1
|
White TD, Almutairi A, Gai-Tusing Y, Stephenson DJ, Stephenson BD, Chalfant CE, Lei X, Lu B, Hammock BD, DiLorenzo TP, Ramanadham S. Differential lipid signaling from CD4 + and CD8 + T cells contributes to type 1 diabetes development. Front Immunol 2024; 15:1444639. [PMID: 39359722 PMCID: PMC11445035 DOI: 10.3389/fimmu.2024.1444639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction We reported that Ca2+-independent phospholipase A2β (iPLA2β)-derived lipids (iDLs) contribute to type 1 diabetes (T1D) onset. As CD4+ and CD8+ T cells are critical in promoting β-cell death, we tested the hypothesis that iDL signaling from these cells participates in T1D development. Methods CD4+ and CD8+ T cells from wild-type non-obese diabetic (NOD) and NOD.iPLA2β+/- (NOD.HET) mice were administered in different combinations to immunodeficient NOD.scid. Results In mice receiving only NOD T cells, T1D onset was rapid (5 weeks), incidence 100% by 20 weeks, and islets absent. In contrast, onset was delayed 1 week and incidence reduced 40%-50% in mice receiving combinations that included NOD.HET T cells. Consistently, islets from these non-diabetic mice were devoid of infiltrate and contained insulin-positive β-cells. Reduced iPLA2β led to decreased production of proinflammatory lipids from CD4+ T cells including prostaglandins and dihydroxyeicosatrienoic acids (DHETs), products of soluble epoxide hydrolase (sEH), and inhibition of their signaling decreased (by 82%) IFNγ+CD4+ cells abundance. However, only DHETs production was reduced from CD8+ T cells and was accompanied by decreases in sEH and granzyme B. Discussion These findings suggest that differential select iDL signaling in CD4+ and CD8+ T cells contributes to T1D development, and that therapeutics targeting such signaling might be considered to counter T1D.
Collapse
Affiliation(s)
- Tayleur D. White
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Abdulaziz Almutairi
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ying Gai-Tusing
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniel J. Stephenson
- Cancer Biology Program, University of Virginia National Cancer Institute (UVA NCI) Comprehensive Cancer Center, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, United States
| | - Benjamin D. Stephenson
- Cancer Biology Program, University of Virginia National Cancer Institute (UVA NCI) Comprehensive Cancer Center, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, United States
- Department of Medicine, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Department of Cell Biology, University of Virginia-School of Medicine, Charlottesville, VA, United States
| | - Charles E. Chalfant
- Cancer Biology Program, University of Virginia National Cancer Institute (UVA NCI) Comprehensive Cancer Center, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, United States
- Department of Medicine, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Department of Cell Biology, University of Virginia-School of Medicine, Charlottesville, VA, United States
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brian Lu
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bruce D. Hammock
- Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Teresa P. DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Tang Y, Majewska M, Leß B, Mehmeti I, Wollnitzke P, Semleit N, Levkau B, Saba JD, van Echten-Deckert G, Gurgul-Convey E. The fate of intracellular S1P regulates lipid droplet turnover and lipotoxicity in pancreatic beta-cells. J Lipid Res 2024; 65:100587. [PMID: 38950680 PMCID: PMC11345310 DOI: 10.1016/j.jlr.2024.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
Lipotoxicity has been considered the main cause of pancreatic beta-cell failure during type 2 diabetes development. Lipid droplets (LD) are believed to regulate the beta-cell sensitivity to free fatty acids (FFA), but the underlying molecular mechanisms are largely unclear. Accumulating evidence points, however, to an important role of intracellular sphingosine-1-phosphate (S1P) metabolism in lipotoxicity-mediated disturbances of beta-cell function. In the present study, we compared the effects of an increased irreversible S1P degradation (S1P-lyase, SPL overexpression) with those associated with an enhanced S1P recycling (overexpression of S1P phosphatase 1, SGPP1) on LD formation and lipotoxicity in rat INS1E beta-cells. Interestingly, although both approaches led to a reduced S1P concentration, they had opposite effects on the susceptibility to FFA. Overexpression of SGPP1 prevented FFA-mediated caspase-3 activation by a mechanism involving an enhanced lipid storage capacity and prevention of oxidative stress. In contrast, SPL overexpression limited LD biogenesis, content, and size, while accelerating lipophagy. This was associated with FFA-induced hydrogen peroxide formation, mitochondrial fragmentation, and dysfunction, as well as ER stress. These changes coincided with the upregulation of proapoptotic ceramides but were independent of lipid peroxidation rate. Also in human EndoC-βH1 beta-cells, suppression of SPL with simultaneous overexpression of SGPP1 led to a similar and even more pronounced LD phenotype as that in INS1E-SGPP1 cells. Thus, intracellular S1P turnover significantly regulates LD content and size and influences beta-cell sensitivity to FFA.
Collapse
Affiliation(s)
- Yadi Tang
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mariola Majewska
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Britta Leß
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Philipp Wollnitzke
- Institute of Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Nina Semleit
- Institute of Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Julie D Saba
- Division of Hematology/Oncology, Department of Pediatrics, University of California. San Francisco, Oakland, CA, USA
| | | | - Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Xu J, Harris-Kawano A, Enriquez JR, Mirmira RG, Sims EK. Proinflammatory stress activates neutral sphingomyelinase 2 based generation of a ceramide-enriched β cell EV subpopulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589943. [PMID: 38659945 PMCID: PMC11042299 DOI: 10.1101/2024.04.17.589943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
β cell extracellular vesicles (EVs) play a role as paracrine effectors in islet health, yet mechanisms connecting β cell stress to changes in EV cargo and potential impacts on diabetes remain poorly defined. We hypothesized that β cell inflammatory stress engages neutral sphingomyelinase 2 (nSMase2)-dependent EV formation pathways, generating ceramide-enriched EVs that could impact surrounding β cells. Consistent with this, proinflammatory cytokine treatment of INS-1 β cells and human islets concurrently increased β cell nSMase2 and ceramide expression, as well as EV ceramide staining. Direct chemical activation or genetic knockdown of nSMase2, or treatment with a GLP-1 receptor agonist also modulated cellular and EV ceramide. Small RNA sequencing of ceramide-enriched EVs identified a distinct set of miRNAs linked to β cell function and identity. Coculture experiments using CD9-GFP tagged INS-1 cell EVs demonstrated that either cytokine treatment or chemical nSMase2 activation increased EV transfer to recipient cells. Children with recent-onset T1D showed no abnormalities in circulating ceramide-enriched EVs, suggesting a localized, rather than systemic phenomenon. These findings highlight nSMase2 as a regulator of β cell EV cargo and identify ceramide-enriched EV populations as a contributor to EV-related paracrine signaling under conditions of β cell inflammatory stress. Article Highlights a. Why did we undertake this study?: Mechanisms connecting β cell stress to changes in extracellular vesicle (EV) cargo and potential impacts on diabetes are poorly defined.b. What is the specific question we wanted to answer?: Does β cell inflammatory stress engage neutral sphingomyelinase 2 (nSMase2)-dependent EV formation pathways to generate ceramide-enriched EVs.c. What did we find?: Proinflammatory cytokine treatment of β cells increased β cell ceramide expression, along with EV ceramide in part via increases in nSMase2. Ceramide-enriched EVs housed a distinct set of miRNAs linked to insulin signaling. Both cytokine treatment and nSMase2 activation increase EV transfer to other β cells.d. What are the implications of our findings?: Our findings highlight nSMase2 as a regulator of β cell EV cargo and identify ceramide-enriched EV populations as a contributor to EV-related paracrine signaling under conditions of β cell inflammatory stress.
Collapse
|
4
|
Pan Y, Li J, Lin P, Wan L, Qu Y, Cao L, Wang L. A review of the mechanisms of abnormal ceramide metabolism in type 2 diabetes mellitus, Alzheimer's disease, and their co-morbidities. Front Pharmacol 2024; 15:1348410. [PMID: 38379904 PMCID: PMC10877008 DOI: 10.3389/fphar.2024.1348410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
The global prevalence of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) is rapidly increasing, revealing a strong association between these two diseases. Currently, there are no curative medication available for the comorbidity of T2DM and AD. Ceramides are structural components of cell membrane lipids and act as signal molecules regulating cell homeostasis. Their synthesis and degradation play crucial roles in maintaining metabolic balance in vivo, serving as important mediators in the development of neurodegenerative and metabolic disorders. Abnormal ceramide metabolism disrupts intracellular signaling, induces oxidative stress, activates inflammatory factors, and impacts glucose and lipid homeostasis in metabolism-related tissues like the liver, skeletal muscle, and adipose tissue, driving the occurrence and progression of T2DM. The connection between changes in ceramide levels in the brain, amyloid β accumulation, and tau hyper-phosphorylation is evident. Additionally, ceramide regulates cell survival and apoptosis through related signaling pathways, actively participating in the occurrence and progression of AD. Regulatory enzymes, their metabolites, and signaling pathways impact core pathological molecular mechanisms shared by T2DM and AD, such as insulin resistance and inflammatory response. Consequently, regulating ceramide metabolism may become a potential therapeutic target and intervention for the comorbidity of T2DM and AD. The paper comprehensively summarizes and discusses the role of ceramide and its metabolites in the pathogenesis of T2DM and AD, as well as the latest progress in the treatment of T2DM with AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Ramanadham S, Turk J, Bhatnagar S. Noncanonical Regulation of cAMP-Dependent Insulin Secretion and Its Implications in Type 2 Diabetes. Compr Physiol 2023; 13:5023-5049. [PMID: 37358504 PMCID: PMC10809800 DOI: 10.1002/cphy.c220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Impaired glucose tolerance (IGT) and β-cell dysfunction in insulin resistance associated with obesity lead to type 2 diabetes (T2D). Glucose-stimulated insulin secretion (GSIS) from β-cells occurs via a canonical pathway that involves glucose metabolism, ATP generation, inactivation of K ATP channels, plasma membrane depolarization, and increases in cytosolic concentrations of [Ca 2+ ] c . However, optimal insulin secretion requires amplification of GSIS by increases in cyclic adenosine monophosphate (cAMP) signaling. The cAMP effectors protein kinase A (PKA) and exchange factor activated by cyclic-AMP (Epac) regulate membrane depolarization, gene expression, and trafficking and fusion of insulin granules to the plasma membrane for amplifying GSIS. The widely recognized lipid signaling generated within β-cells by the β-isoform of Ca 2+ -independent phospholipase A 2 enzyme (iPLA 2 β) participates in cAMP-stimulated insulin secretion (cSIS). Recent work has identified the role of a G-protein coupled receptor (GPCR) activated signaling by the complement 1q like-3 (C1ql3) secreted protein in inhibiting cSIS. In the IGT state, cSIS is attenuated, and the β-cell function is reduced. Interestingly, while β-cell-specific deletion of iPLA 2 β reduces cAMP-mediated amplification of GSIS, the loss of iPLA 2 β in macrophages (MØ) confers protection against the development of glucose intolerance associated with diet-induced obesity (DIO). In this article, we discuss canonical (glucose and cAMP) and novel noncanonical (iPLA 2 β and C1ql3) pathways and how they may affect β-cell (dys)function in the context of impaired glucose intolerance associated with obesity and T2D. In conclusion, we provide a perspective that in IGT states, targeting noncanonical pathways along with canonical pathways could be a more comprehensive approach for restoring β-cell function in T2D. © 2023 American Physiological Society. Compr Physiol 13:5023-5049, 2023.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Alabama, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sushant Bhatnagar
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
6
|
Marrano N, Biondi G, Borrelli A, Rella M, Zambetta T, Di Gioia L, Caporusso M, Logroscino G, Perrini S, Giorgino F, Natalicchio A. Type 2 Diabetes and Alzheimer's Disease: The Emerging Role of Cellular Lipotoxicity. Biomolecules 2023; 13:183. [PMID: 36671568 PMCID: PMC9855893 DOI: 10.3390/biom13010183] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Type 2 diabetes (T2D) and Alzheimer's diseases (AD) represent major health issues that have reached alarming levels in the last decades. Although growing evidence demonstrates that AD is a significant comorbidity of T2D, and there is a ~1.4-2-fold increase in the risk of developing AD among T2D patients, the involvement of possible common triggers in the pathogenesis of these two diseases remains largely unknown. Of note, recent mechanistic insights suggest that lipotoxicity could represent the missing ring in the pathogenetic mechanisms linking T2D to AD. Indeed, obesity, which represents the main cause of lipotoxicity, has been recognized as a major risk factor for both pathological conditions. Lipotoxicity can lead to inflammation, insulin resistance, oxidative stress, ceramide and amyloid accumulation, endoplasmic reticulum stress, ferroptosis, and autophagy, which are shared biological events in the pathogenesis of T2D and AD. In the current review, we try to provide a critical and comprehensive view of the common molecular pathways activated by lipotoxicity in T2D and AD, attempting to summarize how these mechanisms can drive future research and open the way to new therapeutic perspectives.
