1
|
Hubers N, Drouard G, Jansen R, Pool R, Hottenga JJ, Ollikainen M, Wang X, Willemsen G, Kaprio J, Boomsma DI, van Dongen J. Transcriptomic and Metabolomic Analyses in Monozygotic and Dizygotic Twins. Am J Med Genet A 2024:e63971. [PMID: 39676692 DOI: 10.1002/ajmg.a.63971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Monozygotic (MZ) and dizygotic (DZ) twins are studied to understand genetic and environmental influences on complex traits, however the mechanisms behind twinning are not completely understood. (Epi)genomic studies identified SNPs associated with DZ twinning and DNA methylation sites with MZ twinning. To find molecular biomarkers of twinning, we compared transcriptomics and metabolomics data from MZ and DZ twins. We analyzed 42,663 RNA transcripts in 1453 MZ twins and 1294 DZ twins from the Netherlands Twin Register (NTR), followed by sex-stratified analyses. The top 5% transcripts with lowest p-values were analyzed for replication in 217 MZ and 158 DZ twins from the older Finnish Twin cohort (FTC). In the NTR, one transcript (PURG) was significantly differentially expressed between MZ and DZ twins; but this did not replicate in FTC. Pathway analyses highlighted the WNT-pathway, previously associated with MZ twinning, and the TGF-B and SMAD pathway, previously associated with DZ twinning. Meta-analysis of 169 serum metabolites in 2797 MZ and 2040 DZ twins from the NTR, FTC and FinnTwin12, showed no metabolomic differences. Overall, we did not find replicable transcript-level expression differences in blood between MZ and DZ twins, but highlighted the TGF-B/SMAD pathway as a potential transcriptional biomarker for DZ twinning.
Collapse
Affiliation(s)
- Nikki Hubers
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Gabin Drouard
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Rick Jansen
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Psychiatry & Amsterdam Neuroscience - Complex Trait Genetics (VUmc) and Mood, Anxiety, Psychosis, Stress & Sleep, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Xiaoling Wang
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Gonneke Willemsen
- Faculty of Health, Sport and Wellbeing, Inholland University of Applied Sciences, Haarlem, The Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Dorret I Boomsma
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Maekawa M. Analysis of Metabolic Changes in Endogenous Metabolites and Diagnostic Biomarkers for Various Diseases Using Liquid Chromatography and Mass Spectrometry. Biol Pharm Bull 2024; 47:1087-1105. [PMID: 38825462 DOI: 10.1248/bpb.b24-00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Analysis of endogenous metabolites in various diseases is useful for searching diagnostic biomarkers and elucidating the molecular mechanisms of pathophysiology. The author and collaborators have developed some LC/tandem mass spectrometry (LC/MS/MS) methods for metabolites and applied them to disease-related samples. First, we identified urinary conjugated cholesterol metabolites and serum N-palmitoyl-O-phosphocholine serine as useful biomarkers for Niemann-Pick disease type C (NPC). For the purpose of intraoperative diagnosis of glioma patients, we developed the LC/MS/MS analysis methods for 2-hydroxyglutaric acid or cystine and found that they could be good differential biomarkers. For renal cell carcinoma, we searched for various biomarkers for early diagnosis, malignancy evaluation and recurrence prediction by global metabolome analysis and targeted LC/MS/MS analysis. In pathological analysis, we developed a simultaneous LC/MS/MS analysis method for 13 steroid hormones and applied it to NPC cells, we found 6 types of reductions in NPC model cells. For non-alcoholic steatohepatitis (NASH), model mice were prepared with special diet and plasma bile acids were measured, and as a result, hydrophilic bile acids were significantly increased. In addition, we developed an LC/MS/MS method for 17 sterols and analyzed liver cholesterol metabolites and found a decrease in phytosterols and cholesterol synthetic markers and an increase in non-enzymatic oxidative sterols in the pre-onset stage of NASH. We will continue to challenge themselves to add value to clinical practice based on cutting-edge analytical chemistry methodology.
Collapse
|
3
|
Zhou L, Montalvo AD, Collins JM, Wang D. Quantitative analysis of the UDP-glucuronosyltransferase transcriptome in human tissues. Pharmacol Res Perspect 2023; 11:e01154. [PMID: 37983911 PMCID: PMC10659769 DOI: 10.1002/prp2.1154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/22/2023] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are phase II drug metabolizing enzymes that play important roles in the detoxification of endogenous and exogenous substrates. The 22 human UGTs belong to four families (UGT1, UGT2, UGT3, and UGT8) and differ in their expression, substrate specificity, UDP-sugar preference, and physiological functions. Differential expression/activity of the UGTs contributes to interperson variability in drug responses and toxicity, hormone homeostasis, and disease/cancer risks. However, in normal tissues, the tissue-specific expression profiles and transcriptional regulation of the UGTs are still not fully understood. In this study, we comprehensively analyzed the transcriptome of 22 UGTs in 54 human tissues/regions using RNAseq data from GTEx. We then validated the findings in the liver and small intestine samples using real-time PCR. Our results showed large interindividual variability across tissues in the expression of each UGT and the overall composition of UGT pools, consisting of different UGTs and their splice isoforms. Our results also revealed coexpression of the UGTs, Cytochrome P450s, and many transcription factors in the liver, suggesting potential coregulation or functional coordination. Our results provide the groundwork for future studies to detail further the regulation of the expression and activity of the UGTs.
Collapse
Affiliation(s)
- Lucas Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Abelardo D. Montalvo
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Joseph M. Collins
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
4
|
Yang F, Wenzel M, Bureik M, Parr MK. Glucuronidation Pathways of 5- and 7-Hydroxypropranolol: Determination of Glucuronide Structures and Enzyme Selectivity. Molecules 2023; 28:7783. [PMID: 38067513 PMCID: PMC10707847 DOI: 10.3390/molecules28237783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Propranolol, a non-selective beta-blocker medication, has been utilized in the treatment of cardiovascular diseases for several decades. Its hydroxynaphthyl metabolites have been recognized to possess varying degrees of beta-blocker activity due to the unaltered side-chain. This study achieved the successful separation and identification of diastereomeric glucuronic metabolites derived from 4-, 5-, and 7-hydroxypropranolol (4-OHP, 5-OHP, and 7-OHP) in human urine. Subsequently, reaction phenotyping of 5- and 7-hydroxypropranolol by different uridine 5'-diphospho-glucuronosyltransferases (UGTs) was carried out, with a comparison to the glucuronidation of 4-hydroxypropranolol (4-OHP). Among the 19 UGT enzymes examined, UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2A1, and UGT2A2 were found to be involved in the glucuronidation of 5-OHP. Furthermore, UGT1A6 exhibited glucuronidation activity towards 7-OHP, along with the aforementioned eight UGTs. Results obtained by glucuronidation of corresponding methoxypropranolols and MS/MS analysis of 1,2-dimethylimidazole-4-sulfonyl (DMIS) derivatives of hydroxypropranolol glucuronides suggest that both the aromatic and aliphatic hydroxy groups of the hydroxypropranolols may be glucuronidated in vitro. However, the analysis of human urine samples collected after the administration of propranolol leads us to conclude that aromatic-linked glucuronidation is the preferred pathway under physiological conditions.
Collapse
Affiliation(s)
- Fan Yang
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; (F.Y.); (M.W.)
| | - Maxi Wenzel
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; (F.Y.); (M.W.)
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China;
| | - Maria Kristina Parr
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; (F.Y.); (M.W.)
| |
Collapse
|
5
|
Liu W, Li J, Zhao R, Lu Y, Huang P. The Uridine diphosphate (UDP)-glycosyltransferases (UGTs) superfamily: the role in tumor cell metabolism. Front Oncol 2023; 12:1088458. [PMID: 36741721 PMCID: PMC9892627 DOI: 10.3389/fonc.2022.1088458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
UDP-glycosyltransferases (UGTs), important enzymes in biotransformation, control the levels and distribution of numerous endogenous signaling molecules and the metabolism of a wide range of endogenous and exogenous chemicals. The UGT superfamily in mammals consists of the UGT1, UGT2, UGT3, and UGT8 families. UGTs are rate-limiting enzymes in the glucuronate pathway, and in tumors, they are either overexpressed or underexpressed. Alterations in their metabolism can affect gluconeogenesis and lipid metabolism pathways, leading to alterations in tumor cell metabolism, which affect cancer development and prognosis. Glucuronidation is the most common mammalian conjugation pathway. Most of its reactions are mainly catalyzed by UGT1A, UGT2A and UGT2B. The body excretes UGT-bound small lipophilic molecules through the bile, urine, or feces. UGTs conjugate a variety of tiny lipophilic molecules to sugars, such as galactose, xylose, acetylglucosamine, glucuronic acid, and glucose, thereby inactivating and making water-soluble substrates, such as carcinogens, medicines, steroids, lipids, fatty acids, and bile acids. This review summarizes the roles of members of the four UGT enzyme families in tumor function, metabolism, and multiple regulatory mechanisms, and its Inhibitors and inducers. The function of UGTs in lipid metabolism, drug metabolism, and hormone metabolism in tumor cells are among the most important topics covered.
Collapse
Affiliation(s)
| | | | | | - Yao Lu
- *Correspondence: Yao Lu, ; Panpan Huang,
| | | |
Collapse
|
6
|
The Somatic Mutation Landscape of UDP-Glycosyltransferase ( UGT) Genes in Human Cancers. Cancers (Basel) 2022; 14:cancers14225708. [PMID: 36428799 PMCID: PMC9688768 DOI: 10.3390/cancers14225708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The human UDP-glycosyltransferase (UGTs) superfamily has a critical role in the metabolism of anticancer drugs and numerous pro/anti-cancer molecules (e.g., steroids, lipids, fatty acids, bile acids and carcinogens). Recent studies have shown wide and abundant expression of UGT genes in human cancers. However, the extent to which UGT genes acquire somatic mutations within tumors remains to be systematically investigated. In the present study, our comprehensive analysis of the somatic mutation profiles of 10,069 tumors from 33 different TCGA cancer types identified 3427 somatic mutations in UGT genes. Overall, nearly 18% (1802/10,069) of the assessed tumors had mutations in UGT genes with huge variations in mutation frequency across different cancer types, ranging from over 25% in five cancers (COAD, LUAD, LUSC, SKCM and UCSC) to less than 5% in eight cancers (LAML, MESO, PCPG, PAAD, PRAD, TGCT, THYM and UVM). All 22 UGT genes showed somatic mutations in tumors, with UGT2B4, UGT3A1 and UGT3A2 showing the largest number of mutations (289, 307 and 255 mutations, respectively). Nearly 65% (2260/3427) of the mutations were missense, frame-shift and nonsense mutations that have been predicted to code for variant UGT proteins. Furthermore, about 10% (362/3427) of the mutations occurred in non-coding regions (5' UTR, 3' UTR and splice sites) that may be able to alter the efficiency of translation initiation, miRNA regulation or the splicing of UGT transcripts. In conclusion, our data show widespread somatic mutations of UGT genes in human cancers that may affect the capacity of cancer cells to metabolize anticancer drugs and endobiotics that control pro/anti-cancer signaling pathways. This highlights their potential utility as biomarkers for predicting therapeutic efficacy and clinical outcomes.
