domestic silkworm employs a pheromone blend containing (E,Z)-10,12-hexadecadienol (bombykol) and analogous (E,Z)-10,12-hexadecadienal (bombykal); whereas, its wild ancestor B. mandarina uses only bombykol. The two closely related moths might be a good model for exploring the genes involved in aldehyde pheromone synthesis and metabolism. By deep sequencing and analyzing the sex pheromone gland (PG) transcriptomes; we identified 116 candidate genes that may be related to pheromone biosynthesis, metabolism, and chemoreception. Spatiotemporal expression profiles and differentially expressed analysis revealed that four alcohol oxidases (BmorAO1; 2; 3; and 4); one aldehyde reductase (BmorAR1); and one aldehyde oxidase (BmorAOX5) might be involved in the terminal pathway. Phylogenetic analysis showed that, except for BmorAO3 and MsexAO3, AOs did not show a conversed orthologous relationship among moths; whereas, ARs and AOXs were phylogenetically conserved. This study provides crucial candidates for further functional elucidation, and which may be utilized as potential targets to disrupt sexual communication in other moth pests.
Collapse
Affiliation(s)
- Qing-Hai Wang
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
| | - Xing Gao
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
| | - Hong-Song Yu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi 563000, China;
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
- Correspondence:
| |
Collapse
|
8
|
Xing Y, Thanasirungkul W, Aslam A, Niu F, Guo HR, Chi DF. Genes involved in the Type I pheromone biosynthesis pathway and chemoreception from the sex pheromone gland transcriptome of Dioryctria abietella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100892. [PMID: 34428712 DOI: 10.1016/j.cbd.2021.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022]
Abstract
Dioryctria abietella is a coniferous seed orchard pest that can damage a series of host plants and cause huge losses to the forest economy. Sex pheromones play an important role in lepidopteran sex communication for reproduction and can be used as biological control agents to monitor and trap pests. However, the genes involved in the biosynthesis, transportation, and degradation of D. abietella sex pheromones have not been studied extensively. Transcriptome analysis of female D. abietella sex pheromone glands (PGs) revealed that 210 candidate genes might be involved in sex pheromone biosynthesis (139 genes) and chemoreception systems (71 genes). The gene expression patterns exhibited four desaturase genes (DabiDES4-7) and one fatty acid reductase gene (DabiFAR6), which were more highly expressed in sex pheromone glands than in other tissues, suggesting that these enzymes play an important role in D. abietella sex pheromone synthesis. In addition, most DabiOBPs showed high expression in antennae, but only DabiOBP4 exhibited specific expression in sex pheromone glands, suggesting that they may play many physiological roles in D. abietella. We put forth a reasonable hypothesis about type I pheromone biosynthesis pathways based on these genes identified in the D. abietella sex pheromone gland transcriptome. Our findings lay a foundation for population monitoring, mating disruption, mass trapping, and the development of ecologically acceptable management strategies.
Collapse
Affiliation(s)
- Ya Xing
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Wariya Thanasirungkul
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Asad Aslam
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Fang Niu
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Hong-Ru Guo
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - De-Fu Chi
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
9
|
Barroso IG, Cardoso C, Ferreira C, Terra WR. Transcriptomic and proteomic analysis of the underlying mechanisms of digestion of triacylglycerols and phosphatides and absorption and fate of fatty acids along the midgut of Musca domestica. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100826. [PMID: 33839527 DOI: 10.1016/j.cbd.2021.100826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 11/24/2022]
Abstract
Most dietary lipids are triacylglycerols (TAGs) and phosphatides that are digested by TAG lipases and phospholipases (PLIPs), respectively, originating fatty acids (FA). The genome of Musca domestica has genes coding for phospholipases A1 (1PLIP), A2 (2PLIP), B (BPLIP), and acid lipases (ALIP), as for proteins involved in activation, binding, and metabolism of FA, which expression in the larval midgut was evaluated by RNA-seq. Some of the codified proteins were identified in midgut microvillar-enriched membrane by proteomics. 1PLIPs are the most expressed PLIPs, mainly in anterior midgut whereas 2PLIPs, and BPLIP in middle and posterior midgut, and ALIPs between middle and posterior regions. Absorption of FAs is putatively accomplished by proteins involved in FA activation (acyl-CoA synthetases) found in microvillar-enriched membrane preparations. Furthermore, FA uptake could be enhanced by proteins that bind FAs (FA-binding proteins) and its activated form (acyl-CoA binding proteins) mainly expressed in posterior midgut. Activated FAs could have different fates: synthesis of diacylglycerol (DAG) and TAG through monoacylglycerol and glycerol-3-phosphate pathways; synthesis of phosphatides; energy source by β-oxidation. Most genes coding for enzymes of those routes is expressed mainly at the end of posterior midgut. Data suggest that phosphatides are digested in anterior midgut by Md1PLIPs, releasing lysophosphatides that emulsify fats to be digested by MdALIPs in the middle and posterior midgut. Most resulting FAs is absorbed in the posterior midgut, where they follow the synthesis of DAG, TAG, and phosphatides or are oxidized along the midgut, mainly in highly metabolic middle and posterior midgut regions.
Collapse
Affiliation(s)
- Ignacio G Barroso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Christiane Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Clelia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
10
|
Wang QH, Gong Q, Fang SM, Liu YQ, Zhang Z, Yu QY. Identification of genes involved in sex pheromone biosynthesis and metabolic pathway in the Chinese oak silkworm, Antheraea pernyi. Int J Biol Macromol 2020; 163:1487-1497. [PMID: 32755713 DOI: 10.1016/j.ijbiomac.2020.07.263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022]
Abstract
The Chinese oak silkworm, Antheraea pernyi, has not only been semi-domesticated as an important economical insect but also used for genetic research. The female moths of A. pernyi employ a pheromone blend containing (E,Z)-6,11-hexadecadienal (E6,Z11-16:Ald), (E,Z)-6,11-hexadecadienyl acetate (E6,Z11-16:OAc), and (E,Z)-4,9-tetradecadienyl acetate (E4,Z9-14:OAc). While its biosynthesis pathway is largely unknown. By deep sequencing and de novo assembly of sex pheromone gland (PG) transcriptome, we identified 141 candidate genes that are putatively related to pheromone biosynthesis, degradation, and chemoreception in A. pernyi. Gene expression patterns and phylogenetic analysis revealed that two desaturases (AperDES1 and 2), two fatty acid reductase (AperFAR1 and 2), and three acetyltransferase genes (AperACT1, 2 and 3) showed PG-biased or specific expression and were phylogenetically related to genes known to be involved in pheromone synthesis in other species. Furthermore, two carboxylesterases (AperCOE6 and 11) and two chemosensory protein (AperCSP1 and 6) were also expressed specifically or predominantly in the PGs, which might be related to sex pheromone degradation and transportation, respectively. Based on these results, the sex pheromone biosynthesis and metabolic pathway was proposed in A. pernyi. This study provides some crucial candidates for further functional elucidation, and may be used for interfering sexual communication in other Saturniidae pests.
Collapse
Affiliation(s)
- Qing-Hai Wang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Qian Gong
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Yan-Qun Liu
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Quan-You Yu
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
11
|
Hu P, Wang D, Gao C, Lu P, Tao J, Luo Y. Pheromone biosynthetic pathway and chemoreception proteins in sex pheromone gland of Eogystia hippophaecolus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100702. [PMID: 32544860 DOI: 10.1016/j.cbd.2020.100702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 01/06/2023]
Abstract
The moth Eogystia hippophaecolus (Hua et al.) is a major threat to sea buckthorn plantations in China. Specific and highly efficient artificial sex pheromone traps have been developed and used to control this pest species. However, the biosynthesis of sex pheromones Z7-14: Ac and E3-14:Ac remains poorly understood. We investigated the female pheromone gland transcriptome of E. hippophaecolus and identified two pheromone biosynthesis-activating neuropeptides (PBANs), two pheromone biosynthesis-activating neuropeptide receptors (PBANrs), five acetyl-CoA carboxylases (ACCs), six fatty acid synthases (FASs), 16 Acyl-CoA desaturases (DESs), 26 reductases (REDs), 13 acetyltransferases (ACTs), one fatty acid transport protein (FATP), one acyl-CoA-binding protein (ACBP), and five elongation of very long-chain fatty acid proteins (ELOs) in pheromone biosynthesis pathways. Additionally, we identified 11 odorant-degrading enzymes (ODEs) and 16 odorant-binding proteins (OBPs), 14 chemosensory proteins (CSPs), two sensory neuron membrane proteins (SNMPs), three odorant receptors (ORs), seven ionotropic receptors (IRs), and six gustatory receptors (GRs). 77 unigenes involved in female pheromone biosynthesis, 31 chemoreception proteins and 11 odorant degradation enzymes were identified, which provided insight into the regulation of the pheromone components and pheromone recognition in the sex pheromone gland, and knowledge pertinent to new integrated pest management strategy of interference pheromone biosynthesis and recognition.
