1
|
Ferdoush J, Kadir RA, Ogle M, Saha A. Regulation of eukaryotic transcription initiation in response to cellular stress. Gene 2024; 924:148616. [PMID: 38795856 DOI: 10.1016/j.gene.2024.148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-β, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Matthew Ogle
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
2
|
Lin HC, de Ulzurrun GVD, Chen SA, Yang CT, Tay RJ, Iizuka T, Huang TY, Kuo CY, Gonçalves AP, Lin SY, Chang YC, Stajich JE, Schwarz EM, Hsueh YP. Key processes required for the different stages of fungal carnivory by a nematode-trapping fungus. PLoS Biol 2023; 21:e3002400. [PMID: 37988381 PMCID: PMC10662756 DOI: 10.1371/journal.pbio.3002400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Nutritional deprivation triggers a switch from a saprotrophic to predatory lifestyle in soil-dwelling nematode-trapping fungi (NTF). In particular, the NTF Arthrobotrys oligospora secretes food and sex cues to lure nematodes to its mycelium and is triggered to develop specialized trapping devices. Captured nematodes are then invaded and digested by the fungus, thus serving as a food source. In this study, we examined the transcriptomic response of A. oligospora across the stages of sensing, trap development, and digestion upon exposure to the model nematode Caenorhabditis elegans. A. oligospora enacts a dynamic transcriptomic response, especially of protein secretion-related genes, in the presence of prey. Two-thirds of the predicted secretome of A. oligospora was up-regulated in the presence of C. elegans at all time points examined, and among these secreted proteins, 38.5% are predicted to be effector proteins. Furthermore, functional studies disrupting the t-SNARE protein Sso2 resulted in impaired ability to capture nematodes. Additionally, genes of the DUF3129 family, which are expanded in the genomes of several NTF, were highly up-regulated upon nematode exposure. We observed the accumulation of highly expressed DUF3129 proteins in trap cells, leading us to name members of this gene family as Trap Enriched Proteins (TEPs). Gene deletion of the most highly expressed TEP gene, TEP1, impairs the function of traps and prevents the fungus from capturing prey efficiently. In late stages of predation, we observed up-regulation of a variety of proteases, including metalloproteases. Following penetration of nematodes, these metalloproteases facilitate hyphal growth required for colonization of prey. These findings provide insights into the biology of the predatory lifestyle switch in a carnivorous fungus and provide frameworks for other fungal-nematode predator-prey systems.
Collapse
Affiliation(s)
- Hung-Che Lin
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | | | - Sheng-An Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Ching-Ting Yang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Rebecca J. Tay
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Tomoyo Iizuka
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Tsung-Yu Huang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yen Kuo
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - A. Pedro Gonçalves
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Siou-Ying Lin
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Erich M. Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Doxsey DD, Tettoni SD, Egri SB, Shen K. Redundant electrostatic interactions between GATOR1 and the Rag GTPase heterodimer drive efficient amino acid sensing in human cells. J Biol Chem 2023; 299:104880. [PMID: 37269949 PMCID: PMC10316081 DOI: 10.1016/j.jbc.2023.104880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
Cells need to coordinate nutrient availability with their growth and proliferation. In eukaryotic cells, this coordination is mediated by the mechanistic target of the rapamycin complex 1 (mTORC1) pathway. mTORC1 activation is regulated by two GTPase units, the Rag GTPase heterodimer and the Rheb GTPase. The RagA-RagC heterodimer controls the subcellular localization of mTORC1, and its nucleotide loading states are strictly controlled by upstream regulators including amino acid sensors. A critical negative regulator of the Rag GTPase heterodimer is GATOR1. In the absence of amino acids, GATOR1 stimulates GTP hydrolysis by the RagA subunit to turn off mTORC1 signaling. Despite the enzymatic specificity of GATOR1 to RagA, a recent cryo-EM structural model of the human GATOR1-Rag-Ragulator complex reveals an unexpected interface between Depdc5, a subunit of GATOR1, and RagC. Currently, there is no functional characterization of this interface, nor do we know its biological relevance. Here, combining structure-function analysis, enzymatic kinetic measurements, and cell-based signaling assays, we identified a critical electrostatic interaction between Depdc5 and RagC. This interaction is mediated by the positively charged Arg-1407 residue on Depdc5 and a patch of negatively charged residues on the lateral side of RagC. Abrogating this interaction impairs the GAP activity of GATOR1 and cellular response to amino acid withdrawal. Our results reveal how GATOR1 coordinates the nucleotide loading states of the Rag GTPase heterodimer, and thus precisely controls cellular behavior in the absence of amino acids.
Collapse
Affiliation(s)
- Dylan D Doxsey
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Steven D Tettoni
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Shawn B Egri
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
4
|
Fu R, Wang J, Chen C, Liu Y, Zhao L, Lu D. Transcriptomic and Metabolomic Analyses Provide Insights into the Pathogenic Mechanism of the Rice False Smut Pathogen Ustilaginoidea virens. Int J Mol Sci 2023; 24:10805. [PMID: 37445981 DOI: 10.3390/ijms241310805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Rice false smut, caused by the fungal pathogen Ustilaginoidea virens, is a worldwide rice fungal disease. However, the molecular mechanism of the pathogenicity of the fungus U. virens remains unclear. To understand the molecular mechanism of pathogenesis of the fungus U. virens, we performed an integrated analysis of the transcriptome and metabolome of strongly (S) and weakly (W) virulent strains both before and after the infection of panicles. A total of 7932 differential expressed genes (DEGs) were identified using transcriptome analysis. Gene ontology (GO) and metabolic pathway enrichment analysis indicated that amino acid metabolism, autophagy-yeast, MAPK signaling pathway-yeast, and starch and sucrose metabolism were closely related to the pathogenicity of U. virens. Genes related to pathogenicity were significantly upregulated in the strongly virulent strain, and were ATG, MAPK, STE, TPS, and NTH genes. However, genes involved in the negative regulation of pathogenesis were significantly downregulated and contained TOR kinase, TORC1, and autophagy-related protein genes. Metabolome analysis identified 698 differentially accumulated metabolites (DAMs), including 13 categories of organic acids and derivatives, lipids and lipid-like molecules, organoheterocyclic compounds. The significantly enriched pathways of DAMs mainly included amino acids and carbohydrates, and they accumulated after infection by the S strain. To understand the relevance of DEGs and DAMs in the pathogenicity of U. virens, transcriptomic and metabolomic data were integrated and analyzed. These results further confirmed that the pathogenesis of U. virens was regulated by DEGs and DAMs related to these four pathways, involving arginine and proline metabolism, lysine biosynthesis, alanine, aspartate and glutamate metabolism, and starch and sugar metabolism. Therefore, we speculate that the pathogenicity of U. virens is closely related to the accumulation of amino acids and carbohydrates, and to the changes in the expression of related genes.
Collapse
Affiliation(s)
- Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Yao Liu
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Liyu Zhao
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| |
Collapse
|
5
|
Zhao Z, Fan Y, Cui Y, Yang L, Wu Y, Yuan Y, Zhang P, Zhao R, Ji J, Xu S, Qin X, Liu XJ. Integration of serum metabolomics and network pharmacology reveals the immunoenhancing mechanisms of Qishenbuqi capsules. Toxicol Res (Camb) 2023; 12:201-215. [PMID: 37125330 PMCID: PMC10141780 DOI: 10.1093/toxres/tfad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/30/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction Qishenbuqi capsule (QSBQC), a listed Chinese patent prescription, comprises of 4 herbs. Clinically, it has been shown to improve immune functions. Methods Subjects with Qi deficiency and non-Qi deficiency were recruited, who then took QSBQC for 4 weeks. Traditional Chinese medicine (TCM) syndrome scores and the levels of white blood cells, CD3+ T cells (CD3+), CD4+ T cells (CD3+CD4+), CD8+ T cells (CD3+CD8+), and CD4+/CD8+ were determined. Serum metabolomics was used to explore the metabolic mechanisms of QSBQC on improving immunity. Meanwhile, the potential active ingredients, targets, and pathways of QSBQC on enhancing immunity were screened by network pharmacology. Results QSBQC significantly improved TCM syndrome scores and increased the number of CD8+ T cells of both Qi deficiency and non-Qi deficiency subjects. Serum metabolomics revealed that QSBQC regulated 18 differential metabolites and 8 metabolic pathways of Qi deficiency, and 12 differential metabolites and 7 metabolic pathways of non-Qi deficiency subjects. The "herbs-compounds-pathways" diagram showed that PQ-2, cimifugin, and divaricatol were the main active components. Pathways in cancer and arginine and proline metabolism could be the most important pathways. Conclusion Our research revealed the immunoenhancing mechanisms of QSBQC and improved the combination of TCM theory and modern western medicine theory.
Collapse
Affiliation(s)
- Ziyu Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Yuhui Fan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Yutao Cui
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Lan Yang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Yanfei Wu
- The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yuan Yuan
- The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ping Zhang
- The Center for Disease Control and Prevention of Taiyuan, Taiyuan 030012, China
| | - Ruping Zhao
- Taiyuan Jinyuan District Center for Disease Control and Prevention, Taiyuan 030000, China
| | - Jianjun Ji
- Guangshengyuan TCM Co., Ltd, Datong 037300, China
| | - Sheng Xu
- Guangshengyuan TCM Co., Ltd, Datong 037300, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Xiao-jie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| |
Collapse
|
6
|
Pawlak P, Burren A, Seitz A, Pietsch C. Effects of different acute stressors on the regulation of appetite genes in the carp ( Cyprinus carpio L.) brain. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230040. [PMID: 36816841 PMCID: PMC9929511 DOI: 10.1098/rsos.230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Our understanding of the timing of stress responses and specific roles of different regulatory pathways that drive stress responses is incomplete. In particular, the regulation of appetite genes as a consequence of exposure to different stressors has not been studied in sufficient detail in fish. Therefore, a stress trial was conducted with koi carp, aiming at identifying typical effects of stress on regulation of appetite genes. The stressors tank manipulation, air exposure and feed rewarding were chosen. The responses to these stressors were evaluated 10, 30 and 60 min after the stressors were applied. Orexigenic and anorexigenic genes were investigated in four different brain regions (telencephalon, hypothalamus, optic tectum and rhombencephalon). The results show that, apart from the typical appetite regulation in the hypothalamus, the different brain regions also display pronounced responses of appetite genes to the different stressors. In addition, several genes in the serotonergic, dopaminergic and gaba-related pathways were investigated. These genes revealed that rearing in pairs of two and opening of the tank lid affected anorexigenic genes, such as cart and cck, which were not changed by air exposure or feed rewarding. Moreover, distress and eustress led to limited, but distinguishable gene expression pattern changes in the investigated brain regions.