Collapse
|
7
|
Hoshi RA, Liu Y, Luttmann-Gibson H, Tiwari S, Giulianini F, Andres AM, Watrous JD, Cook NR, Costenbader KH, Okereke OI, Ridker PM, Manson JE, Lee IM, Vinayagamoorthy M, Cheng S, Copeland T, Jain M, Chasman DI, Demler OV, Mora S. Association of Physical Activity With Bioactive Lipids and Cardiovascular Events. Circ Res 2022; 131:e84-e99. [PMID: 35862024 PMCID: PMC9357171 DOI: 10.1161/circresaha.122.320952] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND To clarify the mechanisms underlying physical activity (PA)-related cardioprotection, we examined the association of PA with plasma bioactive lipids (BALs) and cardiovascular disease (CVD) events. We additionally performed genome-wide associations. METHODS PA-bioactive lipid associations were examined in VITAL (VITamin D and OmegA-3 TriaL)-clinical translational science center (REGISTRATION: URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT01169259; N=1032) and validated in JUPITER (Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin)-NC (REGISTRATION: URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT00239681; N=589), using linear models adjusted for age, sex, race, low-density lipoprotein-cholesterol, total-C, and smoking. Significant BALs were carried over to examine associations with incident CVD in 2 nested CVD case-control studies: VITAL-CVD (741 case-control pairs) and JUPITER-CVD (415 case-control pairs; validation). RESULTS We detected 145 PA-bioactive lipid validated associations (false discovery rate <0.1). Annotations were found for 6 of these BALs: 12,13-diHOME, 9,10-diHOME, lysoPC(15:0), oxymorphone-3b-D-glucuronide, cortisone, and oleoyl-glycerol. Genetic analysis within JUPITER-NC showed associations of 32 PA-related BALs with 22 single-nucleotide polymorphisms. From PA-related BALs, 12 are associated with CVD. CONCLUSIONS We identified a PA-related bioactive lipidome profile out of which 12 BALs also had opposite associations with incident CVD events.
Collapse
Affiliation(s)
- Rosangela A. Hoshi
- Center for Lipid Metabolomics, Division of Preventive Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yanyan Liu
- Center for Lipid Metabolomics, Division of Preventive Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Heike Luttmann-Gibson
- Center for Lipid Metabolomics, Division of Preventive Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Saumya Tiwari
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92037, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Allen M. Andres
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92037, USA
| | - Jeramie D. Watrous
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92037, USA
| | - Nancy R. Cook
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Karen H. Costenbader
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia I. Okereke
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Paul M Ridker
- Center for Lipid Metabolomics, Division of Preventive Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - JoAnn E. Manson
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - I-Min Lee
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Susan Cheng
- Smidt Heart Institute, Cedars-Sinai Medical Ctr, Los Angeles, CA 90048, USA
| | - Trisha Copeland
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohit Jain
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Olga V. Demler
- Center for Lipid Metabolomics, Division of Preventive Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland
| | - Samia Mora
- Center for Lipid Metabolomics, Division of Preventive Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Maekawa M, Mano N. Searching, Structural Determination, and Diagnostic Performance Evaluation of Biomarker Molecules for Niemann-Pick Disease Type C Using Liquid Chromatography/Tandem Mass Spectrometry. Mass Spectrom (Tokyo) 2022; 11:A0111. [PMID: 36713801 PMCID: PMC9853955 DOI: 10.5702/massspectrometry.a0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder that is characterized by progressive neuronal degeneration. Patients with NPC have a wide age of onset and various clinical symptoms. Therefore, the discovery and diagnosis of NPC are very difficult. Conventional laboratory tests are complicated and time consuming. In this context, biomarker searches have recently been performed. Our research group has previously also investigated NPC biomarkers based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) and related techniques. To identify biomarker candidates, nontargeted analysis with high-resolution MS and MS/MS scanning is commonly used. Structural speculation has been performed using LC/MS/MS fragmentation and chemical derivatization, while identification is performed by matching authentic standards and sample specimens. Diagnostic performance evaluation was performed using the validated LC/MS/MS method and analysis of samples from patients and control subjects. NPC biomarkers, which have been identified and evaluated in terms of performance, are various classes of lipid molecules. Oxysterols, cholenoic acids, and conjugates are cholesterol-derived molecules detected in the blood or urine. Plasma lyso-sphingolipids are biomarkers for both NPC and other lysosomal diseases. N-palmitoyl-O-phosphocholine-serine is a novel class of lipid biomarkers for NPC. This article reviews biomarkers for NPC and the analysis methods employed to that end.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan,Correspondence to: Masamitsu Maekawa, Department of Pharmaceutical Sciences, Tohoku University Hospital, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan, e-mail:
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
9
|
Uno Y, Uehara S, Yamazaki H. Drug-oxidizing and conjugating non-cytochrome P450 (non-P450) enzymes in cynomolgus monkeys and common marmosets as preclinical models for humans. Biochem Pharmacol 2021; 197:114887. [PMID: 34968483 DOI: 10.1016/j.bcp.2021.114887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Many drug oxidations and conjugations are mediated by a variety of cytochromes P450 (P450) and non-P450 enzymes in humans and non-human primates. These non-P450 enzymes include aldehyde oxidases (AOX), carboxylesterases (CES), flavin-containing monooxygenases (FMO), glutathione S-transferases (GST), arylamine N-acetyltransferases (NAT),sulfotransferases (SULT), and uridine 5'-diphospho-glucuronosyltransferases (UGT) and their substrates include both endobiotics and xenobiotics. Cynomolgus macaques (Macaca fascicularis, an Old-World monkey) are widely used in preclinical studies because of their genetic and physiological similarities to humans. However, many reports have indicated the usefulness of common marmosets (Callithrix jacchus, a New World monkey) as an alternative non-human primate model. Although knowledge of the drug-metabolizing properties of non-P450 enzymes in non-human primates is relatively limited, new research has started to provide an insight into the molecular characteristics of these enzymes in cynomolgus macaques and common marmosets. This mini-review provides collective information on the isoforms of non-P450 enzymes AOX, CES, FMO, GST, NAT, SULT, and UGT and their enzymatic profiles in cynomolgus macaques and common marmosets. In general, these non-P450 cynomolgus macaque and marmoset enzymes have high sequence identities and similar substrate recognitions to their human counterparts. However, these enzymes also exhibit some limited differences in function between species, just as P450 enzymes do, possibly due to small structural differences in amino acid residues. The findings summarized here provide a foundation for understanding the molecular mechanisms of polymorphic non-P450 enzymes and should contribute to the successful application of non-human primates as model animals for humans.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan
| | - Shotaro Uehara
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
10
|
Schmitz D, Ek WE, Berggren E, Höglund J, Karlsson T, Johansson Å. Genome-wide Association Study of Estradiol Levels and the Causal Effect of Estradiol on Bone Mineral Density. J Clin Endocrinol Metab 2021; 106:e4471-e4486. [PMID: 34255042 PMCID: PMC8530739 DOI: 10.1210/clinem/dgab507] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/22/2022]
Abstract
CONTEXT Estradiol is the primary female sex hormone and plays an important role for skeletal health in both sexes. Several enzymes are involved in estradiol metabolism, but few genome-wide association studies (GWAS) have been performed to characterize the genetic contribution to variation in estrogen levels. OBJECTIVE Identify genetic loci affecting estradiol levels and estimate causal effect of estradiol on bone mineral density (BMD). DESIGN We performed GWAS for estradiol in males (n = 147 690) and females (n = 163 985) from UK Biobank. Estradiol was analyzed as a binary phenotype above/below detection limit (175 pmol/L). We further estimated the causal effect of estradiol on BMD using Mendelian randomization. RESULTS We identified 14 independent loci associated (P < 5 × 10-8) with estradiol levels in males, of which 1 (CYP3A7) was genome-wide and 7 nominally (P < 0.05) significant in females. In addition, 1 female-specific locus was identified. Most loci contain functionally relevant genes that have not been discussed in relation to estradiol levels in previous GWAS (eg, SRD5A2, which encodes a steroid 5-alpha reductase that is involved in processing androgens, and UGT3A1 and UGT2B7, which encode enzymes likely to be involved in estradiol elimination). The allele that tags the O blood group at the ABO locus was associated with higher estradiol levels. We identified a causal effect of high estradiol levels on increased BMD in both males (P = 1.58 × 10-11) and females (P = 7.48 × 10-6). CONCLUSION Our findings further support the importance of the body's own estrogen to maintain skeletal health in males and in females.