Collapse
Affiliation(s)
- Ping Hu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; Guangxi University, Nanning 530004, China
| | - Dongbai Wang
- Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chenglong Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Pengfei Lu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
12
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
13
|
Holtof M, Lenaerts C, Cullen D, Vanden Broeck J. Extracellular nutrient digestion and absorption in the insect gut. Cell Tissue Res 2019; 377:397-414. [DOI: 10.1007/s00441-019-03031-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
|
14
|
Santos-Ortega Y, Killiny N. Silencing of sucrose hydrolase causes nymph mortality and disturbs adult osmotic homeostasis in Diaphorina citri (Hemiptera: Liviidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:131-143. [PMID: 30205149 DOI: 10.1016/j.ibmb.2018.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Plant piercing sucking insects mainly feed on phloem sap containing a high amount of sucrose. To enhance the absorption of sucrose from the midgut, sucrose hydrolase digests sucrose into glucose and fructose. In this study, a sucrose hydrolase homolog (DcSuh) was identified and targeted in Diaphorina citri, the vector of huanglongbing (HLB), by RNA interference (RNAi). In silico analysis revealed the presence of an Aamy domain in the DcSUH protein, which is characteristic of the glycoside hydrolase family 13 (GH13). Phylogenetic analysis showed DcSuh was closely related to the sucrose hydrolase of other Hemiptera members. The highest gene expression levels of DcSuh was found in the 4th and 5th instar nymphs. dsRNA-mediated RNAi of DcSuh was achieved through topical feeding. Our results showed that application of 0.2 μL of 500 ng μL-1 (100 ng) dsRNA-DcSuh was sufficient to repress the expression of the targeted gene and cause nymph mortality and reduce adult lifespan. The reduction in gene expression, mortality, and lifespan was dose-dependent. In agreement with the gene expression results, treatment with dsRNA-DcSuh significantly reduced sucrose hydrolase activity in treated nymphs and emerged adults from treated nymphs. Interestingly, some emerged adults from treated nymphs showed a swollen abdomen phenotype, indicating that these insects were under osmotic stress. Although the percentage of swollen abdomens was low, their incidence was significantly correlated with the concentration of applied dsRNA-DcSuh. Metabolomic analyses using GC-MS showed an accumulation of sucrose and a reduction in fructose, glucose and trehalose in treated nymphs, confirming the inhibition of sucrose hydrolase activity. Additionally, most of the secondary metabolites were reduced in the treated nymphs, indicating a reduction in the biological activities in D. citri and that they are under stress. Our findings indicate that sucrose hydrolase might be a potential target for effective RNAi control of D. citri.
Collapse
Affiliation(s)
- Yulica Santos-Ortega
- Department of Plant Pathology, IFAS, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Nabil Killiny
- Department of Plant Pathology, IFAS, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
15
|
Gondim KC, Atella GC, Pontes EG, Majerowicz D. Lipid metabolism in insect disease vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:108-123. [PMID: 30171905 DOI: 10.1016/j.ibmb.2018.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
More than a third of the world population is at constant risk of contracting some insect-transmitted disease, such as Dengue fever, Zika virus disease, malaria, Chagas' disease, African trypanosomiasis, and others. Independent of the life cycle of the pathogen causing the disease, the insect vector hematophagous habit is a common and crucial trait for the transmission of all these diseases. This lifestyle is unique, as hematophagous insects feed on blood, a diet that is rich in protein but relatively poor in lipids and carbohydrates, in huge amounts and low frequency. Another unique feature of these insects is that blood meal triggers essential metabolic processes, as molting and oogenesis and, in this way, regulates the expression of various genes that are involved in these events. In this paper, we review current knowledge of the physiology and biochemistry of lipid metabolism in insect disease vectors, comparing with classical models whenever possible. We address lipid digestion and absorption, hemolymphatic transport, and lipid storage by the fat body and ovary. In this context, both de novo fatty acid and triacylglycerol synthesis are discussed, including the related fatty acid activation process and the intracellular lipid binding proteins. As lipids are stored in order to be mobilized later on, e.g. for flight activity or survivorship, lipolysis and β-oxidation are also considered. All these events need to be finely regulated, and the role of hormones in this control is summarized. Finally, we also review information about infection, when vector insect physiology is affected, and there is a crosstalk between its immune system and lipid metabolism. There is not abundant information about lipid metabolism in vector insects, and significant current gaps in the field are indicated, as well as questions to be answered in the future.
Collapse
Affiliation(s)
- Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Georgia C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emerson G Pontes
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
16
|
Grapputo A, Thrimawithana AH, Steinwender B, Newcomb RD. Differential gene expression in the evolution of sex pheromone communication in New Zealand's endemic leafroller moths of the genera Ctenopseustis and Planotortrix. BMC Genomics 2018; 19:94. [PMID: 29373972 PMCID: PMC5787247 DOI: 10.1186/s12864-018-4451-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/14/2018] [Indexed: 01/09/2023] Open
Abstract
Background Sex pheromone communication in moths has attracted the attention of evolutionary biologists due to the vast array of pheromone compounds used, addressing questions of how this diversity arose and how male reception has evolved in step with the female signal. Here we examine the role of changing gene expression in the evolution of mate recognition systems in leafroller moths, particularly focusing on genes involved in the biosynthetic pathways of sex pheromones in female pheromone glands and the peripheral reception repertoire in the antennae of males. From tissue-specific transcriptomes we mined and compared a database of genes expressed in the pheromone glands and antennae of males and females of four closely related species of leafroller moths endemic to New Zealand, Ctenopseutis herana and C. obliquana, and Planotortrix excessana and P. octo. The peculiarity of this group, compared to other Lepidoptera, is the use of (Z)-5-tetradecenyl acetate, (Z)-7-tetradecenyl acetate, and (Z)-8-tetradecenyl acetate as sex pheromone components. Results We identify orthologues of candidate genes from the pheromone biosynthesis pathway, degradation and transport, as well as genes of the periphery olfactory repertoire, including large families of binding proteins, receptors and odorant degrading enzymes. The production of distinct pheromone blends in the sibling species is associated with the differential expression of two desaturase genes, deast5 and desat7, in the pheromone glands. In male antennae, three odorant receptors, OR74, OR76a and OR30 are over-expressed, but their expression could not be clearly associated with the detection of species-specific pheromones components. In addition these species contain duplications of all three pheromone binding proteins (PBPs) that are also differentially expressed among species. Conclusions While in females differences in the expression of desaturases may be sufficient to explain pheromone blend differences among these New Zealand leafroller species, in males differential expression of several genes, including pheromone binding proteins, may underpin differences in the response by males to changing pheromone components among the species. Electronic supplementary material The online version of this article (10.1186/s12864-018-4451-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Bernd Steinwender
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard D Newcomb
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Zhang YN, Zhang LW, Chen DS, Sun L, Li ZQ, Ye ZF, Zheng MY, Li JB, Zhu XY. Molecular identification of differential expression genes associated with sex pheromone biosynthesis in Spodoptera exigua. Mol Genet Genomics 2017; 292:795-809. [PMID: 28349297 DOI: 10.1007/s00438-017-1307-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/02/2017] [Indexed: 10/19/2022]
Abstract
Species-specific sex pheromone is biosynthesized and released in most female moths as a chemical cue in mating communication. However, information on genes involved in this pathway is limited. The beet armyworm, Spodoptera exigua, is a cosmopolitan agricultural pest that causes severe economic losses to many crops. In China, the female sex pheromones in sex pheromone glands (PGs) of S. exigua have been measured which comprises (Z,E)-9,12-tetradecadienyl acetate, (Z)-9-tetradecen-l-ol, (Z)-9-tetradecenyl acetate, and (Z,E)-9,12-tetradecadien-1-ol in a ratio of 47:18:18:17. Fifty-nine putative genes related to sex pheromone biosynthesis were identified in the present study by sequencing and analyzing the sex pheromone gland (PG) transcriptome of S. exigua. Expression profiles revealed that two desaturase (SexiDes5 and SexiDes11) and three fatty acyl reductase (SexiFAR2, 3, and 9) genes had PG-specific expression, and phylogenetic analysis demonstrated that they clustered with genes known to be involved in pheromone synthesis in other moth species. Our results provide crucial background information that could facilitate the elucidation of sex pheromone biosynthesis pathway of S. exigua as well as other Spodoptera species and help identify potential targets for disrupting sexual communication in S. exigua for developing novel environment-friendly pesticides.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, No. 100, Dongshan Road, Huaibei, 235000, People's Republic of China
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, People's Republic of China.