Collapse
Affiliation(s)
- Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Borrelli
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Martina Rella
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Tommaso Zambetta
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ludovico Di Gioia
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mariangela Caporusso
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giancarlo Logroscino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione Cardinale G. Panico, 73039 Lecce, Italy
| | - Sebastio Perrini
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
7
|
Khoury S, Beauvais A, Colas J, Saint-Martin Willer A, Perros F, Humbert M, Vandebrouck C, Montani D, Ferreira T, Antigny F. Lipidomic Profile Analysis of Lung Tissues Revealed Lipointoxication in Pulmonary Veno-Occlusive Disease. Biomolecules 2022; 12:biom12121878. [PMID: 36551306 PMCID: PMC9775349 DOI: 10.3390/biom12121878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary arterial hypertension (PAH) occurring in a heritable form (hPVOD) due to biallelic inactivating mutations of EIF2AK4 (encoding GCN2, general control nonderepressible 2) or in a sporadic form in older age (sPVOD), following exposure to chemotherapy or organic solvents. In contrast to PAH, PVOD is characterized by a particular remodeling of the pulmonary venous system and the obliteration of small pulmonary veins by fibrous intimal thickening and patchy capillary proliferation. The pathobiological knowledge of PVOD is poor, explaining the absence of medical therapy for PVOD. Lung transplantation remains the only therapy for eligible PVOD patients. As we recently demonstrated, respiratory diseases, chronic obstructive pulmonary disease, or cystic fibrosis exhibit lipointoxication signatures characterized by excessive levels of saturated phospholipids contributing to the pathological features of these diseases, including endoplasmic reticulum stress, pro-inflammatory cytokines production, and bronchoconstriction. In this study, we investigated and compared the clinical data and lung lipid signature of control (10 patients), idiopathic PAH (7 patients), heritable PAH (9 BMPR2 mutations carriers), hPVOD (10 EIF2AK4 mutation carriers), and sPVOD (6 non-carriers) subjects. Mass spectrometry analyses demonstrated lung lipointoxication only in hPVOD patients, characterized by an increased abundance of saturated phosphatidylcholine (PC) at the expense of the polyunsaturated species in the lungs of hPVOD patients. The present data suggest that lipointoxication could be a potential player in the etiology of PVOD.
Collapse
Affiliation(s)
- Spiro Khoury
- Laboratoire Cooperatif “Lipotoxicity and Channelopathies-ConicMeds”, Universite de Poitiers, Rue Georges Bonnet, 86073 Poitiers, France
| | - Antoine Beauvais
- Facultede Medecine, Universite Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- INSERM, UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Jenny Colas
- Laboratoire Cooperatif “Lipotoxicity and Channelopathies-ConicMeds”, Universite de Poitiers, Rue Georges Bonnet, 86073 Poitiers, France
- PReTI Laboratory, University of Poitiers, 86073 Poitiers, France
| | - Anaïs Saint-Martin Willer
- Facultede Medecine, Universite Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- INSERM, UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Frédéric Perros
- Facultede Medecine, Universite Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- INSERM, UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Marc Humbert
- Facultede Medecine, Universite Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- INSERM, UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Clarisse Vandebrouck
- Laboratoire Cooperatif “Lipotoxicity and Channelopathies-ConicMeds”, Universite de Poitiers, Rue Georges Bonnet, 86073 Poitiers, France
- PReTI Laboratory, University of Poitiers, 86073 Poitiers, France
| | - David Montani
- Facultede Medecine, Universite Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- INSERM, UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Thierry Ferreira
- Laboratoire Cooperatif “Lipotoxicity and Channelopathies-ConicMeds”, Universite de Poitiers, Rue Georges Bonnet, 86073 Poitiers, France
- PReTI Laboratory, University of Poitiers, 86073 Poitiers, France
| | - Fabrice Antigny
- Facultede Medecine, Universite Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- INSERM, UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Correspondence:
| |
Collapse
|
8
|
Yan J, Yu W, Lu C, Wang G, Liu C, Jiang L, Jiang Z, Liang Z. Orai2 deficiency attenutates experimental colitis by facilitating the colonization of Akkermansia muciniphila. Genomics 2022; 114:110479. [PMID: 36070824 DOI: 10.1016/j.ygeno.2022.110479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/14/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Orai2 is a component of store-operated Calcium channels (SOCCs) and exerts a pivotal role in immunity. In intestinal macrophages (Mφs), Orai2 deficiency influenced linoleic acid (LA)-arachidonic acid (ARA) derivatives by regulating Pla2g6 and Alox5. 16S rRNA sequencing showed that deleting Orai2 facilitated the prevalence of Akkermansia muciniphila, and untargeted metabolomics confirmed the suppressed level of leukotriene A. Moreover, Orai2 deficiency ameliorated the progression of experimental murine colitis, as shown by attenuated structural collapse of colon and pro-inflammatory cytokine concentrations, and rescued dysbiosis. The administration of a Pla2g6 inhibitor (Bromoenol lactone) not only inhibited the relative abundance of A. muciniphila in the feces of Orai2 knockout (Orai2-/-) mice, but also abolished the increased activity of Calcium-released activated Calcium channel (CRAC) in Orai2-/- intestinal Mφs, corroborating the involvement of Pla2g6 in Orai2 signaling. In conclusion, Orai2 deficiency increases Pla2g6 and hence facilitating A. muciniphila colonization, which might be a potential strategy to combat colitis.
Collapse
Affiliation(s)
- Jing Yan
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China.
| | - Wei Yu
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| | - Chang Lu
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| | - Guoliang Wang
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| | - Zizheng Jiang
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| | - Zhenghao Liang
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| |
Collapse
|
9
|
Aguirre RS, Kulkarni A, Becker MW, Lei X, Sarkar S, Ramanadham S, Phelps EA, Nakayasu ES, Sims EK, Mirmira RG. Extracellular vesicles in β cell biology: Role of lipids in vesicle biogenesis, cargo, and intercellular signaling. Mol Metab 2022; 63:101545. [PMID: 35817393 PMCID: PMC9294332 DOI: 10.1016/j.molmet.2022.101545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a complex autoimmune disorder whose pathogenesis involves an intricate interplay between β cells of the pancreatic islet, other islet cells, and cells of the immune system. Direct intercellular communication within the islet occurs via cell surface proteins and indirect intercellular communication has traditionally been seen as occurring via secreted proteins (e.g., endocrine hormones and cytokines). However, recent literature suggests that extracellular vesicles (EVs) secreted by β cells constitute an additional and biologically important mechanism for transmitting signals to within the islet. SCOPE OF REVIEW This review summarizes the general mechanisms of EV formation, with a particular focus on how lipids and lipid signaling pathways influence their formation and cargo. We review the implications of EV release from β cells for T1D pathogenesis, how EVs and their cargo might be leveraged as biomarkers of this process, and how EVs might be engineered as a therapeutic candidate to counter T1D outcomes. MAJOR CONCLUSIONS Islet β cells have been viewed as initiators and propagators of the cellular circuit giving rise to autoimmunity in T1D. In this context, emerging literature suggests that EVs may represent a conduit for communication that holds more comprehensive messaging about the β cells from which they arise. As the field of EV biology advances, it opens the possibility that intervening with EV formation and cargo loading could be a novel disease-modifying approach in T1D.
Collapse
Affiliation(s)
| | - Abhishek Kulkarni
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Matthew W. Becker
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology & The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology & The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Emily K. Sims
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA,Corresponding author. 900 E. 57th St., KCBD 8130, Chicago, IL, 60637, USA.
| |
Collapse
|
10
|
Bi XJ, Lv YQ, Yang XH, Ge Y, Han H, Feng JS, Zhang M, Chen L, Xu MZ, Guan FY. A New Berberine Preparation Protects Pancreatic Islet Cells from Apoptosis Mediated by Inhibition of Phospholipase A2/p38 MAPK Pathway. Bull Exp Biol Med 2022; 173:346-353. [DOI: 10.1007/s10517-022-05547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 11/30/2022]
|
11
|
Hancock WD, Lei X, Clines GA, Tusing YG, Nozell SE, Ramanadham S. Ca 2+-independent phospholipase A 2β-derived PGE 2 contributes to osteogenesis. Prostaglandins Other Lipid Mediat 2022; 158:106605. [PMID: 34923151 PMCID: PMC8753754 DOI: 10.1016/j.prostaglandins.2021.106605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
Bone modeling can be modulated by lipid signals such as arachidonic acid (AA) and its cyclooxygenase 2 (COX2) metabolite, prostaglandin E2 (PGE2), which are recognized mediators of optimal bone formation. Hydrolysis of AA from membrane glycerophospholipids is catalyzed by phospholipases A2 (PLA2s). We reported that mice deficient in the Ca2+- independent PLA2beta (iPLA2β), encoded by Pla2g6, exhibit a low bone phenotype, but the cause for this remains to be identified. Here, we examined the mechanistic and molecular roles of iPLA2β in bone formation using bone marrow stromal cells and calvarial osteoblasts from WT and iPLA2β-deficient mice, and the MC3T3-E1 osteoblast precursor cell line. Our data reveal that transcription of osteogenic factors (Bmp2, Alpl, and Runx2) and osteogenesis are decreased with iPLA2β-deficiency. These outcomes are corroborated and recapitulated in WT cells treated with a selective inhibitor of iPLA2 β (10 μM S-BEL), and rescued in iPLA2β-deficient cells by additions of 10 μM PGE2. Further, under osteogenic conditions we find that PGE2 production is through iPLA2β activity and that this leads to induction of Runx2 and iPLA2β transcription. These findings reveal a strong link between osteogenesis and iPLA2β-derived lipids and raise the intriguing possibility that iPLA2β-derived PGE2 participates in osteogenesis and in the regulation of Runx2 and also iPLA2β.