Collapse
Affiliation(s)
- Daniel Schmitz
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Correspondence: Daniel Schmitz, MS, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden. E-mail:
| | - Weronica E Ek
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Elin Berggren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Julia Höglund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Torgny Karlsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Åsa Johansson, PhD, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden. E-mail:
| |
Collapse
|
11
|
Rong Y, Kiang TKL. Characterizations of Human UDP-Glucuronosyltransferase Enzymes in the Conjugation of p-Cresol. Toxicol Sci 2021; 176:285-296. [PMID: 32421801 DOI: 10.1093/toxsci/kfaa072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
p-Cresol is a uremic toxin that is formed by intestinal microbiota and extensively conjugated by first-pass metabolism. p-Cresol glucuronide exerts various forms of cellular toxicity in vitro and is accumulated in the plasma of subjects with kidney disease, where associations with adverse cardiovascular and renal outcomes are evident. The objective of this study was to determine the contributions of human UDP-glucuronosyltransferase (UGT) enzymes in the formation of p-cresol glucuronide. Utilizing commonly expressed hepatic or renal human recombinant UGTs (ie, hrUGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B10, 2B15, and 2B17), hrUGT1A6 and hrUGT1A9 exhibited the highest catalytic activities in the generation of p-cresol glucuronide. The kinetics of p-cresol glucuronide formation in hrUGT1A6 and pooled human liver microsomes were best described by the Hill equation and in hrUGT1A9 and pooled human kidney microsomes by substrate inhibition. Using inhibitory and selective UGT inhibitors (ie, acetaminophen or amentoflavone for UGT1A6 and niflumic acid for UGT1A9), UGT1A6 was identified the predominant enzyme responsible for p-cresol glucuronide production in pooled human liver (78.4%-81.3% contribution) and kidney (54.3%-62.9%) microsomes, whereas UGT1A9 provided minor contributions (2.8% and 35.5%, respectively). The relative contributions of UGT1A6 (72.6 ± 11.3%, mean ± SD) and UGT1A9 (5.7 ± 4.1%) in individual human liver microsomes from 12 adult donors were highly variable, where an inverse association (R = -.784, p = .003) between UGT1A6 contribution and UGT1A9 probe substrate activity (ie, mycophenolic acid) was evident. Our novel findings provide valuable tools for conducting further mechanistic studies and for designing clinical interventions to mitigate the toxicities associated with p-cresol glucuronide.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
12
|
Hu DG, Mackenzie PI, Hulin JA, McKinnon RA, Meech R. Circular RNAs of UDP-Glycosyltransferase ( UGT) Genes Expand the Complexity and Diversity of the UGT Transcriptome. Mol Pharmacol 2021; 99:488-503. [PMID: 33824186 DOI: 10.1124/molpharm.120.000225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/26/2021] [Indexed: 12/27/2022] Open
Abstract
The human UDP-glycosyltransferase (UGT) gene superfamily generates 22 canonical transcripts coding for functional enzymes and also produces nearly 150 variant UGT transcripts through alternative splicing and intergenic splicing. In the present study, our analysis of circRNA databases identified backsplicing events that predicted 85 circRNAs from UGT genes, with 33, 11, and 19 circRNAs from UGT1A, UGT2B4, UGT8, respectively. Most of these UGT circRNAs were reported by one database and had low abundance in cell- or tissue-specific contexts. Using reverse-transcriptase polymerase chain reaction with divergent primers and cDNA samples from human tissues and cell lines, we found 13 circRNAs from four UGT genes: UGT1A (three), UGT2B7 (one), UGT2B10 (one), and UGT8 (eight). Notably, all eight UGT8 circRNAs contain open reading frames that include the canonical start AUG codon and encode variant proteins that all have the common 274-amino acidN-terminal region of wild-type UGT8 protein. We further showed that one UGT8 circRNA (circ_UGT8-1) was broadly expressed in human tissues and cell lines, resistant to RNase R digestion, and predominately present in the cytoplasm. We cloned five UGT8 circRNAs into the Zinc finger with KRAB and SCAN domains 1 vector and transfected them into HEK293T cells. All these vectors produced both circRNAsand linear transcripts with varying circular/linear ratios (0.17-1.14).Western blotting and mass spectrometry assays revealed that only linear transcripts and not circRNAs were translated. In conclusion, our findings of nearly 100 circRNAs greatly expand the complexity and diversity of the UGT transcriptome; however, UGT circRNAs are expressed at a very low level in specific cellular contexts, and their biologic functions remain to be determined. SIGNIFICANCE STATEMENT: The human UGT gene transcriptome comprises 22 canonical transcripts coding for functional enzymes and approximately 150 alternatively spliced and chimeric variant transcripts. The present study identified nearly 100 circRNAs from UGT genes, thus greatly expanding the complexity and diversity of the UGT transcriptome. UGT circRNAs were expressed broadly in human tissues and cell lines; however, most showed very low abundance in tissue- and cell-specific contexts, and therefore their biological functions remain to be investigated.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Julie-Ann Hulin
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
13
|
Nair PC, Chau N, McKinnon RA, Miners JO. Arginine-259 of UGT2B7 Confers UDP-Sugar Selectivity. Mol Pharmacol 2020; 98:710-718. [PMID: 33008919 DOI: 10.1124/molpharm.120.000104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 11/22/2022] Open
Abstract
Enzymes of the human UDP-glycosyltransferase (UGT) superfamily typically catalyze the covalent addition of the sugar moiety from a UDP-sugar cofactor to relatively low-molecular weight lipophilic compounds. Although UDP-glucuronic acid (UDP-GlcUA) is most commonly employed as the cofactor by UGT1 and UGT2 family enzymes, UGT2B7 and several other enzymes can use both UDP-GlcUA and UDP-glucose (UDP-Glc), leading to the formation of glucuronide and glucoside conjugates. An investigation of UGT2B7-catalyzed morphine glycosidation indicated that glucuronidation is the principal route of metabolism because the binding affinity of UDP-GlcUA is higher than that of UDP-Glc. Currently, it is unclear which residues in the UGT2B7 cofactor binding domain are responsible for the preferential binding of UDP-GlcUA. Here, molecular dynamics (MD) simulations were performed together with site-directed mutagenesis and enzyme kinetic studies to identify residues within the UGT2B7 binding site responsible for the selective cofactor binding. MD simulations demonstrated that Arg259, which is located within the N-terminal domain, specifically interacts with UDP-GlcUA, whereby the side chain of Arg259 H-bonds and forms a salt bridge with the carboxylate group of glucuronic acid. Consistent with the MD simulations, substitution of Arg259 with Leu resulted in the loss of morphine, 4-methylumbelliferone, and zidovudine glucuronidation activity, but morphine glucosidation was preserved. SIGNIFICANCE STATEMENT: Despite the importance of uridine diphosphate glycosyltransferase (UGT) enzymes in drug and chemical metabolism, cofactor binding interactions are incompletely understood, as is the molecular basis for preferential glucuronidation by UGT1 and UGT2 family enzymes. The study demonstrated that long timescale molecular dynamics (MD) simulations with a UGT2B7 homology model can be used to identify critical binding interactions of a UGT protein with UDP-sugar cofactors. Further, the data provide a basis for the application of MD simulations to the elucidation of UGT-aglycone interactions.
Collapse
Affiliation(s)
- Pramod C Nair
- Department of Clinical Pharmacology (P.C.N., N.C., J.O.M.) and Flinders Health and Medical Research Institute (FHMRI) Cancer Program (P.C.N., R.A.M., J.O.M.), Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, South Australia, Australia
| | - Nuy Chau
- Department of Clinical Pharmacology (P.C.N., N.C., J.O.M.) and Flinders Health and Medical Research Institute (FHMRI) Cancer Program (P.C.N., R.A.M., J.O.M.), Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology (P.C.N., N.C., J.O.M.) and Flinders Health and Medical Research Institute (FHMRI) Cancer Program (P.C.N., R.A.M., J.O.M.), Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, South Australia, Australia
| | - John O Miners
- Department of Clinical Pharmacology (P.C.N., N.C., J.O.M.) and Flinders Health and Medical Research Institute (FHMRI) Cancer Program (P.C.N., R.A.M., J.O.M.), Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, South Australia, Australia
| |
Collapse
|
14
|
Miners JO, Rowland A, Novak JJ, Lapham K, Goosen TC. Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol Ther 2020; 218:107689. [PMID: 32980440 DOI: 10.1016/j.pharmthera.2020.107689] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
Enzymes of the UDP-glucuronosyltransferase (UGT) superfamily contribute to the elimination of drugs from almost all therapeutic classes. Awareness of the importance of glucuronidation as a drug clearance mechanism along with increased knowledge of the enzymology of drug and chemical metabolism has stimulated interest in the development and application of approaches for the characterisation of human drug glucuronidation in vitro, in particular reaction phenotyping (the fractional contribution of the individual UGT enzymes responsible for the glucuronidation of a given drug), assessment of metabolic stability, and UGT enzyme inhibition by drugs and other xenobiotics. In turn, this has permitted the implementation of in vitro - in vivo extrapolation approaches for the prediction of drug metabolic clearance, intestinal availability, and drug-drug interaction liability, all of which are of considerable importance in pre-clinical drug development. Indeed, regulatory agencies (FDA and EMA) require UGT reaction phenotyping for new chemical entities if glucuronidation accounts for ≥25% of total metabolism. In vitro studies are most commonly performed with recombinant UGT enzymes and human liver microsomes (HLM) as the enzyme sources. Despite the widespread use of in vitro approaches for the characterisation of drug and chemical glucuronidation by HLM and recombinant enzymes, evidence-based guidelines relating to experimental approaches are lacking. Here we present evidence-based strategies for the characterisation of drug and chemical glucuronidation in vitro, and for UGT reaction phenotyping. We anticipate that the strategies will inform practice, encourage development of standardised experimental procedures where feasible, and guide ongoing research in the field.
Collapse
Affiliation(s)
- John O Miners
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
15
|
Öeren M, Walton PJ, Hunt PA, Ponting DJ, Segall MD. Predicting reactivity to drug metabolism: beyond P450s-modelling FMOs and UGTs. J Comput Aided Mol Des 2020; 35:541-555. [PMID: 32533369 DOI: 10.1007/s10822-020-00321-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/07/2020] [Indexed: 11/28/2022]
Abstract
We present a study based on density functional theory calculations to explore the rate limiting steps of product formation for oxidation by Flavin-containing Monooxygenase (FMO) and glucuronidation by the UDP-glucuronosyltransferase (UGT) family of enzymes. FMOs are responsible for the modification phase of metabolism of a wide diversity of drugs, working in conjunction with Cytochrome P450 (CYP) family of enzymes, and UGTs are the most important class of drug conjugation enzymes. Reactivity calculations are important for prediction of metabolism by CYPs and reactivity alone explains around 70-85% of the experimentally observed sites of metabolism within CYP substrates. In the current work we extend this approach to propose model systems which can be used to calculate the activation energies, i.e. reactivity, for the rate-limiting steps for both FMO oxidation and glucuronidation of potential sites of metabolism. These results are validated by comparison with the experimentally observed reaction rates and sites of metabolism, indicating that the presented models are suitable to provide the basis of a reactivity component within generalizable models to predict either FMO or UGT metabolism.
Collapse
Affiliation(s)
- Mario Öeren
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge, CB25 9PB, UK.
| | - Peter J Walton
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge, CB25 9PB, UK.,School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Peter A Hunt
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge, CB25 9PB, UK
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - Matthew D Segall
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge, CB25 9PB, UK
| |
Collapse
|
16
|
Uno Y, Yamazaki H. Molecular characterization of UDP-glucuronosyltransferases 3A and 8A in cynomolgus macaques. Drug Metab Pharmacokinet 2020; 35:397-400. [PMID: 32646660 DOI: 10.1016/j.dmpk.2020.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 11/26/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are drug-metabolizing enzymes essential for the metabolism of endogenous substrates and xenobiotics. The cynomolgus macaque is a nonhuman primate species widely used in drug metabolism studies. The molecular characteristics of UGTs have been extensively investigated in humans, but they remain to be elucidated in cynomolgus macaques. In this study, cynomolgus macaque UGT3A1, UGT3A2, and UGT8A1 cDNAs were isolated and characterized. Amino acid sequences deduced from cynomolgus UGT3A1, UGT3A2, and UGT8A1 cDNAs were highly identical with their human orthologs (93, 96, and 99%, respectively) and were closely clustered in a phylogenetic tree. In the genome, cynomolgus UGT3A and UGT8A genes were located in the regions corresponding to those of their human orthologs. Among the 10 tissue types analyzed, expression of cynomolgus UGT3A1 and UGT3A2 mRNAs was detected in liver, kidney, and testis; the UGT3A1 and UGT3A2 mRNAs were most abundant in liver and testis, respectively. Cynomolgus UGT8A1 was most abundantly expressed in kidney, followed by brain, jejunum, and testis. These results suggest that cynomolgus UGT3As and UGT8A1 have molecular similarities to their human orthologs.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, 890-8580, Japan; Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, 642-0017, Japan.