| | - Da-Song Chen
- Guangdong Entomological Institute, Guangzhou, 510260, People's Republic of China
| | - Liang Sun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, People's Republic of China
| | - Zhao-Qun Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, People's Republic of China
| | - Zhan-Feng Ye
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mei-Yan Zheng
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jin-Bu Li
- College of Life Sciences, Huaibei Normal University, No. 100, Dongshan Road, Huaibei, 235000, People's Republic of China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, No. 100, Dongshan Road, Huaibei, 235000, People's Republic of China.
| |
Collapse
|
18
|
He P, Zhang YF, Hong DY, Wang J, Wang XL, Zuo LH, Tang XF, Xu WM, He M. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses. BMC Genomics 2017; 18:219. [PMID: 28249567 PMCID: PMC5333385 DOI: 10.1186/s12864-017-3592-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/14/2017] [Indexed: 11/25/2022] Open
Abstract
Background Female moths synthesize species-specific sex pheromone components and release them to attract male moths, which depend on precise sex pheromone chemosensory system to locate females. Two types of genes involved in the sex pheromone biosynthesis and degradation pathways play essential roles in this important moth behavior. To understand the function of genes in the sex pheromone pathway, this study investigated the genome-wide and digital gene expression of sex pheromone biosynthesis and degradation genes in various adult tissues in the diamondback moth (DBM), Plutella xylostella, which is a notorious vegetable pest worldwide. Results A massive transcriptome data (at least 39.04 Gb) was generated by sequencing 6 adult tissues including male antennae, female antennae, heads, legs, abdomen and female pheromone glands from DBM by using Illumina 4000 next-generation sequencing and mapping to a published DBM genome. Bioinformatics analysis yielded a total of 89,332 unigenes among which 87 transcripts were putatively related to seven gene families in the sex pheromone biosynthesis pathway. Among these, seven [two desaturases (DES), three fatty acyl-CoA reductases (FAR) one acetyltransferase (ACT) and one alcohol dehydrogenase (AD)] were mainly expressed in the pheromone glands with likely function in the three essential sex pheromone biosynthesis steps: desaturation, reduction, and esterification. We also identified 210 odorant-degradation related genes (including sex pheromone-degradation related genes) from seven major enzyme groups. Among these genes, 100 genes are new identified and two aldehyde oxidases (AOXs), one aldehyde dehydrogenase (ALDH), five carboxyl/cholinesterases (CCEs), five UDP-glycosyltransferases (UGTs), eight cytochrome P450 (CYP) and three glutathione S-transferases (GSTs) displayed more robust expression in the antennae, and thus are proposed to participate in the degradation of sex pheromone components and plant volatiles. Conclusions To date, this is the most comprehensive gene data set of sex pheromone biosynthesis and degradation enzyme related genes in DBM created by genome- and transcriptome-wide identification, characterization and expression profiling. Our findings provide a basis to better understand the function of genes with tissue enriched expression. The results also provide information on the genes involved in sex pheromone biosynthesis and degradation, and may be useful to identify potential gene targets for pest control strategies by disrupting the insect-insect communication using pheromone-based behavioral antagonists. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3592-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China.
| | - Yun-Fei Zhang
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China
| | - Duan-Yang Hong
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, Guizhou Medical University, Huaxi university town, Guian new district, 550025, Guizhou, People's Republic of China
| | - Jun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China
| | - Xing-Liang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ling-Hua Zuo
- Agriculture Economic and Rural Development, RENMIN University of China, Beijing, 100872, People's Republic of China
| | - Xian-Fu Tang
- Guizhou Grass Jelly Biotechnology Company Limited, Chishui, Zhunyi, 564700, People's Republic of China
| | - Wei-Ming Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
19
|
Xu J, Wang XF, Chen P, Liu FT, Zheng SC, Ye H, Mo MH. RNA Interference in Moths: Mechanisms, Applications, and Progress. Genes (Basel) 2016; 7:E88. [PMID: 27775569 PMCID: PMC5083927 DOI: 10.3390/genes7100088] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022] Open
Abstract
The vast majority of lepidopterans, about 90%, are moths. Some moths, particularly their caterpillars, are major agricultural and forestry pests in many parts of the world. However, some other members of moths, such as the silkworm Bombyx mori, are famous for their economic value. Fire et al. in 1998 initially found that exogenous double-stranded RNA (dsRNA) can silence the homolog endogenous mRNA in organisms, which is called RNA interference (RNAi). Soon after, the RNAi technique proved to be very promising not only in gene function determination but also in pest control. However, later studies demonstrate that performing RNAi in moths is not as straightforward as shown in other insect taxa. Nevertheless, since 2007, especially after 2010, an increasing number of reports have been published that describe successful RNAi experiments in different moth species either on gene function analysis or on pest management exploration. So far, more than 100 peer-reviewed papers have reported successful RNAi experiments in moths, covering 10 families and 25 species. By using classic and novel dsRNA delivery methods, these studies effectively silence the expression of various target genes and determine their function in larval development, reproduction, immunology, resistance against chemicals, and other biological processes. In addition, a number of laboratory and field trials have demonstrated that RNAi is also a potential strategy for moth pest management. In this review, therefore, we summarize and discuss the mechanisms and applications of the RNAi technique in moths by focusing on recent progresses.
Collapse
Affiliation(s)
- Jin Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
- Institute of Plant Protection, Yunnan Academy of Forestry, Kunming 650201, China.
| | - Xia-Fei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Peng Chen
- Institute of Plant Protection, Yunnan Academy of Forestry, Kunming 650201, China.
| | - Fang-Tao Liu
- School of Physical Education, Wenshan Institute, Wenshan 663000, China.
| | - Shuai-Chao Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Hui Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| |
Collapse
|
20
|
Chen X, Luo Y, Wang R, Zhou B, Huang Z, Jia G, Zhao H, Liu G. Effects of fatty acid transport protein 1 on proliferation and differentiation of porcine intramuscular preadipocytes. Anim Sci J 2016; 88:731-738. [PMID: 27616431 DOI: 10.1111/asj.12701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Fatty acid transport protein 1 (FATP1) plays an important role in the fatty acid transmembrane transport and fat deposition. However, its role in porcine intramuscular preadipocytes proliferation and differentiation remain poorly understood. Here, we examined the effects of pFATP1 on porcine intramuscular preadipocytes proliferation and differentiation. Overexpression of pFATP1 in porcine intramuscular preadipocytes significantly promoted the proliferation of porcine intramuscular preadipocytes, and also significantly upregulated the expressions of peroxisome proliferator-activated receptor γ, CCAAT enhancer binding protein α, lipoprotein lipase, fatty acid synthetase and perilipin 1. Moreover, overexpression of pFATP1 in porcine intramuscular preadipocytes significantly increased fat accumulation and downregulated β-catenin protein expression. Overall, our results indicated that pFATP1 played an important role in porcine intramuscular preadipocytes proliferation and differentiation, and it might promote adipogenesis in porcine intramuscular preadipocytes by repressing Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanliu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ruisheng Wang
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Bo Zhou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Buček A, Brabcová J, Vogel H, Prchalová D, Kindl J, Valterová I, Pichová I. Exploring complex pheromone biosynthetic processes in the bumblebee male labial gland by RNA sequencing. INSECT MOLECULAR BIOLOGY 2016; 25:295-314. [PMID: 26945888 DOI: 10.1111/imb.12221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Male marking pheromones (MPs) are used by the majority of bumblebee species (Hymenoptera: Apidae), including a commercially important greenhouse pollinator, the buff-tailed bumblebee (Bombus terrestris), to attract conspecific females. MP biosynthetic processes in the cephalic part of the bumblebee male labial gland (LG) are of extraordinary complexity, involving enzymes of fatty acid and isoprenoid biosynthesis, which jointly produce more than 50 compounds. We employed a differential transcriptomic approach to identify candidate genes involved in MP biosynthesis by sequencing Bombus terrestris LG and fat body (FB) transcriptomes. We identified 12 454 abundantly expressed gene products (reads per kilobase of exon model per million mapped reads value > 1) that had significant hits in the GenBank nonredundant database. Of these, 876 were upregulated in the LG (> 4-fold difference). We identified more than 140 candidate genes potentially involved in MP biosynthesis, including esterases, fatty acid reductases, lipases, enzymes involved in limited fatty acid chain shortening, neuropeptide receptors and enzymes involved in biosynthesis of triacylglycerols, isoprenoids and fatty acids. For selected candidates, we confirmed their abundant expression in LG using quantitative real-time reverse transcription-PCR (qRT-PCR). Our study shows that the Bombus terrestris LG transcriptome reflects both fatty acid and isoprenoid MP biosynthetic processes and identifies rational gene targets for future studies to disentangle the molecular basis of MP biosynthesis. Additionally, LG and FB transcriptomes enrich the available transcriptomic resources for Bombus terrestris.