Collapse
Affiliation(s)
- Paulina Pawlak
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032, Hinterkappelen, Bern, Switzerland
| | - Alexander Burren
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| | - Andreas Seitz
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Zürich CH-8820, Switzerland
| | - Constanze Pietsch
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| |
Collapse
|
7
|
Liu Z, Tian J, Miao Z, Liang W, Wang G. Metabolome and Transcriptome Profiling Reveal Carbon Metabolic Flux Changes in Yarrowia lipolytica Cells to Rapamycin. J Fungi (Basel) 2022; 8:jof8090939. [PMID: 36135664 PMCID: PMC9504542 DOI: 10.3390/jof8090939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/04/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022] Open
Abstract
Yarrowia lipolytica is an oleaginous yeast for the production of oleochemicals and biofuels. Nitrogen deficiency is beneficial to lipids biosynthesis in Y. lipolytica. Target of rapamycin (TOR) regulates the utilization of nutrients, which is inhibited in nitrogen starvation or by rapamycin treatment. However, under nitrogen-rich conditions, the lipids biosynthesis in Y. lipolytica after inhibition of TOR by rapamycin is elusive. Combining metabolomics and transcriptomics analysis, we found that rapamycin altered multiple metabolic processes of Y. lipolytica grown in nitrogen-rich medium, especially the metabolisms of amino acids and lipids. A total of 176 differentially accumulated metabolites were identified after rapamycin treatment. Rapamycin increased the levels of tryptophan, isoleucine, proline, serine, glutamine, histidine, lysine, arginine and glutamic acid, and decreased the levels of threonine, tyrosine and aspartic acid. Two fatty acids in lipid droplets, stearic acid (down-regulated) and stearidonic acid (up-regulated), were identified. The expression of 2224 genes changed significantly after rapamycin treatment. Further analysis revealed that rapamycin reduced carbon flux through lipids biosynthesis, accompanied by increased carbon flux through fatty acids degradation and amino acid (especially glutamic acid, glutamine, proline and arginine) biosynthesis. The dataset provided here is valuable for understanding the molecular mechanisms of amino acid and lipids metabolisms in oleaginous yeast.
Collapse
Affiliation(s)
- Ziyu Liu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Tian
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhengang Miao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence:
| |
Collapse
|
8
|
Cardiovascular protection associated with cilostazol, colchicine and target of rapamycin inhibitors. J Cardiovasc Pharmacol 2022; 80:31-43. [PMID: 35384911 DOI: 10.1097/fjc.0000000000001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT An alteration in extracellular matrix production by vascular smooth muscle cells is a crucial event in the pathogenesis of vascular diseases such as aging-related, atherosclerosis and allograft vasculopathy. The human target of rapamycin (TOR) is involved in the synthesis of extracellular matrix by vascular smooth muscle cells. TOR inhibitors reduce arterial stiffness, blood pressure, and left ventricle hypertrophy and decrease cardiovascular risk in kidney graft recipients and patients with coronary artery disease and heart allograft vasculopathy. Other drugs that modulate extracellular matrix production such as cilostazol and colchicine have also demonstrated a beneficial cardiovascular effect. Clinical studies have consistently shown that cilostazol confers cardiovascular protection in peripheral vascular disease, coronary artery disease, and cerebrovascular disease. In patients with type 2 diabetes, cilostazol prevents the progression of subclinical coronary atherosclerosis. Colchicine reduces arterial stiffness in patients with Familial Mediterranean Fever and patients with coronary artery disease. Pathophysiological mechanisms underlying the cardioprotective effect of these drugs may be related to interactions between the cytoskeleton, TOR signaling and cyclic AMP synthesis that remain to be fully elucidated. Adult vascular smooth muscle cells exhibit a contractile phenotype and produce little extracellular matrix. Conditions that upregulate extracellular matrix synthesis induce a phenotypic switch toward a synthetic phenotype. TOR inhibition with rapamycin reduces extracellular matrix production by promoting the change to the contractile phenotype. Cilostazol increases the cytosolic level of cyclic AMP, which in turn leads to a reduction in extracellular matrix synthesis. Colchicine is a microtubule-destabilizing agent that may enhance the synthesis of cyclic AMP.
Collapse
|
9
|
Zhuang Y, Huang H, Liu XL, Wang NA, Zhong GF. Effect of bovine lactoferricin on the growth performance, digestive capacity, immune responses and disease resistance in Pacific white shrimp, Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 123:282-289. [PMID: 35306176 DOI: 10.1016/j.fsi.2022.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The present study evaluated the growth performance, digestive enzyme activity, non-specific immunity, immunity and growth genes in Penaeus vannamei fed diets supplemented with Bovine lactoferricin (the basal diet without Bovine lactoferricin, the control; 1.0‰ Bovine lactoferricin,LCB1; 1.5‰ Bovine lactoferricin,LCB1.5; 2.0‰ Bovine lactoferricin, LCB2; 2.5‰ Bovine lactoferricin, LCB2.5) for 56 days. The feeding trial showed that the final weight, weight gain rate, and specific growth rate of the shrimp were improved significantly, while the feed conversion ratio was reduced significantly in the LCB1.5 group compared to the control (P < 0.05). The challenge test of Vibrio parahaemolyticus showed that the cumulative mortalities of shrimp in the LCB1.5, LCB2 and LCB2.5 groups were significantly lower than that in the control (P < 0.05). Compared with the control, Lipase and Trypsin activities in the hepatopancreas of LCB1.5 and LCB2 groups were significantly enhanced (P < 0.05). Compared with the control, alkaline phosphatase, acid phosphatase activities in the hepatopancreas and the relative expression levels of Relish, Toll, JAK, STAT, TOR, Raptor, 4E-BP, eIF4E1α, eIF4E2 genes in the hepatopancreas of LCB1.5, LCB2 and LCB2.5 groups were all significantly enhanced (P < 0.05). These results suggested that dietary Bovine lactoferricin could improve the growth performance, digestive capacity and immune responses of shrimp. When resistance against Vibrio parahaemolyticus in shrimp is considered, high dosage of Bovine lactoferricin showed a better effect than low dosage of Bovine lactoferricin. However, high dosage of Bovine lactoferricin can have a negative impact on the growth performance of shrimp. Considering collectively the above, Bovine lactoferricin could improve the growth performance, digestive enzymes activities, immune responses and disease resistance of P. vannamei.
Collapse
Affiliation(s)
- Yi Zhuang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - He Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xue-Liang Liu
- Zhejiang Hangzhou Tiao Wang Biological Technology Co., Ltd., Hangzhou, 310015, China
| | - Nu-An Wang
- South China Agricultural University, Guangzhou, 510640, China
| | - Guo-Fang Zhong
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.
| |
Collapse
|
10
|
Doxsey DD, Veinotte K, Shen K. A New Crosslinking Assay to Study Guanine Nucleotide Binding in the Gtr Heterodimer of S. cerevisiae. Small GTPases 2022; 13:327-334. [PMID: 36328771 PMCID: PMC9639563 DOI: 10.1080/21541248.2022.2141019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) complex is responsible for coordinating nutrient availability with eukaryotic cell growth. Amino acid signals are transmitted towards mTOR via the Rag/Gtr heterodimers. Due to the obligatory heterodimeric architecture of the Rag/Gtr GTPases, investigating their biochemical properties has been challenging. Here, we describe an updated assay that allows us to probe the guanine nucleotide-binding affinity and kinetics to the Gtr heterodimers in Saccharomyces cerevisiae. We first identified the structural element that Gtr2p lacks to enable crosslinking. By using a sequence conservation-based mutation, we restored the crosslinking between Gtr2p and the bound nucleotides. Using this construct, we determined the nucleotide-binding affinities of the Gtr heterodimer, and found that it operates under a different form of intersubunit communication than human Rag GTPases. Our study defines the evolutionary divergence of the Gtr/Rag-mTOR axis of nutrient sensing.
Collapse
Affiliation(s)
- Dylan D. Doxsey
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation St, Worcester, MA, 01605, USA
| | - Kristen Veinotte
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation St, Worcester, MA, 01605, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation St, Worcester, MA, 01605, USA,Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation St, Worcester, MA, 01605, USA,CONTACT Kuang Shen Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation St, Worcester, MA, 01605, USA
| |
Collapse
|
11
|
Wu P, Xu X, Yu T. Dietary watermelon residue influencing the nonspecific immunity of juvenile Pseudorasbora parva. FISH & SHELLFISH IMMUNOLOGY 2021; 118:421-425. [PMID: 34534653 DOI: 10.1016/j.fsi.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The study explored the improvement of disease resistance, non-specific immunity and anti-oxidation reactions for Pseudorasbora parva (PP) using dietary watermelon residue. The cumulative PP mortality and the pathogenic bacteria number in 15-45% groups reduced relative to those in control group (CK). Under 15-45% groups, AKP, ACP activities and akp, acp genes expression levels were increased markedly in nonspecific immunity system. Similarly, antioxidant response (SOD, CAT activities) and their genes was promoted also at 15-45% groups. Organic matter (vitamin and polyphenols) in watermelon residue improved AKP, ACP, SOD, CAT activities by increasing corresponding gene expressions. Theoretically, they could also function as stimulus signal, active center or composition to modulate enzyme activities and gene expressions. Besides, watermelon residue ameliorated NF-kB, mTOR responses pathway, and consequently suppressed Aeromonas hydrophila which augmented disease resistance.
Collapse
Affiliation(s)
- Pan Wu
- College of Architectural Engineering, Weifang University, Weifang, 261061, China
| | - Xiaohan Xu
- College of Architectural Engineering, Weifang University, Weifang, 261061, China.
| | - Ting Yu
- College of Architectural Engineering, Weifang University, Weifang, 261061, China.
| |
Collapse
|
12
|
Wei LJ, Cao X, Liu JJ, Kwak S, Jin YS, Wang W, Hua Q. Increased Accumulation of Squalene in Engineered Yarrowia lipolytica through Deletion of PEX10 and URE2. Appl Environ Microbiol 2021; 87:e0048121. [PMID: 34132586 PMCID: PMC8357297 DOI: 10.1128/aem.00481-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
Squalene is a triterpenoid serving as an ingredient of various products in the food, cosmetic, pharmaceutical industries. The oleaginous yeast Yarrowia lipolytica offers enormous potential as a microbial chassis for the production of terpenoids, such as carotenoid, limonene, linalool, and farnesene, as the yeast provides ample storage space for hydrophobic products. Here, we present a metabolic design that allows the enhanced accumulation of squalene in Y. lipolytica. First, we improved squalene accumulation in Y. lipolytica by overexpressing the genes (ERG and HMG) coding for the mevalonate pathway enzymes. Second, we increased the production of lipid where squalene is accumulated by overexpressing DGA1 (encoding diacylglycerol acyltransferase) and deleting PEX10 (for peroxisomal membrane E3 ubiquitin ligase). Third, we deleted URE2 (coding for a transcriptional regulator in charge of nitrogen catabolite repression [NCR]) to induce lipid accumulation regardless of the carbon-to-nitrogen ratio in culture media. The resulting engineered Y. lipolytica exhibited a 115-fold higher squalene content (22.0 mg/g dry cell weight) than the parental strain. These results suggest that the biological function of Ure2p in Y. lipolytica is similar to that in Saccharomyces cerevisiae, and its deletion can be utilized to enhance the production of hydrophobic target products in oleaginous yeast strains. IMPORTANCE This study demonstrated a novel strategy for increasing squalene production in Y. lipolytica. URE2, a bifunctional protein that is involved in both nitrogen catabolite repression and oxidative stress response, was identified and demonstrated correlation to squalene production. The data suggest that double deletion of PEX10 and URE2 can serve as a positive synergistic effect to help yeast cells in boosting squalene production. This discovery can be combined with other strategies to engineer cell factories to efficiently produce terpenoid in the future.