Collapse
Affiliation(s)
- William D Hancock
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University, Richmond, VA, USA
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory A Clines
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ying G Tusing
- Department of Cell, Developmental, and Integrative Biology, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susan E Nozell
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
12
|
Ali T, Lei X, Barbour SE, Koizumi A, Chalfant CE, Ramanadham S. Alterations in β-Cell Sphingolipid Profile Associated with ER Stress and iPLA 2β: Another Contributor to β-Cell Apoptosis in Type 1 Diabetes. Molecules 2021; 26:molecules26216361. [PMID: 34770770 PMCID: PMC8587436 DOI: 10.3390/molecules26216361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) development, in part, is due to ER stress-induced β-cell apoptosis. Activation of the Ca2+-independent phospholipase A2 beta (iPLA2β) leads to the generation of pro-inflammatory eicosanoids, which contribute to β-cell death and T1D. ER stress induces iPLA2β-mediated generation of pro-apoptotic ceramides via neutral sphingomyelinase (NSMase). To gain a better understanding of the impact of iPLA2β on sphingolipids (SLs), we characterized their profile in β-cells undergoing ER stress. ESI/MS/MS analyses followed by ANOVA/Student’s t-test were used to assess differences in sphingolipids molecular species in Vector (V) control and iPLA2β-overexpressing (OE) INS-1 and Akita (AK, spontaneous model of ER stress) and WT-littermate (AK-WT) β-cells. As expected, iPLA2β induction was greater in the OE and AK cells in comparison with V and WT cells. We report here that ER stress led to elevations in pro-apoptotic and decreases in pro-survival sphingolipids and that the inactivation of iPLA2β restores the sphingolipid species toward those that promote cell survival. In view of our recent finding that the SL profile in macrophages—the initiators of autoimmune responses leading to T1D—is not significantly altered during T1D development, we posit that the iPLA2β-mediated shift in the β-cell sphingolipid profile is an important contributor to β-cell death associated with T1D.
Collapse
Affiliation(s)
- Tomader Ali
- Research Department, Imperial College London Diabetes Center, Abu Dhabi 51133, United Arab Emirates;
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Suzanne E. Barbour
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto Graduate School of Medicine, Kyoto 606-8501, Japan;
| | - Charles E. Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: ; Tel.: +1-205-996-5973; Fax: +1-205-996-5220
| |
Collapse
|
13
|
Kitsiouli E, Tenopoulou M, Papadopoulos S, Lekka ME. Phospholipases A2 as biomarkers in ARDS. Biomed J 2021; 44:663-670. [PMID: 34478892 PMCID: PMC8847824 DOI: 10.1016/j.bj.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a multifactorial life-threatening lung injury, characterized by diffuse lung inflammation and increased alveolocapillary barrier permeability. The different stages of ARDS have distinctive biochemical and clinical profiles. Despite the progress of our understanding on ARDS pathobiology, the mechanisms underlying its pathogenesis are still obscure. Herein, we review the existing literature about the implications of phospholipases 2 (PLA2s), a large family of enzymes that catalyze the hydrolysis of fatty acids at the sn-2 position of glycerophospholipids, in ARDS-related pathology. We emphasize on the versatile way of participation of different PLA2s isoforms in the distinct ARDS subgroup phenotypes by either potentiating lung inflammation and damage or by preserving the normal lung. Current research supports that PLA2s are associated with the progression and the outcome of ARDS. We herein discuss the transcellular communication of PLA2s through secreted extracellular vesicles and suggest it as a new mechanism of PLA2s involvement in ARDS. Thus, the elucidation of the spatiotemporal features of PLA2s expression may give new insights and provide valuable information about the risk of an individual to develop ARDS or advance to more severe stages, and potentially identify PLA2 isoforms as biomarkers and target for pharmacological intervention.
Collapse
Affiliation(s)
- Eirini Kitsiouli
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Margarita Tenopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Stylianos Papadopoulos
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Marilena E Lekka
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
14
|
The Impact of the Ca 2+-Independent Phospholipase A 2β (iPLA 2β) on Immune Cells. Biomolecules 2021; 11:biom11040577. [PMID: 33920898 PMCID: PMC8071342 DOI: 10.3390/biom11040577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
The Ca2+-independent phospholipase A2β (iPLA2β) is a member of the PLA2 family that has been proposed to have roles in multiple biological processes including membrane remodeling, cell proliferation, bone formation, male fertility, cell death, and signaling. Such involvement has led to the identification of iPLA2β activation in several diseases such as cancer, cardiovascular abnormalities, glaucoma, periodontitis, neurological disorders, diabetes, and other metabolic disorders. More recently, there has been heightened interest in the role that iPLA2β plays in promoting inflammation. Recognizing the potential contribution of iPLA2β in the development of autoimmune diseases, we review this issue in the context of an iPLA2β link with macrophages and T-cells.
Collapse
|
15
|
Robello M, Barresi E, Baglini E, Salerno S, Taliani S, Settimo FD. The Alpha Keto Amide Moiety as a Privileged Motif in Medicinal Chemistry: Current Insights and Emerging Opportunities. J Med Chem 2021; 64:3508-3545. [PMID: 33764065 PMCID: PMC8154582 DOI: 10.1021/acs.jmedchem.0c01808] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the years, researchers in drug discovery have taken advantage of the use of privileged structures to design innovative hit/lead molecules. The α-ketoamide motif is found in many natural products, and it has been widely exploited by medicinal chemists to develop compounds tailored to a vast range of biological targets, thus presenting clinical potential for a plethora of pathological conditions. The purpose of this perspective is to provide insights into the versatility of this chemical moiety as a privileged structure in drug discovery. After a brief analysis of its physical-chemical features and synthetic procedures to obtain it, α-ketoamide-based classes of compounds are reported according to the application of this motif as either a nonreactive or reactive moiety. The goal is to highlight those aspects that may be useful to understanding the perspectives of employing the α-ketoamide moiety in the rational design of compounds able to interact with a specific target.
Collapse
Affiliation(s)
- Marco Robello
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
16
|
Metabolic Effects of Selective Deletion of Group VIA Phospholipase A 2 from Macrophages or Pancreatic Islet Beta-Cells. Biomolecules 2020; 10:biom10101455. [PMID: 33080873 PMCID: PMC7602969 DOI: 10.3390/biom10101455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
To examine the role of group VIA phospholipase A2 (iPLA2β) in specific cell lineages in insulin secretion and insulin action, we prepared mice with a selective iPLA2β deficiency in cells of myelomonocytic lineage, including macrophages (MØ-iPLA2β-KO), or in insulin-secreting β-cells (β-Cell-iPLA2β-KO), respectively. MØ-iPLA2β-KO mice exhibited normal glucose tolerance when fed standard chow and better glucose tolerance than floxed-iPLA2β control mice after consuming a high-fat diet (HFD). MØ-iPLA2β-KO mice exhibited normal glucose-stimulated insulin secretion (GSIS) in vivo and from isolated islets ex vivo compared to controls. Male MØ-iPLA2β-KO mice exhibited enhanced insulin responsivity vs. controls after a prolonged HFD. In contrast, β-cell-iPLA2β-KO mice exhibited impaired glucose tolerance when fed standard chow, and glucose tolerance deteriorated further when introduced to a HFD. β-Cell-iPLA2β-KO mice exhibited impaired GSIS in vivo and from isolated islets ex vivo vs. controls. β-Cell-iPLA2β-KO mice also exhibited an enhanced insulin responsivity compared to controls. These findings suggest that MØ iPLA2β participates in HFD-induced deterioration in glucose tolerance and that this mainly reflects an effect on insulin responsivity rather than on insulin secretion. In contrast, β-cell iPLA2β plays a role in GSIS and also appears to confer some protection against deterioration in β-cell functions induced by a HFD.
Collapse
|
17
|
Offringa-Hup A. INAD and Duchenne muscular dystrophy, two ends of the iPLA2β spectrum. Med Hypotheses 2020; 137:109589. [PMID: 32006920 DOI: 10.1016/j.mehy.2020.109589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/21/2019] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
Abstract
Infantile neuroaxonal dystrophy (INAD) and Duchenne muscular dystrophy (DMD) are two deadly neuromuscular degenerative diseases of childhood. Knowledge on their pathophysiological mechanisms may direct us towards treatment or a cure. Although these diseases are caused by two totally different gene-mutations and cause different clinical pictures, in this article I propose a common disease mechanism in the two. This common mechanism is induced by defects in the response to cellular stress and injury. THE HYPOTHESIS: Depletion of iPLA2β in INAD and increased activity of iPLA2β in DMD eventually lead to similar defects in the response to cell stress and injury. According to this hypothesis, the depletion of iPLA2β in INAD primarily blocks repair mechanisms by the inability to form a mitochondrial permeability transition pore (PTP). Forming of the PTP is necessary to release mitochondrial coenzyme A (CoA) into the cytoplasm for activation of palmitoylation and massive endocytosis as a repair response. In DMD the increased activity of iPLA2β causes exhaustion of the stress signalling cascade by increased and prolonged PTP opening. Continuous leaking of mitochondrial CoA through the PTP leads to the inability of the cell to build a sufficient mitochondrial:cytoplasmic CoA gradient, also causing insufficient release of mitochondrial CoA as a response to cell stress and injury. Decreased palmitoylation capacity and decreased endocytosis and membrane remodelling are implicated in proven pathophysiological mechanisms in INAD and DMD. The described mechanism in INAD and DMD, may be considered a common mechanism of repair in case of cell stress and injury. Beside their role in INAD and DMD, they may therefore be implicated in other neurodegenerative diseases as well. Available research shows involvement of iPLA2β in other neurodegenerative diseases. We might be able to divide neurodegenerative diseases in "INAD-like disease-mechanism" or "DMD-like disease-mechanism", depending on decreased or increased iPLA2β activity.
Collapse
|
18
|
Offringa-Hup A. Alzheimer's disease: The derailed repair hypothesis. Med Hypotheses 2019; 136:109516. [PMID: 31825804 DOI: 10.1016/j.mehy.2019.109516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 11/25/2022]
Abstract
A lot of research has been done on Alzheimer's disease, especially focused on factors like amyloid beta, ApoE and tau-protein. However, a complete theory on the disease mechanism of AD, including and connecting all known pathological elements of AD in a conceivable context and order of occurrence, is still lacking. In this article I describe a hypothesis on the entire pathophysiology of Alzheimer's disease, based on the most wellknown pathological elements in AD, filling the gaps with hypothetical mechanisms. This proposed mechanism of derailed repair starts with an insufficiently increased level of injury signalling in the axon by ApoE, DLK, APP, BACE-1, Aβ and iPLA2β, followed by an excessive repair response induced by opening of the mitochondrial permeability transition pore, release of mitochondrial CoA and activation of palmitoylation and massive endocytosis. Excessive compounds, associated with injury signalling and repair, start to accumulate, adding to axonal injury. This increased activation of the repair mechanism causes exhaustion of the repair response by lack of mitochondrial CoA. A vicious circle of increased injury signalling and insufficient repair ensues. Based on this hypothesis, I propose possible markers for early diagnosis and disease-modifying treatments for Alzheimer's disease.