Collapse
Affiliation(s)
- A Buček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Brabcová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - H Vogel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - D Prchalová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Kindl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - I Valterová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - I Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
22
|
Zhang YN, Zhu XY, Fang LP, He P, Wang ZQ, Chen G, Sun L, Ye ZF, Deng DG, Li JB. Identification and Expression Profiles of Sex Pheromone Biosynthesis and Transport Related Genes in Spodoptera litura. PLoS One 2015; 10:e0140019. [PMID: 26445454 PMCID: PMC4596838 DOI: 10.1371/journal.pone.0140019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/21/2015] [Indexed: 11/19/2022] Open
Abstract
Although the general pathway of sex pheromone synthesis in moth species has been established, the molecular mechanisms remain poorly understood. The common cutworm Spodoptera litura is an important agricultural pest worldwide and causes huge economic losses annually. The female sex pheromone of S. litura comprises Z9,E11-14:OAc, Z9,E12-14:OAc, Z9-14:OAc, and E11-14:OAc. By sequencing and analyzing the transcriptomic data of the sex pheromone glands, we identified 94 candidate genes related to pheromone biosynthesis (55 genes) or chemoreception (39 genes). Gene expression patterns and phylogenetic analysis revealed that two desaturase genes (SlitDes5 and SlitDes11) and one fatty acyl reductase gene (SlitFAR3) showed pheromone gland (PG) biased or specific expression, and clustered with genes known to be involved in pheromone synthesis in other moth species. Furthermore, 4 chemoreception related genes (SlitOBP6, SlitOBP11, SlitCSP3, and SlitCSP14) also showed higher expression in the PG, and could be additional candidate genes involved in sex pheromone transport. This study provides the first solid background information that should facilitate further elucidation of sex pheromone biosynthesis and transport, and indicates potential targets to disrupt sexual communication in S. litura for a novel pest management strategy.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Li-Ping Fang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhi-Qiang Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Geng Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Liang Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Zhan-Feng Ye
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Dao-Gui Deng
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jin-Bu Li
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
23
|
Fatty acid transport proteins in disease: New insights from invertebrate models. Prog Lipid Res 2015; 60:30-40. [PMID: 26416577 DOI: 10.1016/j.plipres.2015.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/18/2015] [Indexed: 11/22/2022]
Abstract
The dysregulation of lipid metabolism has been implicated in various diseases, including diabetes, cardiopathies, dermopathies, retinal and neurodegenerative diseases. Mouse models have provided insights into lipid metabolism. However, progress in the understanding of these pathologies is hampered by the multiplicity of essential cellular processes and genes that modulate lipid metabolism. Drosophila and Caenorhabditis elegans have emerged as simple genetic models to improve our understanding of these metabolic diseases. Recent studies have characterized fatty acid transport protein (fatp) mutants in Drosophila and C. elegans, establishing new models of cardiomyopathy, retinal degeneration, fat storage disease and dermopathies. These models have generated novel insights into the physiological role of the Fatp protein family in vivo in multicellular organisms, and are likely to contribute substantially to progress in understanding the etiology of various metabolic disorders. Here, we describe and discuss the mechanisms underlying invertebrate fatp mutant models in the light of the current knowledge relating to FATPs and lipid disorders in vertebrates.
Collapse
|
24
|
Antony B, Soffan A, Jakše J, Alfaifi S, Sutanto KD, Aldosari SA, Aldawood AS, Pain A. Genes involved in sex pheromone biosynthesis of Ephestia cautella, an important food storage pest, are determined by transcriptome sequencing. BMC Genomics 2015; 16:532. [PMID: 26187652 PMCID: PMC4506583 DOI: 10.1186/s12864-015-1710-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/22/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Insects use pheromones, chemical signals that underlie all animal behaviors, for communication and for attracting mates. Synthetic pheromones are widely used in pest control strategies because they are environmentally safe. The production of insect pheromones in transgenic plants, which could be more economical and effective in producing isomerically pure compounds, has recently been successfully demonstrated. This research requires information regarding the pheromone biosynthetic pathways and the characterization of pheromone biosynthetic enzymes (PBEs). We used Illumina sequencing to characterize the pheromone gland (PG) transcriptome of the Pyralid moth, Ephestia cautella, a destructive storage pest, to reveal putative candidate genes involved in pheromone biosynthesis, release, transport and degradation. RESULTS We isolated the E. cautella pheromone compound as (Z,E)-9,12-tetradecadienyl acetate, and the major pheromone precursors 16:acyl, 14:acyl, E14-16:acyl, E12-14:acyl and Z9,E12-14:acyl. Based on the abundance of precursors, two possible pheromone biosynthetic pathways are proposed. Both pathways initiate from C16:acyl-CoA, with one involving ∆14 and ∆9 desaturation to generate Z9,E12-14:acyl, and the other involving the chain shortening of C16:acyl-CoA to C14:acyl-CoA, followed by ∆12 and ∆9 desaturation to generate Z9,E12-14:acyl-CoA. Then, a final reduction and acetylation generates Z9,E12-14:OAc. Illumina sequencing yielded 83,792 transcripts, and we obtained a PG transcriptome of ~49.5 Mb. A total of 191 PBE transcripts, which included pheromone biosynthesis activating neuropeptides, fatty acid transport proteins, acetyl-CoA carboxylases, fatty acid synthases, desaturases, β-oxidation enzymes, fatty acyl-CoA reductases (FARs) and fatty acetyltransferases (FATs), were selected from the dataset. A comparison of the E. cautella transcriptome data with three other Lepidoptera PG datasets revealed that 45% of the sequences were shared. Phylogenetic trees were constructed for desaturases, FARs and FATs, and transcripts that clustered with the ∆14, ∆12 and ∆9 desaturases, PG-specific FARs and potential candidate FATs, respectively, were identified. Transcripts encoding putative pheromone degrading enzymes, and candidate pheromone carrier and receptor proteins expressed in the E. cautella PG, were also identified. CONCLUSIONS Our study provides important background information on the enzymes involved in pheromone biosynthesis. This information will be useful for the in vitro production of E. cautella sex pheromones and may provide potential targets for disrupting the pheromone-based communication system of E. cautella to prevent infestations.