Collapse
Affiliation(s)
- Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Xuan Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People’s Republic of China
| | - Jing-Jing Liu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Suryang Kwak
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Lothong M, Sakares W, Rojsitthisak P, Tanikawa C, Matsuda K, Yodsurang V. Collagen XVII inhibits breast cancer cell proliferation and growth through deactivation of the AKT/mTOR signaling pathway. PLoS One 2021; 16:e0255179. [PMID: 34293053 PMCID: PMC8297889 DOI: 10.1371/journal.pone.0255179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
Collagen XVII (COL17), a cell-matrix adhesion protein, has been found to be suppressed in breast cancer. Our previous data demonstrated a preventive role of COL17 in breast cancer invasiveness. The present study used the stable COL17-overexpressing MCF7 and MDA-MB-231 cells to reveal an anti-proliferative effect of COL17 on breast cancer cell through mTOR deactivation. Cell proliferation was negatively correlated with the expression level of COL17 in a concentration-dependent manner in both conventional and three-dimensional (3D) culture systems. The correlation was confirmed by decreased expression of the proliferative marker Ki67 in COL17-expressing cells. In addition, overexpression of COL17 reduced the clonogenicity and growth of the cells. We demonstrated that COL17 affects the AKT/mTOR signaling pathway by deactivation of AKT, mTOR and downstream effectors, particularly 4EBP1. Moreover, mice xenografted with high COL17-expressing cells exhibited delayed tumor progression and prolonged survival time. The high expression of COL17A1 gene encoding COL17 is associated with low-proliferation tumors, extended tumor-free period, and overall survival of breast cancer patients. In conclusion, our results revealed the novel function of COL17 using in vitro and in vivo models and elucidated the related pathway in breast cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Muttarin Lothong
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand
| | - Watchara Sakares
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand
| | - Pornchai Rojsitthisak
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Department of Food and Pharmaceutical Chemistry, Chulalongkorn University, Bangkok, Thailand
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Varalee Yodsurang
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Cluster, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
The effects of glucagon and the target of rapamycin (TOR) on skeletal muscle protein synthesis and age-dependent sarcopenia in humans. Clin Nutr ESPEN 2021; 44:15-25. [PMID: 34330459 DOI: 10.1016/j.clnesp.2021.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Human target of rapamycin (TOR) is a kinase that stimulates protein synthesis in the skeletal muscle in response to amino acids and physical activity. METHODS A comprehensive literature search was conducted on the PubMed database from its inception up to May 2021 to retrieve information on the effects of TOR and glucagon on muscle function. Articles written in English regarding human subjects were included. RESULTS l-leucine activates TOR to initiate protein synthesis in the skeletal muscle. Glucagon has a crucial role suppressing skeletal muscle protein synthesis by increasing l-leucine oxidation and the irreversible loss of this amino acid. Glucagon-induced l-leucine oxidation suppresses TOR and attenuates the ability of skeletal muscle to synthesize proteins. Conditions associated with increased glucagon secretion typically feature reduced ability to synthesize proteins in the skeletal muscle that may evolve into sarcopenia. Animal protein ingestion, unlike vegetable protein, stimulates glucagon secretion. High intake of animal protein increases l-leucine oxidation and promotes the use of amino acids as fuel. Sarcopenia and arterial stiffness characteristically occur together in conditions featuring insulin resistance, such as aging. Insulin resistance mediates the relationship between aging and sarcopenia and arterial stiffness. The loss of skeletal muscle fibers that characterizes sarcopenia is followed by collagen and lipid accumulation. Likewise, insulin resistance is associated with arterial stiffness and intima-media thickening due to adaptive accretion of collagen and lipids in the arterial wall. CONCLUSIONS Human TOR participates in the pathogenesis of sarcopenia and arterial stiffness, although its effects remain to be fully elucidated.
Collapse
|
15
|
Jin L, Chen Y, Yan C, Guo X, Jiang T, Guli A, Song X, Wan Q, Shu Q, Ding S. Phosphoproteome Profiling Revealed the Importance of mTOR Inhibition on CDK1 Activation to Further Regulate Cell Cycle Progression. J Proteome Res 2021; 20:2329-2339. [PMID: 33797919 DOI: 10.1021/acs.jproteome.0c00848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mammalian target of rapamycin (mTOR) functions as a critical regulator of cell cycle progression. However, the underlying mechanism by which mTOR regulates cell cycle progression remains elusive. In this study, we used stable isotope labeling of amino acids in cell culture with a two-step strategy for phosphopeptide enrichment and high-throughput quantitative mass spectrometry to perform a global phosphoproteome analysis of mTOR inhibition by rapamycin. By monitoring the phosphoproteome alterations upon rapamycin treatment, downregulation of mTOR signaling pathway was detected and enriched. Further functional analysis of phosphoproteome revealed the involvement of cell cycle events. Specifically, the elevated profile of cell cycle-related substrates was observed, and the activation of CDK1, MAPK1, and MAPK3 kinases was determined. Second, pathway interrogation using kinase inhibitor treatment confirmed that CDK1 activation operated downstream from mTOR inhibition to further regulate cell cycle progression. Third, we found that the activation of CDK1 following 4-12 h of mTOR inhibition was accompanied by the activation of the Greatwall-endosulfine complex. In conclusion, we presented a high-confidence phosphoproteome map inside the cells upon mTOR inhibition by rapamycin. Our data implied that mTOR inhibition could contribute to CDK1 activation for further regulating cell cycle progression, which was mediated by the Greatwall-endosulfine complex.
Collapse
Affiliation(s)
- Luqi Jin
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yu Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Chunlan Yan
- Department of Biophysics, Key Laboratory of Medical Neurobiology, Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xiaoyuan Guo
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tingting Jiang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Ayiding Guli
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xinghui Song
- The Core Facilities, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Qun Wan
- Department of Urinary Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Qiang Shu
- Department of Cell Biology and Department of Cardiovascular Surgery, National Clinical Research Center For Child Health, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Shiping Ding
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.,Department of Cell Biology and Department of Cardiovascular Surgery, National Clinical Research Center For Child Health, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
16
|
Yang H, Wang S, Ye Y, Xie M, Li Y, Jin H, Li J, Gao L. GLP-1 preserves β cell function via improvement on islet insulin signaling in high fat diet feeding mice. Neuropeptides 2021; 85:102110. [PMID: 33307381 DOI: 10.1016/j.npep.2020.102110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Numerous studies have shown that Glucagon like peptide-1 (GLP-1) treatment can protect β cell function, but the exact mechanism remains unclear. We hypothesized that GLP-1 may protect β cell function via its action on insulin signaling pathway. METHODS Mice were fed with high fat diet (HFD, 20 weeks) in the presence or absence of GLP-1 receptor agonist (exenatide) treatment. The islet structure was demonstrated by HE staining. Immunofluorescence antibodies targeting insulin and glucagon were used to illustrate α and β cell distribution. The insulin and glucagon abundance was measured by ELISA using pancreatic homogenates. The molecules involved in insulin signaling pathway (IRc, IRS1, IRS2, mTOR) in islet were examined with immunohistochemistry and immunoblotting. The effect of IRS1 silencing on mTOR and apoptosis were examined on NIT cells(β cell line)with immunoblotting and flow cytometry. RESULTS HE and immunofluorescence staining demonstrated that the normal structure of islet was deformed in HFD mice but preserved by exenatide. Insulin and glucagon contents were increased in islet and blood stream of HFD mice (HFD vs. Control, p<0.05) but resumed by exenatide. Meanwhile the expressions of IRc, IRS-1, mTOR from insulin signaling pathway and β cell apoptosis in the pancreas were significantly reduced (p<0.05) by HFD but reversed by exenatide. CONCLUSION Exenatide improved insulin signaling pathway that was suppressed by HFD in mice islet. Our results reveal a novel mechanism of the protective effects of GLP-1 on β cell function.
Collapse
Affiliation(s)
- Heng Yang
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China
| | - Shuo Wang
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China
| | - Yingchun Ye
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China
| | - Min Xie
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China
| | - Yubin Li
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China
| | - Hong Jin
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China
| | - Jing Li
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China.
| |
Collapse
|
17
|
Montrose K, López Cabezas RM, Paukštytė J, Saarikangas J. Winter is coming: Regulation of cellular metabolism by enzyme polymerization in dormancy and disease. Exp Cell Res 2020; 397:112383. [PMID: 33212148 DOI: 10.1016/j.yexcr.2020.112383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022]
Abstract
Metabolism feeds growth. Accordingly, metabolism is regulated by nutrient-sensing pathways that converge growth promoting signals into biosynthesis by regulating the activity of metabolic enzymes. When the environment does not support growth, organisms invest in survival. For cells, this entails transitioning into a dormant, quiescent state (G0). In dormancy, the activity of biosynthetic pathways is dampened, and catabolic metabolism and stress tolerance pathways are activated. Recent work in yeast has demonstrated that dormancy is associated with alterations in the physicochemical properties of the cytoplasm, including changes in pH, viscosity and macromolecular crowding. Accompanying these changes, numerous metabolic enzymes transition from soluble to polymerized assemblies. These large-scale self-assemblies are dynamic and depolymerize when cells resume growth. Here we review how enzyme polymerization enables metabolic plasticity by tuning carbohydrate, nucleic acid, amino acid and lipid metabolic pathways, with particular focus on its potential adaptive value in cellular dormancy.
Collapse
Affiliation(s)
- Kristopher Montrose
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Rosa María López Cabezas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Jurgita Paukštytė
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Neuroscience Center, University of Helsinki, Finland.
| |
Collapse
|
18
|
Ekizceli G, Inan S, Oktem G, Onur E, Ozbilgin K. Immunohistochemical determination of mTOR pathway molecules in ovaries and uterus in rat estrous cycle stages. Histol Histopathol 2020; 35:1337-1351. [PMID: 32940340 DOI: 10.14670/hh-18-258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
mTOR is a member of the PI3K/Akt/mTOR signaling pathway that participates in cell growth, proliferation, protein synthesis, transcription, angiogenesis, apoptosis and autophagy. mTOR and MAPK pahways are two important key signal pathways which are related to each other. We investigated the role of mTOR and other signaling molecules in rat ovaries and uteruses in stages of the estrous cycle. Young adult female rats were divided into four groups as proestrous, estrous, metestrous and diestrous according to vaginal smears. Immunohistochemical staining of mTORC1, IGF1, PI3K, pAKT1/2/3, ERK1 and pERK1/2 was performed and pAKT1/2/3 and ERK1 were also analyzed using western blotting on ovarian and uterine tissue samples. According to our results, PI3K/Akt/mTOR and ERK/pERK showed an increase in the rat ovulation period. When all the groups were evaluated the immunoreactivities for all of the antibodies were detected in the oocytes, granulosa and theca cells, corpus luteum and stroma of ovary and lamina propria, surface and glandular epithelium of uterus with the strongest observed with anti-ERK1 antibody and then with a decreasing trend with anti-mTORC1, anti-pAkt1/2/3, anti-IGF1, anti-PI3K and anti-pERK1/2 antibodies in the proestrus and estrus stages. Differently from other parts of the ovary, highest antibody expression in the corpus luteum was observed in the metestrous stage. Moreover, the existence of pAKT1/2/3 and ERK1 proteins was confirmed with the Western blotting technique. We suggest that mTOR and mTOR-related ERK signaling molecules may participate in the rat ovulation process.