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
17
|
Vergara AG, Watson CJW, Chen G, Lazarus P. UDP-Glycosyltransferase 3A Metabolism of Polycyclic Aromatic Hydrocarbons: Potential Importance in Aerodigestive Tract Tissues. Drug Metab Dispos 2020; 48:160-168. [PMID: 31836608 PMCID: PMC7011115 DOI: 10.1124/dmd.119.089284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/27/2019] [Indexed: 01/08/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are potent carcinogens and are a primary risk factor for the development of lung and other aerodigestive tract cancers in smokers. The detoxification of PAHs by glucuronidation is well-characterized for the UDP-glycosyltransferase (UGT) 1A, 2A, and 2B subfamilies; however, the role of the UGT3A subfamily in PAH metabolism remains poorly understood. UGT3A enzymes are functionally distinct from other UGT subfamilies (which use UDP-glucuronic acid as a cosubstrate) due to their utilization of alternative cosubstrates (UDP-N-acetylglucosamine for UGT3A1, and UDP-glucose and UDP-xylose for UGT3A2). The goal of the present study was to characterize UGT3A glycosylation activity against PAHs and examine their expression in human aerodigestive tract tissues. In vitro metabolism assays using UGT3A2-overexpressing cell microsomes indicated that UGT3A2 exhibits glycosylation activity against all of the simple and complex PAHs tested. The V max/K m ratios for UGT3A2 activity with UDP-xylose versus UDP-glucose as the cosubstrate ranged from 0.65 to 4.4 for all PAHs tested, demonstrating that PAH glycosylation may be occurring at rates up to 4.4-fold higher with UDP-xylose than with UDP-glucose. Limited glycosylation activity was observed against PAHs with UGT3A1-overexpressing cell microsomes. While UGT3A2 exhibited low levels of hepatic expression, it was shown by western blot analysis to be widely expressed in aerodigestive tract tissues. Conversely, UGT3A1 exhibited the highest expression in liver with lower expression in aerodigestive tract tissues. These data suggest that UGT3A2 plays an important role in the detoxification of PAHs in aerodigestive tract tissues, and that there may be cosubstrate-dependent differences in the detoxification of PAHs by UGT3A2. SIGNIFICANCE STATEMENT: UGT3A2 is highly active against PAHs with either UDP-glucose or UDP-xylose as a cosubstrate. UGT3A1 exhibited low levels of activity against PAHs. UGT3A1 is highly expressed in liver while UGT3A2 is well expressed in extrahepatic tissues. UGT3A2 may be an important detoxifier of PAHs in humans.
Collapse
Affiliation(s)
- Ana G Vergara
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Christy J W Watson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Gang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
18
|
Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer 2020; 122:1277-1287. [PMID: 32047295 PMCID: PMC7188667 DOI: 10.1038/s41416-019-0722-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
The best-known role of UDP-glucuronosyltransferase enzymes (UGTs) in cancer is the metabolic inactivation of drug therapies. By conjugating glucuronic acid to lipophilic drugs, UGTs impair the biological activity and enhance the water solubility of these agents, driving their elimination. Multiple clinical observations support an expanding role for UGTs as modulators of the drug response and in mediating drug resistance in numerous cancer types. However, accumulating evidence also suggests an influence of the UGT pathway on cancer progression. Dysregulation of the expression and activity of UGTs has been associated with the progression of several cancers, arguing for UGTs as possible mediators of oncogenic pathways and/or disease accelerators in a drug-naive context. The consequences of altered UGT activity on tumour biology are incompletely understood. They might be associated with perturbed levels of bioactive endogenous metabolites such as steroids and bioactive lipids that are inactivated by UGTs or through non-enzymatic mechanisms, thereby eliciting oncogenic signalling cascades. This review highlights the evidence supporting dual roles for the UGT pathway, affecting cancer progression and drug resistance. Pharmacogenomic testing of UGT profiles in patients and the development of therapeutic options that impair UGT actions could provide useful prognostic and predictive biomarkers and enhance the efficacy of anti-cancer drugs.
Collapse
|
19
|
Liu Y, Badée J, Takahashi RH, Schmidt S, Parrott N, Fowler S, Mackenzie PI, Coughtrie MWH, Collier AC. Coexpression of Human Hepatic Uridine Diphosphate Glucuronosyltransferase Proteins: Implications for Ontogenetic Mechanisms and Isoform Coregulation. J Clin Pharmacol 2019; 60:722-733. [DOI: 10.1002/jcph.1571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Yuejian Liu
- Faculty of Pharmaceutical SciencesThe University of British Columbia Vancouver British Columbia Canada
| | - Justine Badée
- Novartis Institutes for BioMedical Research–Translational Medicine PK Sciences–Modeling & Simulation PBPK Novartis Campus Basel Switzerland
| | | | - Stephan Schmidt
- Center for Pharmacometrics & Systems PharmacologyDepartment of Pharmaceutics Lake Nona (Orlando)University of Florida Orlando Florida USA
| | - Neil Parrott
- Pharmaceutical SciencesRoche Pharma Research and Early DevelopmentRoche Innovation Centre Basel Basel Switzerland
| | - Stephen Fowler
- Pharmaceutical SciencesRoche Pharma Research and Early DevelopmentRoche Innovation Centre Basel Basel Switzerland
| | - Peter I. Mackenzie
- Department of Clinical PharmacologyFlinders University of South Australia Adelaide Australia
| | - Michael W. H. Coughtrie
- Faculty of Pharmaceutical SciencesThe University of British Columbia Vancouver British Columbia Canada
| | - Abby C. Collier
- Faculty of Pharmaceutical SciencesThe University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
20
|
Hu DG, Hulin JUA, Nair PC, Haines AZ, McKinnon RA, Mackenzie PI, Meech R. The UGTome: The expanding diversity of UDP glycosyltransferases and its impact on small molecule metabolism. Pharmacol Ther 2019; 204:107414. [PMID: 31647974 DOI: 10.1016/j.pharmthera.2019.107414] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
Abstract
The UDP glycosyltransferase (UGT) superfamily of enzymes is responsible for the metabolism and clearance of thousands of lipophilic chemicals including drugs, toxins and endogenous signaling molecules. They provide a protective interface between the organism and its chemical-rich environment, as well as controlling critical signaling pathways to maintain healthy tissue function. UGTs are associated with drug responses and interactions, as well as a wide range of diseases including cancer. The human genome contains 22 UGT genes; however as befitting their exceptionally diverse substrate ranges and biological activities, the output of these UGT genes is functionally diversified by multiple processes including alternative splicing, post-translational modification, homo- and hetero-oligomerization, and interactions with other proteins. All UGT genes are subject to extensive alternative splicing generating variant/truncated UGT proteins with altered functions including the capacity to dominantly modulate/inhibit cognate full-length forms. Heterotypic oligomerization of different UGTs can alter kinetic properties relative to monotypic complexes, and potentially produce novel substrate specificities. Moreover, the recently profiled interactions of UGTs with non-UGT proteins may facilitate coordination between different metabolic processes, as well as providing opportunities for UGTs to engage in novel 'moonlighting' functions. Herein we provide a detailed and comprehensive review of all known modes of UGT functional diversification and propose a UGTome model to describe the resulting expansion of metabolic capacity and its potential to modulate drug/xenobiotic responses and cell behaviours in normal and disease contexts.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - J Ulie-Ann Hulin
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C Nair
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z Haines
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia.
| |
Collapse
|
21
|
Maekawa M, Jinnoh I, Narita A, Iida T, Saigusa D, Iwahori A, Nittono H, Okuyama T, Eto Y, Ohno K, Clayton PT, Yamaguchi H, Mano N. Investigation of diagnostic performance of five urinary cholesterol metabolites for Niemann-Pick disease type C. J Lipid Res 2019; 60:2074-2081. [PMID: 31586016 DOI: 10.1194/jlr.m093971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder characterized by progressive nervous degeneration. Because of the diversity of clinical symptoms and onset age, the diagnosis of this disease is difficult. Therefore, biomarker tests have attracted significant attention for earlier diagnostics. In this study, we developed a simultaneous analysis method for five urinary conjugated cholesterol metabolites, which are potential diagnostic biomarkers for a rapid, convenient, and noninvasive chemical diagnosis, using LC/MS/MS. By the method, their urinary concentrations were quantified and the NPC diagnostic performances were evaluated. The developed LC/MS/MS method showed high accuracy and satisfied all analytical method validation criteria. When the urine of healthy controls and patients with NPC was analyzed, three of five urinary conjugated cholesterol metabolite concentrations corrected by urinary creatinine were significantly higher in the patients with NPC. As a result of receiver operating characteristics analysis, these urinary metabolites might have excellent diagnostic marker performance. 3β-Sulfooxy-7β-hydroxy-5-cholenoic acid showed particularly excellent diagnostic performance with both 100% clinical sensitivity and specificity, suggesting that it is a useful NPC diagnostic marker. The urinary conjugated cholesterol metabolites exhibited high NPC diagnostic marker performance and could be used for NPC diagnosis.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Aoba-ku, Sendai 980-8574, Japan
| | - Isamu Jinnoh
- Faculty of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai 980-8574, Japan
| | - Aya Narita
- Division of Child Neurology, Tottori University Hospital, Yonago, Tottori 683-8503, Japan
| | - Takashi Iida
- College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550, Japan
| | - Daisuke Saigusa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Aoba-ku, Sendai 980-8574, Japan.,Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai 980-8575, Japan
| | - Anna Iwahori
- Faculty of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai 980-8574, Japan
| | - Hiroshi Nittono
- Junshin Clinic Bile Acid Institute, Meguro-ku, Tokyo 152-0011, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yoshikatsu Eto
- Advanced Clinical Research Center, Institute for Neurological Disorders, Asou-ku, Kawasaki, Kanagawa 215-0026, Japan
| | - Kousaku Ohno
- Division of Child Neurology, Tottori University Hospital, Yonago, Tottori 683-8503, Japan
| | - Peter T Clayton
- Biochemistry Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Aoba-ku, Sendai 980-8574, Japan.,Faculty of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Aoba-ku, Sendai 980-8574, Japan.,Faculty of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai 980-8574, Japan
| |
Collapse
|
22
|
Gotoh-Saito S, Abe T, Furukawa Y, Oda S, Yokoi T, Finel M, Hatakeyama M, Fukami T, Nakajima M. Characterization of human UGT2A3 expression using a prepared specific antibody against UGT2A3. Drug Metab Pharmacokinet 2019; 34:280-286. [PMID: 31262603 DOI: 10.1016/j.dmpk.2019.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 11/29/2022]
Abstract
UDP-Glucuronosyltransferase (UGT) 2A3 belongs to a UGT superfamily of phase II drug-metabolizing enzymes that catalyzes the glucuronidation of many endobiotics and xenobiotics. Previous studies have demonstrated that UGT2A3 is expressed in the human liver, small intestine, and kidney at the mRNA level; however, its protein expression has not been determined. Evaluation of the protein expression of UGT2A3 would be useful to determine its role at the tissue level. In this study, we prepared a specific antibody against human UGT2A3 and evaluated the relative expression of UGT2A3 in the human liver, small intestine, and kidney. Western blot analysis indicated that this antibody is specific to UGT2A3 because it did not cross-react with other human UGT isoforms or rodent UGTs. UGT2A3 expression in the human small intestine was higher than that in the liver and kidney. Via treatment with endoglycosidase, it was clearly demonstrated that UGT2A3 was N-glycosylated. UGT2A3 protein levels were significantly correlated with UGT2A3 mRNA levels in a panel of 28 human liver samples (r = 0.64, p < 0.001). In conclusion, we successfully prepared a specific antibody against UGT2A3. This antibody would be useful to evaluate the physiological, pharmacological, and toxicological roles of UGT2A3 in human tissues.