Collapse
Affiliation(s)
- Binu Antony
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Alan Soffan
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
- Department of Plant Protection, King Saud University, EERU, Riyadh, Saudi Arabia.
| | - Jernej Jakše
- Agronomy Department, University of Ljubljana, Biotechnical Faculty, SI-1000, Ljubljana, Slovenia.
| | - Sulieman Alfaifi
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Koko D Sutanto
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Saleh A Aldosari
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | | | - Arnab Pain
- BASE Division, KAUST, Thuwal, Jeddah, 23955-6900, Saudi Arabia.
| |
Collapse
|
25
|
Du M, Liu X, Liu X, Yin X, Han S, Song Q, An S. Glycerol-3-phosphate O-acyltransferase is required for PBAN-induced sex pheromone biosynthesis in Bombyx mori. Sci Rep 2015; 5:8110. [PMID: 25630665 PMCID: PMC5389035 DOI: 10.1038/srep08110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 01/07/2015] [Indexed: 12/23/2022] Open
Abstract
Female moths employ their own pheromone blends as a communicational medium in mating behavior. The biosynthesis and release of sex pheromone in female moths are regulated by pheromone biosynthesis activating neuropeptide (PBAN) and the corresponding action of PBAN has been well elucidated in Bombyx mori. However, very little is known about the molecular mechanism regarding the biosynthesis of sex pheromone precursor. In this study, quantitative proteomics was utilized to comprehensively elucidate the expression dynamics of pheromone glands (PGs) during development. Proteomic analysis revealed a serial of differentially expressed sex pheromone biosynthesis-associated proteins at the different time points of B. mori development. Most interestingly B. mori glycerol-3-phosphate O-acyltransferase (BmGPAT) was found to be expressed during the key periods of sex pheromone biosynthesis. RNAi knockdown of BmGPAT confirmed the important function of this protein in the biosynthesis of sex pheromone precursor, triacylglcerol (TAG), and subsequently PBAN-induced production of sex pheromone, bombykol. Behavioral analysis showed that RNAi knockdown of GPAT significantly impaired the ability of females to attract males. Our findings indicate that GPAT acts to regulate the biosynthesis of sex pheromone precursor, TAG, thus influencing PBAN-induced sex pheromone production and subsequent mating behavior.
Collapse
Affiliation(s)
- Mengfang Du
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002 P.R. China
| | - Xiaoguang Liu
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002 P.R. China
| | - Xiaoming Liu
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002 P.R. China
| | - Xinming Yin
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002 P.R. China
| | - Shuangyin Han
- Translational Research Center, Zhengzhou University People's Hospital, Zhengzhou 450003 P.R. China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002 P.R. China
| |
Collapse
|
26
|
Zhang S, Liu X, Zhu B, Yin X, Du M, Song Q, An S. Identification of differentially expressed genes in the pheromone glands of mated and virgin Bombyx mori by digital gene expression profiling. PLoS One 2014; 9:e111003. [PMID: 25330197 PMCID: PMC4203833 DOI: 10.1371/journal.pone.0111003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 09/20/2014] [Indexed: 11/26/2022] Open
Abstract
Background Mating decreases female receptivity and terminates sex pheromone production in moths. Although significant progress has been made in elucidating the mating-regulated inactivation of pheromone biosynthesis-activating neuropeptide (PBAN) secretion, little is known about the mating induced gene expression profiles in pheromone glands (PGs). In this study, the associated genes involved in Bombyx mori mating were identified through digital gene expression (DGE) profiling and subsequent RNA interference (RNAi) to elucidate the molecular mechanisms underlying the mating-regulated gene expression in PGs. Results Eight DGE libraries were constructed from the PGs of mated and virgin females: 1 h mating (M1)/virgin (V1) PGs, 3 h mating (M3)/virgin (V3) PGs, 24 h mating (M24)/virgin (V24) PGs and 48 h mating (M48)/virgin (V48) PGs (M48 and V48). These libraries were used to investigate the gene expression profiles affected by mating. DGE profiling revealed a series of genes showing differential expression in each set of mated and virgin female samples, including immune-associated genes, sex pheromone synthesis-associated genes, juvenile hormone (JH) signal-associated genes, etc. Most interestingly, JH signal was found to be activated by mating. Application of the JH mimics, methoprene to the newly-emerged virgin females leaded to the significant reduction of sex pheromone production. RNAi-mediated knockdown of putative JH receptor gene, Methoprene tolerant 1 (Met1), in female pupa resulted in a significant decrease in sex pheromone production in mature females, suggesting the importance of JH in sex pheromone synthesis. Conclusion A series of differentially expressed genes in PGs in response to mating was identified. This study improves our understanding of the role of JH signaling on the mating-elicited termination of sex pheromone production.
Collapse
Affiliation(s)
- Songdou Zhang
- State Key Laboratory of Wheat and Maize Crop Science (College of Plant Protection), Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Xiaoming Liu
- State Key Laboratory of Wheat and Maize Crop Science (College of Plant Protection), Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Bin Zhu
- State Key Laboratory of Wheat and Maize Crop Science (College of Plant Protection), Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Xinming Yin
- State Key Laboratory of Wheat and Maize Crop Science (College of Plant Protection), Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Mengfang Du
- State Key Laboratory of Wheat and Maize Crop Science (College of Plant Protection), Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Qisheng Song
- Divisions of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science (College of Plant Protection), Henan Agricultural University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
27
|
Zhang SD, Li X, Bin Z, Du MF, Yin XM, An SH. Molecular identification of a pancreatic lipase-like gene involved in sex pheromone biosynthesis of Bombyx mori. INSECT SCIENCE 2014; 21:459-468. [PMID: 23955937 DOI: 10.1111/1744-7917.12053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Abstract
Cytoplasmic lipid droplet (LD) lipolysis is regulated by pheromone biosynthesis activating neuropeptide (PBAN) in Bombyx mori. To elucidate the molecular mechanism of cytoplasm LD lipolysis, the pancreatic lipase-like gene in B. mori pheromone glands (PGs), designated as B. mori pancreatic lipase-like gene (BmPLLG), was identified in this study. Spatial expression analysis revealed that BmPLLG is a ubiquitous gene present in all studied tissues, such as PGs, brain, epidermis, egg, midgut, flight muscle and fat body. Temporal expression analysis showed that the BmPLLG transcript begins to express 96 h before eclosion (-96 h), continues to increase, peaks in newly emerged females and steadily decreases after eclosion. Translational expression analysis of BmPLLG using a prepared antiserum demonstrated that BmPLLG was expressed in an age-dependent pattern at different development stages in B. mori. This finding was similar to the transcript expression pattern. Further RNA interference-mediated knockdown of BmPLLG significantly inhibited bombykol production. Overall, these results demonstrated that BmPLLG is involved in PBAN-induced sex pheromone biosynthesis and release.
Collapse
Affiliation(s)
- Song-Dou Zhang
- College of Plant Protection, Henan Agricultural University
| | | | | | | | | | | |
Collapse
|
28
|
Gołębiowski M, Sosnowska A, Puzyn T, Boguś MI, Wieloch W, Włóka E, Stepnowski P. Application of Two-Way Hierarchical Cluster Analysis for the Identification of Similarities between the Individual Lipid Fractions ofLucilia sericata. Chem Biodivers 2014; 11:733-48. [DOI: 10.1002/cbdv.201300294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 11/11/2022]
|
29
|
Zhang YN, Xia YH, Zhu JY, Li SY, Dong SL. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker). J Chem Ecol 2014; 40:439-51. [PMID: 24817326 DOI: 10.1007/s10886-014-0433-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/17/2014] [Accepted: 04/21/2014] [Indexed: 12/01/2022]
Abstract
The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | |
Collapse
|
30
|
Gołębiowski M, Urbanek A, Oleszczak A, Dawgul M, Kamysz W, Boguś MI, Stepnowski P. The antifungal activity of fatty acids of all stages of Sarcophaga carnaria L. (Diptera: Sarcophagidae). Microbiol Res 2014; 169:279-86. [DOI: 10.1016/j.micres.2013.07.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/14/2013] [Accepted: 07/18/2013] [Indexed: 11/25/2022]
|
31
|
El-Shesheny I, Hajeri S, El-Hawary I, Gowda S, Killiny N. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality. PLoS One 2013; 8:e65392. [PMID: 23734251 PMCID: PMC3667074 DOI: 10.1371/journal.pone.0065392] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/29/2013] [Indexed: 12/16/2022] Open
Abstract
Huanglongbing (HLB) causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP), the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas), the causal agent of HLB. Silencing genes by RNA interference (RNAi) is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd) gene associated with wing development in insects is used to interfere with the flight of psyllids. Our study showed that transcription of awd is development-dependent and the highest level was found in the last instar (5(th)) of the nymphal stage. Micro-application (topical application) of dsRNA to 5(th) instar of nymphs caused significant nymphal mortality and adult wing-malformation. These adverse effects in ACP were positively correlated with the amounts of dsRNA used. A qRT-PCR analysis confirmed the dsRNA-mediated transcriptional down-regulation of the awd gene. Significant down-regulation was required to induce a wing-malformed phenotype. No effect was found when dsRNA-gfp was used, indicating the specific effect of dsRNA-awd. Our findings suggest a role for awd in ACP wing development and metamorphosis. awd could serve as a potential target for insect management either via direct application of dsRNA or by producing transgenic plants expressing dsRNA-awd. These strategies will help to mitigate HLB by controlling ACP.