Collapse
Affiliation(s)
- Gulcin Ekizceli
- Department of Histology and Embryology, Faculty of Medicine, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Sevinc Inan
- Department of Histology and Embryology, Izmir Economy University, School of Medicine, Izmir, Turkey
| | - Gulperi Oktem
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey
| | - Ece Onur
- Department of Medical Biochemistry, Manisa Celal Bayar University, School of Medicine, Manisa, Turkey
| | - Kemal Ozbilgin
- Department of Histology and Embryology, Manisa Celal Bayar University, School of Medicine, Manisa, Turkey
| |
Collapse
|
19
|
Wu P, Liu Y, Li X, Gu Y, Liu Y, Hu Y, Wang Y, Wu Y, Li N, Zhang Y, Chen Z, Jin H. The regulation of the disease resistance, mTOR and NF-kB signaling pathway of Aristichthys nobilis using Rhodopseudomonas wastewater treatment. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103517. [PMID: 31647941 DOI: 10.1016/j.dci.2019.103517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/04/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The employment of traditional feed and medicament in freshwater aquaculture causes the frequent occurrence of environmental pollution and disease. Effluent collected after Rhodopseudomonas-mediated wastewater treatment could be re-utilized as microbial feeds, and aquaculture water to culture Aristichthys nobilis. Therefore, a novel integrated system of wastewater treatment using effluent containing Rhodopseudomonas that improves yield, increases disease resistance, and enhances the quality of aquaculture water for Aristichthys nobilis culture was proposed and investigated. Aristichthys nobilis can grow well in effluent containing Rhodopseudomonas (ER). The survival rate, yield, and whole body composition of the ER group were all increased compared to the control group (CK). The biochemical (B vitamin) and other substances in the effluent of Rhodopseudomonas enhanced the activity of AKP, ACP, phagocytic, SOD, and CAT by upregulating the expression of AKP, ACP, SOD, and CAT genes. Moreover, Rhodopseudomonas and biochemical substances improved mTOR and NF-kB signaling pathway. Furthermore, Rhodopseudomonas inhibited Aeromonas hydrophila that increases resistance against fish disease. Meanwhile, Rhodopseudomonas in the effluent also improved the aquaculture water quality. This technology would save the aquaculture water, reduce water pollution and wastewater discharge, and increase the output and disease resistance of Aristichthys nobilis, simultaneously.
Collapse
Affiliation(s)
- Pan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yaxin Liu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Xiaoting Li
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yonghu Gu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yuxin Liu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yuqiao Hu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of SunYat-Sen University, Guangzhou, 510630, China
| | - Yuan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Ning Li
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Ying Zhang
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Zhaobo Chen
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Hua Jin
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
20
|
Sánchez JM, Passaro C, Forde N, Browne JA, Behura SK, Fernández-Fuertes B, Mathew DJ, Kelly AK, Butler ST, Spencer TE, Lonergan P. Do differences in the endometrial transcriptome between uterine horns ipsilateral and contralateral to the corpus luteum influence conceptus growth to day 14 in cattle? Biol Reprod 2020; 100:86-100. [PMID: 30137215 DOI: 10.1093/biolre/ioy185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022] Open
Abstract
Embryo transfer to the uterine horn contralateral to the ovary containing the corpus luteum (CL) negatively impacts pregnancy establishment in cattle. Our aim was to compare the transcriptome and ability of the ipsilateral and contralateral uterine horns to support preimplantation conceptus survival and growth to day 14. In experiment 1, endometrial samples from both horns were collected from synchronized heifers slaughtered on day 5, 7, 13, or 16 post-estrus (n = 5 per time) and subjected to RNA sequencing. In experiment 2, 10 day 7 in vitro produced blastocysts were transferred into the uterine horn ipsilateral (n = 9) or contralateral to the CL (n = 8) or into both horns (i.e., bilateral, n = 9) of synchronized recipient heifers. Reproductive tracts were recovered at slaughter on day 14, and the number and dimensions of recovered conceptuses were recorded for each horn. A total of 217, 54, 14, and 18 differentially expressed genes (>2-fold change, FDR P < 0.05) were detected between ipsilateral and contralateral horns on days 5, 7, 13, and 16, respectively, with signaling pathways regulating pluripotency of stem cells, ErbB signaling pathway, and mTOR signaling pathway amongst the top canonical pathways. Site of embryo transfer did not affect recovery rate (48.0%, 168/350) or length of conceptuses (mean ± SE 2.85 ± 0.27 mm). Although differences in gene expression exist between the endometrium of uterine horns ipsilateral and contralateral to the CL in cattle, they do not impact conceptus survival or length between day 7 and 14.
Collapse
Affiliation(s)
- José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claudia Passaro
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niamh Forde
- School of Medicine, University of Leeds, Leeds, UK
| | - John A Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Daniel J Mathew
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alan K Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen T Butler
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
21
|
|
22
|
Wu P, Mo W, Wang Y, Wu Y, Zhang Y, Chen Z, Li N. RETRACTED: Effluent containing Rubrivivax gelatinosus promoting the yield, digestion system, disease resistance, mTOR and NF-kB signaling pathway, intestinal microbiota and aquaculture water quality of crucian carp. FISH & SHELLFISH IMMUNOLOGY 2019; 94:166-174. [PMID: 31446081 DOI: 10.1016/j.fsi.2019.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of Editors-in-Chief and first Author. The article duplicates significant parts of a paper that had already appeared in Fish & Shellfish Immunology, Volume 93 (2019) 726-731, https://doi.org/10.1016/j.fsi.2019.06.052. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper has not been previously published and is not under consideration for publication elsewhere. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process. The first author informed the journal that the article was published without the knowledge of the co-authors.
Collapse
Affiliation(s)
- Pan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Wentao Mo
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yanling Wang
- Department of Anesthesiology, The third affiliated hospital of SunYat-Sen University, Guangzhou, 510630, China
| | - Yuan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Zhaobo Chen
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Ning Li
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
23
|
So YS, Lee DG, Idnurm A, Ianiri G, Bahn YS. The TOR Pathway Plays Pleiotropic Roles in Growth and Stress Responses of the Fungal Pathogen Cryptococcus neoformans. Genetics 2019; 212:1241-1258. [PMID: 31175227 PMCID: PMC6707454 DOI: 10.1534/genetics.119.302191] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/02/2019] [Indexed: 11/18/2022] Open
Abstract
The target of rapamycin (TOR) pathway is an evolutionarily conserved signal transduction system that governs a plethora of eukaryotic biological processes, but its role in Cryptococcus neoformans remains elusive. In this study, we investigated the TOR pathway by functionally characterizing two Tor-like kinases, Tor1 and Tlk1, in C. neoformans We successfully deleted TLK1, but not TOR1TLK1 deletion did not result in any evident in vitro phenotypes, suggesting that Tlk1 is dispensable for the growth of C. neoformans We demonstrated that Tor1, but not Tlk1, is essential and the target of rapamycin by constructing and analyzing conditionally regulated strains and sporulation analysis of heterozygous mutants in the diploid strain background. To further analyze the Tor1 function, we constructed constitutive TOR1 overexpression strains. Tor1 negatively regulated thermotolerance and the DNA damage response, which are two important virulence factors of C. neoformansTOR1 overexpression reduced Mpk1 phosphorylation, which is required for cell wall integrity and thermoresistance, and Rad53 phosphorylation, which governs the DNA damage response pathway. Tor1 is localized to the cytoplasm, but enriched in the vacuole membrane. Phosphoproteomics and transcriptomics revealed that Tor1 regulates a variety of biological processes, including metabolic processes, cytoskeleton organization, ribosome biogenesis, and stress response. TOR inhibition by rapamycin caused actin depolarization in a Tor1-dependent manner. Finally, screening rapamycin-sensitive and -resistant kinase and transcription factor mutants revealed that the TOR pathway may crosstalk with a number of stress signaling pathways. In conclusion, our study demonstrates that a single Tor1 kinase plays pleiotropic roles in C. neoformans.
Collapse
Affiliation(s)
- Yee-Seul So
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong-Gi Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Hommel B, Sturny-Leclère A, Volant S, Veluppillai N, Duchateau M, Yu CH, Hourdel V, Varet H, Matondo M, Perfect JR, Casadevall A, Dromer F, Alanio A. Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. PLoS Pathog 2019; 15:e1007945. [PMID: 31356623 PMCID: PMC6687208 DOI: 10.1371/journal.ppat.1007945] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/08/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023] Open
Abstract
Metabolically quiescent pathogens can persist in a viable non-replicating state for months or even years. For certain infectious diseases, such as tuberculosis, cryptococcosis, histoplasmosis, latent infection is a corollary of this dormant state, which has the risk for reactivation and clinical disease. During murine cryptococcosis and macrophage uptake, stress and host immunity induce Cryptococcus neoformans heterogeneity with the generation of a sub-population of yeasts that manifests a phenotype compatible with dormancy (low stress response, latency of growth). In this subpopulation, mitochondrial transcriptional activity is regulated and this phenotype has been considered as a hallmark of quiescence in stem cells. Based on these findings, we worked to reproduce this phenotype in vitro and then standardize the experimental conditions to consistently generate this dormancy in C. neoformans. We found that incubation of stationary phase yeasts (STAT) in nutriment limited conditions and hypoxia for 8 days (8D-HYPOx) was able to produced cells that mimic the phenotype obtained in vivo. In these conditions, mortality and/or apoptosis occurred in less than 5% of the yeasts compared to 30-40% of apoptotic or dead yeasts upon incubation in normoxia (8D-NORMOx). Yeasts in 8D-HYPOx harbored a lower stress response, delayed growth and less that 1% of culturability on agar plates, suggesting that these yeasts are viable but non culturable cells (VBNC). These VBNC were able to reactivate in the presence of pantothenic acid, a vitamin that is known to be involved in quorum sensing and a precursor of acetyl-CoA. Global metabolism of 8D-HYPOx cells showed some specific requirements and was globally shut down compared to 8D-NORMOx and STAT conditions. Mitochondrial analyses showed that the mitochondrial mass increased with mitochondria mostly depolarized in 8D-HYPOx compared to 8D-NORMox, with increased expression of mitochondrial genes. Proteomic and transcriptomic analyses of 8D-HYPOx revealed that the number of secreted proteins and transcripts detected also decreased compared to 8D-NORMOx and STAT, and the proteome, secretome and transcriptome harbored specific profiles that are engaged as soon as four days of incubation. Importantly, acetyl-CoA and the fatty acid pathway involving mitochondria are required for the generation and viability maintenance of VBNC. Altogether, these data show that we were able to generate for the first time VBNC phenotype in C. neoformans. This VBNC state is associated with a specific metabolism that should be further studied to understand dormancy/quiescence in this yeast.