Collapse
Affiliation(s)
- Saki Gotoh-Saito
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takayuki Abe
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yoichi Furukawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shingo Oda
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tsuyoshi Yokoi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
23
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
24
|
Diagnostic performance evaluation of sulfate-conjugated cholesterol metabolites as urinary biomarkers of Niemann-Pick disease type C. Clin Chim Acta 2019; 494:58-63. [PMID: 30876856 DOI: 10.1016/j.cca.2019.03.1610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Niemann-Pick disease type C (NPC) is an autosomal recessive inherited disorder with progressive neuronal degeneration. Because conventional diagnostic methods are complicated and invasive, biomarker tests have drawn attention. We aimed to evaluate three urinary conjugated cholesterol metabolites as diagnostic biomarkers for NPC. METHODS Urine samples from 23 patients with NPC, 28 healthy controls, and 7 patients with inherited metabolic disorders were analyzed. 3β-Sulfooxy-7β-N-acetylglucosaminyl-5-cholen-24-oic acid and its glycine and taurine conjugates in urine were quantified by liquid chromatography-tandem mass spectrometry. The diagnostic performance of the three metabolites and their total concentration was evaluated. RESULT Creatinine-corrected concentrations of three metabolites and their total concentration were all significantly higher in NPC patients (0.0098 < P < .0448). The area under the receiver operating curve for all metabolites exceeded 0.95, the clinical specificity was 92-100%, and the clinical sensitivity was ~95%. In the urine of patients with other inherited metabolic diseases, the concentrations of the metabolites were lower than those in the urine of patients with NPC. CONCLUSION These conjugated cholesterol metabolites in urine can serve as useful diagnostic markers for noninvasive screening of NPC.
Collapse
|
25
|
Chau N, Kaya L, Lewis BC, Mackenzie PI, Miners JO. Drug and Chemical Glucosidation by Control Supersomes and Membranes from Spodoptera frugiperda (Sf) 9 Cells: Implications for the Apparent Glucuronidation of Xenobiotics by UDP-glucuronosyltransferase 1A5. Drug Metab Dispos 2018; 47:271-278. [PMID: 30541877 DOI: 10.1124/dmd.118.084947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/29/2018] [Indexed: 01/13/2023] Open
Abstract
Accumulating evidence indicates that several human UDP-glucuronosyltransferase (UGT) enzymes catalyze both glucuronidation and glucosidation reactions. Baculovirus-infected insect cells [Trichoplusia ni and Spodoptera frugiperda (Sf9)] are used widely for the expression of recombinant human UGT enzymes. Following the observation that control Supersomes (c-SUP) express a native enzyme capable of glucosidating morphine, we characterized the glucosidation of a series of aglycones with a hydroxyl (aliphatic or phenolic), carboxylic acid, or amine functional group by c-SUP and membranes from uninfected Sf9 cells. Although both enzyme sources glucosidated the phenolic substrates investigated, albeit with differing activities, differences were observed in the selectivities of the native UDP-glucosyltransferases toward aliphatic alcohols, carboxylic acids, and amines. For example, zidovudine was solely glucosidated by c-SUP. By contrast, c-SUP lacked activity toward the amines lamotrigine and trifluoperazine and did not form the acyl glucoside of mycophenolic acid, reactions all catalyzed by uninfected Sf9 membranes. Glucosidation intrinsic clearances were high for several substrates, notably 1-hydroxypyrene (∼1400-1900 µl/min⋅mg). The results underscore the importance of including control cell membranes in the investigation of drug and chemical glucosidation by UGT enzymes expressed in T. ni (High-Five) and Sf9 cells. In a coincident study, we observed that UGT1A5 expressed in Sf9, human embryonic kidney 293T, and COS7 cells lacked glucuronidation activity toward prototypic phenolic substrates. However, Sf9 cells expressing UGT1A5 glucosidated 1-hydroxypyrene with UDP-glucuronic acid as the cofactor, presumably due to the presence of UDP-glucose as an impurity. Artifactual glucosidation may explain, at least in part, a previous report of phenolic glucuronidation by UGT1A5.
Collapse
Affiliation(s)
- Nuy Chau
- Department of Clinical Pharmacology (N.C., L.K., B.C.L., P.I.M., J.O.M.) and Flinders Centre for Innovation in Cancer (B.C.L., P.I.M., J.O.M.), Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Leyla Kaya
- Department of Clinical Pharmacology (N.C., L.K., B.C.L., P.I.M., J.O.M.) and Flinders Centre for Innovation in Cancer (B.C.L., P.I.M., J.O.M.), Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Benjamin C Lewis
- Department of Clinical Pharmacology (N.C., L.K., B.C.L., P.I.M., J.O.M.) and Flinders Centre for Innovation in Cancer (B.C.L., P.I.M., J.O.M.), Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology (N.C., L.K., B.C.L., P.I.M., J.O.M.) and Flinders Centre for Innovation in Cancer (B.C.L., P.I.M., J.O.M.), Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - John O Miners
- Department of Clinical Pharmacology (N.C., L.K., B.C.L., P.I.M., J.O.M.) and Flinders Centre for Innovation in Cancer (B.C.L., P.I.M., J.O.M.), Flinders University College of Medicine and Public Health, Adelaide, Australia
| |
Collapse
|
26
|
Rioux N, Smith S, Korpal M, O’Shea M, Prajapati S, Zheng GZ, Warmuth M, Smith PG. Nonclinical pharmacokinetics and in vitro metabolism of H3B-6545, a novel selective ERα covalent antagonist (SERCA). Cancer Chemother Pharmacol 2018; 83:151-160. [DOI: 10.1007/s00280-018-3716-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
|
27
|
Lu D, Dong D, Xie Q, Li Z, Wu B. Disposition of Mianserin and Cyclizine in UGT2B10-Overexpressing Human Embryonic Kidney 293 Cells: Identification of UGT2B10 as a Novel N-Glucosidation Enzyme and Breast Cancer Resistance Protein as an N-Glucoside Transporter. Drug Metab Dispos 2018; 46:970-979. [DOI: 10.1124/dmd.118.080804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/17/2018] [Indexed: 01/15/2023] Open
|
28
|
Wang C, Chen F, Liu Y, Xu Q, Guo L, Zhang X, Ruan Y, Shi Y, Shen L, Li M, Du H, Sun X, Ma J, He L, Qin S. Genetic Association of Drug Response to Erlotinib in Chinese Advanced Non-small Cell Lung Cancer Patients. Front Pharmacol 2018; 9:360. [PMID: 29695969 PMCID: PMC5904969 DOI: 10.3389/fphar.2018.00360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/27/2018] [Indexed: 01/17/2023] Open
Abstract
The efficacy of erlotinib treatment for advanced non-small cell lung cancer (NSCLC) is due to its action as an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). Patients treated with erlotinib experience different drug responses. The effect of germline mutations on therapeutic responses and adverse drug responses (ADRs) to erlotinib in Chinese patients requires elucidation. Sixty Han Chinese advanced non-small cell lung cancer patients received erlotinib monotherapy and, for each participant, 76 candidate genes (related to EGFR signaling, drug metabolism and drug transport pathways) were sequenced and analyzed. The single-nucleotide polymorphisms (SNPs) rs1042640 in UGT1A10, rs1060463, and rs1064796 in CYP4F11, and rs2074900 in CYP4F2 were significantly associated with therapeutic responses to erlotinib. Rs1064796 in CYP4F11 and rs10045685 in UGT3A1 were significantly associated with adverse drug reaction. Moreover, analysis of a validation cohort confirmed the significant association between rs10045685 in UGT3A1 and erlotinib adverse drug response(unadjusted p = 0.015). This study provides comprehensive, systematic analyses of genetic variants associated with responses to erlotinib in Chinese advanced non-small cell lung cancer patients. Newly-identified SNPs may serve as promising markers to predict responses and safety in erlotinib-treated advanced non-small cell lung cancer patients after chemotherapy doublet.
Collapse
Affiliation(s)
- Cong Wang
- Life Science College, Anhui Medical University, Hefei, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Fang Chen
- Life Science College, Anhui Medical University, Hefei, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yichen Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Liang Guo
- The Fourth Hospital of Jinan City, Taishan Medical College, Jinan, China
| | - Xiaoqing Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunfeng Ruan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Ye Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Huihui Du
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofang Sun
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingsong Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Shanghai Center for Women and Children's Health, Shanghai, China
| |
Collapse
|
29
|
Yousri NA, Fakhro KA, Robay A, Rodriguez-Flores JL, Mohney RP, Zeriri H, Odeh T, Kader SA, Aldous EK, Thareja G, Kumar M, Al-Shakaki A, Chidiac OM, Mohamoud YA, Mezey JG, Malek JA, Crystal RG, Suhre K. Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population. Nat Commun 2018; 9:333. [PMID: 29362361 PMCID: PMC5780481 DOI: 10.1038/s41467-017-01972-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/30/2017] [Indexed: 12/30/2022] Open
Abstract
Metabolomics-genome-wide association studies (mGWAS) have uncovered many metabolic quantitative trait loci (mQTLs) influencing human metabolic individuality, though predominantly in European cohorts. By combining whole-exome sequencing with a high-resolution metabolomics profiling for a highly consanguineous Middle Eastern population, we discover 21 common variant and 12 functional rare variant mQTLs, of which 45% are novel altogether. We fine-map 10 common variant mQTLs to new metabolite ratio associations, and 11 common variant mQTLs to putative protein-altering variants. This is the first work to report common and rare variant mQTLs linked to diseases and/or pharmacological targets in a consanguineous Arab cohort, with wide implications for precision medicine in the Middle East. Blood metabolites are influenced by a combination of genetic and environmental factors. Here, Yousri and colleagues perform a whole-exome sequencing study in combination with a metabolomics analysis to identify metabolic quantitative trait loci in a Middle Eastern population.
Collapse
Affiliation(s)
- Noha A Yousri
- Genetic Medicine, Weill Cornell Medicine-Qatar, PO Box 24144, Doha, Qatar. .,Computer and Systems Engineering, Alexandria University, Alexandria, Egypt.
| | - Khalid A Fakhro
- Genetic Medicine, Weill Cornell Medicine-Qatar, PO Box 24144, Doha, Qatar. .,Sidra Medical Research Center, Department of Human Genetics, PO Box 26999, Doha, Qatar.
| | - Amal Robay
- Genetic Medicine, Weill Cornell Medicine-Qatar, PO Box 24144, Doha, Qatar
| | | | | | - Hassina Zeriri
- Genetic Medicine, Weill Cornell Medicine-Qatar, PO Box 24144, Doha, Qatar
| | - Tala Odeh
- Genetic Medicine, Weill Cornell Medicine-Qatar, PO Box 24144, Doha, Qatar
| | - Sara Abdul Kader
- Physiology and Biophysics, Weill Cornell Medicine-Qatar, PO Box 24144, Doha, Qatar
| | - Eman K Aldous
- Genomics Core, Weill Cornell Medicine-Qatar, PO Box 24144, Doha, Qatar
| | - Gaurav Thareja
- Physiology and Biophysics, Weill Cornell Medicine-Qatar, PO Box 24144, Doha, Qatar
| | - Manish Kumar
- Physiology and Biophysics, Weill Cornell Medicine-Qatar, PO Box 24144, Doha, Qatar
| | - Alya Al-Shakaki
- Genetic Medicine, Weill Cornell Medicine-Qatar, PO Box 24144, Doha, Qatar
| | - Omar M Chidiac
- Genetic Medicine, Weill Cornell Medicine-Qatar, PO Box 24144, Doha, Qatar
| | - Yasmin A Mohamoud
- Genomics Core, Weill Cornell Medicine-Qatar, PO Box 24144, Doha, Qatar
| | - Jason G Mezey
- Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Joel A Malek
- Genetic Medicine, Weill Cornell Medicine-Qatar, PO Box 24144, Doha, Qatar.,Genomics Core, Weill Cornell Medicine-Qatar, PO Box 24144, Doha, Qatar
| | - Ronald G Crystal
- Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Karsten Suhre
- Physiology and Biophysics, Weill Cornell Medicine-Qatar, PO Box 24144, Doha, Qatar.