Collapse
Affiliation(s)
- Ibrahim El-Shesheny
- Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
- Department of Plant Protection, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Subhas Hajeri
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Ibrahim El-Hawary
- Department of Plant Protection, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Siddarame Gowda
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Nabil Killiny
- Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
32
|
Gołębiowski M, Cerkowniak M, Boguś MI, Włóka E, Dawgul M, Kamysz W, Stepnowski P. Free fatty acids in the cuticular and internal lipids of Calliphora vomitoria and their antimicrobial activity. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:416-429. [PMID: 23419415 DOI: 10.1016/j.jinsphys.2013.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/11/2013] [Accepted: 02/06/2013] [Indexed: 06/01/2023]
Abstract
The cuticular and internal lipid composition in Calliphora vomitoria larvae, pupae, and male and female adults was studied. The free fatty acid (FA) compositions of the lipids were chemically characterized using gas chromatography (GC) and gas chromatography-electron impact mass spectrometry (GC-MS). Analyses of cuticular extracts from larvae, pupae, and male and female adults revealed that the carbon numbers of the acids ranged from C7:0 to C22:0, from C8:0 to C24:0, from C7:0 to C24:0 and from C7:0 to C22:0 respectively. The internal lipids of C. vomitoria larvae, pupae, male and female adults contained FAs ranging from C8:0 to C20:0, from C9:0 to C22:0, from C8:0 to C24:0 and from C9:0 to C22:0 respectively. Nine FAs with odd-numbered carbon chains from C7:0 to C21:0 were identified in the cuticular lipids of the larvae. The internal lipids of C. vomitoria larvae contained 8 odd-numbered FAs ranging from C9:0 to C19:0. Eight odd-numbered FAs from C9:0 to C21:0 were identified in the cuticular and internal lipids of pupae, while nine such FAs were found in the cuticular lipids of male and female adults. The internal lipids of adult males and females respectively contained nine and seven odd-numbered FAs, while both larvae and pupae contained eight such compounds. Eight unsaturated FAs were identified in the cuticular lipids of larvae, adult males and females and also in the internal lipids of females. Seven unsaturated FAs were identified in the cuticular lipids of pupae. The internal lipids of larvae, pupae and males contained 10, 11 and 12 unsaturated FAs respectively. Developmental changes were found both in the amounts of extracted cuticular and internal FAs and in their profiles. Four cuticular FAs (C7:0, C9:0, C10:0 and C15:1), identified as being male-specific, were either absent in the female cuticle or present there only in trace amounts. Cuticular and internal extracts obtained from larvae, pupae, adult males and females were tested for their potential antimicrobial activity. The minimal inhibitory concentrations of extracts against reference strains of bacteria and fungi were determined. Antimicrobial activity was the strongest against Gram-positive bacteria; Gram-negative bacteria, on the other hand, turned out to be resistant to all the lipids tested. Overall, the activities of the internal lipids were stronger. All the lipid extracts were equally effective against all the fungal strains examined. In contrast, crude extracts containing both cuticular and internal lipids displayed no antifungal activity against the entomopathogenic fungus Conidiobolus coronatus, which efficiently killed adult flies, but not larvae or pupae.
Collapse
Affiliation(s)
- Marek Gołębiowski
- Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, ul. Sobieskiego 18/19, 80-952 Gdańsk, Poland.
| | | | | | | | | | | | | |
Collapse
|
33
|
Pérez-Hedo M, Sánchez-López I, Eizaguirre M. Comparative analysis of hemolymph proteome maps in diapausing and non-diapausing larvae of Sesamia nonagrioides. Proteome Sci 2012; 10:58. [PMID: 23021110 PMCID: PMC3542258 DOI: 10.1186/1477-5956-10-58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 09/24/2012] [Indexed: 01/31/2023] Open
Abstract
Background Sesamia nonagrioides is a noctuid that feeds on maize, sugar cane and sorghum in North Africa and Southern Europe. Larvae reared under long day conditions pupate after 5 or 6 larval instars, whereas larvae reared under short day conditions enter diapause and undergo up to 12 molts before dying or pupating. To better understand the mechanism of larval development and diapause, we identified proteins with different expressions in the sixth instar of diapausing and non-diapausing larvae. Results A total of 52 differentially regulated proteins were detected in the hemolymph of the diapausing or non-diapausing larvae at the beginning or end of the sixth instar. From these proteins, 11 were identified by mass spectrometry (MALDI-TOF MS or MALDI-TOF/TOF MS/MS): 5 were upregulated in the hemolymph of non-diapausing larvae and 6 in the hemolymph of the diapausing larvae. Interestingly, some proteins were expressed only in non-diapausing larvae but none was expressed only in the hemolymph of diapausing larvae. The possible functions of some of these proteins related to diapause maintenance or to larval-pupal metamorphosis are discussed. Conclusions The 2-DE proteomic map of S. nonagrioides hemolymph shows differential protein expression in diapausing and non-diapausing larvae. Some proteins that showed higher expression in the diapausing larvae at the end of the sixth instar could be involved in JH level maintenance thus in the diapause status maintenance. On the contrary, other proteins that showed the highest expression or that were expressed only in the non-diapausing larvae could be involved in larval-pupal metamorphosis.
Collapse
Affiliation(s)
- Meritxell Pérez-Hedo
- Department of Crop and Forest Sciences, University of Lleida, AGROTECNIO Center, Rovira Roure 191, Lleida, 25198, Spain.
| | | | | |
Collapse
|
34
|
Bodemann RR, Rahfeld P, Stock M, Kunert M, Wielsch N, Groth M, Frick S, Boland W, Burse A. Precise RNAi-mediated silencing of metabolically active proteins in the defence secretions of juvenile leaf beetles. Proc Biol Sci 2012; 279:4126-34. [PMID: 22874750 DOI: 10.1098/rspb.2012.1342] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Allomones are widely used by insects to impede predation. Frequently these chemical stimuli are released from specialized glands. The larvae of Chrysomelina leaf beetles produce allomones in gland reservoirs into which the required precursors and also the enzymes are secreted from attached gland cells. Hence, the reservoirs can be considered as closed bio-reactors for producing defensive secretions. We used RNA interference (RNAi) to analyse in vivo functions of proteins in biosynthetic pathways occurring in insect secretions. After a salicyl alcohol oxidase was silenced in juveniles of the poplar leaf beetles, Chrysomela populi, the precursor salicyl alcohol increased to 98 per cent, while salicyl aldehyde was reduced to 2 per cent within 5 days. By analogy, we have silenced a novel protein annotated as a member of the juvenile hormone-binding protein superfamily in the juvenile defensive glands of the related mustard leaf beetle, Phaedon cochleariae. The protein is associated with the cyclization of 8-oxogeranial to iridoids (methylcyclopentanoid monoterpenes) in the larval exudates made clear by the accumulation of the acylic precursor 5 days after RNAi triggering. A similar cyclization reaction produces the secologanin part of indole alkaloids in plants.
Collapse
Affiliation(s)
- René Roberto Bodemann
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Du M, Zhang S, Zhu B, Yin X, An S. Identification of a diacylglycerol acyltransferase 2 gene involved in pheromone biosynthesis activating neuropeptide stimulated pheromone production in Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:699-703. [PMID: 22387497 DOI: 10.1016/j.jinsphys.2012.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/02/2012] [Accepted: 02/10/2012] [Indexed: 05/31/2023]
Abstract
Diacylglycerol acyltransferase (DGAT) catalyzes the final step in triacylglycerol biosynthesis. In the present study, a DGAT2 gene from Bombyx mori was characterized. Temporal expression profiles indicated that BmDGAT2 steadily increased from 96 h before eclosion (-96 h) to an expression peak in the pheromone glands (PGs) of new-emerged female (0 h), a key stage for sex pheromone production. Spatial expression analysis revealed that the BmDGAT2 transcript was most richly expressed in PGs. Decapitation and subsequent methoprene, a juvenile hormone (JH) analog, treatment experiments revealed that JH had no influence on the expression of BmDGAT2 transcript before emergence, but inhibited the expression of BmDGAT2 transcript when administered to newly emerged adults. Further RNAi analysis confirmed that the decrease in BmDGAT2 mRNA level caused a significant reduction in sex pheromone production. Thus, DGAT2 is a key enzyme regulating B. mori sex pheromone synthesis and release.