Collapse
Affiliation(s)
- Benjamin Hommel
- Institut Pasteur, CNRS, Molecular Mycology Unit, UMR2000, Paris, France
- Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Stevenn Volant
- Institut Pasteur - Bioinformatics and Biostatistics Hub - C3BI, USR 3756 IP CNRS, Paris, France
| | | | - Magalie Duchateau
- Institut Pasteur, Unité de spectrométrie de masse et Protéomique, Paris, France
| | - Chen-Hsin Yu
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Véronique Hourdel
- Institut Pasteur, Unité de spectrométrie de masse et Protéomique, Paris, France
| | - Hugo Varet
- Institut Pasteur - Bioinformatics and Biostatistics Hub - C3BI, USR 3756 IP CNRS, Paris, France
- Institut Pasteur - Transcriptome and Epigenome Platform - Biomics Pole - C2RT, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Unité de spectrométrie de masse et Protéomique, Paris, France
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Françoise Dromer
- Institut Pasteur, CNRS, Molecular Mycology Unit, UMR2000, Paris, France
| | - Alexandre Alanio
- Institut Pasteur, CNRS, Molecular Mycology Unit, UMR2000, Paris, France
- Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Rollins JA, Shaffer D, Snow SS, Kapahi P, Rogers AN. Dietary restriction induces posttranscriptional regulation of longevity genes. Life Sci Alliance 2019; 2:2/4/e201800281. [PMID: 31253655 PMCID: PMC6600014 DOI: 10.26508/lsa.201800281] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary restriction (DR) increases life span through adaptive changes in gene expression. To understand more about these changes, we analyzed the transcriptome and translatome of Caenorhabditis elegans subjected to DR. Transcription of muscle regulatory and structural genes increased, whereas increased expression of amino acid metabolism and neuropeptide signaling genes was controlled at the level of translation. Evaluation of posttranscriptional regulation identified putative roles for RNA-binding proteins, RNA editing, miRNA, alternative splicing, and nonsense-mediated decay in response to nutrient limitation. Using RNA interference, we discovered several differentially expressed genes that regulate life span. We also found a compensatory role for translational regulation, which offsets dampened expression of a large subset of transcriptionally down-regulated genes. Furthermore, 3' UTR editing and intron retention increase under DR and correlate with diminished translation, whereas trans-spliced genes are refractory to reduced translation efficiency compared with messages with the native 5' UTR. Finally, we find that smg-6 and smg-7, which are genes governing selection and turnover of nonsense-mediated decay targets, are required for increased life span under DR.
Collapse
Affiliation(s)
- Jarod A Rollins
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Dan Shaffer
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Santina S Snow
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Aric N Rogers
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| |
Collapse
|
26
|
Signaling and Regulation of the Mitochondrial Unfolded Protein Response. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033944. [PMID: 30617048 DOI: 10.1101/cshperspect.a033944] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mitochondrial proteome encompasses more than a thousand proteins, which are encoded by the mitochondrial and nuclear genomes. Mitochondrial biogenesis and network health relies on maintenance of protein import pathways and the protein-folding environment. Cell-extrinsic or -intrinsic stressors that challenge mitochondrial proteostasis negatively affect organellar function. During conditions of stress, cells use impaired protein import as a sensor for mitochondrial dysfunction to activate a stress response called the mitochondrial unfolded protein response (UPRmt). UPRmt activation leads to an adaptive transcriptional program that promotes mitochondrial recovery, metabolic adaptations, and innate immunity. In this review, we discuss the regulation of UPRmt activation as well as its role in maintaining mitochondrial homeostasis in physiological and pathological scenarios.
Collapse
|
27
|
Li H, Tian X, Zhao K, Jiang W, Dong S. Effect of Clostridium butyricum in different forms on growth performance, disease resistance, expression of genes involved in immune responses and mTOR signaling pathway of Litopenaeus vannamai. FISH & SHELLFISH IMMUNOLOGY 2019; 87:13-21. [PMID: 30599253 DOI: 10.1016/j.fsi.2018.12.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/22/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
A 42-day feeding trial was conducted to evaluate the effects of diet supplemented with various additives from Clostridium butyricum (fermentation supernatant, FS; live cells, LC; cell-free extract, CE; spray-dried spores, DS; mixture of live cells and supernatant, LCS) on the growth, intestinal morphology, disease resistance, immune gene expression and mTOR signaling-related gene expression in Litopenaeus vannamai. The feeding trial showed that the final weight and specific growth rate of the shrimp were improved significantly while the feed conversion ratio were reduced significantly in LC, CE, DS and LCS groups compared to the control. The villus height and intestinal wall thickness of shrimp's mid-intestine in LC, DS and LCS group increased significantly. After challenge test to Vibrio parahaemolyticus, the cumulative mortalities of the shrimp in LC, CE, DS and LCS groups were significantly lower than that of the control. As compared to the control, the relative expression levels of superoxide dismutase, lysozyme, prophenoloxidase (proPO), Toll, Immune deficiency (Imd), Relish, TOR, 4E-BP, eIF4E1α and eIF4E2 genes in the shrimp of DS and LCS groups enhanced significantly, whereas the relative expression levels of proPO, SOD, Toll, Imd, Relish, elF4E1α and elF4E2 genes were statistically the same between FS group and the control. These results suggested that the spray-dried spores and mixture of live cells and supernatant of C. butyricum exerted better probiotic benefits in modulating immune responses of shrimp. In addition, single supernatant could not be helpful to shrimp while mixture of live cells and supernatant could better improve the immune responses of shrimp in comparison to single live cells. The integration of C. butyricum and their metabolites supplemented into feed could significantly improve growth performance, intestinal morphology, immunity capacity and resistance against V. parahaemolyticus of L. vannamei.
Collapse
Affiliation(s)
- Haidong Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong Province, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266003, China
| | - Xiangli Tian
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong Province, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266003, China.
| | - Kun Zhao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong Province, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266003, China
| | - Wenwen Jiang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong Province, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266003, China
| | - Shuanglin Dong
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong Province, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266003, China
| |
Collapse
|
28
|
Rutherford JC, Bahn YS, van den Berg B, Heitman J, Xue C. Nutrient and Stress Sensing in Pathogenic Yeasts. Front Microbiol 2019; 10:442. [PMID: 30930866 PMCID: PMC6423903 DOI: 10.3389/fmicb.2019.00442] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
More than 1.5 million fungal species are estimated to live in vastly different environmental niches. Despite each unique host environment, fungal cells sense certain fundamentally conserved elements, such as nutrients, pheromones and stress, for adaptation to their niches. Sensing these extracellular signals is critical for pathogens to adapt to the hostile host environment and cause disease. Hence, dissecting the complex extracellular signal-sensing mechanisms that aid in this is pivotal and may facilitate the development of new therapeutic approaches to control fungal infections. In this review, we summarize the current knowledge on how two important pathogenic yeasts, Candida albicans and Cryptococcus neoformans, sense nutrient availability, such as carbon sources, amino acids, and ammonium, and different stress signals to regulate their morphogenesis and pathogenicity in comparison with the non-pathogenic model yeast Saccharomyces cerevisiae. The molecular interactions between extracellular signals and their respective sensory systems are described in detail. The potential implication of analyzing nutrient and stress-sensing systems in antifungal drug development is also discussed.
Collapse
Affiliation(s)
- Julian C Rutherford
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Chaoyang Xue
- Public Health Research Institute, Rutgers University, Newark, NJ, United States.,Department of Molecular Genetics, Biochemistry and Microbiology, Rutgers University, Newark, NJ, United States
| |
Collapse
|
29
|
Palmisano NJ, Meléndez A. Autophagy in C. elegans development. Dev Biol 2019; 447:103-125. [PMID: 29709599 PMCID: PMC6204124 DOI: 10.1016/j.ydbio.2018.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
Autophagy involves the sequestration of cytoplasmic contents in a double-membrane structure referred to as the autophagosome and the degradation of its contents upon delivery to lysosomes. Autophagy activity has a role in multiple biological processes during the development of the nematode Caenorhabditis elegans. Basal levels of autophagy are required to remove aggregate prone proteins, paternal mitochondria, and spermatid-specific membranous organelles. During larval development, autophagy is required for the remodeling that occurs during dauer development, and autophagy can selectively degrade components of the miRNA-induced silencing complex, and modulate miRNA-mediated silencing. Basal levels of autophagy are important in synapse formation and in the germ line, to promote the proliferation of proliferating stem cells. Autophagy activity is also required for the efficient removal of apoptotic cell corpses by promoting phagosome maturation. Finally, autophagy is also involved in lipid homeostasis and in the aging process. In this review, we first describe the molecular complexes involved in the process of autophagy, its regulation, and mechanisms for cargo recognition. In the second section, we discuss the developmental contexts where autophagy has been shown to be important. Studies in C. elegans provide valuable insights into the physiological relevance of this process during metazoan development.
Collapse
Affiliation(s)
- Nicholas J Palmisano
- Biology Department, Queens College, CUNY, Flushing, NY, USA; Biology Ph.D. Program, The Graduate Center of the City University of New York, NK, USA
| | - Alicia Meléndez
- Biology Department, Queens College, CUNY, Flushing, NY, USA; Biology Ph.D. Program, The Graduate Center of the City University of New York, NK, USA; Biochemistry Ph.D. Program, The Graduate Center of the City University of New York, NY, USA.
| |
Collapse
|
30
|
Talwar H, Bouhamdan M, Bauerfeld C, Talreja J, Aoidi R, Houde N, Charron J, Samavati L. MEK2 Negatively Regulates Lipopolysaccharide-Mediated IL-1β Production through HIF-1α Expression. THE JOURNAL OF IMMUNOLOGY 2019; 202:1815-1825. [PMID: 30710049 DOI: 10.4049/jimmunol.1801477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
LPS-activated macrophages require metabolic reprogramming and glucose uptake mediated by hypoxia-inducible factor (HIF)-1 α and glucose transporter 1 (Glut1) expression for proinflammatory cytokine production, especially IL-1β. This process is tightly regulated through activation of MAPK kinases, including the MEK/ERK pathway as well as several transcription factors including HIF-1α. Although MAPK kinase (MEK) 2 deficiency had no significant effect on NO, TNF-α, or IL-12 production in response to LPS challenge, MEK2-deficient murine bone marrow-derived macrophages (BMDMs) exhibited lower IL-10 production. Importantly, MEK2-deficient BMDMs exhibited a preserved ERK1/2 phosphorylation, higher HIF-1α and Glut1 levels, and substantially increased IL-1β as well as IL-6 production in response to LPS stimulation. Knockdown of HIF-1α expression via short interference RNA decreased the level of HIF-1α expression in MEK2-deficient BMDMs and decreased IL-1β production in response to LPS treatment. Furthermore, we performed gain of function experiments by overexpressing MEK2 protein in RAW264.7 cells. LPS stimulation of MEK2 overexpressed in RAW264.7 cells led to a marked decreased IL-1β production. Finally, we investigated the role of Mek1 and Mek2 double and triple mutation on ERK phosphorylation, HIF-1α expression, and IL-1β production. We found that MEK2 is the major kinase, which inversely proportionally regulates HIF-1α and IL-1β expression independent of ERK activation. Our findings demonstrate a novel regulatory function for MEK2 in response to TLR4 activation in IL-1β production through modulating HIF-1α expression.