Collapse
|
19
|
Nelson AJ, Stephenson DJ, Cardona CL, Lei X, Almutairi A, White TD, Tusing YG, Park MA, Barbour SE, Chalfant CE, Ramanadham S. Macrophage polarization is linked to Ca 2+-independent phospholipase A 2β-derived lipids and cross-cell signaling in mice. J Lipid Res 2019; 61:143-158. [PMID: 31818877 DOI: 10.1194/jlr.ra119000281] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
Phospholipases A2 (PLA2s) catalyze hydrolysis of the sn-2 substituent from glycerophospholipids to yield a free fatty acid (i.e., arachidonic acid), which can be metabolized to pro- or anti-inflammatory eicosanoids. Macrophages modulate inflammatory responses and are affected by Ca2+-independent phospholipase A2 (PLA2)β (iPLA2β). Here, we assessed the link between iPLA2β-derived lipids (iDLs) and macrophage polarization. Macrophages from WT and KO (iPLA2β-/-) mice were classically M1 pro-inflammatory phenotype activated or alternatively M2 anti-inflammatory phenotype activated, and eicosanoid production was determined by ultra-performance LC ESI-MS/MS. As a genotypic control, we performed similar analyses on macrophages from RIP.iPLA2β.Tg mice with selective iPLA2β overexpression in β-cells. Compared with WT, generation of select pro-inflammatory prostaglandins (PGs) was lower in iPLA2β-/- , and that of a specialized pro-resolving lipid mediator (SPM), resolvin D2, was higher; both changes are consistent with the M2 phenotype. Conversely, macrophages from RIP.iPLA2β.Tg mice exhibited an opposite landscape, one associated with the M1 phenotype: namely, increased production of pro-inflammatory eicosanoids (6-keto PGF1α, PGE2, leukotriene B4) and decreased ability to generate resolvin D2. These changes were not linked with secretory PLA2 or cytosolic PLA2α or with leakage of the transgene. Thus, we report previously unidentified links between select iPLA2β-derived eicosanoids, an SPM, and macrophage polarization. Importantly, our findings reveal for the first time that β-cell iPLA2β-derived signaling can predispose macrophage responses. These findings suggest that iDLs play critical roles in macrophage polarization, and we posit that they could be targeted therapeutically to counter inflammation-based disorders.
Collapse
Affiliation(s)
- Alexander J Nelson
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, FL 33620
| | - Christopher L Cardona
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, FL 33620
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Abdulaziz Almutairi
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tayleur D White
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ying G Tusing
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Margaret A Park
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, FL 33620
| | - Suzanne E Barbour
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, FL 33620.,Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology University of Alabama at Birmingham, Birmingham, AL 35294 .,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
20
|
Parkinson's disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling. Proc Natl Acad Sci U S A 2019; 116:20689-20699. [PMID: 31548400 PMCID: PMC6789907 DOI: 10.1073/pnas.1902958116] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The mechanisms of α-synuclein aggregation and subsequent Lewy body formation are a key pathogenesis of Parkinson’s disease (PD). PARK14-linked PD, which is caused by mutations of the iPLA2-VIA/PLA2G6 gene, exhibits a marked Lewy body pathology. iPLA2-VIA, which belongs to the phospholipase A2 family, is another causative gene of neurodegeneration with brain iron accumulation (NBIA). Here, we demonstrate that iPLA2-VIA loss results in acyl-chain shortening in phospholipids, which affects ER homeostasis and neurotransmission and promotes α-synuclein aggregation. The administration of linoleic acid or the overexpression of C19orf12, one of the NBIA-causative genes, also suppresses the acyl-chain shortening by iPLA2-VIA loss. The rescue of iPLA2-VIA phenotypes by C19orf12 provides significant molecular insight into the underlying common pathogenesis of PD and NBIA. Mutations in the iPLA2-VIA/PLA2G6 gene are responsible for PARK14-linked Parkinson’s disease (PD) with α-synucleinopathy. However, it is unclear how iPLA2-VIA mutations lead to α-synuclein (α-Syn) aggregation and dopaminergic (DA) neurodegeneration. Here, we report that iPLA2-VIA–deficient Drosophila exhibits defects in neurotransmission during early developmental stages and progressive cell loss throughout the brain, including degeneration of the DA neurons. Lipid analysis of brain tissues reveals that the acyl-chain length of phospholipids is shortened by iPLA2-VIA loss, which causes endoplasmic reticulum (ER) stress through membrane lipid disequilibrium. The introduction of wild-type human iPLA2-VIA or the mitochondria–ER contact site-resident protein C19orf12 in iPLA2-VIA–deficient flies rescues the phenotypes associated with altered lipid composition, ER stress, and DA neurodegeneration, whereas the introduction of a disease-associated missense mutant, iPLA2-VIA A80T, fails to suppress these phenotypes. The acceleration of α-Syn aggregation by iPLA2-VIA loss is suppressed by the administration of linoleic acid, correcting the brain lipid composition. Our findings suggest that membrane remodeling by iPLA2-VIA is required for the survival of DA neurons and α-Syn stability.
Collapse
|
21
|
Dedaki C, Kokotou MG, Mouchlis VD, Limnios D, Lei X, Mu CT, Ramanadham S, Magrioti V, Dennis EA, Kokotos G. β-Lactones: A Novel Class of Ca 2+-Independent Phospholipase A 2 (Group VIA iPLA 2) Inhibitors with the Ability To Inhibit β-Cell Apoptosis. J Med Chem 2019; 62:2916-2927. [PMID: 30798607 DOI: 10.1021/acs.jmedchem.8b01216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ca2+-independent phospholipase A2 (GVIA iPLA2) has gained increasing interest recently as it has been recognized as a participant in biological processes underlying diabetes development and autoimmune-based neurological disorders. The development of potent GVIA iPLA2 inhibitors is of great importance because only a few have been reported so far. We present a novel class of GVIA iPLA2 inhibitors based on the β-lactone ring. This functionality in combination with a four-carbon chain carrying a phenyl group at position-3 and a linear propyl group at position-4 of the lactone ring confers excellent potency. trans-3-(4-Phenylbutyl)-4-propyloxetan-2-one (GK563) was identified as being the most potent GVIA iPLA2 inhibitor ever reported ( XI(50) 0.0000021, IC50 1 nM) and also one that is 22 000 times more active against GVIA iPLA2 than GIVA cPLA2. It was found to reduce β-cell apoptosis induced by proinflammatory cytokines, raising the possibility that it can be beneficial in countering autoimmune diseases, such as type 1 diabetes.
Collapse
Affiliation(s)
- Christina Dedaki
- Laboratory of Organic Chemistry, Department of Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis, Athens 15771 , Greece
| | - Maroula G Kokotou
- Laboratory of Organic Chemistry, Department of Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis, Athens 15771 , Greece.,Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine , University of California, San Diego , La Jolla, San Diego , California 92093-0601 , United States
| | - Varnavas D Mouchlis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine , University of California, San Diego , La Jolla, San Diego , California 92093-0601 , United States
| | - Dimitris Limnios
- Laboratory of Organic Chemistry, Department of Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis, Athens 15771 , Greece.,Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine , University of California, San Diego , La Jolla, San Diego , California 92093-0601 , United States
| | | | - Carol T Mu
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine , University of California, San Diego , La Jolla, San Diego , California 92093-0601 , United States
| | | | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis, Athens 15771 , Greece
| | - Edward A Dennis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine , University of California, San Diego , La Jolla, San Diego , California 92093-0601 , United States
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis, Athens 15771 , Greece
| |
Collapse
|
22
|
Turk J, White TD, Nelson AJ, Lei X, Ramanadham S. iPLA 2β and its role in male fertility, neurological disorders, metabolic disorders, and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:846-860. [PMID: 30408523 DOI: 10.1016/j.bbalip.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
The Ca2+-independent phospholipases, designated as group VI iPLA2s, also referred to as PNPLAs due to their shared homology with patatin, include the β, γ, δ, ε, ζ, and η forms of the enzyme. The iPLA2s are ubiquitously expressed, share a consensus GXSXG catalytic motif, and exhibit organelle/cell-specific localization. Among the iPLA2s, iPLA2β has received wide attention as it is recognized to be involved in membrane remodeling, cell proliferation, cell death, and signal transduction. Ongoing studies implicate participation of iPLA2β in a variety of disease processes including cancer, cardiovascular abnormalities, glaucoma, and peridonditis. This review will focus on iPLA2β and its links to male fertility, neurological disorders, metabolic disorders, and inflammation.
Collapse
Affiliation(s)
- John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Tayleur D White
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Alexander J Nelson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
23
|
Hong SW, Lee J, Kwon H, Park SE, Rhee EJ, Park CY, Oh KW, Park SW, Lee WY. Deficiency of Sphingosine-1-Phosphate Reduces the Expression of Prohibitin and Causes β-Cell Impairment via Mitochondrial Dysregulation. Endocrinol Metab (Seoul) 2018; 33:403-412. [PMID: 30229580 PMCID: PMC6145960 DOI: 10.3803/enm.2018.33.3.403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/24/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Emerging evidence suggests that sphingolipids may be involved in type 2 diabetes. However, the exact signaling defect through which disordered sphingolipid metabolism induces β-cell dysfunction remains unknown. The current study demonstrated that sphingosine-1-phosphate (S1P), the product of sphingosine kinase (SphK), is an essential factor for maintaining β-cell function and survival via regulation of mitochondrial action, as mediated by prohibitin (PHB). METHODS We examined β-cell function and viability, as measured by mitochondrial function, in mouse insulinoma 6 (MIN6) cells in response to manipulation of cellular S1P and PHB levels. RESULTS Lack of S1P induced by sphingosine kinase inhibitor (SphKi) treatment caused β-cell dysfunction and apoptosis, with repression of mitochondrial function shown by decreases in cellular adenosine triphosphate content, the oxygen consumption rate, the expression of oxidative phosphorylation complexes, the mitochondrial membrane potential, and the expression of key regulators of mitochondrial dynamics (mitochondrial dynamin-like GTPase [OPA1] and mitofusin 1 [MFN1]). Supplementation of S1P led to the recovery of mitochondrial function and greatly improved β-cell function and viability. Knockdown of SphK2 using small interfering RNA induced mitochondrial dysfunction, decreased glucose-stimulated insulin secretion (GSIS), and reduced the expression of PHB, an essential regulator of mitochondrial metabolism. PHB deficiency significantly reduced GSIS and induced mitochondrial dysfunction, and co-treatment with S1P did not reverse these trends. CONCLUSION Altogether, these data suggest that S1P is an essential factor in the maintenance of β-cell function and survival through its regulation of mitochondrial action and PHB expression.
Collapse
Affiliation(s)
- Seok Woo Hong
- Institute of Medical Research, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jinmi Lee
- Institute of Medical Research, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Won Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Woo Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Fatostatin induces pro- and anti-apoptotic lipid accumulation in breast cancer. Oncogenesis 2018; 7:66. [PMID: 30140005 PMCID: PMC6107643 DOI: 10.1038/s41389-018-0076-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022] Open
Abstract
Given the dependence of cancers on de novo lipogenesis, we tested the effect of fatostatin, a small molecule thought to target this pathway by blocking activation of SREBP transcription factors, in breast cancer cell lines and xenograft tumors. We found that estrogen receptor (ER) positive cells were more sensitive to fatostatin than ER negative cells and responded with cell cycle arrest and apoptosis. Surprisingly, we found that rather than inhibiting lipogenesis, fatostatin caused an accumulation of lipids as a response to endoplasmic reticulum stress rather than inhibition of SREBP activity. In particular, ceramide and dihydroceramide levels increased and contributed to the apoptotic effects of fatostatin. In addition, an accumulation of triacylglycerides (TAGs), particularly those containing polyunsaturated fatty acids (PUFAs), was also observed as a result of elevated diacylglycerol transferase activity. Blocking PUFA-TAG production enhanced the apoptotic effect of fatostatin, suggesting that these lipids play a protective role and limit fatostatin response. Together, these findings indicate that the ability of breast cancer cells to respond to fatostatin depends on induction of endoplasmic reticulum stress and subsequent ceramide accumulation, and that limiting production of PUFA-TAGs may be therapeutically beneficial in specific tumor subtypes.