| |
Collapse
|
30
|
Fujiwara R, Yoda E, Tukey RH. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans. Drug Metab Pharmacokinet 2017; 33:9-16. [PMID: 29079228 DOI: 10.1016/j.dmpk.2017.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Department of Pharmaceutics, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
31
|
Walia G, Smith AD, Riches Z, Collier AC, Coughtrie MWH. The effects of UDP-sugars, UDP and Mg 2+on uridine diphosphate glucuronosyltransferase activity in human liver microsomes. Xenobiotica 2017; 48:882-890. [PMID: 28868965 DOI: 10.1080/00498254.2017.1376260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
1. The UDP-glucuronosyltransferase (UGT) enzymes are important in the metabolism, elimination and detoxification of many xenobiotics and endogenous compounds. As extrapolation of in vitro kinetics of drug metabolizing enzymes to predict in vivo clearance rates becomes more sophisticated, it is important to ensure proper optimization of enzyme assays. The luminal location of the enzyme active site (i.e. latency), and the complexity of UGT kinetics, results in consistent under-prediction of clearance of drugs metabolized by glucuronidation. 2. We examined inhibition of UGT activity in alamethicin-disrupted human liver microsomes (HLM) by uridine diphosphate (UDP), a UGT reaction product, and its reversal by Mg2+ ions. We also determined whether UDP-sugars other than the co-substrate UDP-glucuronic acid (UDP-GlcA) affected glucuronidation. 3. We show that other UDP-sugars do not significantly influence glucuronidation. We also demonstrate that UDP inhibits HLM UGT activity and that this is reversed by including Mg2+ in the assay. The Mg2+ effect can be offset using EDTA, and is dependent on the concentration of UDP-GlcA in the assay. 4. We propose that formation of a Mg2+-UDP complex prevents UDP from affecting the enzyme. Our results suggest that 5 mM UDP-GlcA and 10 mM Mg2+ be used for UGT assays in fully disrupted HLM.
Collapse
Affiliation(s)
- Gurinder Walia
- a Faculty of Pharmaceutical Sciences, The University of British Columbia , Vancouver , Canada
| | - Alexander D Smith
- a Faculty of Pharmaceutical Sciences, The University of British Columbia , Vancouver , Canada
| | - Zoe Riches
- a Faculty of Pharmaceutical Sciences, The University of British Columbia , Vancouver , Canada
| | - Abby C Collier
- a Faculty of Pharmaceutical Sciences, The University of British Columbia , Vancouver , Canada
| | - Michael W H Coughtrie
- a Faculty of Pharmaceutical Sciences, The University of British Columbia , Vancouver , Canada
| |
Collapse
|
32
|
Wang Z, Lan Y, Chen M, Wen C, Hu Y, Liu Z, Ye L. Eriodictyol, Not Its Glucuronide Metabolites, Attenuates Acetaminophen-Induced Hepatotoxicity. Mol Pharm 2017; 14:2937-2951. [DOI: 10.1021/acs.molpharmaceut.7b00345] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Zhaoyu Wang
- State
Key Laboratory of Organ Failure Research, Guangdong Provincial Key
Laboratory of New Drug Screening, department of biopharmaceutics,
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yao Lan
- State
Key Laboratory of Organ Failure Research, Guangdong Provincial Key
Laboratory of New Drug Screening, department of biopharmaceutics,
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - MingHao Chen
- State
Key Laboratory of Organ Failure Research, Guangdong Provincial Key
Laboratory of New Drug Screening, department of biopharmaceutics,
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Cailing Wen
- State
Key Laboratory of Organ Failure Research, Guangdong Provincial Key
Laboratory of New Drug Screening, department of biopharmaceutics,
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanxian Hu
- State
Key Laboratory of Organ Failure Research, Guangdong Provincial Key
Laboratory of New Drug Screening, department of biopharmaceutics,
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongqiu Liu
- State
Key Laboratory of Organ Failure Research, Guangdong Provincial Key
Laboratory of New Drug Screening, department of biopharmaceutics,
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- International
Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China, 510006
| | - Ling Ye
- State
Key Laboratory of Organ Failure Research, Guangdong Provincial Key
Laboratory of New Drug Screening, department of biopharmaceutics,
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
33
|
Quantitative profiling of the UGT transcriptome in human drug-metabolizing tissues. THE PHARMACOGENOMICS JOURNAL 2017; 18:251-261. [PMID: 28440341 DOI: 10.1038/tpj.2017.5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Alternative splicing as a mean to control gene expression and diversify function is suspected to considerably influence drug response and clearance. We report the quantitative expression profiles of the human UGT genes including alternatively spliced variants not previously annotated established by deep RNA-sequencing in tissues of pharmacological importance. We reveal a comprehensive quantification of the alternative UGT transcriptome that differ across tissues and among individuals. Alternative transcripts that comprise novel in-frame sequences associated or not with truncations of the 5'- and/or 3'- termini, significantly contribute to the total expression levels of each UGT1 and UGT2 gene averaging 21% in normal tissues, with expression of UGT2 variants surpassing those of UGT1. Quantitative data expose preferential tissue expression patterns and remodeling in favor of alternative variants upon tumorigenesis. These complex alternative splicing programs have the strong potential to contribute to interindividual variability in drug metabolism in addition to diversify the UGT proteome.
Collapse
|
34
|
Advances in drug metabolism and pharmacogenetics research in Australia. Pharmacol Res 2017; 116:7-19. [DOI: 10.1016/j.phrs.2016.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 01/04/2023]
|
35
|
Maekawa M, Omura K, Sekiguchi S, Iida T, Saigusa D, Yamaguchi H, Mano N. Identification of Two Sulfated Cholesterol Metabolites Found in the Urine of a Patient with Niemann-Pick Disease Type C as Novel Candidate Diagnostic Markers. ACTA ACUST UNITED AC 2016; 5:S0053. [PMID: 27900236 DOI: 10.5702/massspectrometry.s0053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/17/2016] [Indexed: 11/23/2022]
Abstract
In the urine of a Niemann-Pick disease type C (NPC) patient, we have identified three characteristic intense peaks that have not been observed in the urine of a 3β-hydroxysteroid-Δ5-C27-steroid dehydrogenase deficiency patient or a healthy infant and adult. Based on accurate masses of the protonated molecules, we focused on two of them as candidate NPC diagnostic markers. Two synthesized authentic preparations agreed with the two compounds found in NPC patient urine in regard to both chromatographic behavior and accurate masses of the deprotonated molecules. Moreover, the isotopic patterns of the deprotonated molecules, twin peaks unique to the sulfur-containing compounds appearing in their second isotope positions, and accurate masses of product ions observed at m/z 97 also agreed between the target compounds and authentic preparations. We identified the two compounds as the sulfated cholesterol metabolites as 3β-sulfooxy-7β-hydroxy-5-cholen-24-oic acid and 3β-sulfooxy-7-oxo-5-cholen-24-oic acid. These two compounds represent more promising candidate diagnostic markers for NPC diagnosis than three other candidates that are multiple conjugates of cholesterol metabolites, 3β-sulfooxy-7β-N-acetylglucosaminyl-5-cholen-24-oic acid and its glycine and taurine conjugates, although we have reported an analytical method for determining the urinary levels of these compounds using liquid chromatography/electrospray ionization tandem mass spectrometry, because of their lack of N-acetylglucosamine conjugation.
Collapse
Affiliation(s)
| | - Kaoru Omura
- College of Humanities and Sciences, Nihon University
| | | | - Takashi Iida
- College of Humanities and Sciences, Nihon University
| | - Daisuke Saigusa
- Department of Pharmaceutical Sciences, Tohoku University Hospital; Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University
| | | | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| |
Collapse
|
36
|
Argikar UA, Potter PM, Hutzler JM, Marathe PH. Challenges and Opportunities with Non-CYP Enzymes Aldehyde Oxidase, Carboxylesterase, and UDP-Glucuronosyltransferase: Focus on Reaction Phenotyping and Prediction of Human Clearance. AAPS JOURNAL 2016; 18:1391-1405. [PMID: 27495117 DOI: 10.1208/s12248-016-9962-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/13/2016] [Indexed: 01/28/2023]
Abstract
Over the years, significant progress has been made in reducing metabolic instability due to cytochrome P450-mediated oxidation. High-throughput metabolic stability screening has enabled the advancement of compounds with little to no oxidative metabolism. Furthermore, high lipophilicity and low aqueous solubility of presently pursued chemotypes reduces the probability of renal excretion. As such, these low microsomal turnover compounds are often substrates for non-CYP-mediated metabolism. UGTs, esterases, and aldehyde oxidase are major enzymes involved in catalyzing such metabolism. Hepatocytes provide an excellent tool to identify such pathways including elucidation of major metabolites. To predict human PK parameters for P450-mediated metabolism, in vitro-in vivo extrapolation using hepatic microsomes, hepatocytes, and intestinal microsomes has been actively investigated. However, such methods have not been sufficiently evaluated for non-P450 enzymes. In addition to the involvement of the liver, extrahepatic enzymes (intestine, kidney, lung) are also likely to contribute to these pathways. While there has been considerable progress in predicting metabolic pathways and clearance primarily mediated by the liver, progress in characterizing extrahepatic metabolism and prediction of clearance has been slow. Well-characterized in vitro systems or in vivo animal models to assess drug-drug interaction potential and intersubject variability due to polymorphism are not available. Here we focus on the utility of appropriate in vitro studies to characterize non-CYP-mediated metabolism and to understand the enzymes involved followed by pharmacokinetic studies in the appropriately characterized surrogate species. The review will highlight progress made in establishing in vitro-in vivo correlation, predicting human clearance and avoiding costly clinical failures when non-CYP-mediated metabolic pathways are predominant.
Collapse
Affiliation(s)
- Upendra A Argikar
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts, USA
| | - Philip M Potter
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - J Matthew Hutzler
- Q2 Solutions, Bioanalytical and ADME Labs, Indianapolis, Indiana, USA
| | - Punit H Marathe
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, New Jersey, USA.
| |
Collapse
|
37
|
Mazzacuva F, Mills P, Mills K, Camuzeaux S, Gissen P, Nicoli ER, Wassif C, Te Vruchte D, Porter FD, Maekawa M, Mano N, Iida T, Platt F, Clayton PT. Identification of novel bile acids as biomarkers for the early diagnosis of Niemann-Pick C disease. FEBS Lett 2016; 590:1651-62. [PMID: 27139891 PMCID: PMC5089630 DOI: 10.1002/1873-3468.12196] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 11/12/2022]
Abstract
This article describes a rapid UPLC-MS/MS method to quantitate novel bile acids in biological fluids and the evaluation of their diagnostic potential in Niemann-Pick C (NPC). Two new compounds, NPCBA1 (3β-hydroxy,7β-N-acetylglucosaminyl-5-cholenoic acid) and NPCBA2 (probably 3β,5α,6β-trihydroxycholanoyl-glycine), were observed to accumulate preferentially in NPC patients: median plasma concentrations of NPCBA1 and NPCBA2 were 40- and 10-fold higher in patients than in controls. However, NPCBA1 concentrations were normal in some patients because they carried a common mutation inactivating the GlcNAc transferase required for the synthesis of this bile acid. NPCBA2, not containing a GlcNAc moiety, is thus a better NPC biomarker.