Collapse
Affiliation(s)
- Harvinder Talwar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201
| | - Mohamad Bouhamdan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201
| | - Christian Bauerfeld
- Division of Critical Care, Department of Pediatrics, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201
| | - Jaya Talreja
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201
| | - Rifdat Aoidi
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval, L'Hôtel-Dieu de Québec, Quebec City, Quebec, Canada; and
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, L'Hôtel-Dieu de Québec, Quebec City, Quebec, Canada; and
| | - Lobelia Samavati
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201; .,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
31
|
Veeran S, Cui G, Shu B, Yi X, Zhong G. Curcumin-induced autophagy and nucleophagy in Spodoptera frugiperda Sf9 insect cells occur via PI3K/AKT/TOR pathways. J Cell Biochem 2019; 120:2119-2137. [PMID: 30242882 DOI: 10.1002/jcb.27520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/30/2018] [Indexed: 01/24/2023]
Abstract
Compounds from plants or microbes are important resources for new natural pesticides against a wide variety of pests. The growing attention on the role of autophagy (type II cell death) in regulation of insect toxicology has propelled researchers to investigate autophagic cell death pathways. Our previous study proved that the cytotoxic effect of curcumin in Spodoptera frugiperda cells is regulated by autophagy. However, the signaling pathways and molecular mechanisms had not been determined. The current study elucidates curcumin inhibition of survival signaling by blocking the activation of PI3K/AKT/TOR pathways to induce autophagy in S. frugiperda cells. The result demonstrates that nucleophagy associated with cell death following the curcumin treatment. Following the curcumin treatment, Atg8/LC3 immunostaining in both nucleus and cytoplasm was markedly increased. Further, messenger RNA expression level of Atg8 and Atg1 genes regulation by curcumin was examined using quantitative reverse transcription polymerase chain reaction, and the result exhibited increased level of expression after curcumin treatment in a time-dependent manner. Our current study provides new insights to the autophagy occurring via PI3K/AKT/TOR pathways in S. frugiperda Sf9 insect cells induced by curcumin. Taken together, our results show for the first time that curcumin induced nucleophagy in lepidopteron insect cell line.
Collapse
Affiliation(s)
- Sethuraman Veeran
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Benshui Shu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
32
|
Shokrzadeh N, Alivand MR, Abedelahi A, Hessam Shariati MB, Niknafs B. Calcitonin administration improves endometrial receptivity via regulation of LIF, Muc-1 and microRNA Let-7a in mice. J Cell Physiol 2018; 234:12989-13000. [PMID: 30536902 DOI: 10.1002/jcp.27969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022]
Abstract
Calcitonin (CT) is one of the factors affecting the embryo implantation, but its effects on the implantation window have not been fully investigated. The current study investigated the effects of CT on the endometrium receptivity by morphological study and evaluation of leukemia inhibitory factor (LIF), mucin 1 (Muc-1), and microRNA (miRNA) Let-7a in the ovarian stimulation and the normal ovarian cycle. Then the mechanism of the CT effects through the mammalian target of rapamycin (mTOR) signaling pathway was studied by using PP242. A total of 64 BALB/c mice were divided into the normal ovarian cycle and ovarian stimulation groups. Each group consisted of four subgroups: control, calcitonin, PP242, and calcitonin+PP242. CT and PP242 were injected on the fourth of pregnancy into the mice and 24 hr later all the mice were killed. The uterine tissue samples were used for morphological analysis, and endometrial cells were mechanically isolated for evaluation of gene and protein expression. The results showed that ovarian stimulation induced mTOR phosphorylation as well as increased expression of the Let-7a miRNA. In addition, CT injection increased the expression of LIF and miRNA Let-7a in ovarian stimulation similar to that in normal ovarian cycles. However, injection of PP242 reduced expression of miRNA Let-7a and increased Muc-1 expression in ovarian stimulation group. In conclusion, the administration of CT improved endometrial receptivity in mice. This phenomenon occurred by upregulation of LIF, miRNA Let-7a and downregulation of Muc-1 via mTOR signaling pathway.
Collapse
Affiliation(s)
- Naser Shokrzadeh
- Immunology Research Center, Faculty of medicine, Tabriz University Of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad B Hessam Shariati
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Behrooz Niknafs
- Department of Reproductive Biology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Shokrzadeh N, Alivand MR, Abedelahi A, Hessam Shariati MB, Niknafs B. Upregulation of HB-EGF, Msx.1, and miRNA Let-7a by administration of calcitonin through mTOR and ERK1/2 pathways during a window of implantation in mice. Mol Reprod Dev 2018; 85:790-801. [DOI: 10.1002/mrd.23061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Naser Shokrzadeh
- Immunology Research Center, Faculty Of Medicine, Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics; Faculty of Medicine, Tabriz University of Medical Sciences; Tabriz Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences; Faculty of Medicine, Tabriz University of Medical Sciences; Tabriz Iran
| | | | - Behrooz Niknafs
- Department of Anatomical Sciences; Faculty of Medicine, Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
34
|
Role of mTOR Complexes in Neurogenesis. Int J Mol Sci 2018; 19:ijms19051544. [PMID: 29789464 PMCID: PMC5983636 DOI: 10.3390/ijms19051544] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of neural stem cells (NSCs) is associated with several neurodevelopmental disorders, including epilepsy and autism spectrum disorder. The mammalian target of rapamycin (mTOR) integrates the intracellular signals to control cell growth, nutrient metabolism, and protein translation. mTOR regulates many functions in the development of the brain, such as proliferation, differentiation, migration, and dendrite formation. In addition, mTOR is important in synaptic formation and plasticity. Abnormalities in mTOR activity is linked with severe deficits in nervous system development, including tumors, autism, and seizures. Dissecting the wide-ranging roles of mTOR activity during critical periods in development will greatly expand our understanding of neurogenesis.
Collapse
|
35
|
Systematic analysis of the lysine malonylome in common wheat. BMC Genomics 2018; 19:209. [PMID: 29558883 PMCID: PMC5859436 DOI: 10.1186/s12864-018-4535-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 02/06/2018] [Indexed: 01/19/2023] Open
Abstract
Background Protein lysine malonylation, a newly discovered post-translational modification (PTM), plays an important role in diverse metabolic processes in both eukaryotes and prokaryotes. Common wheat is a major global cereal crop. However, the functions of lysine malonylation are relatively unknown in this crop. Here, a global analysis of lysine malonylation was performed in wheat. Results In total, 342 lysine malonylated sites were identified in 233 proteins. Bioinformatics analysis showed that the frequency of arginine (R) in position + 1 was highest, and a modification motif, KmaR, was identified. The malonylated proteins were located in multiple subcellular compartments, especially in the cytosol (45%) and chloroplast (30%). The identified proteins were found to be involved in diverse pathways, such as carbon metabolism, the Calvin cycle, and the biosynthesis of amino acids, suggesting an important role for lysine malonylation in these processes. Protein interaction network analysis revealed eight highly interconnected clusters of malonylated proteins, and 137 malonylated proteins were mapped to the protein network database. Moreover, five proteins were simultaneously modified by lysine malonylation, acetylation and succinylation, suggesting that these three PTMs may coordinately regulate the function of many proteins in common wheat. Conclusions Our results suggest that lysine malonylation is involved in a variety of biological processes, especially carbon fixation in photosynthetic organisms. These data represent the first report of the lysine malonylome in common wheat and provide an important dataset for further exploring the physiological role of lysine malonylation in wheat and likely all plants. Electronic supplementary material The online version of this article (10.1186/s12864-018-4535-y) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Pan X, Dalm C, Wijffels RH, Martens DE. Metabolic characterization of a CHO cell size increase phase in fed-batch cultures. Appl Microbiol Biotechnol 2017; 101:8101-8113. [PMID: 28951949 PMCID: PMC5656727 DOI: 10.1007/s00253-017-8531-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
Abstract
Normally, the growth profile of a CHO cell fed-batch process can be divided into two main phases based on changes in cell concentration, being an exponential growth phase and a stationary (non-growth) phase. In this study, an additional phase is observed during which the cell division comes to a halt but the cell growth continues in the form of an increase in cell size. The cell size increase (SI) phase occurs between the exponential proliferation phase (also called the number increase or NI phase) and the stationary phase. During the SI phase, the average volume and dry weight per cell increase threefold linearly with time. The average mAb specific productivity per cell increases linearly with the cell volume and therefore is on average two times higher in the SI phase than in the NI phase. The specific essential amino acids consumption rates per cell remain fairly constant between the NI and the SI phase, which agrees with the similar biomass production rate per cell between these two phases. Accumulation of fatty acids and formation of lipid droplets in the cells are observed during the SI phase, indicating that the fatty acids synthesis rate exceeds the demand for the synthesis of membrane lipids. A metabolic comparison between NI and SI phase shows that the cells with a larger size produce more mAb per unit of O2 and nutrient consumed, which can be used for further process optimization.
Collapse
Affiliation(s)
- Xiao Pan
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700, AA, Wageningen, the Netherlands.
| | - Ciska Dalm
- Synthon Biopharmaceuticals BV, Upstream Process Development, PO Box 7071, 6503, GN, Nijmegen, the Netherlands
| | - René H Wijffels
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700, AA, Wageningen, the Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway
| | - Dirk E Martens
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700, AA, Wageningen, the Netherlands
| |
Collapse
|
37
|
Wang G, Li D, Miao Z, Zhang S, Liang W, Liu L. Comparative transcriptome analysis reveals multiple functions for Mhy1p in lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:81-90. [PMID: 29055818 DOI: 10.1016/j.bbalip.2017.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/24/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
Yarrowia lipolytica is considered as a promising microbial cell factory for bio-oil production due to its ability to accumulate a large amount of lipid. However, the regulation of lipid metabolism in this oleaginous yeast is elusive. In this study, the MHY1 gene was disrupted, and 43.1% (w/w) intracellular oil based on cell dry weight was obtained from the disruptant M-MHY1, while only 30.2% (w/w) lipid based on cell dry weight was obtained from the reference strain. RNA-seq was then performed to analyze transcriptional changes during lipid biosynthesis after MHY1 gene inactivation. The expression of 1597 genes, accounting for 24.7% of annotated Y. lipolytica genes, changed significantly in the disruptant M-MHY1 during lipid biosynthesis. Differential gene expression analysis indicated that Mhy1p performs multiple functions and participates in a wide variety of biological processes, including lipid, amino acid and nitrogen metabolism. Notably, data analysis revealed increased carbon flux through lipid biosynthesis following MHY1 gene inactivation, accompanied by decreased carbon flux through amino acid biosynthesis. Moreover, Mhy1p regulates the cell cycle, and the cell cycle rate was enhanced in the disruptant M-MHY1. These results suggest that Mhy1p plays critical regulatory roles in diverse aspects of various biological processes, especially in lipid biosynthesis, amino acid and nitrogen metabolism and cell cycle. Our dataset appears to elucidate the crucial role of Mhy1p in lipid biosynthesis and serves as a resource for exploring physiological dimorphic growth in Y. lipolytica.
Collapse
Affiliation(s)
- Guangyuan Wang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Delong Li
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Zhengang Miao
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Shanshan Zhang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liang
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Lin Liu
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
38
|
Metabolic characterization of a CHO cell size increase phase in fed-batch cultures. Appl Microbiol Biotechnol 2017. [PMID: 28951949 DOI: 10.1007/s00253‐017‐8531‐y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Normally, the growth profile of a CHO cell fed-batch process can be divided into two main phases based on changes in cell concentration, being an exponential growth phase and a stationary (non-growth) phase. In this study, an additional phase is observed during which the cell division comes to a halt but the cell growth continues in the form of an increase in cell size. The cell size increase (SI) phase occurs between the exponential proliferation phase (also called the number increase or NI phase) and the stationary phase. During the SI phase, the average volume and dry weight per cell increase threefold linearly with time. The average mAb specific productivity per cell increases linearly with the cell volume and therefore is on average two times higher in the SI phase than in the NI phase. The specific essential amino acids consumption rates per cell remain fairly constant between the NI and the SI phase, which agrees with the similar biomass production rate per cell between these two phases. Accumulation of fatty acids and formation of lipid droplets in the cells are observed during the SI phase, indicating that the fatty acids synthesis rate exceeds the demand for the synthesis of membrane lipids. A metabolic comparison between NI and SI phase shows that the cells with a larger size produce more mAb per unit of O2 and nutrient consumed, which can be used for further process optimization.