Collapse
|
25
|
Zhang H, Li J, Li L, Liu P, Wei Y, Qian Z. Ceramide enhances COX-2 expression and VSMC contractile hyperreactivity via ER stress signal activation. Vascul Pharmacol 2017; 96-98:26-32. [PMID: 28797762 DOI: 10.1016/j.vph.2017.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/22/2017] [Accepted: 08/01/2017] [Indexed: 01/15/2023]
Abstract
Ceramide accumulation in blood vessels has been attributed to vascular dysfunction in progressive vascular complications in metabolic diseases. The present study showed that ceramide pretreatment promoted PE-induced vasoconstriction in rat endothelium-denuded vascular rings in a time- and dose-dependent manner. Endoplasmic reticulum (ER) stress inhibitors, 4-PBA and TUDCA, COX-2 inhibitors, Celecoxib and NS398, as well as PGE2 receptor antagonist AH-6809 attenuated ceramide-promoted vascular hyperreactivity. Ceramide promoted the transcriptional and translational expression of COX-2 and BiP in VSMCs, which were blocked by the ER stress inhibitors, 4-PBA and TUDCA. These findings show that ceramide enhances PE-induced vascular smooth muscle constriction by mediation of the ER stress/COX-2/PGE2 pathway. Therapeutic strategies targeted to reducing ER stress and COX-2 activation might be beneficial in attenuating vascular complications. CHEMICAL COMPOUNDS C2-Ceramide (N-acetyl-d-erythro-sphingosine) CID:2662 Tauroursodeoxycholic Acid Sodium (TUDCA) CID:9848818 phenylephrine (PE) CID:6041.
Collapse
Affiliation(s)
- Huina Zhang
- Beijing An Zhen Hospital, Capital Medical University, Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China.
| | - Juanfen Li
- Department of Cardiovascular Medicine, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Linghai Li
- Department of Anesthesiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yongxiang Wei
- Beijing An Zhen Hospital, Capital Medical University, Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Zongjie Qian
- Department of Cardiovascular Medicine, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
26
|
Rodriguez-Cuenca S, Pellegrinelli V, Campbell M, Oresic M, Vidal-Puig A. Sphingolipids and glycerophospholipids - The "ying and yang" of lipotoxicity in metabolic diseases. Prog Lipid Res 2017; 66:14-29. [PMID: 28104532 DOI: 10.1016/j.plipres.2017.01.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/30/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022]
Abstract
Sphingolipids in general and ceramides in particular, contribute to pathophysiological mechanisms by modifying signalling and metabolic pathways. Here, we present the available evidence for a bidirectional homeostatic crosstalk between sphingolipids and glycerophospholipids, whose dysregulation contributes to lipotoxicity induced metabolic stress. The initial evidence for this crosstalk originates from simulated models designed to investigate the biophysical properties of sphingolipids in plasma membrane representations. In this review, we reinterpret some of the original findings and conceptualise them as a sort of "ying/yang" interaction model of opposed/complementary forces, which is consistent with the current knowledge of lipid homeostasis and pathophysiology. We also propose that the dysregulation of the balance between sphingolipids and glycerophospholipids results in a lipotoxic insult relevant in the pathophysiology of common metabolic diseases, typically characterised by their increased ceramide/sphingosine pools.
Collapse
Affiliation(s)
- S Rodriguez-Cuenca
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK.
| | - V Pellegrinelli
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK
| | - M Campbell
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK
| | - M Oresic
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI -20520 Turku, Finland
| | - A Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK; Wellcome Trust Sanger Institute, Hinxton, UK.
| |
Collapse
|
27
|
Bhat TA, Chaudhary AK, Kumar S, O'Malley J, Inigo JR, Kumar R, Yadav N, Chandra D. Endoplasmic reticulum-mediated unfolded protein response and mitochondrial apoptosis in cancer. Biochim Biophys Acta Rev Cancer 2016; 1867:58-66. [PMID: 27988298 DOI: 10.1016/j.bbcan.2016.12.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
Abrogation of endoplasmic reticulum (ER) protein folding triggered by exogenous or endogenous factors, stimulates a cellular stress response, termed ER stress. ER stress re-establishes ER homeostasis through integrated signaling termed the ER-unfolded protein response (UPRER). In the presence of severe toxic or prolonged ER stress, the pro-survival function of UPRER is transformed into a lethal signal transmitted to and executed through mitochondria. Mitochondria are key for both apoptotic and autophagic cell death. Thus ER is vital in sensing and coordinating stress pathways to maintain overall physiological homeostasis. However, this function is deregulated in cancer, resulting in resistance to apoptosis induction in response to various stressors including therapeutic agents. Here we review the connections between ER stress and mitochondrial apoptosis, describing potential cancer therapeutic targets.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Jordan O'Malley
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Joseph R Inigo
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States.
| |
Collapse
|
28
|
Emerging (and converging) pathways in Parkinson's disease: keeping mitochondrial wellness. Biochem Biophys Res Commun 2016; 483:1020-1030. [PMID: 27581196 DOI: 10.1016/j.bbrc.2016.08.153] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/31/2022]
Abstract
The selective cell loss in the ventral component of the substantia nigra pars compacta and the presence of alpha-synuclein (α-syn)-rich intraneuronal inclusions called Lewy bodies are the pathological hallmarks of Parkinson's disease (PD), the most common motor system disorder whose aetiology remains largely elusive. Although most cases of PD are idiopathic, there are rare familial forms of the disease that can be traced to single gene mutations that follow Mendelian inheritance pattern. The study of several nuclear encoded proteins whose mutations are linked to the development of autosomal recessive and dominant forms of familial PD enhanced our understanding of biochemical and cellular mechanisms contributing to the disease and suggested that many signs of neurodegeneration result from compromised mitochondrial function. Here we present an overview of the current understanding of PD-related mitochondrial dysfunction including defects in bioenergetics and Ca2+ homeostasis, mitochondrial DNA mutations, altered mitochondrial dynamics and autophagy. We emphasize, in particular, the convergence of many "apparently" different pathways towards a common route involving mitochondria. Understanding whether mitochondrial dysfunction in PD represents the cause or the consequence of the disease is challenging and will help to define the pathogenic processes at the basis of the PD onset and progression.
Collapse
|
29
|
Curcumin attenuates palmitate-induced apoptosis in MIN6 pancreatic β-cells through PI3K/Akt/FoxO1 and mitochondrial survival pathways. Apoptosis 2016; 20:1420-32. [PMID: 26330141 DOI: 10.1007/s10495-015-1150-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lipotoxicity plays a vital role in development and progression of type 2 diabetes. Prolonged elevation of free fatty acids especially the palmitate leads to pancreatic β-cell dysfunction and apoptosis. Curcumin (diferuloylmethane), a polyphenol from the curry spice turmeric, is considered to be a broadly cytoprotective agent. The present study was designed to determine the protective effect of curcumin on palmitate-induced apoptosis in β-cells and investigate underlying mechanisms. Our results showed that curcumin improved cell viability and enhanced glucose-induced insulin secretory function in MIN6 pancreatic β-cells. Palmitate incubation evoked chromatin condensation, DNA nick end labeling and activation of caspase-3 and -9. Curcumin treatment inhibited palmitate-induced apoptosis, relieved mitochondrial depolarization and up-regulated Bcl-2/Bax ratio. Palmitate induced the generation of reactive oxygen species and inhibited activities of antioxidant enzymes, which could be neutralized by curcumin treatment. Moreover, curcumin could promote rapid phosphorylation of Akt and nuclear exclusion of FoxO1 in MIN6 cells under lipotoxic condition. Phosphatidylinositol 3-kinase and Akt specific inhibitors abolished the anti-lipotoxic effect of curcumin and stimulated FoxO1 nuclear translocation. These findings suggested that curcumin protected MIN6 pancreatic β-Cells against apoptosis through activation of Akt, inhibition of nuclear translocation of FoxO1 and mitochondrial survival pathway.
Collapse
|
30
|
ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex. Proc Natl Acad Sci U S A 2016; 113:E1334-42. [PMID: 26903652 DOI: 10.1073/pnas.1504555113] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We recently identified a previously unidentified sphingosine-1-phosphate (S1P) signaling mechanism that stimulates production of a key innate immune element, cathelicidin antimicrobial peptide (CAMP), in mammalian cells exposed to external perturbations, such as UVB irradiation and other oxidative stressors that provoke subapoptotic levels of endoplasmic reticulum (ER) stress, independent of the well-known vitamin D receptor-dependent mechanism. ER stress increases cellular ceramide and one of its distal metabolites, S1P, which activates NF-κB followed by C/EBPα activation, leading to CAMP production, but in a S1P receptor-independent fashion. We now show that S1P activates NF-κB through formation of a previously unidentified signaling complex, consisting of S1P, TRAF2, and RIP1 that further associates with three stress-responsive proteins; i.e., heat shock proteins (GRP94 and HSP90α) and IRE1α. S1P specifically interacts with the N-terminal domain of heat shock proteins. Because this ER stress-initiated mechanism is operative in both epithelial cells and macrophages, it appears to be a universal, highly conserved response, broadly protective against diverse external perturbations that lead to increased ER stress. Finally, these studies further illuminate how ER stress and S1P orchestrate critical stress-specific signals that regulate production of one protective response by stimulating production of the key innate immune element, CAMP.
Collapse
|
31
|
Pavlovic V, Cekic S, Ciric M, Krtinic D, Jovanovic J. Curcumin attenuates Mancozeb-induced toxicity in rat thymocytes through mitochondrial survival pathway. Food Chem Toxicol 2016; 88:105-11. [DOI: 10.1016/j.fct.2015.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/20/2015] [Accepted: 12/31/2015] [Indexed: 12/21/2022]
|
32
|
Karunakaran U, Moon JS, Lee HW, Won KC. CD36 initiated signaling mediates ceramide-induced TXNIP expression in pancreatic beta-cells. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2414-22. [PMID: 26297980 DOI: 10.1016/j.bbadis.2015.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 01/25/2023]
Abstract
Diverse mechanisms are involved in the pathogenesis of β-cell failure in type 2 diabetes. Of them, the accumulation of ceramide, a bioactive lipid metabolite, is suggested to play a major role in inflammatory and stress responses that induce diabetes. However, the downstream inflammatory target of ceramide has not been defined. Using rat islets and the INS-1 β-cell line, we hypothesized that activation of the redox sensitive protein TXNIP is involved in ceramide-induced β-cell dysfunction. Incubation of INS-1 cells and primary islets with C2-ceramide (N-acetyl-sphingosine) downregulated insulin and PDX-1 expression and increased β-cell apoptosis. Ceramide treatment induced a time dependent increase in TXNIP gene expression accompanied by activation of nuclear factor (NF)-κB and reduced mitochondrial thioredoxin (TRX) activity. Pretreatment with sulfo-N-succinimidyl oleate (SSO), an irreversible inhibitor of the scavenger receptor CD36, blocked ceramide-induced up-regulation of TXNIP expression and activity of NF-κB. Blockade of NF-κB nuclear translocation by the peptide SN50 prevented ceramide-mediated TXNIP induction. Furthermore, SSO also attenuated ceramide-induced early loss of insulin signaling and apoptosis. Collectively, our results unveil a novel role of CD36 in early molecular events leading to NF-κB activation and TXNIP expression. These data suggest that CD36 dependent NF-κB-TXNIP signaling contributes to the ceramide-induced pathogenesis of pancreatic β-cell dysfunction and failure.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Institute of Medical Science, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea
| | - Hyoung Woo Lee
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea
| | - Kyu Chang Won
- Institute of Medical Science, Yeungnam University College of Medicine, Daegu, South Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea.