Collapse
Affiliation(s)
- Francesca Mazzacuva
- Centre for Translational Omics, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - Philippa Mills
- Centre for Translational Omics, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - Kevin Mills
- Centre for Translational Omics, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - Stephane Camuzeaux
- Centre for Translational Omics, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - Paul Gissen
- Centre for Translational Omics, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
- Metabolic Medicine, Great Ormond Street Children's Hospital, London, UK
| | | | - Christopher Wassif
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Forbes D Porter
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Japan
| | - Takashi Iida
- College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Frances Platt
- Department of Pharmacology, University of Oxford, UK
| | - Peter T Clayton
- Centre for Translational Omics, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
- Metabolic Medicine, Great Ormond Street Children's Hospital, London, UK
| |
Collapse
|
38
|
Hu DG, Mackenzie PI, McKinnon RA, Meech R. Genetic polymorphisms of human UDP-glucuronosyltransferase (UGT) genes and cancer risk. Drug Metab Rev 2016; 48:47-69. [DOI: 10.3109/03602532.2015.1131292] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Riches Z, Collier AC. Posttranscriptional regulation of uridine diphosphate glucuronosyltransferases. Expert Opin Drug Metab Toxicol 2015; 11:949-65. [PMID: 25797307 DOI: 10.1517/17425255.2015.1028355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The uridine diphosphate (UDP)-glucuronosyltransferase (UGT) superfamily of enzymes (EC 2.4.1.17) conjugates glucuronic acid to an aglycone substrate to make them more polar and readily excreted. In general, this reaction terminates the activities of chemicals, drugs and toxins, although occasionally a more active or toxic species is produced. AREAS COVERED In addition to their well-known transcriptional responsiveness, UGTs are also regulated by posttranscriptional mechanisms. Here, the authors review these mechanisms, including latency, modulation of co-substrate accessibility and binding, dimerization and oligomerization, protein-protein interactions, allosteric inhibition and activation, posttranslational structural and functional modifications and developmental switching for UGTs. EXPERT OPINION Posttranscriptional regulation of UGTs has traditionally received less attention than nuclear regulation, in part because mechanisms involving ribosomes and endoplasmic reticula are challenging to investigate. Most promising of the posttranscriptional mechanisms reviewed are likely to be effects on co-substrate (UDP-glucuronic acid) transport and availability and structure-function changes to UGT proteins through, for example, glycosylation and phosphorylation. Although classical biochemistry continues to illuminate many aspects of UGT function, advances in proteomics and structural biology are beginning to assist in the determination of posttranscriptional regulation mechanisms for UGTs.
Collapse
Affiliation(s)
- Zoe Riches
- University of British Columbia, Faculty of Pharmaceutical Sciences , 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3 , Canada +1 604 827 2380 ;
| | | |
Collapse
|
40
|
Meech R, Mubarokah N, Shivasami A, Rogers A, Nair PC, Hu DG, McKinnon RA, Mackenzie PI. A novel function for UDP glycosyltransferase 8: galactosidation of bile acids. Mol Pharmacol 2014; 87:442-50. [PMID: 25519837 DOI: 10.1124/mol.114.093823] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human UDP glycosyltransferase (UGT) superfamily comprises four families of enzymes that catalyze the addition of sugar residues to small lipophilic chemicals. The UGT1 and UGT2 enzymes use UDP-glucuronic acid, and UGT3 enzymes use UDP-N-acetylglucosamine, UDP-glucose, and UDP-xylose to conjugate xenobiotics, including drugs and endobiotics such as metabolic byproducts, hormones, and signaling molecules. This metabolism renders the substrate more polar and more readily excreted from the body and/or functionally inactive. The fourth UGT family, called UGT8, contains only one member that, unlike other UGTs, is considered biosynthetic. UGT8 uses UDP galactose to galactosidate ceramide, a key step in the synthesis of brain sphingolipids. To date other substrates for this UGT have not been identified and there has been no suggestion that UGT8 is involved in metabolism of endo- or xenobiotics. We re-examined the functions of UGT8 and discovered that it efficiently galactosidates bile acids and drug-like bile acid analogs. UGT8 conjugates bile acids ∼60-fold more efficiently than ceramide based on in vitro assays with substrate preference deoxycholic acid > chenodeoxycholic acid > cholic acid > hyodeoxycholic acid > ursodeoxycholic acid. Activities of human and mouse UGT8 are qualitatively similar. UGT8 is expressed at significant levels in kidney and gastrointestinal tract (intestine, colon) where conjugation of bile acids is likely to be metabolically significant. We also investigate the structural determinants of UDP-galactose selectivity. Our novel findings suggest a new role for UGT8 as a modulator of bile acid homeostasis and signaling.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology (R.M., N.M., A.S., A.R., P.C.N., D.G.H., R.A.M., P.I.M.) and Flinders Centre for Innovation in Cancer Flinders University School of Medicine (R.A.M.), Flinders Medical Centre, Bedford Park, Australia
| | - Nurul Mubarokah
- Department of Clinical Pharmacology (R.M., N.M., A.S., A.R., P.C.N., D.G.H., R.A.M., P.I.M.) and Flinders Centre for Innovation in Cancer Flinders University School of Medicine (R.A.M.), Flinders Medical Centre, Bedford Park, Australia
| | - Aravind Shivasami
- Department of Clinical Pharmacology (R.M., N.M., A.S., A.R., P.C.N., D.G.H., R.A.M., P.I.M.) and Flinders Centre for Innovation in Cancer Flinders University School of Medicine (R.A.M.), Flinders Medical Centre, Bedford Park, Australia
| | - Anne Rogers
- Department of Clinical Pharmacology (R.M., N.M., A.S., A.R., P.C.N., D.G.H., R.A.M., P.I.M.) and Flinders Centre for Innovation in Cancer Flinders University School of Medicine (R.A.M.), Flinders Medical Centre, Bedford Park, Australia
| | - Pramod C Nair
- Department of Clinical Pharmacology (R.M., N.M., A.S., A.R., P.C.N., D.G.H., R.A.M., P.I.M.) and Flinders Centre for Innovation in Cancer Flinders University School of Medicine (R.A.M.), Flinders Medical Centre, Bedford Park, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology (R.M., N.M., A.S., A.R., P.C.N., D.G.H., R.A.M., P.I.M.) and Flinders Centre for Innovation in Cancer Flinders University School of Medicine (R.A.M.), Flinders Medical Centre, Bedford Park, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology (R.M., N.M., A.S., A.R., P.C.N., D.G.H., R.A.M., P.I.M.) and Flinders Centre for Innovation in Cancer Flinders University School of Medicine (R.A.M.), Flinders Medical Centre, Bedford Park, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology (R.M., N.M., A.S., A.R., P.C.N., D.G.H., R.A.M., P.I.M.) and Flinders Centre for Innovation in Cancer Flinders University School of Medicine (R.A.M.), Flinders Medical Centre, Bedford Park, Australia
| |
Collapse
|
41
|
Fujiwara R, Sumida K, Kutsuno Y, Sakamoto M, Itoh T. UDP-glucuronosyltransferase (UGT) 1A1 mainly contributes to the glucuronidation of trovafloxacin. Drug Metab Pharmacokinet 2014; 30:82-8. [PMID: 25760534 DOI: 10.1016/j.dmpk.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 11/26/2022]
Abstract
Identification of drug-metabolizing enzyme(s) responsible for the metabolism of drugs is an important step to understand not only interindividual variability in pharmacokinetics but also molecular mechanisms of metabolite-related toxicity. While it was reported that the major metabolic pathway of trovafloxacin, which is an antibiotic, was glucuronidation, the UDP-glucuronosyltransferase (UGT) isoform(s) responsible for the trovafloxacin glucuronidation has not been identified yet. In the present study, among the functional human UGT members, UGT1A1, UGT1A3, and UGT1A9 exhibited higher trovafloxacin acyl-glucuronidation activities. While other UGT members such as UGT1A8, UGT2B7, and UGT2B15 showed glucuronidation activity toward trovafloxacin, the metabolic velocity was extremely low. In human liver microsomes, trovafloxacin acyl-glucuronidation followed the Hill equation with S50 value of 95 μM, Vmax value of 243 pmol/min per mg, and a Hill coefficient of 2.0, while the UGT1A1-expressing system displayed Michaelis-Menten kinetics with a substrate inhibition, with Km value of 759 μM and Vmax value of 1160 pmol/min per mg. In human liver microsomes prepared from poor metabolizers (UGT1A1*28/*28), significantly reduced trovafloxacin acyl-glucuronide formation activity was observed, indicating that UGT1A1 mainly, while other UGT members such as UGT1A3 and UGT1A9 partially, contributes to the glucuronidation of trovafloxacin.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | - Kyohei Sumida
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Kutsuno
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masaya Sakamoto
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoo Itoh
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
42
|
Sun H, Wang H, Liu H, Zhang X, Wu B. Glucuronidation of capsaicin by liver microsomes and expressed UGT enzymes: reaction kinetics, contribution of individual enzymes and marked species differences. Expert Opin Drug Metab Toxicol 2014; 10:1325-36. [DOI: 10.1517/17425255.2014.954548] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Chau N, Elliot DJ, Lewis BC, Burns K, Johnston MR, Mackenzie PI, Miners JO. Morphine Glucuronidation and Glucosidation Represent Complementary Metabolic Pathways That Are Both Catalyzed by UDP-Glucuronosyltransferase 2B7: Kinetic, Inhibition, and Molecular Modeling Studies. J Pharmacol Exp Ther 2014; 349:126-37. [DOI: 10.1124/jpet.113.212258] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
44
|
The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int J Biochem Cell Biol 2013; 45:1121-32. [DOI: 10.1016/j.biocel.2013.02.019] [Citation(s) in RCA: 449] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 01/17/2023]
|
45
|
Lu H, Gunewardena S, Cui JY, Yoo B, Zhong XB, Klaassen CD. RNA-sequencing quantification of hepatic ontogeny and tissue distribution of mRNAs of phase II enzymes in mice. Drug Metab Dispos 2013; 41:844-57. [PMID: 23382457 DOI: 10.1124/dmd.112.050211] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Phase II conjugating enzymes play key roles in the metabolism of xenobiotics. In the present study, RNA sequencing was used to elucidate hepatic ontogeny and tissue distribution of mRNA expression of all major known Phase II enzymes, including enzymes involved in glucuronidation, sulfation, glutathione conjugation, acetylation, methylation, and amino acid conjugation, as well as enzymes for the synthesis of Phase II cosubstrates, in male C57BL/6J mice. Livers from male C57BL/6J mice were collected at 12 ages from prenatal to adulthood. Many of these Phase II enzymes were expressed at much higher levels in adult livers than in perinatal livers, such as Ugt1a6b, -2a3, -2b1, -2b5, -2b36, -3a1, and -3a2; Gsta1, -m1, -p1, -p2, and -z1; mGst1; Nat8; Comt; Nnmt; Baat; Ugdh; and Gclc. In contrast, hepatic mRNA expression of a few Phase II enzymes decreased during postnatal liver development, such as mGst2, mGst3, Gclm, and Mat2a. Hepatic expression of certain Phase II enzymes peaked during the adolescent stage, such as Ugt1a1, Sult1a1, Sult1c2, Sult1d1, Sult2as, Sult5a1, Tpmt, Glyat, Ugp2, and Mat1a. In adult mice, the total transcripts for Phase II enzymes were comparable in liver, kidney, and small intestine; however, individual Phase II enzymes displayed marked tissue specificity among the three organs. In conclusion, this study unveils for the first time developmental changes in mRNA abundance of all major known Phase II enzymes in mouse liver, as well as their tissue-specific expression in key drug-metabolizing organs. The age- and tissue-specific expression of Phase II enzymes indicate that the detoxification of xenobiotics is highly regulated by age and cell type.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Bushey RT, Dluzen DF, Lazarus P. Importance of UDP-glucuronosyltransferases 2A2 and 2A3 in tobacco carcinogen metabolism. Drug Metab Dispos 2013; 41:170-9. [PMID: 23086198 PMCID: PMC3533432 DOI: 10.1124/dmd.112.049171] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/18/2012] [Indexed: 01/29/2023] Open
Abstract
UDP-glucuronosyltransferase A1 (UGT2A1) is expressed in the lung and exhibits activity against polycyclic aromatic hydrocarbons (PAHs), suggesting UGT2A1 involvement in the local metabolism of PAH tobacco carcinogens. The goal of the present study was to investigate the importance of two additional UGT2A enzymes, UGT2A2 and UGT2A3, in tobacco carcinogen metabolism. Real-time polymerase chain reaction suggested that wild-type UGT2A2 had the highest expression in the breast, followed by trachea > larynx > kidney. A novel splice variant of UGT2A2 lacking exon 3 (termed UGT2A2Δexon3) was investigated, with UGT2A2Δexon3 expression determined to be 25-50% that of wild-type UGT2A2 in all tissues examined. UGT2A3 was determined to be well expressed in the liver and colon, followed by pancreas > kidney > lung > tonsil > trachea > larynx. Cell homogenates prepared from human embryonic kidney (HEK)293 cells overexpressing wild-type UGT2A2 (termed UGT2A2_i1) exhibited glucuronidation activity, as observed by reverse-phase ultra-pressure liquid chromatography, against 1-hydroxy-(OH)-pyrene, 1-naphthol, and hydroxylated benzo(a)pyrene metabolites, whereas homogenates prepared from HEK293 cells overexpressing UGT2A3 only showed activity against simple PAHs like 1-OH-pyrene and 1-naphthol. Activity assays showed the UGT2A2Δexon3 protein (termed UGT2A2_i2) exhibited no detectable glucuronidation activity against all substrates examined; however, coexpression studies suggested that UGT2A2_i2 negatively modulates UGT2A2_i1 activity. Both UGT2A2 and UGT2A3 exhibited no detectable activity against complex PAH proximate carcinogens, tobacco-specific nitrosamines, or heterocyclic amines. These data suggest that, although UGT2A1 is the only UGT2A enzyme active against PAH proximate carcinogens (including PAH diols), both UGTs 2A1 and 2A2 play an important role in the local detoxification of procarcinogenic monohydroxylated PAH metabolites.