Collapse
|
39
|
Shao B, Yuan H, Zhang R, Wang X, Zhang S, Ouyang Q, Hao N, Luo C. Reconstructing the regulatory circuit of cell fate determination in yeast mating response. PLoS Comput Biol 2017; 13:e1005671. [PMID: 28742153 PMCID: PMC5546706 DOI: 10.1371/journal.pcbi.1005671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/07/2017] [Accepted: 07/09/2017] [Indexed: 12/22/2022] Open
Abstract
Massive technological advances enabled high-throughput measurements of proteomic changes in biological processes. However, retrieving biological insights from large-scale protein dynamics data remains a challenging task. Here we used the mating differentiation in yeast Saccharomyces cerevisiae as a model and developed integrated experimental and computational approaches to analyze the proteomic dynamics during the process of cell fate determination. When exposed to a high dose of mating pheromone, the yeast cell undergoes growth arrest and forms a shmoo-like morphology; however, at intermediate doses, chemotropic elongated growth is initialized. To understand the gene regulatory networks that control this differentiation switch, we employed a high-throughput microfluidic imaging system that allows real-time and simultaneous measurements of cell growth and protein expression. Using kinetic modeling of protein dynamics, we classified the stimulus-dependent changes in protein abundance into two sources: global changes due to physiological alterations and gene-specific changes. A quantitative framework was proposed to decouple gene-specific regulatory modes from the growth-dependent global modulation of protein abundance. Based on the temporal patterns of gene-specific regulation, we established the network architectures underlying distinct cell fates using a reverse engineering method and uncovered the dose-dependent rewiring of gene regulatory network during mating differentiation. Furthermore, our results suggested a potential crosstalk between the pheromone response pathway and the target of rapamycin (TOR)-regulated ribosomal biogenesis pathway, which might underlie a cell differentiation switch in yeast mating response. In summary, our modeling approach addresses the distinct impacts of the global and gene-specific regulation on the control of protein dynamics and provides new insights into the mechanisms of cell fate determination. We anticipate that our integrated experimental and modeling strategies could be widely applicable to other biological systems. A systematic characterization of the proteomic changes during the process of cell differentiation is critical for understanding the underlying molecular mechanisms. However, protein expression can be largely affected by changes in cell physiological state, which hampers the detection of regulatory interactions. Here we proposed an integrated experimental and computational framework to reconstruct regulatory circuits in mating differentiation of budding yeast Saccharomyces cerevisiae, in which distinct cell fates are triggered by alteration in pheromone concentration. A modeling approach was developed to decouple gene-specific regulation from growth-dependent global regulation of protein expression, allowing us to reverse engineering the gene regulatory circuits underlying distinct cell fates. Our work highlights the importance of model-based analysis of proteomic data and delivers new insight into dose-dependent differentiation behavior of budding yeast.
Collapse
Affiliation(s)
- Bin Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Haiyu Yuan
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Rongfei Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xuan Wang
- School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America
| | - Shuwen Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qi Ouyang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Nan Hao
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (CL); (NH)
| | - Chunxiong Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- * E-mail: (CL); (NH)
| |
Collapse
|
40
|
Lepore D, Spassibojko O, Pinto G, Collins RN. Cell cycle-dependent phosphorylation of Sec4p controls membrane deposition during cytokinesis. J Cell Biol 2017; 214:691-703. [PMID: 27621363 PMCID: PMC5021095 DOI: 10.1083/jcb.201602038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/04/2016] [Indexed: 11/22/2022] Open
Abstract
The GTPase Sec4p is a critical regulator of polarized membrane traffic. Lepore et al. show that the polo-like kinase Cdc5p phosphorylates Sec4p, which promotes coordinated membrane deposition during cytokinesis. Intracellular trafficking is an essential and conserved eukaryotic process. Rab GTPases are a family of proteins that regulate and provide specificity for discrete membrane trafficking steps by harnessing a nucleotide-bound cycle. Global proteomic screens have revealed many Rab GTPases as phosphoproteins, but the effects of this modification are not well understood. Using the Saccharomyces cerevisiae Rab GTPase Sec4p as a model, we have found that phosphorylation negatively regulates Sec4p function by disrupting the interaction with the exocyst complex via Sec15p. We demonstrate that phosphorylation of Sec4p is a cell cycle–dependent process associated with cytokinesis. Through a genomic kinase screen, we have also identified the polo-like kinase Cdc5p as a positive regulator of Sec4p phosphorylation. Sec4p spatially and temporally localizes with Cdc5p exclusively when Sec4p phosphorylation levels peak during the cell cycle, indicating Sec4p is a direct Cdc5p substrate. Our data suggest the physiological relevance of Sec4p phosphorylation is to facilitate the coordination of membrane-trafficking events during cytokinesis.
Collapse
Affiliation(s)
- Dante Lepore
- Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, NY 14853 Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Olya Spassibojko
- Cornell Undergraduate Biology, Cornell University, Ithaca, NY 14853
| | - Gabrielle Pinto
- Cornell Undergraduate Biology, Cornell University, Ithaca, NY 14853
| | - Ruth N Collins
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
41
|
Liang SH, Wu H, Wang RR, Wang Q, Shu T, Gao XD. The TORC1-Sch9-Rim15 signaling pathway represses yeast-to-hypha transition in response to glycerol availability in the oleaginous yeastYarrowia lipolytica. Mol Microbiol 2017; 104:553-567. [DOI: 10.1111/mmi.13645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Shu-Heng Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| | - Heng Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| | - Rui-Rui Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| | - Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| | - Tao Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| | - Xiang-Dong Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation; Wuhan China
| |
Collapse
|
42
|
Huang A, Sang Y, Sun W, Fu Y, Yang Z. Transcriptomic Analysis of Responses to Imbalanced Carbon: Nitrogen Availabilities in Rice Seedlings. PLoS One 2016; 11:e0165732. [PMID: 27820840 PMCID: PMC5098742 DOI: 10.1371/journal.pone.0165732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/17/2016] [Indexed: 11/19/2022] Open
Abstract
The internal C:N balance must be tightly controlled for the normal growth and development of plants. However, the underlying mechanisms, by which plants sense and balance the intracellular C:N status correspondingly to exogenous C:N availabilities remain elusive. In this study, we use comparative gene expression analysis to identify genes that are responsive to imbalanced C:N treatments in the aerial parts of rice seedlings. Transcripts of rice seedlings treated with four C:N availabilities (1:1, 1:60, 60:1 and 60:60) were compared and two groups of genes were classified: high C:low N responsive genes and low C:high N responsive genes. Our analysis identified several functional correlated genes including chalcone synthase (CHS), chlorophyll a-b binding protein (CAB) and other genes that are implicated in C:N balancing mechanism, such as alternative oxidase 1B (OsAOX1B), malate dehydrogenase (OsMDH) and lysine and histidine specific transporter 1 (OsLHT1). Additionally, six jasmonate synthetic genes and key regulatory genes involved in abiotic and biotic stresses, such as OsMYB4, autoinhibited calcium ATPase 3 (OsACA3) and pleiotropic drug resistance 9 (OsPDR9), were differentially expressed under high C:low N treatment. Gene ontology analysis showed that high C:low N up-regulated genes were primarily enriched in fatty acid biosynthesis and defense responses. Coexpression network analysis of these genes identified eight jasmonate ZIM domain protein (OsJAZ) genes and several defense response related regulators, suggesting that high C:low N status may act as a stress condition, which induces defense responses mediated by jasmonate signaling pathway. Our transcriptome analysis shed new light on the C:N balancing mechanisms and revealed several important regulators of C:N status in rice seedlings.
Collapse
Affiliation(s)
- Aobo Huang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuying Sang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenfeng Sun
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhenbiao Yang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
43
|
Wang Y, Song X, Zhang Y, Wang B, Zou X. Effects of nitrogen availability on polymalic acid biosynthesis in the yeast-like fungus Aureobasidium pullulans. Microb Cell Fact 2016; 15:146. [PMID: 27549441 PMCID: PMC4994417 DOI: 10.1186/s12934-016-0547-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/15/2016] [Indexed: 12/03/2022] Open
Abstract
Background Polymalic acid (PMA) is a novel polyester polymer that has been broadly used in the medical and food industries. Its monomer, L-malic acid, is also a potential C4 platform chemical. However, little is known about the mechanism of PMA biosynthesis in the yeast-like fungus, Aureobasidium pullulans. In this study, the effects of different nitrogen concentration on cell growth and PMA biosynthesis were investigated via comparative transcriptomics and proteomics analyses, and a related signaling pathway was also evaluated. Results A high final PMA titer of 44.00 ± 3.65 g/L (49.9 ± 4.14 g/L of malic acid after hydrolysis) was achieved in a 5-L fermentor under low nitrogen concentration (2 g/L of NH4NO3), which was 18.3 % higher yield than that obtained under high nitrogen concentration (10 g/L of NH4NO3). Comparative transcriptomics profiling revealed that a set of genes, related to the ribosome, ribosome biogenesis, proteasome, and nitrogen metabolism, were significantly up- or down-regulated under nitrogen sufficient conditions, which could be regulated by the TOR signaling pathway. Fourteen protein spots were identified via proteomics analysis, and were found to be associated with cell division and growth, energy metabolism, and the glycolytic pathway. qRT-PCR further confirmed that the expression levels of key genes involved in the PMA biosynthetic pathway (GLK, CS, FUM, DAT, and MCL) and the TOR signaling pathway (GS, TOR1, Tap42, and Gat1) were upregulated due to nitrogen limitation. Under rapamycin stress, PMA biosynthesis was obviously inhibited in a dose-dependent manner, and the transcription levels of TOR1, MCL, and DAT were also downregulated. Conclusions The level of nitrogen could regulate cell growth and PMA biosynthesis. Low concentration of nitrogen was beneficial for PMA biosynthesis, which could upregulate the expression of key genes involved in the PMA biosynthesis pathway. Cell growth and PMA biosynthesis might be mediated by the TOR signaling pathway in response to nitrogen. This study will help us to deeply understand the molecular mechanisms of PMA biosynthesis, and to develop an effective process for the production of PMA and malic acid chemicals. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0547-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongkang Wang
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, 2 Tian Sheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Xiaodan Song
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, 2 Tian Sheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yongjun Zhang
- Biotechnology Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Bochu Wang
- Ministry of Education, Key Laboratory of Biorheological Science and Technology (Chongqing University), Chongqing, 400044, People's Republic of China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, 2 Tian Sheng Road, Beibei, Chongqing, 400715, People's Republic of China. .,Ministry of Education, Key Laboratory of Biorheological Science and Technology (Chongqing University), Chongqing, 400044, People's Republic of China.
| |
Collapse
|
44
|
Khaliullina H, Love NK, Harris WA. Nutrient-Deprived Retinal Progenitors Proliferate in Response to Hypoxia: Interaction of the HIF-1 and mTOR Pathway. J Dev Biol 2016; 4. [PMID: 27280081 PMCID: PMC4894462 DOI: 10.3390/jdb4020017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
At a cellular level, nutrients are sensed by the mechanistic Target of Rapamycin (mTOR). The response of cells to hypoxia is regulated via action of the oxygen sensor Hypoxia-Inducible Factor 1 (HIF-1). During development, injury and disease, tissues might face conditions of both low nutrient supply and low oxygen, yet it is not clear how cells adapt to both nutrient restriction and hypoxia, or how mTOR and HIF-1 interact in such conditions. Here we explore this question in vivo with respect to cell proliferation using the ciliary marginal zone (CMZ) of Xenopus. We found that both nutrient-deprivation and hypoxia cause retinal progenitors to decrease their proliferation, yet when nutrient-deprived progenitors are exposed to hypoxia there is an unexpected rise in cell proliferation. This increase, mediated by HIF-1 signalling, is dependent on glutaminolysis and reactivation of the mTOR pathway. We discuss how these findings in non-transformed tissue may also shed light on the ability of cancer cells in poorly vascularised solid tumours to proliferate.