| |
Collapse
|
33
|
Ramanadham S, Ali T, Ashley JW, Bone RN, Hancock WD, Lei X. Calcium-independent phospholipases A2 and their roles in biological processes and diseases. J Lipid Res 2015; 56:1643-68. [PMID: 26023050 DOI: 10.1194/jlr.r058701] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 12/24/2022] Open
Abstract
Among the family of phospholipases A2 (PLA2s) are the Ca(2+)-independent PLA2s (iPLA2s) and they are designated group VI iPLA2s. In relation to secretory and cytosolic PLA2s, the iPLA2s are more recently described and details of their expression and roles in biological functions are rapidly emerging. The iPLA2s or patatin-like phospholipases (PNPLAs) are intracellular enzymes that do not require Ca(2+) for activity, and contain lipase (GXSXG) and nucleotide-binding (GXGXXG) consensus sequences. Though nine PNPLAs have been recognized, PNPLA8 (membrane-associated iPLA2γ) and PNPLA9 (cytosol-associated iPLA2β) are the most widely studied and understood. The iPLA2s manifest a variety of activities in addition to phospholipase, are ubiquitously expressed, and participate in a multitude of biological processes, including fat catabolism, cell differentiation, maintenance of mitochondrial integrity, phospholipid remodeling, cell proliferation, signal transduction, and cell death. As might be expected, increased or decreased expression of iPLA2s can have profound effects on the metabolic state, CNS function, cardiovascular performance, and cell survival; therefore, dysregulation of iPLA2s can be a critical factor in the development of many diseases. This review is aimed at providing a general framework of the current understanding of the iPLA2s and discussion of the potential mechanisms of action of the iPLA2s and related involved lipid mediators.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tomader Ali
- Undergraduate Research Office, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jason W Ashley
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert N Bone
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - William D Hancock
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xiaoyong Lei
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
34
|
Barbour SE, Nguyen PT, Park M, Emani B, Lei X, Kambalapalli M, Shultz JC, Wijesinghe D, Chalfant CE, Ramanadham S. Group VIA Phospholipase A2 (iPLA2β) Modulates Bcl-x 5'-Splice Site Selection and Suppresses Anti-apoptotic Bcl-x(L) in β-Cells. J Biol Chem 2015; 290:11021-31. [PMID: 25762722 DOI: 10.1074/jbc.m115.648956] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Indexed: 01/09/2023] Open
Abstract
Diabetes is a consequence of reduced β-cell function and mass, due to β-cell apoptosis. Endoplasmic reticulum (ER) stress is induced during β-cell apoptosis due to various stimuli, and our work indicates that group VIA phospholipase A2β (iPLA2β) participates in this process. Delineation of underlying mechanism(s) reveals that ER stress reduces the anti-apoptotic Bcl-x(L) protein in INS-1 cells. The Bcl-x pre-mRNA undergoes alternative pre-mRNA splicing to generate Bcl-x(L) or Bcl-x(S) mature mRNA. We show that both thapsigargin-induced and spontaneous ER stress are associated with reductions in the ratio of Bcl-x(L)/Bcl-x(S) mRNA in INS-1 and islet β-cells. However, chemical inactivation or knockdown of iPLA2β augments the Bcl-x(L)/Bcl-x(S) ratio. Furthermore, the ratio is lower in islets from islet-specific RIP-iPLA2β transgenic mice, whereas islets from global iPLA2β(-/-) mice exhibit the opposite phenotype. In view of our earlier reports that iPLA2β induces ceramide accumulation through neutral sphingomyelinase 2 and that ceramides shift the Bcl-x 5'-splice site (5'SS) selection in favor of Bcl-x(S), we investigated the potential link between Bcl-x splicing and the iPLA2β/ceramide axis. Exogenous C6-ceramide did not alter Bcl-x 5'SS selection in INS-1 cells, and neutral sphingomyelinase 2 inactivation only partially prevented the ER stress-induced shift in Bcl-x splicing. In contrast, 5(S)-hydroxytetraenoic acid augmented the ratio of Bcl-x(L)/Bcl-x(S) by 15.5-fold. Taken together, these data indicate that β-cell apoptosis is, in part, attributable to the modulation of 5'SS selection in the Bcl-x pre-mRNA by bioactive lipids modulated by iPLA2β.
Collapse
Affiliation(s)
- Suzanne E Barbour
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Phuong T Nguyen
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Margaret Park
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Bhargavi Emani
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Xiaoyong Lei
- the Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mamatha Kambalapalli
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Jacqueline C Shultz
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Dayanjan Wijesinghe
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614, the Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249
| | - Charles E Chalfant
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614, the Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249, the Massey Cancer Center, Richmond, Virginia 23298, and the Virginia Commonwealth University Reanimation Engineering Science Center, Richmond, Virginia 23298
| | - Sasanka Ramanadham
- the Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama 35294,
| |
Collapse
|
35
|
Bone RN, Gai Y, Magrioti V, Kokotou MG, Ali T, Lei X, Tse HM, Kokotos G, Ramanadham S. Inhibition of Ca2+-independent phospholipase A2β (iPLA2β) ameliorates islet infiltration and incidence of diabetes in NOD mice. Diabetes 2015; 64:541-54. [PMID: 25213337 PMCID: PMC4303959 DOI: 10.2337/db14-0097] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
Autoimmune β-cell death leads to type 1 diabetes, and with findings that Ca(2+)-independent phospholipase A2β (iPLA2β) activation contributes to β-cell death, we assessed the effects of iPLA2β inhibition on diabetes development. Administration of FKGK18, a reversible iPLA2β inhibitor, to NOD female mice significantly reduced diabetes incidence in association with 1) reduced insulitis, reflected by reductions in CD4(+) T cells and B cells; 2) improved glucose homeostasis; 3) higher circulating insulin; and 4) β-cell preservation. Furthermore, FKGK18 inhibited production of tumor necrosis factor-α (TNF-α) from CD4(+) T cells and antibodies from B cells, suggesting modulation of immune cell responses by iPLA2β-derived products. Consistent with this, 1) adoptive transfer of diabetes by CD4(+) T cells to immunodeficient and diabetes-resistant NOD.scid mice was mitigated by FKGK18 pretreatment and 2) TNF-α production from CD4(+) T cells was reduced by inhibitors of cyclooxygenase and 12-lipoxygenase, which metabolize arachidonic acid to generate bioactive inflammatory eicosanoids. However, adoptive transfer of diabetes was not prevented when mice were administered FKGK18-pretreated T cells or when FKGK18 administration was initiated with T-cell transfer. The present observations suggest that iPLA2β-derived lipid signals modulate immune cell responses, raising the possibility that early inhibition of iPLA2β may be beneficial in ameliorating autoimmune destruction of β-cells and mitigating type 1 diabetes development.
Collapse
Affiliation(s)
- Robert N Bone
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
| | - Ying Gai
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Maroula G Kokotou
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Tomader Ali
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Xiaoyong Lei
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Hubert M Tse
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Sasanka Ramanadham
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
36
|
Lei X, Bone RN, Ali T, Zhang S, Bohrer A, Tse HM, Bidasee KR, Ramanadham S. Evidence of contribution of iPLA2β-mediated events during islet β-cell apoptosis due to proinflammatory cytokines suggests a role for iPLA2β in T1D development. Endocrinology 2014; 155:3352-64. [PMID: 25004092 PMCID: PMC4138580 DOI: 10.1210/en.2013-2134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of islet β-cells, but the underlying mechanisms that contribute to this process are incompletely understood, especially the role of lipid signals generated by β-cells. Proinflammatory cytokines induce ER stress in β-cells and we previously found that the Ca(2+)-independent phospholipase A2β (iPLA2β) participates in ER stress-induced β-cell apoptosis. In view of reports of elevated iPLA2β in T1D, we examined if iPLA2β participates in cytokine-mediated islet β-cell apoptosis. We find that the proinflammatory cytokine combination IL-1β+IFNγ, induces: a) ER stress, mSREBP-1, and iPLA2β, b) lysophosphatidylcholine (LPC) generation, c) neutral sphingomyelinase-2 (NSMase2), d) ceramide accumulation, e) mitochondrial membrane decompensation, f) caspase-3 activation, and g) β-cell apoptosis. The presence of a sterol regulatory element in the iPLA2β gene raises the possibility that activation of SREBP-1 after proinflammatory cytokine exposure contributes to iPLA2β induction. The IL-1β+IFNγ-induced outcomes (b-g) are all inhibited by iPLA2β inactivation, suggesting that iPLA2β-derived lipid signals contribute to consequential islet β-cell death. Consistent with this possibility, ER stress and β-cell apoptosis induced by proinflammatory cytokines are exacerbated in islets from RIP-iPLA2β-Tg mice and blunted in islets from iPLA2β-KO mice. These observations suggest that iPLA2β-mediated events participate in amplifying β-cell apoptosis due to proinflammatory cytokines and also that iPLA2β activation may have a reciprocal impact on ER stress development. They raise the possibility that iPLA2β inhibition, leading to ameliorations in ER stress, apoptosis, and immune responses resulting from LPC-stimulated immune cell chemotaxis, may be beneficial in preserving β-cell mass and delaying/preventing T1D evolution.
Collapse
Affiliation(s)
- Xiaoyong Lei
- Departments of Cell, Developmental, and Integrative Biology (X.L., T.A., S.R.), Pathology (R.N.B.), Microbiology (H.M.T.), and Comprehensive Diabetes Center (X.L., R.N.B., T.A., H.M.T., S.R.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Department of Medicine (S.Z., A.B.), Mass Spectrometry Resource and Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St Louis, Missouri 63110; and Department of Pharmacology and Experimental Neuroscience (K.R.B.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Park K, Lee S, Lee YM. Sphingolipids and antimicrobial peptides: function and roles in atopic dermatitis. Biomol Ther (Seoul) 2014; 21:251-7. [PMID: 24244808 PMCID: PMC3819896 DOI: 10.4062/biomolther.2013.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 12/14/2022] Open
Abstract
Inflammatory skin diseases such as atopic dermatitis (AD) and rosacea were complicated by barrier abrogation and deficiency in innate immunity. The first defender of epidermal innate immune response is the antimicrobial peptides (AMPs) that exhibit a broad-spectrum antimicrobial activity against multiple pathogens, including Gram-positive and Gram-negative bacteria, viruses, and fungi. The deficiency of these AMPs in the skin of AD fails to protect our body against virulent pathogen infections. In contrast to AD where there is a suppression of AMPs, rosacea is characterized by overexpression of cathelicidin antimicrobial peptide (CAMP), the products of which result in chronic epidermal inflammation. In this regard, AMP generation that is controlled by a key ceramide metabolite S1P-dependent mechanism could be considered as alternate therapeutic approaches to treat these skin disorders, i.e., Increased S1P levels strongly stimulated the CAMP expression which elevated the antimicrobial activity against multiple pathogens resulting the improved AD patient skin.