Collapse
Affiliation(s)
- Ryan T Bushey
- Department of Pharmacology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | |
Collapse
|
47
|
Human UDP-glucuronosyltransferase UGT2A2: cDNA construction, expression, and functional characterization in comparison with UGT2A1 and UGT2A3. Pharmacogenet Genomics 2012; 19:923-34. [PMID: 19858781 DOI: 10.1097/fpc.0b013e3283330767] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Characterize the expression and glucuronidation activities of the human uridine 5'-diphospho (UDP)-glucuronosyltransferase (UGT) 2A2. METHOD UGT2A1 was cloned from nasal mucosa mRNA. Synthetic cDNA for UGT2A2 was constructed assuming exon sharing between UGT2A1 and UGT2A2 (Mackenzie et al., Pharmacogenetics and Genomics 2005, 15:677-685). Exon 1 of UGT2A2 was amplified from genomic DNA and combined with exons 2-6 of UGT2A1. UGT2A3 was cloned from liver mRNA. Quantitative reverse-transcribed-PCR (RT-PCR) was used to evaluate the expression of all the three UGTs of subfamily 2A in different tissues. Recombinant UGT2A1, UGT2A2 and UGT2A3 were expressed in baculovirus-infected insect cells and analyzed for glucuronidation activity towards different substrates. RESULTS DNA sequencing of RT-PCR products from human nasal mucosa mRNA, confirmed exon sharing between UGT2A1 and UGT2A2. In addition, it indicated that the N-terminal signal peptide sequence of UGT2A2 is the longest among the human UGTs. Quantitative RT-PCR revealed that both UGT2A1 and UGT2A2 are mainly expressed in the nasal mucosa, and that their expression level in fetal samples was much higher than in adults. Activity assays with recombinant UGTs 2A1-2A3 showed broad substrate selectivity for UGT2A1 and UGT2A2. Although glucuronidation rates and substrate affinities were mostly higher in UGT2A1, the Km values for UDP-glucuronic acid were similar in both UGTs. In addition, there were regioselectivity differences between the two UGTs and, with a few substrates, particularly ethinylestradiol, the activity of UGT2A2 was higher. CONCLUSION UGT2A2 is mainly expressed in the nasal mucosa and it has glucuronidation activity towards several different endobiotic and xenobiotic substrates.
Collapse
|
48
|
Le H, Ford KA, Khojasteh SC, Fan PW. Elucidation of the mechanism of ribose conjugation in a pyrazole-containing compound in rodent liver. Xenobiotica 2012; 43:236-45. [PMID: 22931212 DOI: 10.3109/00498254.2012.715211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Here we report on the mechanism of ribose conjugation, through NADH as a cofactor, of a pyrazole-containing compound (PT). Incubation of PT in rat liver microsomes supplemented with NADP⁺/H, NAD⁺/H, and β-nicotinamide mononucleotide (NMN) resulted in complete conjugation to the adenine dinucleotide phosphate conjugate (ADP-C), adenine dinucleotide conjugate (AD-C), and 5-phosphoribose conjugate (Rib-C1), respectively. In hepatocytes, PT predominantly formed three ribose conjugates: Rib-C1, the ribose conjugate (Rib-C2), and the carboxylic acid of Rib-C2 (Rib-C3). 2. Phosphatase inhibitors were added to hepatocyte incubations. AD-C was detected in this reaction, which suggests that one of the major pathways for the formation of the ribose conjugates is through NAD⁺/H. When AD-C was incubated with phosphatase, Rib-C1 and Rib-C2 formed. 3. To understand the in vivo relevance of this metabolic pathway, rats were dosed with PT and Rib-C2 was found in the urine. 4. Structure-activity relationship shows that replacement of the distal thiazole group in the PT to a phenyl group abolishes this conjugation. Three amino acid residues in the active site preferentially interact with the sulfur atom in the thiazole of PT. 5. In summary, PT forms direct AD-C in hepatocytes, which is further hydrolyzed by phosphatase to give ribose conjugates.
Collapse
Affiliation(s)
- Hoa Le
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | | | | | | |
Collapse
|
49
|
Buchheit D, Schmitt EI, Bischoff D, Ebner T, Bureik M. S-Glucuronidation of 7-mercapto-4-methylcoumarin by human UDP glycosyltransferases in genetically engineered fission yeast cells. Biol Chem 2012; 392:1089-95. [PMID: 22050224 DOI: 10.1515/bc.2011.194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human UDP glycosyltransferases (UGTs) play an important role in xenobiotic detoxification. They increase the solubility of their substrates by adding a sugar moiety (such as glucuronic acid) to different functional entities (such as hydroxyl groups). The aim of this study was to investigate how glucuronidation of a standard substrate is affected by a change of the hetero-atom at the conjugation site. For this purpose, we compared the in vitro glucuronidation rates of 4-methylumbelliferone and 7-mercapto-4-methylcoumarin, respectively. Human liver microsomes catalyzed the S-glucuronidation of 7-mercapto-4--methylcoumarin almost as efficient as the O-glucuronidation of 4-methylumbelliferone. When testing isoenzyme specificity by whole cell biotransformation with fission yeast strains that recombinantly express all 19 human members of the UGT1 and UGT2 families, it was found that 13 isoenzymes were able to glucuronidate 7-mercapto-4-methylcoumarin, with five of them being specific for this substrate and the other eight also converting 4-methylumbelliferone under these conditions. The remaining six UGTs did not accept either substrate. Out of the eight isoenzymes that glucuronidated both substrates, four catalyzed both reactions approximately to the same extent, while three displayed higher conversion rates towards 4-methylumbelliferone and one preferred 7-mercapto-4-methylcoumarin. These data suggest that 7-mercapto-4-methylcoumarin is a convenient new standard substrate for monitoring S-glucuronidation.
Collapse
|
50
|
Meech R, Rogers A, Zhuang L, Lewis BC, Miners JO, Mackenzie PI. Identification of residues that confer sugar selectivity to UDP-glycosyltransferase 3A (UGT3A) enzymes. J Biol Chem 2012; 287:24122-30. [PMID: 22621930 DOI: 10.1074/jbc.m112.343608] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies in this laboratory characterized the UGT3A family enzymes, UGT3A1 and UGT3A2, and showed that neither uses the traditional UDP-glycosyltransferase UGT co-substrate UDP-glucuronic acid. Rather, UGT3A1 uses GlcNAc as preferred sugar donor and UGT3A2 uses UDP-Glc. The enzymatic characterization of UGT3A mutants, structural modeling, and multispecies gene analysis have now been employed to identify a residue within the active site of these enzymes that confers their unique sugar preferences. An asparagine (Asn-391) in the UGT signature sequence of UGT3A1 is necessary for utilization of UDP-GlcNAc. Conversely, a phenylalanine (Phe-391) in UGT3A2 favors UDP-Glc use. Mutation of Asn-391 to Phe in UGT3A1 enhances its ability to utilize UDP-Glc and completely inhibits its ability to use UDP-GlcNAc. An analysis of homology models docked with UDP-sugar donors indicates that Asn-391 in UGT3A1 is able to accommodate the N-acetyl group on C2 of UDP-GlcNAc so that the anomeric carbon atom (C1) is optimally situated for catalysis involving His-35. Replacement of Asn with Phe at position 391 disrupts this catalytically productive orientation of UDP-GlcNAc but allows a more optimal alignment of UDP-Glc for sugar donation. Multispecies sequence analysis reveals that only primates possess UGT3A sequences containing Asn-391, suggesting that other mammals may not have the capacity to N-acetylglucosaminidate small molecules. In support of this hypothesis, Asn-391-containing UGT3A forms from two non-human primates were found to use UDP-GlcNAc, whereas UGT3A isoforms from non-primates could not use this sugar donor. This work gives new insight into the residues that confer sugar specificity to UGT family members and suggests a primate-specific innovation in glycosidation of small molecules.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology, Flinders University School of Medicine and Flinders Medical Centre, Bedford Park, South Australia 5042, Australia.
| | | | | | | | | | | |
Collapse
|