Collapse
Affiliation(s)
- Helena Khaliullina
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK;
| | - Nicola K Love
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK;
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK;
| |
Collapse
|
45
|
Alkharusi A, Lesma E, Ancona S, Chiaramonte E, Nyström T, Gorio A, Norstedt G. Role of Prolactin Receptors in Lymphangioleiomyomatosis. PLoS One 2016; 11:e0146653. [PMID: 26765535 PMCID: PMC4713116 DOI: 10.1371/journal.pone.0146653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/21/2015] [Indexed: 11/19/2022] Open
Abstract
Pulmonary lymphangioleiomyomatosis (LAM) is a rare lung disease caused by mutations in the tumor suppressor genes encoding Tuberous Sclerosis Complex (TSC) 1 and TSC2. The protein product of the TSC2 gene is a well-known suppressor of the mTOR pathway. Emerging evidence suggests that the pituitary hormone prolactin (Prl) has both endocrine and paracrine modes of action. Here, we have investigated components of the Prl system in models for LAM. In a TSC2 (+/-) mouse sarcoma cell line, down-regulation of TSC2 using siRNA resulted in increased levels of the Prl receptor. In human LAM cells, the Prl receptor is detectable by immunohistochemistry, and the expression of Prl in these cells stimulates STAT3 and Erk phosphorylation, as well as proliferation. A high affinity Prl receptor antagonist consisting of Prl with four amino acid substitutions reduced phosphorylation of STAT3 and Erk. Antagonist treatment further reduced the proliferative and invasive properties of LAM cells. In histological sections from LAM patients, Prl receptor immuno reactivity was observed. We conclude that the Prl receptor is expressed in LAM, and that loss of TSC2 increases Prl receptor levels. It is proposed that Prl exerts growth-stimulatory effects on LAM cells, and that antagonizing the Prl receptor can block such effects.
Collapse
Affiliation(s)
- Amira Alkharusi
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sultan Qaboos University, College of Medicine and Health Sciences, Muscat, Oman
| | - Elena Lesma
- Department of Health Sciences, Laboratories of Pharmacology, Università degli Studi di Milano, Milano, Italy
| | - Silvia Ancona
- Department of Health Sciences, Laboratories of Pharmacology, Università degli Studi di Milano, Milano, Italy
| | - Eloisa Chiaramonte
- Department of Health Sciences, Laboratories of Pharmacology, Università degli Studi di Milano, Milano, Italy
| | - Thomas Nyström
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Alfredo Gorio
- Department of Health Sciences, Laboratories of Pharmacology, Università degli Studi di Milano, Milano, Italy
| | - Gunnar Norstedt
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
46
|
Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res 2016; 167:228-56. [PMID: 26408801 DOI: 10.1016/j.trsl.2015.08.011] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Obesity is a major public health problem worldwide, and it is associated with an increased risk of developing type 2 diabetes. It is now commonly accepted that chronic inflammation associated with obesity induces insulin resistance and β-cell dysfunction in diabetic patients. Obesity-associated inflammation is characterized by increased abundance of macrophages and enhanced production of inflammatory cytokines in adipose tissue. Adipose tissue macrophages are suggested to be the major source of local and systemic inflammatory mediators such as tumor necrosis factor α, interleukin (IL)-1β, and IL-6. These cytokines induce insulin resistance in insulin target tissues by activating the suppressors of cytokine signaling proteins, several kinases such as c-Jun N-terminal kinase, IκB kinase β, and protein kinase C, inducible nitric oxide synthase, extracellular signal-regulated kinase, and protein tyrosine phosphatases such as protein tyrosine phosphatase 1B. These activated factors impair the insulin signaling at the insulin receptor and the insulin receptor substrates levels. The same process most likely occurs in the pancreas as it contains a pool of tissue-resident macrophages. High concentrations of glucose or palmitate via the chemokine production promote further immune cell migration and infiltration into the islets. These events ultimately induce inflammatory responses leading to the apoptosis of the pancreatic β cells. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation are discussed, with particular attention being placed on the roles of the molecular players linking inflammation to insulin resistance and β-cell dysfunction.
Collapse
Affiliation(s)
- Hadi Khodabandehloo
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ghodratollah Panahi
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
47
|
The role of CAPE in PI3K/AKT/mTOR activation and oxidative stress on testis torsion. Acta Histochem 2016; 118:31-7. [PMID: 26651953 DOI: 10.1016/j.acthis.2015.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/13/2023]
Abstract
Ischemia reperfusion injury arises from testicular torsion resulting in a loss of spermatogenesis and significant germ cell apoptosis. This study evaluates the prooxidant/antioxidant effects of caffeic acid phenethyl ester (CAPE) through PI3K/AKT/mTOR signal pathways on testis torsion. A total of (28) male Wistar rats were divided randomly into 4 groups (n=7 for each group):group A (sham) group,group B torsion/detorsion group, group C (saturation group, during four days of CAPE, one dose (10 μmol/kg, i.p)) and group D (a single dose of CAPE 2h after torsion and before detorsion). At the end of the study, unilateral orchiectomies were performed for measurements of MDA and 8OHdG levels, histopathologic and immunohistochemical and TUNEL apoptotic cell examination. Testicular torsion-detorsion led to a significant decrease in the mean values of the Johnsen's scores and a significant increase in the apoptotic cell values of group B. There were no significant differences between group D and group A. In addition, the MDA and 8OHdG levels increased significantly in group B. The MDA and 8OHdG values were lower in group D. However, the 8OHdG levels were higher in group C than the groups A and D. On the other hand, CAPE suppresses mTOR activation and reduces the apoptosis on ischemia/reperfusion damage in rat testis. These results demonstrate that CAPE suppresses mTOR activation and reduces the apoptosis on ischemia/reperfusion damage in rat testis.
Collapse
|
48
|
Abstract
Although the eukaryotic TOR (target of rapamycin) kinase signalling pathway has emerged as a key player for integrating nutrient-, energy- and stress-related cues with growth and metabolic outputs, relatively little is known of how this ancient regulatory mechanism has been adapted in higher plants. Drawing comparisons with the substantial knowledge base around TOR kinase signalling in fungal and animal systems, functional aspects of this pathway in plants are reviewed. Both conserved and divergent elements are discussed in relation to unique aspects associated with an autotrophic mode of nutrition and adaptive strategies for multicellular development exhibited by plants.
Collapse
|
49
|
Prodinger J, Loacker LJ, Schmidt RLJ, Ratzinger F, Greiner G, Witzeneder N, Hoermann G, Jutz S, Pickl WF, Steinberger P, Marculescu R, Schmetterer KG. The tryptophan metabolite picolinic acid suppresses proliferation and metabolic activity of CD4+ T cells and inhibits c-Myc activation. J Leukoc Biol 2015; 99:583-94. [PMID: 26497245 DOI: 10.1189/jlb.3a0315-135r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022] Open
Abstract
Tryptophan metabolites, including kynurenine, 3-hydroxyanthranilic acid, and picolinic acid, are key mediators of immunosuppression by cells expressing the tryptophan-catabolizing enzyme indoleamine2,3-dioxygenase. In this study, we assessed the influence of picolinic acid on cell viability and effector functions of CD4(+)T cells following in vitro activation with agonistic anti-CD3/anti-CD28 antibodies. In contrast to kynurenine and 3-hydroxyanthranilic acid, exposure of T cells with picolinic acid did not affect cell viability, whereas proliferation and metabolic activity were suppressed in a dose-dependent manner. On the other hand, cytokine secretion and up-regulation of cell surface activation markers were not or only weakly inhibited by picolinic acid. Picolinic acid exposure induced a state of deep anergy that could not be overcome by the addition of exogenous IL-2 and inhibited Th cell polarization. On the molecular level, important upstream signaling molecules, such as the MAPKs ERK and p38 and the mammalian target of rapamycin target protein S6 ribosomal protein, were not affected by picolinic acid. Likewise, NFAT, NF-κB, and AP-1 promoter activity in Jurkat T cells was not influenced by exposure to picolinic acid. Whereas transcriptional levels of v-myc avian myelocytomatosis viral oncogene homolog were not affected by picolinic acid, phosphorylation at Ser62 was strongly reduced in picolinic acid-exposed T cells following activation. In conclusion, picolinic acid mediates a unique immunosuppressive program in T cells, mainly inhibiting cell cycle and metabolic activity, while leaving other effector functions intact. These functional features are accompanied by reduced phosphorylation of v-myc avian myelocytomatosis viral oncogene homolog. It remains to be determined whether this effect is mediated by direct inhibition of ERK activity or whether indirect mechanisms apply.
Collapse
Affiliation(s)
- Johanna Prodinger
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa J Loacker
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ralf L J Schmidt
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Franz Ratzinger
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Georg Greiner
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Nadine Witzeneder
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Sabrina Jutz
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Klaus G Schmetterer
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
TORC1 activity is partially reduced under nitrogen starvation conditions in sake yeast Kyokai no. 7, Saccharomyces cerevisiae. J Biosci Bioeng 2015; 121:247-52. [PMID: 26272416 DOI: 10.1016/j.jbiosc.2015.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/30/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022]
Abstract
Industrial yeasts are generally unable to sporulate but treatment with the immunosuppressive drug rapamycin restores this ability in a sake yeast strain Kyokai no. 7 (K7), Saccharomyces cerevisiae. This finding suggests that TORC1 is active under sporulation conditions. Here, using a reporter gene assay, Northern and Western blots, we tried to gain insight into how TORC1 function under nitrogen starvation conditions in K7 cells. Similarly to a laboratory strain, RPS26A transcription was repressed and Npr1 was dephosphorylated in K7 cells, indicative of the expected loss of TORC1 function under nitrogen starvation. The expression of nitrogen catabolite repression-sensitive genes, however, was not induced, the level of Cln3 remained constant, and autophagy was more slowly induced than in a laboratory strain, all suggestive of active TORC1. We conclude that TORC1 activity is partially reduced under nitrogen starvation conditions in K7 cells.
Collapse
|