Collapse
Affiliation(s)
- Kyungho Park
- Department of Dermatology, School of Medicine, University of California, San Francisco, California CA94115, USA
| | | | | |
Collapse
|
38
|
Jin L, Li C, Li R, Sun Z, Fang X, Li S. Corticotropin-releasing hormone receptors mediate apoptosis via cytosolic calcium-dependent phospholipase A₂ and migration in prostate cancer cell RM-1. J Mol Endocrinol 2014; 52:255-67. [PMID: 24776847 DOI: 10.1530/jme-13-0270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peripheral corticotropin-releasing hormone receptors (CRHRs) are G protein-coupled receptors that play different roles depending on tissue types. Previously, we discovered the mechanism of CRHR-mediated apoptosis of mouse prostate cancer cell line (RM-1) to be a change of Bcl-2:Bax ratio, and CRH was found to inhibit transforming growth factor β migration of breast cancer cells via CRHRs. In the present study, we investigated cytosolic calcium-dependent phospholipase A2 (cPLA2) bridging CRHR activations and Bcl-2:Bax ratio and the effect of CRHR activation on cell migration. Silencing of cPLA2 attenuated a CRHR1 agonist, CRH-induced apoptosis, and the decrease of the Bcl-2:Bax ratio, whereas silencing of cPLA2 aggravated CRHR2 agonist, Urocortin 2 (Ucn2)-inhibited apoptosis, and the increase of the Bcl-2:Bax ratio. CRH in a time- and concentration-dependent manner increased cPLA2 expression mainly through interleukin 1β (IL1β) upregulation. Ucn2 decreased cPLA2 expression through neither tumor necrosis factor α nor IL1β. CRH-suppressed decay of cPLA2 mRNA and Ucn2 merely suppressed its production. Overexpression of CRHR1 or CRHR2 in HEK293 cells correspondingly upregulated or downregulated cPLA2 expression after CRH or Ucn2 stimulation respectively. In addition, both CRH and Ucn2 induced migration of RM-1 cells. Our observation not only established a relationship between CRHRs and cell migration but also for the first time, to our knowledge, demonstrated that cPLA2 participates in CRHR1-induced apoptosis and CRHR2-inhibited apoptosis.
Collapse
Affiliation(s)
- Lai Jin
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | |
Collapse
|
39
|
Song H, Wohltmann M, Tan M, Ladenson JH, Turk J. Group VIA phospholipase A2 mitigates palmitate-induced β-cell mitochondrial injury and apoptosis. J Biol Chem 2014; 289:14194-210. [PMID: 24648512 DOI: 10.1074/jbc.m114.561910] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Palmitate (C16:0) induces apoptosis of insulin-secreting β-cells by processes that involve generation of reactive oxygen species, and chronically elevated blood long chain free fatty acid levels are thought to contribute to β-cell lipotoxicity and the development of diabetes mellitus. Group VIA phospholipase A2 (iPLA2β) affects β-cell sensitivity to apoptosis, and here we examined iPLA2β effects on events that occur in β-cells incubated with C16:0. Such events in INS-1 insulinoma cells were found to include activation of caspase-3, expression of stress response genes (C/EBP homologous protein and activating transcription factor 4), accumulation of ceramide, loss of mitochondrial membrane potential, and apoptosis. All of these responses were blunted in INS-1 cells that overexpress iPLA2β, which has been proposed to facilitate repair of oxidized mitochondrial phospholipids, e.g. cardiolipin (CL), by excising oxidized polyunsaturated fatty acid residues, e.g. linoleate (C18:2), to yield lysophospholipids, e.g. monolysocardiolipin (MLCL), that can be reacylated to regenerate the native phospholipid structures. Here the MLCL content of mouse pancreatic islets was found to rise with increasing iPLA2β expression, and recombinant iPLA2β hydrolyzed CL to MLCL and released oxygenated C18:2 residues from oxidized CL in preference to native C18:2. C16:0 induced accumulation of oxidized CL species and of the oxidized phospholipid (C18:0/hydroxyeicosatetraenoic acid)-glycerophosphoethanolamine, and these effects were blunted in INS-1 cells that overexpress iPLA2β, consistent with iPLA2β-mediated removal of oxidized phospholipids. C16:0 also induced iPLA2β association with INS-1 cell mitochondria, consistent with a role in mitochondrial repair. These findings indicate that iPLA2β confers significant protection of β-cells against C16:0-induced injury.
Collapse
Affiliation(s)
- Haowei Song
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| | - Mary Wohltmann
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| | - Min Tan
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| | - Jack H Ladenson
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - John Turk
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| |
Collapse
|
40
|
Transcriptomic analysis reveals key regulators of mammogenesis and the pregnancy-lactation cycle. SCIENCE CHINA-LIFE SCIENCES 2014; 57:340-355. [PMID: 24554470 DOI: 10.1007/s11427-013-4579-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/13/2013] [Indexed: 01/19/2023]
Abstract
An organ unique to mammals, the mammary gland develops 90% of its mass after birth and experiences the pregnancylactation-involution cycle (PL cycle) during reproduction. To understand mammogenesis at the transcriptomic level and using a ribo-minus RNA-seq protocol, we acquired greater than 50 million reads each for the mouse mammary gland during pregnancy (day 12 of pregnancy), lactation (day 14 of lactation), and involution (day 7 of involution). The pregnancy-, lactation- and involution-related sequencing reads were assembled into 17344, 10160, and 13739 protein-coding transcripts and 1803, 828, and 1288 non-coding RNAs (ncRNAs), respectively. Differentially expressed genes (DEGs) were defined in the three samples, which comprised 4843 DEGs (749 up-regulated and 4094 down-regulated) from pregnancy to lactation and 4926 DEGs (4706 up-regulated and 220 down-regulated) from lactation to involution. Besides the obvious and substantive up- and down-regulation of the DEGs, we observe that lysosomal enzymes were highly expressed and that their expression coincided with milk secretion. Further analysis of transcription factors such as Trps1, Gtf2i, Tcf7l2, Nupr1, Vdr, Rb1, and Aebp1, and ncRNAs such as mir-125b, Let7, mir-146a, and mir-15 has enabled us to identify key regulators in mammary gland development and the PL cycle.
Collapse
|
41
|
Ali T, Kokotos G, Magrioti V, Bone RN, Mobley JA, Hancock W, Ramanadham S. Characterization of FKGK18 as inhibitor of group VIA Ca2+-independent phospholipase A2 (iPLA2β): candidate drug for preventing beta-cell apoptosis and diabetes. PLoS One 2013; 8:e71748. [PMID: 23977134 PMCID: PMC3748103 DOI: 10.1371/journal.pone.0071748] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/30/2013] [Indexed: 01/27/2023] Open
Abstract
Ongoing studies suggest an important role for iPLA2β in a multitude of biological processes and it has been implicated in neurodegenerative, skeletal and vascular smooth muscle disorders, bone formation, and cardiac arrhythmias. Thus, identifying an iPLA2βinhibitor that can be reliably and safely used in vivo is warranted. Currently, the mechanism-based inhibitor bromoenol lactone (BEL) is the most widely used to discern the role of iPLA2β in biological processes. While BEL is recognized as a more potent inhibitor of iPLA2 than of cPLA2 or sPLA2, leading to its designation as a "specific" inhibitor of iPLA2, it has been shown to also inhibit non-PLA2 enzymes. A potential complication of its use is that while the S and R enantiomers of BEL exhibit preference for cytosol-associated iPLA2β and membrane-associated iPLA2γ, respectively, the selectivity is only 10-fold for both. In addition, BEL is unstable in solution, promotes irreversible inhibition, and may be cytotoxic, making BEL not amenable for in vivo use. Recently, a fluoroketone (FK)-based compound (FKGK18) was described as a potent inhibitor of iPLA2β. Here we characterized its inhibitory profile in beta-cells and find that FKGK18: (a) inhibits iPLA2β with a greater potency (100-fold) than iPLA2γ, (b) inhibition of iPLA2β is reversible, (c) is an ineffective inhibitor of α-chymotrypsin, and (d) inhibits previously described outcomes of iPLA2β activation including (i) glucose-stimulated insulin secretion, (ii) arachidonic acid hydrolysis; as reflected by PGE2 release from human islets, (iii) ER stress-induced neutral sphingomyelinase 2 expression, and (iv) ER stress-induced beta-cell apoptosis. These findings suggest that FKGK18 is similar to BEL in its ability to inhibit iPLA2β. Because, in contrast to BEL, it is reversible and not a non-specific inhibitor of proteases, it is suggested that FKGK18 is more ideal for ex vivo and in vivo assessments of iPLA2β role in biological functions.
Collapse
Affiliation(s)
- Tomader Ali
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | | | | | | | | | | |
Collapse
|
42
|
Resveratrol stimulates sphingosine-1-phosphate signaling of cathelicidin production. J Invest Dermatol 2013; 133:1942-9. [PMID: 23856934 PMCID: PMC3753186 DOI: 10.1038/jid.2013.133] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/07/2013] [Accepted: 02/26/2013] [Indexed: 12/26/2022]
Abstract
We recently discovered a regulatory mechanism that stimulates production of the multifunctional antimicrobial peptide, cathelicidin antimicrobial peptide (CAMP). In response to subtoxic levels of ER stress, increased sphingosine-1-phosphate (S1P) production activates an NFκB→C/EBPα dependent pathway that enhances CAMP production in cultured human keratinocytes. Since the multifunctional stilbenoid compound, resveratrol (RESV), increases ceramide (Cer) levels, a precursor of S1P, we hypothesized and assessed whether RESV could exploit the same pathway to regulate CAMP production. Accordingly, RESV significantly increased Cer and S1P levels in cultured keratinocytes, paralleled by increased CAMP mRNA/protein expression. Furthermore, topical RESV also increased murine CAMP mRNA/protein expression in mouse skin. Conversely, blockade of Cer→sphingosine→S1P metabolic conversion, with specific inhibitors of ceramidase or sphingosine kinase, attenuated the expected RESV-mediated increase in CAMP expression. The RESV-induced increase in CAMP expression required both NF-κB and C/EBPα transactivation. Moreover, conditioned media from keratinocyte treated with RESV significantly suppressed Staphylococcus aureus growth. Finally, topical RESV, if not coapplied with a specific inhibitor of sphingosine kinase, blocked Staphylococcus aureus invasion into murine skin. These results demonstrate that the dietary stilbenoid, RESV, stimulates S1P signaling of CAMP production through an NF-κB→C/EBPα-dependent mechanism, leading to enhanced antimicrobial defense against exogenous microbial pathogens.
Collapse
|
43
|
Ye Z, Wang N, Xia P, Wang E, Liao J, Guo Q. Parecoxib suppresses CHOP and Foxo1 nuclear translocation, but increases GRP78 levels in a rat model of focal ischemia. Neurochem Res 2013; 38:686-93. [PMID: 23325452 DOI: 10.1007/s11064-012-0953-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/07/2012] [Accepted: 12/19/2012] [Indexed: 11/26/2022]
Abstract
Parecoxib, a novel COX-2 inhibitor, functions as a neuroprotective agent and rescues neurons from cerebral ischemic reperfusion injury-induced apoptosis. However, the molecular mechanisms underlying parecoxib neuroprotection remain to be elucidated. There is growing evidence that endoplasmic reticulum (ER) stress plays an important role in neuronal death caused by brain ischemia. However, very little is known about the role of parecoxib in mediating pathophysiological reactions to ER stress induced by ischemic reperfusion injury. Therefore, in the present study, we investigated whether delayed administration of parecoxib attenuates brain damage via suppressing ER stress-induced cell death. Adult male Sprague-Dawley rats were administered parecoxib (10 or 30 mg kg(-1), IP) or isotonic saline twice a day starting 24 h after middle cerebral artery occlusion (MCAO) for three consecutive days. The expressions of glucose-regulated protein 78 (GRP78) and oxygen-regulated protein 150 (ORP150) and C/EBP-homologous protein (CHOP) and forkhead box protein O 1 (Foxo1) in cytoplasmic and nuclear fraction were determined by Western blotting. The levels of caspase-12 expression were checked by immunohistochemistry analysis, served as a marker for ER stress-induced apoptosis. Parecoxib significantly suppressed cerebral ischemic injury-induced nuclear translocation of CHOP and Foxo1 and attenuated the immunoreactivity of caspase-12 in ischemic penumbra. Furthermore, the protective effect of delayed administration of parecoxib was accompanied by an increased GRP78 and ORP150 expression. Therefore, our study suggested that elevation of GRP78 and ORP150, and suppression of CHOP and Foxo1 nuclear translocation may contribute to parecoxib-mediated neuroprotection during ER stress responses.