Collapse
Affiliation(s)
- Mengfang Du
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | | | | | | | | |
Collapse
|
36
|
Du M, Yin X, Zhang S, Zhu B, Song Q, An S. Identification of lipases involved in PBAN stimulated pheromone production in Bombyx mori using the DGE and RNAi approaches. PLoS One 2012; 7:e31045. [PMID: 22359564 PMCID: PMC3281041 DOI: 10.1371/journal.pone.0031045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 12/31/2011] [Indexed: 01/07/2023] Open
Abstract
Background Pheromone biosynthesis activating neuropeptide (PBAN) is a neurohormone that regulates sex pheromone synthesis in female moths. Bombyx mori is a model organism that has been used to explore the signal transduction pattern of PBAN, which is mediated by a G-protein coupled receptor (GPCR). Although significant progress has been made in elucidating PBAN-regulated lipolysis that releases the precursor of the sex pheromone, little is known about the molecular components involved in this step. To better elucidate the molecular mechanisms of PBAN-stimulated lipolysis of cytoplasmic lipid droplets (LDs), the associated lipase genes involved in PBAN- regulated sex pheromone biosynthesis were identified using digital gene expression (DGE) and subsequent RNA interference (RNAi). Results Three DGE libraries were constructed from pheromone glands (PGs) at different developed stages, namely, 72 hours before eclosion (−72 h), new emergence (0 h) and 72 h after eclosion (72 h), to investigate the gene expression profiles during PG development. The DGE evaluated over 5.6 million clean tags in each PG sample and revealed numerous genes that were differentially expressed at these stages. Most importantly, seven lipases were found to be richly expressed during the key stage of sex pheromone synthesis and release (new emergence). RNAi-mediated knockdown confirmed for the first time that four of these seven lipases play important roles in sex pheromone synthesis. Conclusion This study has identified four lipases directly involved in PBAN-stimulated sex pheromone biosynthesis, which improve our understanding of the lipases involved in releasing bombykol precursors from triacylglycerols (TAGs) within the cytoplasmic LDs.
Collapse
Affiliation(s)
- Mengfang Du
- College of Plant Protection, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xinming Yin
- College of Plant Protection, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Songdou Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Bin Zhu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Shiheng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
37
|
Lee JM, Hull JJ, Kawai T, Goto C, Kurihara M, Tanokura M, Nagata K, Nagasawa H, Matsumoto S. Re-Evaluation of the PBAN Receptor Molecule: Characterization of PBANR Variants Expressed in the Pheromone Glands of Moths. Front Endocrinol (Lausanne) 2012; 3:6. [PMID: 22654850 PMCID: PMC3356081 DOI: 10.3389/fendo.2012.00006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/09/2012] [Indexed: 01/14/2023] Open
Abstract
Sex pheromone production in most moths is initiated following pheromone biosynthesis activating neuropeptide receptor (PBANR) activation. PBANR was initially cloned from pheromone glands (PGs) of Helicoverpa zea and Bombyx mori. The B. mori PBANR is characterized by a relatively long C-terminus that is essential for ligand-induced internalization, whereas the H. zea PBANR has a shorter C-terminus that lacks features present in the B. mori PBANR critical for internalization. Multiple PBANRs have been reported to be concurrently expressed in the larval CNS of Heliothis virescens. In the current study, we sought to examine the prevalence of multiple PBANRs in the PGs of three moths and to ascertain their potential functional relevance. Multiple PBANR variants (As, A, B, and C) were cloned from the PGs of all species examined with PBANR-C the most highly expressed. Alternative splicing of the C-terminal coding sequence of the PBAN gene gives rise to the variants, which are distinguishable only by the length and composition of their respective C-terminal tails. Transient expression of fluorescent PBANR chimeras in insect cells revealed that PBANR-B and PBANR-C localized exclusively to the cell surface while PBANR-As and PBANR-A exhibited varying degrees of cytosolic localization. Similarly, only the PBANR-B and PBANR-C variants underwent ligand-induced internalization. Taken together, our results suggest that PBANR-C is the principal receptor molecule involved in PBAN signaling regardless of moth species. The high GC content of the C-terminal coding sequence in the B and C variants, which makes amplification using conventional polymerases difficult, likely accounts for previous "preferential" amplification of PBANR-A like receptors from other species.
Collapse
Affiliation(s)
- Jae Min Lee
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
| | - J. Joe Hull
- Agricultural Research Service, United States Department of Agriculture, Arid Land Agricultural Research CenterMaricopa, AZ, USA
- *Correspondence: J. Joe Hull, Agricultural Research Service, United States Department of Agriculture, Arid Land Agricultural Research Center, 21881 N Cardon Lane, Maricopa, AZ 85138, USA. e-mail: ; Shogo Matsumoto, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. e-mail:
| | - Takeshi Kawai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Chie Goto
- Agricultural Research Center, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Masaaki Kurihara
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Shogo Matsumoto
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
- *Correspondence: J. Joe Hull, Agricultural Research Service, United States Department of Agriculture, Arid Land Agricultural Research Center, 21881 N Cardon Lane, Maricopa, AZ 85138, USA. e-mail: ; Shogo Matsumoto, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. e-mail:
| |
Collapse
|
38
|
Moto KI, Matsumoto S. Construction of an in vivo system for functional analysis of the genes involved in sex pheromone production in the silkmoth, Bombyx mori. Front Endocrinol (Lausanne) 2012; 3:30. [PMID: 22649415 PMCID: PMC3355914 DOI: 10.3389/fendo.2012.00030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/08/2012] [Indexed: 01/23/2023] Open
Abstract
Moths produce species-specific sex pheromones to attract conspecific mates. The biochemical processes that comprise sex pheromone biosynthesis are precisely regulated and a number of gene products are involved in this biosynthesis and regulation. In recent years, at least 300 EST clones have been isolated from Bombyx mori pheromone gland (PG) specific cDNA libraries with some of those clones [i.e., B. mori PG-specific desaturase 1 (Bmpgdesat1), PG-specific fatty acyl reductase, PG-specific acyl-CoA-binding protein, B. mori fatty acid transport protein, B. mori lipid storage droplet protein-1] characterized and demonstrated to play a role in sex pheromone production. However, most of the EST clones have yet to be fully characterized and identified. To develop an efficient system for analyzing sex pheromone production-related genes, we investigated the feasibility of a novel gene analysis system using the upstream region of Bmpgdesat1 that should contain a PG-specific gene promoter in conjunction with piggyBac vector-mediated germ line transformation. As a result, we have been able to obtain expression of our reporter gene (enhanced green fluorescent protein) in the PG but not in other tissues of transgenic B. mori. Current results indicate that we have successfully constructed a novel in vivo gene analysis system for sex pheromone production in B. mori.
Collapse
Affiliation(s)
- Ken-Ichi Moto
- Molecular Entomology Laboratory, RIKEN Advanced Science Institute Wako, Saitama, Japan.
| | | |
Collapse
|
39
|
Ohnishi A, Hull JJ, Kaji M, Hashimoto K, Lee JM, Tsuneizumi K, Suzuki T, Dohmae N, Matsumoto S. Hormone signaling linked to silkmoth sex pheromone biosynthesis involves Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of the insect PAT family protein Bombyx mori lipid storage droplet protein-1 (BmLsd1). J Biol Chem 2011; 286:24101-12. [PMID: 21572162 DOI: 10.1074/jbc.m111.250555] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Species-specific sex pheromones released by female moths to attract conspecific male moths are synthesized de novo in the pheromone gland (PG) via the fatty acid biosynthetic pathway. This pathway is regulated by a neurohormone termed pheromone biosynthesis activating neuropeptide (PBAN), a 33-amino acid peptide that originates in the subesophageal ganglion. In the silkmoth, Bombyx mori, cytoplasmic lipid droplets, which store the sex pheromone (bombykol) precursor fatty acid, accumulate in PG cells. PBAN stimulates lipolysis of the stored lipid droplet triacylglycerols (TAGs) and releases the precursor for final modification. PBAN exerts its physiological function via the PG cell-surface PBAN receptor, a G protein-coupled receptor that belongs to the neuromedin U receptor family. The PBAN receptor-mediated signal is transmitted via a canonical store-operated channel activation pathway utilizing Gq-mediated phospholipase C activation (Hull, J. J., Kajigaya, R., Imai, K., and Matsumoto, S. (2007) Biosci. Biotechnol. Biochem. 71, 1993-2001; Hull, J. J., Lee, J. M., Kajigaya, R., and Matsumoto, S. (2009) J. Biol. Chem. 284, 31200-31213; Hull, J. J., Lee, J. M., and Matsumoto, S. (2010) Insect Mol. Biol. 19, 553-566). Little, however, is known about the molecular components regulating TAG lipolysis in PG cells. In the current study we found that PBAN signaling involves phosphorylation of an insect PAT family protein named B. mori lipid storage droplet protein-1 (BmLsd1) and that BmLsd1 plays an essential role in the TAG lipolysis associated with bombykol production. Unlike mammalian PAT family perilipins, however, BmLsd1 activation is dependent on phosphorylation by B. mori Ca(2+)/calmodulin-dependent protein kinase II rather than protein kinase A.