Collapse
Affiliation(s)
- Zhi Ye
- Department of Anesthesiology, The Affiliated Xiangya Hospital of Central South University, Changsha, 410078 Hunan Province, China
| | | | | | | | | | | |
Collapse
|
44
|
Lei X, Bone RN, Ali T, Wohltmann M, Gai Y, Goodwin KJ, Bohrer AE, Turk J, Ramanadham S. Genetic modulation of islet β-cell iPLA₂β expression provides evidence for its impact on β-cell apoptosis and autophagy. Islets 2013; 5:29-44. [PMID: 23411472 PMCID: PMC3662380 DOI: 10.4161/isl.23758] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
β-cell apoptosis is a significant contributor to β-cell dysfunction in diabetes and ER stress is among the factors that contributes to β-cell death. We previously identified that the Ca²⁺-independent phospholipase A₂β (iPLA₂β), which in islets is localized in β-cells, participates in ER stress-induced β-cell apoptosis. Here, direct assessment of iPLA₂β role was made using β-cell-specific iPLA₂β overexpressing (RIP-iPLA₂β-Tg) and globally iPLA₂β-deficient (iPLA₂β-KO) mice. Islets from Tg, but not KO, express higher islet iPLA₂β and neutral sphingomyelinase, decrease in sphingomyelins, and increase in ceramides, relative to WT group. ER stress induces iPLA₂β, ER stress factors, loss of mitochondrial membrane potential (∆Ψ), caspase-3 activation, and β-cell apoptosis in the WT and these are all amplified in the Tg group. Surprisingly, β-cells apoptosis while reduced in the KO is higher than in the WT group. This, however, was not accompanied by greater caspase-3 activation but with larger loss of ∆Ψ, suggesting that iPLA₂β deficiency impacts mitochondrial membrane integrity and causes apoptosis by a caspase-independent manner. Further, autophagy, as reflected by LC3-II accumulation, is increased in Tg and decreased in KO, relative to WT. Our findings suggest that (1) iPLA₂β impacts upstream (UPR) and downstream (ceramide generation and mitochondrial) pathways in β-cells and (2) both over- or under-expression of iPLA₂β is deleterious to the β-cells. Further, we present for the first time evidence for potential regulation of autophagy by iPLA₂β in islet β-cells. These findings support the hypothesis that iPLA₂β induction under stress, as in diabetes, is a key component to amplifying β-cell death processes.
Collapse
Affiliation(s)
- Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Robert N. Bone
- Department of Pathology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Tomader Ali
- Department of Cell, Developmental, and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Mary Wohltmann
- Department of Medicine; Mass Spectrometry Resource; Division of Endocrinology, Metabolism and Lipid Research; Washington University School of Medicine; St. Louis, MO USA
| | - Ying Gai
- Department of Cell, Developmental, and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Karen J. Goodwin
- Department of Cell, Developmental, and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Alan E. Bohrer
- Department of Medicine; Mass Spectrometry Resource; Division of Endocrinology, Metabolism and Lipid Research; Washington University School of Medicine; St. Louis, MO USA
| | - John Turk
- Department of Medicine; Mass Spectrometry Resource; Division of Endocrinology, Metabolism and Lipid Research; Washington University School of Medicine; St. Louis, MO USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
- Correspondence to: Sasanka Ramanadham,
| |
Collapse
|
45
|
A novel role of a lipid species, sphingosine-1-phosphate, in epithelial innate immunity. Mol Cell Biol 2012; 33:752-62. [PMID: 23230267 DOI: 10.1128/mcb.01103-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A variety of external perturbations can induce endoplasmic reticulum (ER) stress, followed by stimulation of epithelial cells to produce an innate immune element, the cathelicidin antimicrobial peptide (CAMP). ER stress also increases production of the proapoptotic lipid ceramide and its antiapoptotic metabolite, sphingosine-1-phosphate (S1P). We demonstrate here that S1P mediates ER stress-induced CAMP generation. Cellular ceramide and S1P levels rose in parallel with CAMP levels following addition of either exogenous cell-permeating ceramide (C2Cer), which increases S1P production, or thapsigargin (an ER stressor), applied to cultured human skin keratinocytes or topically to mouse skin. Knockdown of S1P lyase, which catabolizes S1P, enhanced ER stress-induced CAMP production in cultured cells and mouse skin. These and additional inhibitor studies show that S1P is responsible for ER stress-induced upregulation of CAMP expression. Increased CAMP expression is likely mediated via S1P-dependent NF-κB-C/EBPα activation. Finally, lysates of both ER-stressed and S1P-stimulated cells blocked growth of virulent Staphylococcus aureus in vitro, and topical C2Cer and LL-37 inhibited invasion of Staphylococcus aureus into murine skin. These studies suggest that S1P generation resulting in increased CAMP production comprises a novel regulatory mechanism of epithelial innate immune responses to external perturbations, pointing to a new therapeutic approach to enhance antimicrobial defense.
Collapse
|
46
|
Lei X, Zhang S, Bohrer A, Barbour SE, Ramanadham S. Role of calcium-independent phospholipase A(2)β in human pancreatic islet β-cell apoptosis. Am J Physiol Endocrinol Metab 2012; 303:E1386-95. [PMID: 23074238 PMCID: PMC3774083 DOI: 10.1152/ajpendo.00234.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Death of β-cells due to apoptosis is an important contributor to β-cell dysfunction in both type 1 and type 2 diabetes mellitus. Previously, we described participation of the Group VIA Ca(2+)-independent phospholipase A(2) (iPLA(2)β) in apoptosis of insulinoma cells due to ER stress. To examine whether islet β-cells are similarly susceptible to ER stress and undergo iPLA(2)β-mediated apoptosis, we assessed the ER stress response in human pancreatic islets. Here, we report that the iPLA(2)β protein is expressed predominantly in the β-cells of human islets and that thapsigargin-induced ER stress promotes β-cell apoptosis, as reflected by increases in activated caspase-3 in the β-cells. Furthermore, we demonstrate that ER stress is associated with increases in islet iPLA(2)β message, protein, and activity, iPLA(2)β-dependent induction of neutral sphingomyelinase and ceramide accumulation, and subsequent loss of mitochondrial membrane potential. We also observe that basal activated caspase-3 increases with age, raising the possibility that β-cells in older human subjects have a greater susceptibility to undergo apoptotic cell death. These findings reveal for the first time expression of iPLA(2)β protein in human islet β-cells and that induction of iPLA(2)β during ER stress contributes to human islet β-cell apoptosis. We hypothesize that modulation of iPLA(2)β activity might reduce β-cell apoptosis and this would be beneficial in delaying or preventing β-cell dysfunction associated with diabetes.
Collapse
Affiliation(s)
- Xiaoyong Lei
- Dept. of Cell, Developmental, and Integrative Biology, Univ. of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
47
|
Group VIB Phospholipase A(2) promotes proliferation of INS-1 insulinoma cells and attenuates lipid peroxidation and apoptosis induced by inflammatory cytokines and oxidant agents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:989372. [PMID: 23213352 PMCID: PMC3503447 DOI: 10.1155/2012/989372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 01/09/2023]
Abstract
Group VIB Phospholipase A(2) (iPLA(2)γ) is distributed in membranous organelles in which β-oxidation occurs, that is, mitochondria and peroxisomes, and is expressed by insulin-secreting pancreatic islet β-cells and INS-1 insulinoma cells, which can be injured by inflammatory cytokines, for example, IL-1β and IFN-γ, and by oxidants, for example, streptozotocin (STZ) or t-butyl-hydroperoxide (TBHP), via processes pertinent to mechanisms of β-cell loss in types 1 and 2 diabetes mellitus. We find that incubating INS-1 cells with IL-1β and IFN-γ, with STZ, or with TBHP causes increased expression of iPLA(2)γ mRNA and protein. We prepared INS-1 knockdown (KD) cell lines with reduced iPLA(2)γ expression, and they proliferate more slowly than control INS-1 cells and undergo increased membrane peroxidation in response to cytokines or oxidants. Accumulation of oxidized phospholipid molecular species in STZ-treated INS-1 cells was demonstrated by LC/MS/MS scanning, and the levels in iPLA(2)γ-KD cells exceeded those in control cells. iPLA(2)γ-KD INS-1 cells also exhibited higher levels of apoptosis than control cells when incubated with STZ or with IL-1β and IFN-γ. These findings suggest that iPLA(2)γ promotes β-cell proliferation and that its expression is increased during inflammation or oxidative stress as a mechanism to mitigate membrane injury that may enhance β-cell survival.
Collapse
|
48
|
Wu J, Sun P, Zhang X, Liu H, Jiang H, Zhu W, Wang H. Inhibition of GPR40 protects MIN6 β cells from palmitate-induced ER stress and apoptosis. J Cell Biochem 2012; 113:1152-8. [PMID: 22275065 DOI: 10.1002/jcb.23450] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic exposure to elevated concentration of free fatty acids (FFA) has been verified to induce endoplasmic reticulum (ER) stress, which leads to pancreatic β-cell apoptosis. As one of the medium and long chain FFA receptors, GPR40 is highly expressed in pancreatic β cells, mediates both acute and chronic effects of FFA on β-cell function, but the role of GPR40 in FFA-induced β-cell apoptosis remains unclear. In this study, we investigated the possible effects of GPR40 in palmitate-induced MIN6 β-cell apoptosis, and found that DC260126, a novel small molecular antagonist of GPR40, could protect MIN6 β cells from palmitate-induced ER stress and apoptosis. Similar results were observed in GPR40-deficient MIN6 cells, indicating that palmitate-induced β-cell apoptosis is at least partially dependent on ER stress pathway via GRP40.
Collapse
Affiliation(s)
- Jinwei Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Supale S, Li N, Brun T, Maechler P. Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol Metab 2012; 23:477-87. [PMID: 22766318 DOI: 10.1016/j.tem.2012.06.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/02/2012] [Accepted: 06/02/2012] [Indexed: 12/17/2022]
Abstract
In pancreatic β cells, mitochondria play a central role in coupling glucose metabolism to insulin exocytosis, thereby ensuring strict control of glucose-stimulated insulin secretion. Defects in mitochondrial function impair this metabolic coupling, and ultimately promote apoptosis and β cell death. Various factors have been identified that may contribute to mitochondrial dysfunction. In this review we address the emerging concept of complex links between these factors. We also discuss the role of the mitochondrial genome and mutations associated with diabetes, the effect of oxidative stress and reactive oxygen species, the sensitivity of mitochondria to lipotoxicity, and the adaptive dynamics of mitochondrial morphology. Better comprehension of the molecular mechanisms contributing to mitochondrial dysfunction will help drive the development of effective therapeutic approaches.
Collapse
Affiliation(s)
- Sachin Supale
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
50
|
Mitochondrial dynamics in cancer and neurodegenerative and neuroinflammatory diseases. Int J Cell Biol 2012; 2012:729290. [PMID: 22792111 PMCID: PMC3391904 DOI: 10.1155/2012/729290] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/12/2012] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are key organelles in the cell, hosting essential functions, from biosynthetic and metabolic pathways, to oxidative phosphorylation and ATP production, from calcium buffering to red-ox homeostasis and apoptotic signalling pathways. Mitochondria are also dynamic organelles, continuously fusing and dividing, and their localization, size and trafficking are finely regulated. Moreover, in recent decades, alterations in mitochondrial function and dynamics have been implicated in an increasing number of diseases. In this review, we focus on the relationship clarified hitherto between mitochondrial dynamics and cancer, neurodegenerative and neuroinflammatory diseases.
Collapse
|