Collapse
Affiliation(s)
- Atsushi Ohnishi
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P, Bitra K, Bravo A, Chevalier F, Collinge DP, Crava CM, de Maagd RA, Duvic B, Erlandson M, Faye I, Felföldi G, Fujiwara H, Futahashi R, Gandhe AS, Gatehouse HS, Gatehouse LN, Giebultowicz JM, Gómez I, Grimmelikhuijzen CJP, Groot AT, Hauser F, Heckel DG, Hegedus DD, Hrycaj S, Huang L, Hull JJ, Iatrou K, Iga M, Kanost MR, Kotwica J, Li C, Li J, Liu J, Lundmark M, Matsumoto S, Meyering-Vos M, Millichap PJ, Monteiro A, Mrinal N, Niimi T, Nowara D, Ohnishi A, Oostra V, Ozaki K, Papakonstantinou M, Popadic A, Rajam MV, Saenko S, Simpson RM, Soberón M, Strand MR, Tomita S, Toprak U, Wang P, Wee CW, Whyard S, Zhang W, Nagaraju J, Ffrench-Constant RH, Herrero S, Gordon K, Swevers L, Smagghe G. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:231-45. [PMID: 21078327 DOI: 10.1016/j.jinsphys.2010.11.006] [Citation(s) in RCA: 561] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 05/03/2023]
Abstract
Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive experiments have not been collected in such a way that they are possible to analyze. In this review, we have collected detailed data from more than 150 experiments including all to date published and many unpublished experiments. Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the innate immune response. Our general understanding of RNAi in Lepidoptera will be further aided in the future as our public database at http://insectacentral.org/RNAi will continue to gather information on RNAi experiments.
Collapse
Affiliation(s)
- Olle Terenius
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ohnishi A, Kaji M, Hashimoto K, Matsumoto S. Screening for the Genes Involved in Bombykol Biosynthesis: Identification and Functional Characterization of Bombyx mori Acyl Carrier Protein. Front Endocrinol (Lausanne) 2011; 2:92. [PMID: 22649392 PMCID: PMC3355880 DOI: 10.3389/fendo.2011.00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/18/2011] [Indexed: 11/23/2022] Open
Abstract
Species-specific sex pheromones released by female moths to attract conspecific male moths are synthesized de novo in the pheromone gland (PG) via fatty acid synthesis (FAS). Biosynthesis of moth sex pheromones is usually regulated by a neurohormone termed pheromone biosynthesis activating neuropeptide (PBAN), a 33-aa peptide that originates in the subesophageal ganglion. In the silkmoth, Bombyx mori, cytoplasmic lipid droplets (LDs), which store the sex pheromone (bombykol) precursor fatty acid, accumulate in PG cells prior to eclosion. PBAN activation of the PBAN receptor stimulates lipolysis of the stored LD triacylglycerols (TAGs) resulting in release of the bombykol precursor for final modification. While we have previously characterized a number of molecules involved in bombykol biosynthesis, little is known about the mechanisms of PBAN signaling that regulate the TAG lipolysis in PG cells. In the current study, we sought to further identify genes involved in bombykol biosynthesis as well as PBAN signaling, by using a subset of 312 expressed-sequence tag (EST) clones that are in either our B. mori PG cDNA library or the public B. mori EST databases, SilkBase and CYBERGATE, and which are preferentially expressed in the PG. Using RT-PCR expression analysis and an RNAi screening approach, we have identified another eight EST clones involved in bombykol biosynthesis. Furthermore, we have determined the functional role of a clone designated BmACP that encodes B. mori acyl carrier protein (ACP). Our results indicate that BmACP plays an essential role in the biosynthesis of the bombykol precursor fatty acid via the canonical FAS pathway during pheromonogenesis.
Collapse
Affiliation(s)
- Atsushi Ohnishi
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
- *Correspondence: Atsushi Ohnishi and Shogo Matsumoto, Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan. e-mail: ;
| | - Misato Kaji
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
| | - Kana Hashimoto
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
| | - Shogo Matsumoto
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
- *Correspondence: Atsushi Ohnishi and Shogo Matsumoto, Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan. e-mail: ;
| |
Collapse
|
42
|
Qian S, Fujii T, Ito K, Nakano R, Ishikawa Y. Cloning and functional characterization of a fatty acid transport protein (FATP) from the pheromone gland of a lichen moth, Eilema japonica, which secretes an alkenyl sex pheromone. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:22-28. [PMID: 20875854 DOI: 10.1016/j.ibmb.2010.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/15/2010] [Accepted: 09/17/2010] [Indexed: 05/28/2023]
Abstract
Sex pheromones of moths are largely classified into two types based on the presence (Type I) or absence (Type II) of a terminal functional group. While Type-I sex pheromones are synthesized from common fatty acids in the pheromone gland (PG), Type-II sex pheromones are derived from hydrocarbons produced presumably in the oenocytes and transported to the PG via the hemolymph. Recently, a fatty acid transport protein (BmFATP) was identified from the PG of the silkworm Bombyx mori, which produces a Type-I sex pheromone (bombykol). BmFATP was shown to facilitate the uptake of extracellular fatty acids into PG cells for the synthesis of bombykol. To elucidate the presence and function of FATP in the PG of moths that produce Type-II sex pheromones, we explored fatp homologues expressed in the PG of a lichen moth, Eilema japonica, which secretes an alkenyl sex pheromone (Type II). A fatp homologue cloned from E. japonica (Ejfatp) was predominantly expressed in the PG, and its expression is upregulated shortly after eclosion. Functional expression of EjFATP in Escherichia coli enhanced the uptake of long chain fatty acids (C₁₈ and C₂₀), but not pheromone precursor hydrocarbons. To the best of our knowledge, this is the first report of the cloning and functional characterization of a FATP in the PG of a moth producing a Type-II sex pheromone. Although EjFATP is not likely to be involved in the uptake of pheromone precursors in E. japonica, the expression pattern of Ejfatp suggests a role for EjFATP in the PG not directly linked to pheromone biosynthesis.
Collapse
Affiliation(s)
- Shuguang Qian
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
43
|
Unraveling the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade that regulates sex pheromone production in moths. VITAMINS AND HORMONES 2010; 83:425-45. [PMID: 20831957 DOI: 10.1016/s0083-6729(10)83018-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Studies over the past three decades have demonstrated that female moths usually produce sex pheromones as multicomponent blends in which the ratios of the individual components are precisely controlled, making it possible to generate species-specific pheromone blends. Most moth pheromone components are de novo synthesized from acetyl-CoA in the pheromone gland (PG) through modifications of fatty acid biosynthetic pathways. Pheromone biosynthesis activating neuropeptide (PBAN), a neurohormone produced by a cephalic organ (subesophageal ganglion) stimulates sex pheromone biosynthesis in the PG via an influx of extracellular Ca(2+). In recent years, we have expanded our knowledge of the precise mechanisms underlying silkmoth (Bombyx mori) sex pheromone production by characterizing a number of key molecules. In this review, we want to highlight our efforts in elucidating these mechanisms in B. mori and to understand how they relate more broadly to lepidopteran sex pheromone production in general.
Collapse
|